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Abstract

Navigation services are most o�en used to reduce time spent finding your
way during daily travel. They are aimed at improving ones travel experi-
ences. Consider the everyday problem "Which way is the fastest route to get
from home to work?". Yet these services also receive a growing a�ention for
activities outside that daily routine, namely during leisure activities. These
services provide answers to di�erent question. One example is "Which way
will provide me with an adventurous and challenging hiking round trip start-
ing at our vacation house?". This book is about this specific type of navigation
services.

The use of navigation services during these leisure activities is conditioned
by special needs and trade-o�s (e.g. adventurous, challenging). Further-
more, end-users expect a personalized and user-centered experience. Yet
the machine-readable maps supporting these services are limited in their
ability to answer this growing demand. Missing, erroneous or out-dated
information are an important limiting factor in current expert-based models
supporting these services. Alleviating this impact in a cost-e�ective way is
one of the main challenges both for research and commercial applications in
this domain.

The advent of online communities and large crowd-based sources o�ers a
new way, and the way we do in this book, to approach this challenge. Within
this dissertation we gauge the value of online route-sharing platforms. This
book presents three cases using route-sharing communities and their specific
user-generated content. By applying geographical and contextual analyses,
we elicit new ancillary data.

Supported by our findings, we want to convince the reader of the value of
this ancillary data to improve navigation services for leisure activities. Both
active user interaction and data-driven approaches, or passive information
collection, have an observable potential to harvest contextual information
from these new data sources. In future valorisation, the synergy between
both crowd-sourcing approaches and expert-based models will be imperative.
In conclusion, we also want to highlight the value of geographical and con-
textual analyses in other facets of route-sharing platforms, and by extension
other social media, to personalize and improve their user-centered design.

xiii





1
General introduction

“What do you consider the largest map that would be really
useful?” “About six inches to the mile.” “Only six inches!”
exclaimed Mein Herr. “We very soon got to six yards to the mile.
Then we tried a hundred yards to the mile. And then came the
grandest idea of all! We actually made a map of the country on
the scale of a mile to the mile!” “Have you used it much?” I
enquired. “It has never been spread out, yet,” said Mein Herr:
“the farmers objected: they said it would cover the whole
country and shut out the sunlight! So we now use the country
itself, as its own map, and I assure you it does nearly as well.”

Lewis Carroll, Sylvie and Bruno Concluded

1.1 Research context

Maps have always had value in solving complex spatial problems. Consider
finding your way. Maps have the ability to solve this problem in a clear, quick
and comprehensible manner. However, the rigor with which we actually map
the world and, hence, the map’s problem-solving ability have always had
their limits. Information is inevitably le� out. While there is a well-known
need to generalize reality during the practice of making maps (Koláčný, 1969),
the notion of remoteness can also serve to explain why reality gaps exist. At
one level this may sound trivial. The tangible barriers of latitude, altitude,
continentality or insularity have long been discerned as reasons for missing
or under-mapped places in representations of the world. In an a�empt to deal
with this remoteness, humans have built tools and technology to bridge the
distance to these places and, as a result, weakening its impact on contempo-
rary map making (Blackmore and Harley, 1980; Bocco, 2016).
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Research context

However, map making is constrained by many other aspects, not the least
of which is cost. In that sense, we posit another initiator for remoteness in
map making and, hence, an explanatory variable for missing or out-dated
information in maps: the combined value to all users is less than the cost
to capture this information. Most contemporary mapping companies were
established under the presumption that an intricate database describing the
geographical domain and its derived cartographic products have a value that
justifies the costs to map these remote places. Until the beginning of the 21th
century, this was an actual and viable business case. Two things changed this
situation.

In 2005 Google Maps was launched, which was to all intents and purposes
free for use. While not the sole online map launched in mid 2000s, Google
Maps is a clear example of a business case which disruptively changed the
way we look at mapping. Google used its maps to target advertising be�er
and, hence, create revenue. While there is no such thing as a free lunch, these
maps created an expectation of freely accessible maps for end-users.

Secondly, fueled by the burgeoning popularity of location-based services, the
demand for more detailed digital road databases has increased rapidly in the
last years. Finding your way, for example, has moved well beyond paper maps
and in-car navigation devices. End-users expect personalized services with
up-to-the-minute detail meeting their expectations and local knowledge for a
gamut of activities. These expectations range from safe, scenic and a�ractive
route suggestions to fresh and coherent information about a�ractions along
your sightseeing walk (e.g. its cultural value, historical significance or more
practical information such as opening hours). Of particular concern is that
navigation services need more than skilfully designed online and mobile tools
and technology to succeed. They need to be allied with the right machine-
readable maps (Fu et al., 2006) and comprehend a complicated interplay of
special needs and trade-o�s.

In this book, we focus our a�ention on navigation services and how they are
impacted by the above-described situational change. In particular, we study,
as the title of this dissertation implies, navigation services for leisure activ-
ities and defining where and how improvements are possible. Both aspects
are the cornerstones of the research in this book and shape its context and
aim.

1.1.1 Problem statement

Leisure is most o�en defined as the use of free time, time not spent working
or occupied, for enjoyment. While this is a highly interpretable and fuzzy

2



General introduction

classification by activity, we use this term to identify a niche in navigation
services used in combination with leisure activities or active recreational
pastime. In the remainder of this book, we o�en refer to this niche as activity-
specific navigation services. Consider, for example, finding your way during
a sightseeing walk or a leisurely sports activity such as cycling or hiking.

Navigation services in automotive engineering and industry clearly have a
head start on these activity-specific services. Research and development has
moved well beyond tools, technology and data to find your way. New poten-
tially disruptive changes such as in-car sensing and processing together with
semi- or fully-autonomous vehicles receive much a�ention to make driving
simpler and safer (Fagnant and Kockelman, 2015; Schmidt et al., 2011). These
navigation services are highly functional, gauging their tangible value by
reducing time to destination and travel costs (e.g. gas money).

Contrastingly, the complexity of activity-specific navigation services during
leisurely sports, tourism and other recreational pastime lies in gauging so�
factors of the streetscape and meeting aforementioned expectations such
as an a�ractive route suggestion. Herein lies the problem and, hence, the
need for improvements. An interplay of several reasons can be put forward
why these services are nowadays more prone to being hampered by the
introduced remoteness than well-known automotive navigation services. We
posit three main drivers.

First, there is a very skewed distribution in the hierarchy of roads if ordered
by proportional length in a real-world road network. There are many more
local roads, paths and dirt roads than freeways, arterials and collectors put
together (an 80/20 ratio as seen in Figure 1.1). Also, a large portion of road
networks have tra�ic restriction, most o�en inaccessibility for motorized
vehicles. Both for reasons of cost and limited time, these places can, as a
result, be deemed remote and remain under mapped as the expected tra�ic on
these parts of the road network, and the expected combined value or revenue
created by up-to-date information, is much lower. This budgetary choice,
however, has a large performance impact on the aforementioned navigation
services for leisure activities. Local roads, paths and dirt roads are preferred
connectors in route suggestions generated by these services.

A second reason can be found in the physical boundaries of contemporary
mapping strategies. Remote sensing from mobile, multi-sensor platforms
(e.g. mobile mapping vehicles) have significantly lowered the validation and
verification cost of procured information. However, the limited access to the
roads and paths of interest for these leisure activities hampers capturing road
infrastructure and its direct surroundings in a standardized way and boost
the time-to-market performance of new and updated map products. Con-

3
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sider Google Street View. Probably one of the most popular and widespread
examples of this mobile mapping technology, but still for the majority of its
street-level imagery limited to motorized vehicle-accessible roads. As such,
on-site mapping teams and human input remain important in the tedious
validation and verification process and, hence, increases both cost and time
to procure up-to-date and verified information for the services of interest in
this research.

Finally, contemporary mapping standards condense information in prede-
fined and constrained a�ributes. However, as the complexity of queries to
these activity-specific services increases, it becomes equally hard to distin-
guish these properties and condense the necessary information into object
a�ributes. Hence, it is not only di�icult to collect the necessary information,
but it becomes equally hard to describe these machine-readable maps in
actionable and scalable structures.

Figure 1.1: Representation of the proportional length distribution of road
segments in a real-world network in Belgium (source: NGI - 1 :
10 000 road network).

In this regard, interest in both crowd-based sources and data-driven research
has grown continuously, aiming to be�er understand citizens or consumers
and to improve and personalize services in a creative and cost-e�ective way.
We live in a datafied world where many aspects of our daily life are lumped
into data streams and shared within diverse online communities. Against
the backdrop of a burgeoning amount of devices with communication and
sensing capabilities (Srivastava et al., 2012) and a growing digital literacy
among its users, our data doppelgängers describe the seemingly uniform
distancelessness world1 in an unprecedented pace and detail.

1. Metaphysical term, a time-space compression as a result of technology (Heidegger, 1971)
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Every day, members of the general public (i.e. crowds) are, knowingly or
unknowingly, generating georeferenced facts amassing in so-called data wells
(Goodchild and Li, 2012). This process of creating, collecting and disseminat-
ing geographic information on the web has first been coined Volunteered
Geographic Information (VGI) by Goodchild (2007). In the last ten years,
this term has become a suitcase term for a variety of spatial data and its
derived information that is voluntary made available (Elwood et al., 2012) and
is, almost always, used interchangeably with spatial user-generated content
or crowd-sourced information. For a more in-depth review of specific terms
in this research field and their di�erences and nuances, we refer to the review
paper of See et al. (2016).

The potential of this new type of data creation and the resulting data wells has
been highlighted in both research and commercial applications. However,
these crowd-based sources can not be seen as a commodity which can be
bought and sold to bridge the described reality gaps seen in the practice
of making maps. Besides its latent knowledge and great promise, there are
challenges and limitations in using these sources that need to be understood.

As such, the overarching theme in this dissertation is the potential of these
sources to create ancillary data to improve the problem-solving ability of
machine-readable maps in the current myriad of location-based services. In
particular, we study how to exploit this potential in route-sharing commu-
nities and use their crowd-based sources describing our leisured self to cre-
ate trustworthy, scalable and actionable knowledge to bridge the aforemen-
tioned reality gaps. The approach in doing so is focused on two specific
types of user-generated content managed in these communities (i.e. routes
and points of interest; see Section 1.1.3), aiming to improve activity-specific
navigation services.

1.1.2 Valorisation potential

By reframing our main objective to "How can route-sharing platforms exploit
the full potential of their community to streamline e�orts to improve the
fitness of their services?", we also imply there is an optimal solution to this
problem. The implementation di�iculties of this solution, that already came
apparent in the above-described problem statement, can also be grasped in
three high-level performance indicators for navigation services in general.

• Reality - navigation services and their underlying machine-readable
maps should present real-world situation. In other words, the calcu-
lated activity-specific fitness for use of an actual path or road repre-
sents its real-world suitability for a specific user type. This implies
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that we should be able to distill the necessary information to main-
tain these services, track changes and characterize blind spots in the
current expert-based models.

• Time - End-users expect near real-time updates in services. This is
linked with the time to market of updated maps and is strongly con-
nected with the previous performance indicator. As such, performance
can only be a�ained by a continuously growing amount of data to
’learn’ from. This flywheel e�ect is imperative in keeping these ap-
proaches sustainable in time.

• Cost - Cost should be kept to a minimum to maintain an approach.
Resources should be focused on managing the value-creation process
instead of actively intervening in this process.

The interplay between these performance indicators forms the logical basis
of this research and will be addressed throughout this dissertation. The
less obvious yet equally important question to ask within this dissertation
is which trade-o�s need to be made to a�ain a sub-optimal but satisfactory
solution to the introduced problem for all stakeholders in the value chain (e.g.
end-users, data providers and service providers).

This dissertation is a reference work of demand-driven scientific research
addressing the unique opportunities, challenges and limitations within the
above-described problem statement. Acquiring an intricate road database to
facilitate navigation services for leisure, sports and tourism activities is one
of the main focuses of the industrial partner in this dissertation, RouteYou.
RouteYou manages a route-sharing platform where end-users create, share
and use user-generated content in this activity-specific context. Of specific
interest to the main objective of this dissertation is the model RouteYou
maintains to calculate an a�ractiveness of a road tailored to the needs of
specific leisure, sport and tourism activities. A�ractiveness can be defined as
features or qualities of a road or path which arouses an interest in an activity-
specific context. For example, a road could be pigeonholed as a�ractive to
race cyclists if it has low tra�ic counts, lies in a natural se�ing and has an
asphalt surface. Figure 1.2 gives an overview of situations with prevailing
characteristics and proxies used in RouteYou’s model.

The following chapters discuss certain lacking or irretrievable information for
this and similar models and devise an approach to bridge these specific reality
gaps. The relevance of this research, however, does not limit itself to the niche
market of RouteYou or route-sharing platforms. Creative and cost-e�ective
ways to define the suitability, safety or popularity of places during recre-
ational activities have been receiving growing a�ention in both academic
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research and popular media about tourism and leisure, health, policy making
or spatial planning. Throughout this dissertation we enrich our research
context with related work, emphasizing the relevance of this dissertation in
a broader frame of reference.

Figure 1.2: Overview of several characteristics determining RouteYou’s at-
tractiveness model. Green features are positive characteristics;
red features are negative characteristics.

In the following sections we give a brief introduction to route-sharing com-
munities and their user-generated content. Next, we present the challenges
in using these crowd-based sources to address the presented research objec-
tives.

1.1.3 Route-sharing platforms and their communities

According to the typology of social media by Kaplan and Haenlein (2010),
route-sharing communities are, on a first level, content communities with
pleasure-seeking and utilitarian values. For example, end-users explore ac-
tivities in the region of their next vacation or plan their coming Sunday
morning ride. In these communities, self-presentation (i.e. the ability to con-
trol the impression one makes) is expected to be subservient to the created
and shared content in these networks. However, self-presentation becomes
increasingly more important both as an individual or within a business-to-
business or business-to-customer network. Hence, route-sharing platforms
are evolving into social networking sites. These platforms allow end-users
to manage their own channel to create, collect and present their location-
based information enabling self-presentation and digital storytelling. Within
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the following chapters in this dissertation we focus on two types of user-
generated content within these communities: (i) routes and (ii) points of in-
terest. Following paragraphs introduce both key concepts and highlight their
importance for route-sharing communities and, more specifically, RouteYou.

Figure 1.3: Example of user-generated content within the route-sharing
community of RouteYou.

Similar to the reason for travel as proposed by Bovy and Stern (1990), a route
occurs because "di�erent things exist in di�erent places (p 1)". Within the
specific context of this dissertation, a route is a representation of a leisure
activity and is used both as guidance aid before or during this activity and as
a log of previous activities. Routes on RouteYou originate from (i) RouteYou’s
route-planning tool, (ii) user uploads in well-known standards such as GPX2

or FIT3 or (iii) third-party applications using RouteYou’s services and back
end. From a technical perspective, a route consists of a set of legs describing
a particular way connecting di�erent places. A leg describes a real-world
shortest path between two places. In addition to the technical tools to cre-
ate these route data, RouteYou implements di�erent mechanisms to enable
storytelling during this route-creating process. Providing a description and
using the tagging system to link a route to a type, theme, group or charac-
teristic allows users to create so-called rich routes. In doing so, every route
has its own story to tell, shaped by random agents and complex factors,
such as weather, scenery, a�ordance of the street- and sound-scape, physical
di�iculty or group dynamics (Bull, 2006; Damant-Sirois et al., 2014; Dill and
McNeil, 2013; Downward and Lumsdon, 2001; Pijanowski et al., 2011; Tucker
and Gilliland, 2007; Winters et al., 2010). At the same time, this linking

2. GPX or GPS Exchange Format is an XML standard to describe and exchange route information
3. Similar to GPX, FIT or Flexible and Interoperable Transfer is a protocol to describe route

information
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provides valuable information for research, enriching the possibilities of con-
textual analysis and information retrieval.

Next, a route can have one or more points of interest which lie in the vicinity
of the proposed way in the route. Points of interest or POI are a well-known
concept in popular location-based services. POI can easily, and probably
naively, be described as location-aware information such as plain text, im-
ages or video’s. RouteYou uses contextual (e.g. theme-specific or activity-
specific) POIs to enrich the experience before and during an activity and,
hence, enabling storytelling through map exploration of a route-specific POI
set. Figure 1.3 shows an example of a rich route created with the RouteYou
platform. At the time of writing RouteYou holds nearly 4.5 million routes and
2 million points of interest linked to more than 250 000 activated accounts.
On average, the website of RouteYou receives 1 million visits per month.

1.1.4 Challenges in using route-sharing platforms

Researchers and academics increasingly turn to crowd-based sources to gen-
erate new interdisciplinary research output. In recent years, a broad range of
research domains such as social studies and psychometrics (Kosinski et al.,
2015; Lazer et al., 2009), healthcare and medicine (Alemdar and Ersoy, 2010),
or disaster management (de Albuquerque et al., 2016; Simon et al., 2015) have
used these sources to come to new insights. Within a geographic research
context, Sui and Goodchild (2011) and Goodchild (2011), among others, rec-
ognized the need to find new ways of fusing social media and Geographic In-
formation Systems (GIS) and produce protocols and procedures to link these
crowd-based sources to fill gaps in contemporary spatial data infrastructures.
While above-described problem statement (see Section 1.1) has introduced
the opportunities of this dissertation, several challenges can also be identi-
fied. Challenges lie in determining (i) the role end-users are willing to play, (ii)
the suitability of harvested data, (iii) the dirty nature of harvested data and
(iv) the comprehensibility of inferred information. The following paragraphs
introduce these challenges and underpin our statement that crowd-based
sources can not just be seen as a commodity. Understanding these challenges
within our research context and presenting methodological approaches while
mitigating their impact is an important goal of this dissertation.

Challenge I - Current research focusing on online communities and their
crowd-based sources document two forms of information collection, namely
passive and active contributions (She et al., 2015). Both approaches have
proven their individual usefulness in creating new information. First, data
mining, machine learning and knowledge-discovery techniques (see for ex-
ample Bishop (2006)) have grown very popular in recent decades as means to
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passively collect information from shared records (Mayer-Schönberger and
Cukier, 2013). Using these data-intensive techniques within a geographical
context are one way to exploit the potential in crowd-based sources and
address the main objective of this dissertation. Contextual analysis of places
occurring in these crowd-based sources can be used to infer new information.
This contextual analysis is based on two well-studied geographical princi-
ples (Goodchild, 2011; Sui, 2004; Tobler, 1970): (i) the likelihood of finding
relations between phenomena occurring at the same location and (ii) the
tendency that near phenomena are more related than distant ones. Sec-
ondly, crowd-sourcing projects, requiring active interaction with and within
IT-mediated crowds to infer new information, have become equally pop-
ular (Doan et al., 2011). Consider Google’s Local Guides4 or community-
based tra�ic applications such as Waze5. Many e�orts are now being made
to integrate these crowd-sourcing approaches in commercial applications.
Crowdsourcing is used both for reasons of information retrieval and market-
ing. Van Belleghem (2015) noted that the ultimate goal of these approaches
is to make the customer a part of the company and create an emotional
customer relationship. Route-sharing platforms thrive on this relationship.
We study how knowledge-sharing behavior can be fostered beyond content
creation. As such, the first challenge lies in understanding the trade-o�s
when implementing and combining these methods to address the main ob-
jective of this dissertation.

Challenge II - An intrinsic characteristic and, hence, a second challenge
of this and similar research is the fact that we use an online community
for another purpose than it was conceived for. Similar to other social me-
dia, route-sharing platforms are purpose-built applications, most o�en in a
commercial se�ing. They are user centered and give end-users the tools and
freedom to create their content. Furthermore, these tools are developed in a
way that is based on practical rather than theoretical considerations and aim
at increasing user retention or volume of shared content. Very few, if any,
of these platforms are designed as a research instrument and, hence, lack
a fully controllable environment to do empirical research. Due to this lack
of control, data collection is prone to serendipity. Within leisure-oriented
applications, such as route-sharing communities, very personal contributor
characteristics such as vacation, spare time or social context can have an
impact on contribution pa�erns. Panciera et al. (2010) noted that research
in online communities is o�en fostered or hampered by what researchers
cannot see or measure. Furthermore, we have to be aware that data collection
is done in a self-selected population (e.g. RouteYou’s end-users) and precedes

4. h�ps://maps.google.com/localguides
5. h�ps://www.waze.com
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both hypotheses predictions and experiment design. This biased nature of
the collected data emphasizes the need to identify the right research ques-
tion to which these data can be used with reasonable generality (Miller and
Goodchild, 2015; Romanillos et al., 2016).

Challenge III - The third challenge is strongly intertwined with the previous
one and addresses the dirty or messy nature of the collected data. A lack of
data semantics, structure or level of detail hampers reuse of collected data
sources (Li et al., 2016). This lack can result from the second challenge, a dif-
ference in creation and reuse purpose of the created content in route-sharing
communities. Consider a specific route. This type of content can meet the
personal requirements of a route author and his goals, but can lack more
general quality metrics such as positional accuracy for map making reuse.
Furthermore, end-users of a route-sharing platform can lack experience, in-
trinsic motivators or incentives, knowledge, time or a�ention to address in-
accuracies in both their content or the shared content of other users. As such,
omissions, errors or other inaccuracies are inherent and, most o�en, undocu-
mented in the content-creation procedure and data collection (e.g. Antoniou
and Skopeliti, 2015; Flanagin and Metzger, 2008; Goodchild and Li, 2012;
Senaratne et al., 2017). By integrating user interaction through comments
or content-rating systems (think of ’likes’, ’stars’ or ’kudos’), many social
media try to make the quality control in these communities self-regulated.
However, the self-regulation process o�en fails or is insu�icient to meet user
expectations or predefined standards. Despite a growing amount of research
focusing on trust and quality propagation of user-generated content for re-
search, Antoniou and Skopeliti (2015) noted that more intrinsic quality and
trust measures such as data lineage or contributor history are still far from
solving the question "How good are these crowd-based data sources?". Li et al.
(2016) and Sui and Goodchild (2011) noted that the solution to this challenge
could lie in the data itself, that is redundancy within crowd-based sources to
alleviate and mitigate quality issues.

Challenge IV - Miller and Goodchild (2015) identify a fourth and final chal-
lenge in "how to build data-driven models that are both true and under-
standable". Mayer-Schönberger and Cukier (2013) argue that as the volume
of crowd-based sources increases, it becomes equally hard to infer causality,
explanations and, as a result, unifying theories and models. Similar to a
Google-like approach of page indexation or Facebook’s EdgeRank algorithm
to model its news feed, the data deluge is reshaping research, crunching large
numbers of records to infer an educated guess without this unifying frame-
work. To extend and improve RouteYou’s a�ractiveness model in its current
form, however, it is imperative to know why a road or path is preferred above
another. For more in depth discussion of this Big Data paradigm shi� and the
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implications of data-driven or data-intensive research we refer to extensive
discussions in literature including, but not limited to, the work of Kelling et al.
(2009), Boyd and Crawford (2012), Kitchin (2014) and Miller and Goodchild
(2015). Many data-driven companies such as Facebook use the combination
of data-intensive approaches, such as their machine-learned news feed rank-
ing algorithm, and human input from feed quality panels (i.e. a paid workforce
to evaluate algorithms’ output), trying to make their data-driven models both
true and understandable. As such, this challenge is strongly interwoven with
the first challenge introduced in this section.

1.2 Synopsis

This research makes use of an online community and its user-generated con-
tent and is conducted for the particular case of route-sharing communities.
The goal of this dissertation is twofold. First, we want to present actual use
cases of a route-sharing community and its data to address the introduced
problem statement. Second, opening the door to new ways of understand-
ing, we study the introduced challenges in using route-sharing communities
in research in Section 1.1.4. Documenting methodological approaches that
alleviate their impact is imperative to create future valorisation trajectories.
This clear-cut goal allows us to posit three overarching research questions
which can be addressed within this frame of reference.

1.2.1 Research questions

Following section introduces each research question, gives a brief topical
summary and links them back to the introduced challenges and performance
indicators.

RQ1: How can large route sets maintained on route-sharing platforms be used
to improve activity-specific navigation services?

This first research question draws a�ention to routes and strings the four
aforementioned challenges together. We focus on set generation, that
is the action of semantically and spatially grouping routes. By studying
the movements along a road network described in these route sets, we
aim at creating ancillary data for navigation services. If successful, this
approach has the potential to fill blind spots in current machine-readable
maps for niches of leisure activities where navigation services are receiv-
ing a growing interest. In doing so, we focus on sourcing route choices
consolidated in a route set to increase the reality of route suggestion and
time to market of valuable information while reducing the costs to detect
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inconsistencies in the expert-based model of navigation services. This
research question is used to guide the discussion of opportunities and
fallacies in this rationale.

RQ2: Which opportunities do POIs provide to enrich current navigation services
beyond well-known map exploration?

Map exploration, the action of searching and consuming information pre-
sented on maps, has become very important in web-enabled services fo-
cusing on location-based information or POIs. As mentioned before, nav-
igation services use a similar map-exploration approach to show informa-
tion along your route to enrich the experience. This research question,
in contrast, emphasizes the value of POI to guide route suggestion for
specific leisure activities and addresses the challenges when reusing POI
in our research contexts. As such, we focus on improving the fitness for
use of these route suggestion, that is the reality in navigation services.
While all four challenges have links with this research question, the main
focus lies on the third and fourth challenge.

RQ3: Do route-sharing platforms have engaged end-users that are able to help
improve the problem-solving ability of maps? If so, what is the value of active
user interaction?

The third and final research questions is driven by the first and fourth
challenge. Engaged end-users are a potential source of very specific, top-
ical and local information. Moreover, these end-users are, most o�en,
willing to share this information without any financial reward, reducing
costs of information collection. We seek to discover the added value of this
active user interaction in contrast to data-driven approaches and passive
information collection. We use this research question to gather insights
on both the reality and time performance indicator. Do end-users provide
information which can not be harvested by passive information collec-
tion? What can we expect of these end-users (e.g. time to market, spatial
coverage).

1.2.2 Outline

This work consists of five chapters. The corpus of this work is structured
around three specific use cases6. All three use cases fulfill a di�erent need
while addressing the main objectives and research questions presented in this

6. Chapters are based on original research papers. Because these chapters can also be regarded
as individual, multi-authored papers, there might exists some overlap. However, all three
chapters emphasize their specific frame of reference and link back to the problem statement
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introduction. Figure 1.4 gives a schematic overview of the di�erent chapters
and their topical focus.

Chapter 2 presents a data-driven approach using routes collected through
user uploads and third-party applications using RouteYou’s services and back
end (RQ1). To enhance existing navigation services for leisure activities, we
describe a methodology to integrate a user’s perspective in contemporary
routing engines designed for these services. Based on movements condensed
in a route set a generic popularity model is built approximating a cost to
traverse a road in the network for an activity type (i.e. a cyclist’s perspective).

Similar to the previous use case, Chapter 3 proposes a method to improve and
personalize path suggestion services in a road network for a specific leisure
activity based on aggregation of a crowd-based source collected in a route-
sharing community. In contrast, however, this work studies the utilization of
a set theme-specific POI to infer this fitness for use (RQ2). The goal of this
chapter is twofold. First, we focus on harvesting theme-specific information
lacking an actionable structure. We present generic building blocks to ge-
ographically enrich this information to become actionable within the main
objective of this dissertation. Next, we present an approach to aggregate
and consolidate this information to be useful in the aforementioned path
suggestion services.

In Chapter 4 we direct our a�ention on active user interaction and its value
in this dissertation (RQ3). We analyze an implementation of a web-based
feedback tool to query an individual’s cognitive map to infer road-network
updates. We use this individual’s shared routes as a proxy for his cognitive
map (RQ1) and infer possible errors, ommissions or inaccuracies in a digital
road network where user feedback is required. All routes created by 325
active contributors through RouteYou’s route-planning tool and user uploads
were used in this case study.

The final chapters link these use cases back to the introduced research frame-
work and present a general discussion and conclusion. Aside from the results
garnered in the three use cases, we use the insights collected during the
four years of project-based research prior to this dissertation to bring this
discussion to address our research goals from di�erent angles and take the
long view.

In conclusion to this introductory chapter, we want to provide the frame
which fostered this research. Research was funded by Flanders Innovation &
Entrepreneurship (VLAIO) and RouteYou under a Baekeland mandate. The
purpose of this funding type is to support research that, if successful, has
the potential to o�er an added value to the company involved in the project.
Together with the academic research partners supporting this dissertation,
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this resulted in a multidisciplinary research framework. The growing syn-
ergy between geographic research, internet technology and data science has
become very clear in recent decades and also resulted in this dissertation.
The Department of Geography of Ghent University, one of the research part-
ners in this dissertation, has a long-standing expertise on in- and out-door
navigation applications, mapping and Geographic Information Science. In
addition, the expertise of the Internet Technology and Data Science Lab (ID-
Lab) of Ghent University, the second research partner, arches over di�erent
research areas such as machine learning and data mining, semantic intelli-
gence, distributed intelligence for IoT and multimedia processing. As both
research fields become more integrated in daily life, it also becomes im-
perative to move beyond topical boundaries and domain-specific expertise.
The research activities presented in this dissertation combine these fields of
study in the approach to the introduced topic. This resulted in a project-
based and application-oriented research merging geography with internet
technology and data science. In parallel to the presented use cases, e�orts
have also been made to implement the presented tools, methods and ideas in
the thriving community of RouteYou. In addition, valuable insights and tools
were also gathered during collaboration on conference or workshop papers
and the guidance I provided in four internships and four Master’s theses (see
Appendix A).
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2
Crowdsourcing a cyclist perspective on

suggested recreational paths in real-world
networks

“It can only be a�ributable to human error”
HAL9000, 2001: A Space Odyssey

In this chapter, we study routes and their capacity to support contextual analysis
and information retrieval, creating ancillary data to improve navigation services.
As such, we focus on how the potential in routes can be used to distill the
necessary information to maintain these services and mitigate the problem of
missing information in digital road networks. More specifically, the presented
use case analyses an alternative to an expert-based model such as RouteYou’s
a�ractiveness model. Instead of using a set of a�ributes that describe activity-
specific features or qualities of a road or path, we describe an adapted workflow
and build a data-driven model to create a per-road a�ractiveness index based
on the local flow distribution of recorded movements in a set of 190 610 routes.
We use this set of routes to gain insights into the a�ractiveness of each edge in
a real-world network for a specific leisure activity (i.e. road cycling). Next, we
compare the devised model with popular navigation services for the activity at
hand. Apart from describing the important decisions and set of procedure while
processing a route set, we also want to gain insights in the constraints of the
proposed data-driven approach.

The work presented in this chapter is based on following publication:
Baker, K., Ooms, K., Verstockt, S., Brackman, P., De Maeyer, P. and Van de Walle,
R. (2017). Crowdsourcing a Cyclist Perspective on Suggested Recreational Paths in
Real-world Networks. Cartography and Geographic Information Science, 44(5):422-
435. doi: h�p://dx.doi.org/10.1080/15230406.2016.1192486
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Introduction

2.1 Introduction

Thanks to the mobile sensing (r)evolution (Srivastava et al., 2012), know-
ing where you are and where you want to go is becoming easier. As the
number of online and mobile navigation services is growing, so has the use
of these services for a gamut of leisure activities, such as road cycling or
mountain biking. However, the a�ordance of a certain path for these par-
ticular modes lies primarily in subjective preferences and interests of the
user group. Pigram and Jenkins (1999) voiced that these outdoor recreational
activities lack the orderliness and monotony seen in utilitarian travel (i.e.
commuting). Cognition and emotion play an important role (Golledge, 1999).
These so� factors of the streetscape make the path suggestion much more
complex and di�icult. One of the fundamental problems is the insu�icient
comprehension of the selection criteria and trade-o�s in path selection for
the aforementioned types of leisure activities. While rigorous user studies are
a preferred tool to solve this problem, this approach involves a high cost and
needs thorough understanding of the subjects (Rubin and Chisnell, 2008). To
face this challenge, Bakillah et al. (2014) stated that the use of sensor data and
crowd-sourced information will certainly lead to new insights and improved
navigation and routing services.

Recent years have seen a proliferation of motivated and IT-mediated crowds
sharing their personal interests, experiences and feelings about their leisure
activities through streams of user-generated content. Cyclists, for example,
have the online and mobile tools to share and compare their trips and interact
with peers worldwide. Concurrently, harnessing new a�ordable technologies
in particular location-aware mobile devices and the mobile web has only
amplified this trend and results in large crowdsourced datasets. Engaging
these digital communities to elicit, collect and share information about their
(leisure) activities is the approach in a wide variety of research (e.g., Huang
et al., 2014; Reddy et al., 2010; Srivastava et al., 2012; Swan, 2013; Verstockt
et al., 2013) and commercial applications such as RouteYou1, Ride with GPS2,
MapMyRide3, Strava4, Bikemap5 or Garmin Connect6.

This use case analyses a route set, more specifically a large set of historical
GPS traces, of recreational cyclists to give insights into a cyclist perspec-
tive on suggested paths in real-world networks. The goal of this research is

1. www.routeyou.com
2. www.ridewithgps.com
3. www.mapmyride.com
4. www.strava.com
5. www.bikemap.net
6. www.connect.garmin.com
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twofold. First, we aim at developing a methodology to improve the adoption
of user perspective in weighted graphs and routing engines designed for
specific leisure activities, such as road cycling or mountain biking. Second,
we want to create a thorough understanding of these leisure activities to
facilitate future user studies. These user studies are an important step to
achieve a final estimation of the quality of suggested paths. However, the lat-
ter is beyond the scope of this use case. Based on the proposed methodology,
we gather insights on the first research question posited in the introduction
of this dissertation. We focus on three, more specific, research questions:

• RQ1: How can movements described in large route sets maintained
on route-sharing platforms be used to model specific features or qual-
ities of a road?

• RQ2: Can this model be used to create a route suggestion for specific
leisure activities?

• RQ3: How can path suggestions be evaluated?

Throughout this chapter, we consecutively address these research questions.
First, we model a road segment popularity solely based on movements along
edges in a graph condensed in route sets. This model is proposed as an
approximation of complex factors and seemingly random agents in the ac-
tivity at hand, such as scenery, popularity, a�ordance of the streetscape,
physical challenge and group dynamics. This popularity can hence be per-
ceived as an alternative to RouteYou’s a�ractiveness of a road. Next, as state-
of-the-art routing algorithms in performance demanding applications still
consider path suggestion as a shortest-path problem, we also propose a cost
function and a shortest-path alternative based on the developed popularity
model. Finally, we elaborate on a model evaluation setup. We report on the
general road characteristics in the proposed paths and compare our model
and popular routing engines with shortest-path alternatives for cycling, i.e.
RouteYou, Google Maps7, Strava and Brouter8. This methodology was tested
with 190 610 GPS tracking logs of road cyclists in the region of East-Flanders
(Belgium) shared on the web platform of RouteYou and combined with an
OpenStreetMap road network extract of this region of interest.

7. www.maps.google.com
8. www.brouter.de/brouter-web/
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2.2 Related work

For many centuries, the resource-intensive task of creating and annotating
geographic representations of the world was limited to commercial or gov-
ernmental mapping agencies (Kimerling et al., 2009; Mooney et al., 2013).
However, since the terms citizen science (Haklay, 2013) and crowdsourcing
(Howe, 2006) were first coined, several projects have demonstrated the fea-
sibility of crowdsourcing a wide range of IT-enabled tasks to a large com-
munity of volunteers. Within a geographical context, this new approach is
o�en exemplified by the community-driven mapping project OpenStreetMap
(OSM) (Haklay and Weber, 2008). Notwithstanding the intricate nature of
the digital road network in OSM, it still lacks a spatial homogeneity in quality
within larger geographic regions (Haklay, 2010; Mooney and Corcoran, 2012).
While the widespread use of OSM within slow-tra�ic projects proves its us-
ability (Kessler, 2011), the lack of homogeneity in specific tagging behavior
o�en hampers calculation of an a�ractive path for slow tra�ic. Consider the
road class unclassified in OSM9. This road class is defined as publicly accessi-
ble, local roads and, hence, valuable for slow tra�ic. This class encompasses
approximately 10% of OSM road objects10. Yet depending on country, region
or urban/rural se�ing, the intrinsic characteristics of this road class changes,
for example surface type. Lack of additional object a�ributes limits their
value in rigid expert-based models supporting activity-specific navigation
services.

The plethora of user-generated content, sensor data and crowd–sourcing
projects receives a burgeoning interest to enrich digital road networks with
additional information. For example, Huang et al. (2014) collected people’s
in-situ a�ective response to enhance path suggestion in routing engines.
Similarly, �ercia et al. (2014) combined crowdsourced perceptions of street-
scape imagery in cities to discover happy, quiet or beautiful urban places.
In addition, photo-sharing platforms such as flickr11 or panoramio12 have
also been used to discover popular or a�ractive places (e.g., Popescu et al.,
2009; Ra�enbury et al., 2007; Zheng et al., 2009,1). In a similar way, Pippig
et al. (2013) combined geo-referenced wikipedia concepts and shared geo-
tagged photos to discover theme-based routes in cities. Furthermore, much
research has successfully proven the applicability of raw GPS traces as a
proxy for the movement of objects (Bakillah et al., 2014). In Route Choice
Modeling (RCM), studies increasingly incorporate GPS traces and revealed

9. h�p://wiki.openstreetmap.org/wiki/Tag:highway%3Dunclassified
10. h�ps://taginfo.openstreetmap.org/keys/highway#values
11. www.flickr.com
12. www.panoramio.com
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preferences as a cost-e�ective alternative to active data collection through
stated preference, such as questionnaires and travel diaries (e.g. Alivand et al.,
2015; Broach et al., 2012; Dhakar and Srinivasan, 2014; Hood et al., 2011;
Menghini et al., 2010; Prato, 2009; Snizek et al., 2013). Similar to our approach,
the basic idea behind this is that a recorded movement encompasses all the
route selection criteria and trade-o�s which are important to the end-users.
However, Bierlaire and Frejinger (2008) also pointed out the bias and errors
which can be introduced while transforming network-free data to network-
constrained events. However, Newson and Krumm (2009) argue that high
sampling rate (i.e. below 30 seconds) while recording positional data during
movement is an important prerequisite to reduce errors resulting from this
transformation.

Managing routing engines that adopt a user perspective and compute routes
of interest entails a weighted digital road network and a routing algorithm.
From a theoretical perspective, the weighting involves the approximation
of the mode-specific travel expense of every road segment in a network.
In practice, a cost function is o�en modeled as a linear combination or a
decision tree based on specific a�ributes in a road database. In routing ap-
plications, this is o�en called the routing profile. In a cycling profile, for
example, suitability could be approximated by the appropriate weighting of
physical and scenic road characteristics and tra�ic regulations. However,
modeling and maintaining these profiles requires considerable time and ef-
fort. Furthermore, Mooney and Winstanley (2006) stated this single-cost
approach is an oversimplification of a complex problem and generates unde-
sired paths in routing applications. However, state-of-the-art routing algo-
rithms in performance-demanding applications still reduce path suggestion
to a standard shortest-path problem, implementing the algorithm of Dijk-
stra (Luxen and Ve�er, 2011).

Despite the many commercial applications which o�er path suggestions for
leisure activities, academic research and validation remain, to our knowledge,
rather sparse. Within RCM research few e�orts have been made to discover
characteristics or factors determining leisure activities. Alivand et al. (2015)
used scenic routes extracted from route-sharing platforms to discover and
extract scenic a�ributes in route choices. However, the capturing of these
factors in geographical databases remains a labor-intensive task and limits
these approaches. Alternatively, Oksanen et al. (2015) discussed heat maps of
GPS traces as a more holistic way of analyzing movements during leisure ac-
tivities. Our approach implements a similar holistic view, using the intensity
of a phenomenon (i.e. identical movements along road network segments)
and its explanatory value in research. In essence, a heat map is a graphical
representation of matrix where each cell (or image pixel) encompasses an
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area on the earth surface. A heat map of routes, for example, represents the
number of times a route intersects this cell. In contrast, we do not focus
on visualizations, but aim at discovering a high-level popularity index of
individual segments in a road network based on recorded movements along
these segment. As such, we count each time a segment is used by a route,
that is a spatial match between route and segment. The goal is the same
namely measuring the intensity of a phenomenon but the basic statistical
units (pixels versus segments) are di�erent. This approach allows us to make
an abstraction of the previously mentioned limitation of contemporary road
databases to create an a�ractiveness model (e.g. missing or erroneous infor-
mation) and create a sound scientific basis for future work.

2.3 Methods

2.3.1 Study area

The study area is situated in Belgium and encompasses the province of East-
Flanders (see Figure 2.1 on page 27). This area covers 2991 km2 and has one
of the most dense road networks per ha in Europe (Government of Flanders,
2012). Moreover, Belgium has a cycling-savvy society which uses bicycles
both as a major mode of utilitarian transport and for leisure purposes. Similar
to other cycling-savvy societies such as the Netherlands and Denmark, a�en-
tion is given to cycling-specific road infrastructure and creating awareness
for slow tra�ic. Exemplary is the more than 12 000 km signposted cycling
network transecting the northern parts of Belgium.

2.3.2 Data and preprocessing

The GPS traces used in this study were uploaded to the RouteYou platform
and tagged as road cycling by the users sharing the traces. This sensor
data originated from commercial GPS-enabled devices. Meeting the func-
tional requirements of the device producers (e.g. Garmin, Mio, TomTom),
these outdoor navigation devices track the movement of the user with a
high sampling rate and a GPS accuracy of less than 15 m, on average. A�er
basic data cleaning of the raw dataset, the final dataset consisted of 190,610
anonymized records collected between June 2013 and June 2015. For example,
we removed GPS traces with an obvious absence of motion while recording
(i.e. so-called tumbleweeds). Next, clear outliers in speed can also be used
to remove unwanted activities from the dataset. Recorded average speed
above 50 km/h is unrealistic for the activities we are modeling. Furthermore,
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Figure 2.1: Overview of the study area with the bounding box of figure 2.3
as an inset.

erroneous tracking data can also easily be filtered out (e.g. timestamps or
false points). The final dataset was created by more than 6300 unique de-
vices. The average sampling rate of the raw sensor data was 1.98 sec with a
standard deviation of 1.09 sec. While the raw data lacked metadata about
horizontal accuracy and precision, comparison of the tracks with ground
truth confirmed the technical specifications. Figure 2.2 on page 28 gives a
detail of the traces. Inherent to many crowdsourced information, we lacked
quality metrics of the tagging. However, mode and activity detection did
not lie within the scope of this use case. Therefore, the tag road cycling was
deemed correct and unambiguous to describe a group of cyclists with the
same interest. Further exploratory analysis of the dataset showed that these
self-selected road cyclists had an average speed of 26 km/h with a standard
deviation of 7.03 km/h. The majority of the trips had a length between 60 and
100 km. This underpins our assumption that a significant part of the GPS
traces encompass recorded movements of road cyclists. Figure 2.3 on page
28 shows a snapshot of the selected traces around Ghent and indicates that
these traces had a good distribution across the study area. In the remainder
of this section, we discuss the performed procedures to convert the GPS
traces to detected movements along road segments in a real-world network.

Cognitive mapping research (e.g., Golledge, 1999; Tolman, 1948) has shown
that proximity to well-known places improves the detail in these parts of a
mental map and, as a consequence, results in a monotony in route choice
decisions near these places. Additionally, the number of route choices close
to a specific point in a real-world network are o�en limited. As a result,
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Figure 2.2: Detail of the GPS traces along the Scheldt, east of Ghent.

Figure 2.3: The top image (a) shows an extract of the GPS traces around
Ghent. Pixels vary in shades of gray, varying from black (no
traces) to white (high trace count); the bo�om image (b) shows
the road network in the extract with the thickness of the lines
proportional to the cumulative count variable z a�er the map
matching of the GPS traces.

near clusters of start and end points in our GPS traces, the same choice
decisions were o�en preferred. However, this monotony in behavior lead
to a network bias which was of no real significance to the leisure activity we
were modeling. To avoid this, we chose to omit GPS points near both start
and end of the traces. A generic rule-of-thumb was created, based on the
trip distance distribution in our dataset. This heuristic was used to strike
a balance between removing unwanted pa�erns and preserving valuable in-
formation. First, we selected all GPS points in a trace within 10% of the trip
distance from start and end. Subsequently, we omi�ed all selected points
within 5 km of start and end. All distances in this heuristic were measured
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along the GPS traces. This approach is approximate, however, due to the lack
of empirical data on this complex and context-specific behavior. Figure 2.4
on page 29 shows the impact this preprocessing step had on the cumulative
counts of movements along the road network of a single user.

Figure 2.4: Impact of the preprocessing steps on the match results of the
GPS traces of one single user. Similar to figure 2.3, the thickness
of the line is proportional to z. The circle approximates the area
where bias was seen by similar route choices near start and end.

For this research, an OSM road network extract was used. This extract con-
sisted of the OSM data primitives nodes, ways and relations. The primary
feature key highway allowed a straightforward filtering of all roads, streets
and paths in our study area (Zielstra et al., 2013). Although particular tags
allow filtering between, for example, car-accessible and bicycle-only way seg-
ments (Hochmair et al., 2015), we chose to incorporate all segments in our
analysis. This ensured that exclusion of certain road types did not impact the
final shortest-path alternative based on the conceived a�ractiveness model
in this use case.

To detect route trajectories along the streets, a map-matching approach was
necessary. More specifically, an incremental curve-to-curve map matching
algorithm was implemented to reconstruct the flow distribution of the cy-
clists in the road network (Newson and Krumm, 2009; �ddus et al., 2007).
The road network of the study area was a�ributed with the cumulative num-
ber of movements along the matching edges. To reduce the errors of com-
mission and omission within the matches, two pragmatic choices were made.
First, we converted the OSM road network extract into a graph. To have a
more intuitive representation of the road network, an OSM node used by

29



Methods

multiple OSM ways became a node in the graph. Next, nodes with a valency
of two were then removed from the graph and adjacent edges were joined.
Secondly, to detect a movement along an edge in a trace, a minimum match
length between both edge and trace was introduced. This match criterion
was introduced as a heuristic for a significant experience along an edge, thus
improving the robustness of the model to mismatches or missing roads in
the graph. Within our approach, we used a threshold of 50%. This relative
length threshold proved highly e�icient in removing errors in omission and
commission from our matching results. Figure 2.3 on page 28 shows a snap-
shot of the OSM extract around Ghent with a proportional line thickness to
the cumulative count.

Following the classification of Okabe and Sugihara (2012), all movements in
the GPS traces were converted to undirected network-constrained events.
This approach has methodological constraints and limitations in represent-
ing the real paths in the graph (Bierlaire and Frejinger, 2008): missing con-
nectors or over-representations of certain paths in the network can lead to
underestimation or lack of counts on edges in the road network. Neverthe-
less, due to the high sampling rate and the assumption of spatial randomness
of errors in the raw dataset we assume our map-matching result a good
approximation of reality (�ddus et al., 2007). This resulted in an undirected
graphG = (N,E), a set N of 71 801 nodes and a set E of 101 865 edges. Each
edge e is associated with a variable z, the cumulative count, and a weight w,
the real world length of the edge.

2.3.3 A�ractiveness modeling

In this section we document our a�ractiveness modeling, that is a normaliza-
tion procedure of the z variable in the graph. We introduce the key concepts
in this procedure to calculate a per-edge a�ractiveness index based on the
number of times an edge was used in the route set.

Definition. The a�ractiveness index is a proxy for the local popularity of
an edge and, hence, its activity-specific fitness for use. It is a standardized score
between [0, 1] based on the number of times an edge was used in a route set.

Di�erent normalization procedures are applicable to a�ain a standardized
score. �ercia et al. (2014) used maximum score standardization to convert
a road network criterion to a standardized score. This is a normalization
which scales all values in the full range of values from network criterion.
Additional transformations can be used to remove very skewed distributions
from the dataset, such as log transformation. However, these network-wide
normalizations underestimate the local character of the phenomenon we are
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modeling. Pigram and Jenkins (1999) advocated that the response to time-
distance, connection, and network bias plays an important factor in forming
pa�erns in recreational travel. Interaction is more likely between connected
edges than between unconnected or distant edges. Parts of the network can
be ill connected due to human or natural barriers, among other things, such
as rivers or highways. Hence, flows of cyclists on nearby edges can be com-
pared more easily than between distant edges. We introduce a neighborhood
of an edge to incorporate this spatial connectedness or association in our
normalization procedure.

Definition. The edge neighborhood is a distance band delineating the space
within which edges have a context-specific spatial association.

To further integrate the e�ect of distance in our normalization procedure, we
also incorporate a distance decay function. Distance decay functions found
widespread applications to model spatial interactions between places as the
distance between them increases (Fotheringham, 1981). As such, within the
edge neighborhood we further state that certain values of our network crite-
rion are more related than others and this relation can be approximated by
the distance between them.

Equation 2.1 presents our a�ractiveness index (AI) of edge e proportional to
the z variable at edge e. We normalize each z value in a range of distance-
weighted z variables based on all edges g in the neighborhood of edge e.

AI =
ze

max zgf(Deg)
(2.1)

With Deg the distance between edge e and g and f(Deg) a distance decay
function weighting the count on edge g. As mentioned before, the distance
decay function reflects the impact distance has on comparability of flow
counts. As a result, it delineates a region of influence. As the flow of cyclists
was constrained to the graph and influenced by the connectedness in the
graph, we used the shortest-path distance as metric in the model. For sim-
plicity and tractability of the model, distances between edges are calculated
between the midpoint.

The above a�ractiveness model is conditioned by (i) the size of the neighbor-
hood of an edge and (ii) the modeling of the spatial interaction within this
neighborhood. However, we lack empirical data or stated preferences about
what the neighborhood of an edge could be for road cyclists. As a proxy
within our methodology, the trip distances of a sample set of routes from the
RouteYou platform (249,942 routes) with the same tag (i.e. road cycling) was
used. Figure 2.5 on page 32 shows the frequency bar plot of the trip distances
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in this sample set. Visual analysis of this plot, shows that Q3 can be used
as a rule-of-thumb to separate head from tail in this distribution. Next, if
we assume that a cyclist is willing to ride half his trip distance to reach the
furthest point from his starting point, the distance band DN around a start
point can thus be approximated by half the trip distance. If we take the 75
percentile as rule-of-thumb to delineate the neighborhood, our distance band
is 35.52 km.

Next, the choice of decay function within the distance band played an impor-
tant role in the distance-weighting of the counts in equation 2.1. An inverse
distance or negative exponential function has o�en been the function of
choice in gravitational models. However, as Steenberghen et al. (2010) stated
this type of function focuses a�ention more locally and makes distance a
strong deterrent factor for interaction. On the contrary, equally weighting
all edges within the distance band will maybe underestimate the impact of
distance in the proposed model. A linear decay f = 1−Deg/D

N was chosen
for its comprehensibility and simplicity; weight of a count decreases equally
with distance. Outside the predefined neighborhood f equals 0.

Figure 2.5: Frequency plot of the trip distance in a sample set (249 942
routes) of road cycling routes from RouteYou.

2.3.4 Path generation

To generate alternative paths in shortest-path algorithms a multiplication
factor f of the geometric length of every edge in a graph is used. In other
words, a detour from the shortest path will be deemed a valid alternative if
the reduction in weight makes up for the gain in path length (Hochmair and
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Navratil, 2008) (see Figure 2.6 on page 33). In our approach f is a function
of the inverse of AI . A linear transformation of AI−1 to f between [1, β]
with β > 1 was used. Weights of zero are undesired in our approach because
this would implicate that there is no travel expense in incorporating an edge
in an alternative. As distance still plays an important role in wayfinding,
we defined the weight of an edge scoring maximally in AI as his original
geometric length. Furthermore, by incorporating length in the cost func-
tion, increasing β will have an impact: a higher β results in longer paths.
To analyze the impact of β on the generated alternatives with this linear
transformation, a Monte Carlo simulation was done. We iteratively (at least
50 times) chose 100 randomly selected start/target couples and generated
the shortest path with β varying between [2,50]. To quantify the quality of
the alternative we use the average AI and the proportional gain in length.
Figure 2.7 on page 34 shows the sca�er plot of the average improvement of
AI and average proportional gain in length with increasing β over the 50
iterations. The error bars in the plot indicate the standard deviation through
the 50 iterations. This shows that with increasing β the gain in averageAI of
a path is not proportional to the gain in geometric length. Furthermore, we
see that variations of β in the interval [0,5] has the strongest impact. Next,
for brevity, we will only report on results gathered with a β of 5.

Figure 2.6: Hypothetical network explaining the multiplicator factor. In this
situation, the green path is a valid alternative to the shortest
path. An object is prone to choose the green path because the
perceived travel expense ((200 ∗ 1)+ (200 ∗ 1.5) = 500) is lower
than the shorter path ((100 ∗ 4.5) + (100 ∗ 4.9) = 940).
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Figure 2.7: Plot showing average improvement ofAI (red) and average gain
in length (blue) with increasing β over the 50 iterations.

2.4 Results

2.4.1 Exploratory spatial data analysis

Before addressing the a�ractiveness model evaluation, an exploratory spatial
data analysis of the z variable is presented. We analyzed (i) the distribution
of z and (ii) the cross-correlation of the z in the network space. The rank-size
plot of z in Figure 2.8 on page 35 clearly shows a heavy-tailed distribution of
the cumulative count in the network. This highly imbalanced distribution in-
dicates few edges have a large count, many edges have a low count. Next, an
assessment of the similarity of cumulative counts on contiguous edges in our
graph can be done with network autocorrelation (NAC) measures (Okabe and
Sugihara, 2012). To calculate the NAC, the Moran’s I interpretation of Black
(1992) was used. A binary weight matrix was used to define contiguous edges
in this analysis: ifwij = 1 then i and j are contiguous edges, and 0 otherwise.
More specifically, if the start or end node of j lies on a Dijkstra shortest
path pij with a distance dij smaller than the threshold network distance
DN , j and i are contiguous. The origin of all shortest paths from edge
i was the midpoint of this edge. Figure 2.9 on page 35 shows a network
visualization of the binary weight matrix around a randomly chosen edge i
in our graph. We performed the above procedure withDN = 1km, 5km and
10km. All resulting autocorrelation measures (I1 = 0.1833, I5 = 0.1229 and
I10 = 0.0799 ) were low and indicate no significant network autocorrelation.
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Hence, similar counts do not tend to occur on all contiguous links in our
network. This data analysis underpins that location-specific movement in
the graph is not random and there is a strong network bias defining the flow
of road cyclists in our study area.

Figure 2.8: Rank-size plot of the cumulative count in the network.

Figure 2.9: Network visualization of binary weight matrix around the mid-
point of a randomly chosen edge with DN = 5 km; contiguous
edges are black, non-contiguous edges are gray.

2.4.2 Model evaluation

We designed an experiment to evaluate (i) the general characteristics of the
proposed paths for the specific activity (i.e. road cycling), (ii) how our scor-
ing is distributed in shortest-path alternatives generated by popular routing
engines for cyclists and (iii) how the proposed path generation approximates
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the shortest path and its alternatives. We chose four transects in our study
area for further analysis: northeast-southwest, southeast-northwest, north-
south and west-east, respectively, with a corresponding shortest-path length
of 84.8 km, 60.2 km, 82.0 km and 65.2 km. Figure 2.10 on page 37 visualizes the
four alternative paths together with the shortest path and the path generated
with the a�ractiveness model. Following routing engines where chosen as
comparison:

• RouteYou: RouteYou o�ers several customized shortest-path alterna-
tives for slow tra�ic modi (Race cycling - nicest profile);

• Strava: Strava o�ers a shortest-path alternative modeled on a popu-
larity approximation based on the routes shared on their web environ-
ment (Ride profile with popularity use);

• Google Maps: Google Maps o�ers shortest-path alternatives for sev-
eral general slow tra�ic modi like cycling (Bicycle profile);

• Brouter: Brouter o�ers customizable bike routing (fastbike profile).

2.4.2.1 Path characteristics

Prior to the comparison of paths, we report on the path characteristics in
the four transects generated with the a�ractiveness model. Figure 2.11 on
page 38 presents a proportional length-based comparison of the values in the
primary feature key highway. These key-value pairs can be used as a general
proxy of road types and characteristics used in the paths. As a proxy of road
condition, we also report on the part of the OSM way segments having a key-
value pair indicating a bad road condition (i.e. unpaved). We clearly see that
the majority of the paths consist of Tertiary, Unclassified, Residential,
Cycleway and Track. This highlights that all paths, except for the W-E
transect, have approximately 90% of their length tagged with these key-value
pairs. It is also noteworthy that very few parts have a value Path, Steps,
Service or Footway. The N-S transect clearly stands out with a low length
(<1 %) in Cycleway. In all paths, parts with a key-value pair indicating a
bad road condition are sparse. In-depth analysis of the paths and terrain
verification indicated that the majority of the detected unpaved segments
were due to very local non-optimal choices or errors in the OSM a�ribution.
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Figure 2.10: Visualizes the di�erent paths generated with the di�erent rout-
ing engines along the four transects.

2.4.2.2 Comparison of paths

For fair comparison of the spread in the a�ractiveness scoring along the
presented alternatives, we reduced the spread of the scoring within the paths
to an averaged value AI/km. To morphologically compare the alternatives, we
refer to three robust measures of similarity between curves:

• Absolute length di�erence: the di�erence in geometric length between
two curves. This is o�en defined as the e�iciency of one path in respect
to another path. A shorter path is more e�icient than a longer path;

• Coincidence: the distance two curves coincide;

• Fréchet distance: similarity measure which takes the continuity of two
curves into account and is a good measure for detour size between two
curves.
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Figure 2.11: Proportional length-based summary of the values in the pri-
mary feature key highway in the four paths generated with
the a�ractiveness model. Matrix cells vary in shades of gray,
varying from black (no proportional length) to white (high
proportional length). Cells outlined in red indicate that a part of
the OSM way segment has a bad road condition. This analysis
was based on specific key-value pairs in these segments. Un-
paved segments had a cumulative length of unpavedSE−NW =
322m, unpavedN−S = 1336m, unpavedNESW = 1430m,
unpavedW−E = 811m.

Figure 2.12 on page 39 presents the averaged scoring in function of the ab-
solute length di�erence (km) between both the alternatives and the shortest
path. Theoretically, we would want the slope of the trend line to approach
zero. Thus, a gain in AI/km with a minor gain in length. This is o�en defined
as the optimality of a route. In reality, however, there are few circumstances
where this theoretical optimality of a path is possible. The gradient in the
graph is used to depict the theoretical zones of maximal (white) and minimal
(black) optimality. The trend line drawn in the plot, a first degree polynomial
fit of the path sample set, gives a theoretical foundation to divide our set
of paths in optimal (below trend line) and less optimal paths (above trend
line). A reduction in e�iciency always leads to a gain in average scoring, but
sometimes the alternative become less optimal.

To evaluate the morphological di�erences creating the trends in Figure 2.12,
Figure 2.13 plots the coincidence (km) in a function of the Fréchet distance
(km) and shows the paths of four extrema in the plot. Both parameters in
this plot are a comparison between the shortest path and the alternatives
along the four transects. As a result, this presentation successfully shows
the morphological di�erences which lead to the trade-o� in e�iciency of the
alternatives.
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Figure 2.12: Sca�er plot with the scoring value per km of shortest-path
alternatives for the four transects as x-axis and the absolute
length di�erence between the alternatives and the shortest
path as y-axis; the gradient in the graph visualizes the theoret-
ical zones of maximal (white) and minimal (black) optimality

Working as designed, the a�ractiveness model path exhibits the highest val-
ues on the index per kilometer. However, we also see that these routes maxi-
mize the absolute length di�erence with the shortest path. Similar trends are
seen with the alternatives generated on RouteYou and Strava. They achieve
similar AI/km, albeit with a di�erent path. We see that Strava and RouteYou
have a similar absolute length di�erence, but Strava paths show in all tran-
sects a lower coincidence with the shortest path and a higher Fréchet dis-
tance. It is fair to say both are designed to generate recreational paths for
road cyclist, however both are still able to improve the local optimality of
choices. Brouter tends to approximate the shortest-path distance with high
coincidence. Thus, Brouter has a similar tendency in direction of the shortest
path, but locally makes di�erent path decisions. It is clear that the used
profile of Brouter tries to generate a shortest suitable path for road cyclists,
but not a recreational path. The paths generated by Google Maps are more
di�icult to explain. Two of the four transect paths can be deemed less optimal
solutions (NE-SW and N-S). The W-E transect tends to give a suitable shortest
path, while SE-NW seemingly succeeds in generating a recreational path.
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Figure 2.13: Sca�er plot with as x-axis the coincidence (km) and as y-axis
the Fréchet distance (km); the black line in the examples is the
shortest path

2.5 Discussion

2.5.1 Data selection

Boen et al. (2011) described the population of recreational cyclists active
in Flanders as a continuum from competitive cyclists to purely recreational
cyclist. The first are highly achievement-oriented cyclists and the la�er give
more a�ention to the experience, surroundings and group interactions. While
specific activity and mode detection were put beyond the scope of this use
case, the high standard deviation around the mean speed in the raw dataset
indicates our road cycle routes also mirror this continuum. Not only does
this imply the presence of sub-types of road cyclists in our dataset, it also
hampers the suitability and adoption of our approach as an approximation
of road cyclist behavior in general. It must be noted, however, that this does
not impede the validity of the presented model, but future work should focus
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on three parts. First, it should address if our model holds for other (sub)types
of leisure or utilitarian cyclists. Second, it is imperative to understand how
the parameters in the model are influenced by this change of behavior. Fi-
nally, future work will also have to address how this cyclist typology can be
detected in the raw data.

To face these challenges, cyclist typology and, consequently, detecting deter-
minants for this classifications will be imperative. Recent work of Bergström
and Magnusson (2003) and Damant-Sirois et al. (2014) on cycling typology
indicated that, next to road condition, precipitation and temperature are
considered key factors to get people to cycle. While the avoidance of bad road
condition is already visible in the results of the path characteristics, integrat-
ing historical weather data and a temporal dimension in our data selection
and preprocessing would certainly improve our approach. For example, dif-
ferentiating between days with or without precipitation could already lead
to a di�erent type of cyclist in the model. Similarly, season, day of the week
and time of day could be used to further improve a typology of road cyclists.

As mentioned in the introduction of this chapter, using the GPS traces as
a proxy for a�ractiveness of a road, we wanted to address the spatial het-
erogeneity of tagging behavior. As with other crowdsourced information,
however, the collection of GPS traces also grapples with this spatial het-
erogeneity. Thus, some regions will always be under-represented in com-
parison with other regions. Additionally, the lack of census data in larger
geographical regions about recreational slow tra�ic complicates the mod-
eling and normalization of the flows in a road network. The introduction
of the neighborhood of an edge in the model is an a�empt to tackle this
problem. What is crucial, though, is the critical mass of the collected data
set. Drawing parallels between our work and research in sociology and mar-
keting, critical mass refers to the theoretical tipping point where extra GPS
traces will not change the observed results. Two characteristics give strong
indications of critical mass in our dataset. First, Jiang et al. (2009), among
other research, argue that characterizing heavy-tailed (i.e. power-law like)
distributions are inherent to human mobility pa�erns. Human movements
tend to converge in salient corridors. We observed a similar distribution
in our map-matching results which highlight the representativeness of our
dataset for real-world human behavior. However, to our knowledge, few work
has been done to formally test this hypothesis for leisure activities, such as
cycling. Secondly, network autocorrelation is a powerful tool to understand
network-constrained movements(Okabe and Sugihara, 2012). We found that
the recorded movements are not random, which again highlights the repre-
sentativeness of the GPS traces. However, this gives few insights in how to
reach the required level of performance (i.e. the number of GPS traces) to
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achieve reproducibility and scale. Future work should address this question
of critical mass. In general literature, iterative statistical analysis of changes
in the model with increasing number of data is o�en proposed as method
to identify this equilibrium. The aforementioned characteristics are a valid
starting point for this iterative approach: (i) "How does the distribution of
counts vary with increasing number of traces" and (ii) "How does network
autocorrelation vary with increasing number of traces?". Another future re-
search track should focus on the ability to replicate the presented approach
over time. The calculated index we devised was based on static data and, as
a result, the inferred information quickly becomes stale information. Equally
important to the data set size, is a constantly growing amount of data to learn
from. This need and how it can be integrated in the presented approach will
be imperative in future research.

Finally, we want to discuss the viability of shared traces as a proxy of local
expertise and knowledge. Because of the burgeoning use of navigation ser-
vices in leisure activities, it is doubtful that all followed paths were solely
based on the user’s mental map. While literature on this specific problem
remains, to our knowledge, rather sparse, the simplifying assumption that
humans always follow the least e�ort path supports our approach (Golledge,
1999). In other words, users of the above services will deviate from a sug-
gested path if the suitability of an alternative is perceived higher (i.e. the
resistance is perceived lower). Following this as a rationale, we can assume
that GPS traces approximate route choices of a cyclist and are a proxy of the
a�ractiveness of a path.

2.5.2 Model parameters

To further put the above results into perspective, it is also necessary to dis-
cuss some of the methodological choices made in our approach. First, the
delineation of the neighborhood of an edge and the modeling of the spatial
interaction within these neighborhoods plays an important role in detecting
local extrema in z. We asked the question: "which edges and their respec-
tive z variable are comparable?". Because of the absence of solid theoretical
foundations regarding these parameters in leisure activities, the choices were
based on pragmatic choices. However, some considerations for future work
can be proposed. Based on the heavy-tailed distribution of the z variable in
the graph, smaller neighborhoods will increase the number of local maxima
in our popularity index, whereas a larger area will decrease the possibility to
detect local maxima in the overall tendencies in z. More local maxima will
certainly result in more dissimilarity within all shortest-path alternatives in
our graph. On the contrary, fewer local maxima will achieve the inverse creat-
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ing more salient corridors in the graph. Further research and data collection
is necessary to come to a more formal description of the neighborhood and
its impact on the morphology of paths.

Second, we discuss the use of a multiplication to introduce our scoring value
in a cost function. We have to be aware that the use of theβ value is an ad-hoc
solution and is not only influenced by the spread of scoring value in the road
network. Sparsity of a road network plays an important role in the validity
of the choice of β. Our hypothesized β value holds for dense networks, but
can fail for sparser networks. Further analysis is necessary to understand the
impact of network density on the morphology of the suggested paths. How-
ever, as Figure 2.7 shows, the used methodology makes our scoring function
highly adjustable and configurable. For example, if for a certain mode it is
more desirable to have a smaller absolute length di�erence with the shortest
path, a smaller β could be a possible solution. Furthermore, we have to be
aware of the skepticism towards single shortest-path algorithms to maximize
a criterion value (Hochmair and Navratil, 2008; Mooney and Winstanley,
2006). Eppstein (1994) proposes a k shortest path approach to evaluate the
spread of a criterion in multiple shortest paths. In future research a�ention
should be given to this approach and how this relates to our approach.

Last, and maybe foremost, is the lack of stated preference of cyclists in our
approach. However, the created framework within this study will certainly
help to design more cost-e�ective user studies. Figures 2.12 and 2.13 show
that the popular route generation approximates contemporary routing en-
gines in morphology and scoring value per km. Additionally, Figure 2.11
successfully shows that the suggested paths approximate the expected road
types of a leisure cycling route as shown in RCM studies for cycling. However,
we have no indication of the actual local optimality of the di�erences in the
paths. This clearly indicates that future work will have to focus on validating
this optimality with local expertise and knowledge. It should also be noted
that the lack of academic validation of many commercial routing engines
makes assumptions about and comparison between the suggested paths pre-
carious. Further research is necessary in collecting stated preferences of
cyclists and comparing them with our a�ractiveness model in order to be�er
understand the real-world validity of the methodology and the suggested
alternative based on our scoring.

2.6 Conclusion and main contributions

This use case set out to develop a methodology to improve the adoption of
a user’s perspective in contemporary routing engines designed for specific
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leisure activities (i.e. road cycling). We devised a methodology to elicit a high-
level a�ractiveness scoring of every road in a network based on homologous
movements in a large route set (RQ1). In doing so, we created an alternative
to popular expert-based models to create activity-specific navigation ser-
vices, reducing the impact of missing or out-dated information in a creative
and cost-e�ective way (RQ2). A set of 190 610 GPS traces collected on the
route-sharing platform RouteYou was used as a proxy of movements of cy-
clists along the network. Next, this a�ractiveness model was embedded in an
experiment design to evaluate the general path characteristics and compare
contemporary shortest-path alternatives for cyclists (RQ3).

RQ1 - This questions focused on the methodological approach of the route
set to address the goal of this use case. Given enough routes, the presented
methodology successfully exploits the geographical context within this route
set. We devised an alternative way to maintain a navigation service with
an activity-specific model. Especially noteworthy in this conclusion are two
methodological choices we introduced during the preprocessing steps. First,
apart from general data cleaning and smoothing, which are well-studied in
current academic literature, we focused on removing unwanted bias from a
crowd-based route set. Underlying geographical drivers, such as urban and
rural regions, generate clusters of contributors. While some bias will always
be obscured by a lack of user- and activity-specific information linked to
individual routes, the impact of clusters of start and end points is clearly ob-
servable. We proposed a 10%-rule as a heuristic to remove this bias. Second,
we used a state-of-the-art map-matching approach to convert the route set
to network-constrained events. This paper did not focus on documenting a
step-by-step matching approach. Of particular interest, however, is a second
methodological choice which impacts the contextual analysis. We introduced
a half-way threshold as a proxy for a significant, network-constrained expe-
rience along an edge. This allowed us to remove noise and bias from the
resulting counts of homologous movements along all edges. In conclusion,
exploratory analysis of these counts highlighted observable characteristics of
real-world human mobility pa�erns: (i) heavy-tailed distribution and (ii) no
significant network autocorrelation on all contiguous edges. This conclusion
has a double-edge nature: it highlights the value of this research but at the
same time emphasizes the need for further analysis in how these proxies can
be reused to understand the observed pa�erns.

RQ2 - By map matching and locally remodeling the correlations seen in the
route set, we focused on condensing this correlation into an understandable
object a�ribute of a road network, making it readily available for further
valorisation activities within the services hosted on route-sharing platforms.
Of particular interest during this remodeling is the network-constrained dis-
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tance weighting of the counts and β-transformation of the resulting a�rac-
tiveness index. Both methods were introduced to integrate a user-centered
remodeling, focusing on how the end-user perceives alternatives. This per-
ception is impacted by both distance and natural or human barriers (i.e. net-
work connectedness). Especially noteworthy is the reproducibility and flexi-
bility of the documented methods to alleviate the impact of spatial di�erence
(e.g. Country, region, rural/urban) in road networks and their characteristics.

RQ3 - Finally, we focused on an evaluation of the presented shortest-path
alternative. While future work is still necessary to understand the local op-
timality of the generated route choices, the a�ractiveness model showed its
potential as criterion to help understand shortest-path alternatives for the
aforementioned type of cyclists within the study area. For example, the clear
di�erence in the calculated scoring value per km within di�erent shortest-
path alternatives from specific routing engines underpins the predictive per-
formance of the model. The generic evaluation setup and visualizations pre-
sented to analyze and compare path characteristics and route optimality also
prove to be a valuable tools. These can prove to be very important in future
valorisation.

We can conclude that this use case presented valuable insights in how route-
sharing platforms can exploit the potential of routes shared in their commu-
nities to streamline e�orts to improve the fitness of navigation services. It
provided a novel way to maintain these services and focused on integrating
a real-world suitability for a specific activity in a cost-e�ective way. The
largest potential for cost reduction presented by this approach lies in future
work combining both data-driven and expert-based models, thus mitigating
the impact of missing information on the current expert-based models and,
hence, reducing cost in bridging the reality gaps in maps.
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3
Cultural heritage routing: a recreational
navigation based approach in exploring

cultural heritage

"Already know you, that which you need"
Yoda, Star Wars: Episode VI - Return of the Jedi

Similar to the previous chapter, we again focus our a�ention on a crowd-based
source featured on route-sharing platforms and how this can be used to maintain
and improve an experience-oriented and thematic navigation service. We provide
an overview of state-of-the-art protocols and procedures, garnering insights in
how POI can create ancillary data to address the growing complexity of queries
to activity and theme-specific navigation services. First, we address the lack of
data in this context. Despite the current trend of making information location
aware (i.e. geotagging (r)evolution), valuable information remains location un-
aware and, hence, useless within spatial knowledge-discovery techniques and
GIS, central in this dissertation. As such, we present a method to automatic
collection and multimodal enrichment of thematic information and condense
this information in POI. Next, we present a spatial aggregation procedure of this
location-based information and present a proof-of-concept of a path suggestions
in a thematic navigation service based on this aggregated information. Within
this use case, we highlight the potential of this approach for cultural heritage ex-
ploration, more specifically World War I ba�lefield exploration from a cyclist’s
perspective.

The work presented in this chapter is based on following publication. The authors
contributed equally to this work:
Kevin Baker and Steven Verstockt. (2017). Cultural heritage routing: A recreational
navigation-based approach in exploring cultural heritage. ACM Journal on Comput-
ing and Cultural Heritage, 10(4):1-20.
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3.1 Introduction

A large proportion of cultural heritage resources, such as monuments, pho-
tos, and place descriptions, are geographically referenced, and, thus, can be
identified by search terms that refer to a location. Several websites and mo-
bile applications, not surprisingly, already publish cultural heritage content
on a map (Kauppinen et al., 2011). The problem, however, is that the majority
of these applications is still rather static and limited to well-known map
exploration. In order to tackle this issue, geographic multimodal enrichment
and thematic routing are seen as emerging trends in making sense of geo-
referenced cultural heritage data. Both topics have the potential to present
valuable insights linked to the second research question in this dissertation
and can be condensed in two additional research questions, specific for this
use case:

• RQ1: How does the current state-of-the-art in geographic enrich-
ment fit the use case of cultural heritage?

• RQ2: How can contextual analysis of POI be used to enrich naviga-
tion services?

First, geographic multimodal enrichment is the process of annotating and
linking media items based on their location metadata and their content sim-
ilarity. The location metadata or geotag reflect where media was collected
or which place the media item describes. This transforms the media object,
such as an image, video or text, into a point of interest (POI). As a result, these
objects can be accessed with their geographical coordinates. This allows the
georeferenced object (and geotagged media libraries in general) to be queried
and analyzed in a spatial context and opens up a new world of possibilities for
geographic related research and applications. An overview of recent research
and applications on online georeferenced media is given in Luo et al. (2011)
and Zheng et al. (2011). Both works address key concepts in this research
topic and introduce several techniques to extract location information from
text and images using geographic entity recognition (GER) and computer
vision techniques.

Second, mode-specific thematic routes connect natural or artificial a�rac-
tions with a certain theme (Nagy, 2011). For example, a World War I bat-
tlefield route, the test case described throughout this use case, connects
topical POIs. A growing body of research focuses on thematic path gener-
ation algorithms. For a more in depth review of similar techniques, we refer
to Sou�riau and Vansteenwegen (2010). These algorithms model a graph
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(network) taking into account the location and the relevance of the geograph-
ically enriched POIs that are collected from a variety of web resources related
to this specific theme. Once the thematic graph is constructed, the routing
itself can be performed with a variety of techniques with di�erent accuracy
and computational properties. For general information on routing algorithms
and an introduction on di�erent routing techniques, we refer to Sanders and
Schultes (2007). Considering sustainability, thematic routes serve education
and leisure at the same time. They are a special opportunity for heritage
tourism, targeting new groups by additional programs and a�ractions, mak-
ing them more interesting, a�ractive and diversified (Nagy, 2012). Further-
more, they play an important role in common European programs too, like
the Cultural Routes Program of the European Council 1.

Figure 3.1: Generic thematic route for World War ba�lefield exploration in
Ypres, Belgium.

Within this use case, we focus on recreational cultural heritage exploration
and navigation, i.e., a challenging subdomain of thematic routing. Both geo-
graphic multimodal enrichment and thematic routing are further discussed
in following sections.

3.1.1 Recreational cultural heritage exploration and naviga-
tion

As already mentioned, thematic routes have long been recognized as a key
component in democratizing heritage for tourists. Long-distance hiking trails
through natural heritage sites or sightseeing routes along a city’s cultural
heritage are only a few examples in contemporary tourism marketing and
promotion strategies. Creating a deeper engagement with the visitors is the
foremost reason to interweave and link leisure activities, such as cycling or

1. h�p://culture-routes.net/cultural-routes
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walking, with regional heritage. However, as interest in these leisure activi-
ties and tourism is still growing in policy and planning, so has the demand for
cost-e�ective tools to popularize and market this type of experience-based
tourism. To face this challenge, Economou (2015) stated that heritage is
increasingly transferred to the digital sphere. Online and mobile applications
o�er opportunities to create a higher degree of di�erentiation and added
value for tourists who encounter, explore and interact with heritage.

In this context, personalization in route planning applications for leisure ac-
tivities receives much a�ention (Gao et al., 2010). In contrast to more generic
thematic routes, such as the one shown in Figure 3.1 on page 53, the general
idea is to provide users with ad-hoc created routes tailored to their specific
leisure activity, location, preferences and interests. The dynamic and sit-
uational relevance of these personalized information retrieval services is a
driving factor in their burgeoning use to engage a user’s a�ention. Similar
to well-known route planning applications for automotive tra�ic, a detailed
and mode-specific annotation of digital road networks is essential to facili-
tate this type of route planning. However, modeling behavior in leisure and
tourist activities is hampered by random agents and complex factors, such as
scenery, a�ordance of the streetscape, popularity or group dynamics. Hence,
a growing body of research focuses both on annotating and analysing road
networks with specific, contextual information.

A brief overview of relevant literature in this research field is given below.
First, Huang et al. (2014) and �ercia et al. (2014) collected people’s in-situ
a�ective response and their perception of cityscapes to enhance urban path
suggestion in routing engines. Similarly, photo-sharing platforms have also
been used to discover popular or a�ractive places (e.g., Popescu et al., 2009;
Ra�enbury et al., 2007; Zheng et al., 2009,1). Additionally, research has been
conducted to semantically link georeferenced Wikipedia concepts to these
places to create theme-based routes (Pippig et al., 2013). Planar-space poten-
tial surfaces and kernel density estimation are popular approaches in this
growing body of research. Next, route choice modeling research focuses
on the same topic but from a di�erent perspective, modeling the trade-o�s
in path choices. For example, Alivand et al. (2015) analyzed how travelers
choose scenic routes using route choices models. Finally, the advent of IT-
mediated crowds sharing their leisure and tourist activity data, such as GPS
tracking logs or POIs, has been creating new opportunities and possibili-
ties. Knowledge discovery and data mining techniques successfully elicit
and collect new information from these data sources to improve routing and
navigation services (e.g. Bakillah et al., 2014; Oksanen et al., 2015; Reddy et al.,
2010; Verstockt et al., 2013b).

There are two dominant trends that have a big impact on the success of
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thematic routing research: geotagging and the mobile sensing (r)evolution.
Both trends are significant drivers in the collection of accurate, detailed,
multimedia-rich information about thematic routes and points-of-interest
(POIs) in a particular route search area. Based on these data, appropriate
route recommendations can be generated.

3.1.2 Geotagging and mobile sensing (r)evolution

Over the last decade, geographic metadata annotation has become increas-
ingly popular; that is, the popularity of the geotag is on the rise. On the
one hand, this is caused by the increased use of internet-capable mobile
devices with built-in GPS functionality. This results in a user-driven geo-
graphical enrichment of multimedia data. For example, this allows visitors
of cultural heritage locations to tweet, share and log their visits. On the
other hand, web technologies such as address geocoding and geographic
entity recognition (Silva et al., 2006) can be used to automatically perform
spatial enrichment on non-spatial data. In addition to the aforementioned
user-driven annotation, a data-driven annotation receives a growing a�en-
tion. With these data-enrichment technologies, content of cultural heritage
websites can easily be mapped for spatial exploration. Furthermore, a trend
is being observed that a growing number of data providers start to extend
their cultural heritage databases themselves with aforementioned geotags,
transforming their data into POIs. This information is crucial to easily inte-
grate and query these databases in geographical applications.

The geotag itself is a form of metadata which marks a multimedia object,
such as an image, video or text message, with its location information (lon-
gitude and latitude coordinates). The majority of recent capture devices are
able to automatically assign these kinds of tags. The huge benefit of geo-
tagged media is that it allows multimedia objects to be browsed and arranged
geographically. Photo-sharing websites such as Flickr2 and Panoramio 3, for
example, provide millions of geotagged images contributed by people from
all over the world. In order to retrieve the multimedia data that is related to
cultural heritage at a specific location, one can choose from several social me-
dia web services that support geo-based queries, such as the PANORAMIO
geo-picture service and the DBPedia-based FlickrWrappr service (Becker and
Bizer, 2009). The drawback of these media sharing platforms, however, is
the limited control over the shared items and their quality. For this reason,
we focus on more qualitative web resources targeted to a specific cultural
heritage topic.

2. www.flickr.com
3. www.panoramio.com
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Within this use case, the selected cultural heritage topic is Flanders Fields,
i.e., a common English name of the World War I ba�lefields. Flanders Fields
is particularly associated with ba�les that took place in the Ypres Salient,
including the Second Ba�le of Ypres and the Ba�le of Passchendaele. Nowa-
days, this is still visible in the landscape and heritage in this region, com-
prising WWI relicts, warefare material remains and commemorative places.
A good example of a Flanders Fields related webpage4 that can easily be
geotagged is shown in Figure 3.2.

Figure 3.2 shows the result of a query for World War I related data in De
Panne, West Flanders. The retrieved pictures contain additional textual loca-
tion information and a specific address element. Both can be analyzed using
the geographic entity recognition and address geocoding that are discussed
in the next sections. A�er successful geo-enrichment, the picture, its location
and its description can easily be fed to a thematic routing engine or other
types of cultural heritage applications, such as the mobile cultural heritage
guide described in Aart et al. (2010).

Figure 3.2: Cultural heritage website showing results for WWI query in De
Panne, West Flanders. Geo-enrichment can be performed on
address element and textual location descriptions.

Geotagging is not the only trend that facilitates the thematic routing data
collection process. The mobile data collected by a large amount of recre-
ational cyclists and hikers also contains a wealth of valuable information.
Their mobile phones and GPS devices have increasingly evolved in func-
tionality, features and capability over the last decade. With the continuous
improvement in sensor technology built into these devices, and web services
to aggregate and interpret the logged information, people are able to create,
analyze and share information about their daily activities (Srivastava et al.,
2012).

4. www.westhoekverbeeldt.be
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Within the mobile sensing (r)evolution, users act as sensor operators, that
is, they contribute sensor measurements about their activities or the places
they visit as part of a larger-scale e�ort to collect data about a population or
a geographical area. This is the idea behind participatory or human-centric
sensing. Recently, this tendency has also started to occur in the domain of ge-
ographic information systems (GIS). Where the process of mapping the Earth
has been the task of a small group of people (surveyors, cartographers, and
geographers) for many years, it starts to become possible now for everyone
to participate in several types of collaborative geographic projects, such as
OpenStreetMap and RouteYou (Schroth et al., 2011). These projects are built
upon user-generated geographic content, so called volunteered geographic
information (VGI). VGI makes it easier to create, combine, and share maps
and supports the rapid production of geographic information.

Within the VGI data-sharing landscape, user-logged activity analysis (Bia-
gioni and Krumm, 2013) is booming, with several platforms, such as Garmin
Connect and RouteYou, which provide web services to query the activities of
a particular user. Contrary to the majority of these activity loggers, RouteYou
does not focus on performance analysis, but on finding routes that match a
specific user and his needs. In order to perform this task, a large dataset
of user routes is analyzed and queried, taking into account di�erent user-
specific query parameters such as the type of activity, the duration, and a
thematic parameter, e.g., a particular cultural heritage topic (i.e., the focus
of this use case). Based on all these parameters, the best matching routes
are suggested. Thematic route suggestions for cultural heritage exploration,
however, are not yet fully supported due to several data- and routing-related
problems which are addressed in this use case.

3.1.3 Problem description

A major issue in thematic routing is the limited POI coverage and quality to
perform accurate routing for user experience maximization. In order to tackle
this lack of data problem, a methodology is needed to automatically collect
cultural heritage POIs and improve their (meta)data quality. Furthermore,
research is needed to optimize the weighting of a cultural heritage POI in
routing algorithms. For example, the distance to the closest street, the type
of recreational activity (e.g., biking, hiking or horse riding) are parameters
that will have an impact on this weighting procedure and need to be taken
into account. Finally, contextual routing strategies are needed to fulfill the
overall user satisfaction in recreational cultural heritage exploration. In this
use case we address each of these problems and present di�erent building
blocks to solve these issues.
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As mentioned in the previous section, this use case takes World War I ba�le-
field exploration as a specific cultural heritage topic (Winter, 2011) and in-
vestigates the POI coverage and quality in existing routing databases. More-
over, Belgium has a cycling-savvy society which uses bicycles both as a ma-
jor mode of utilitarian transport and for leisure purposes. Similar to other
cycling-savvy societies such as the Netherlands and Denmark, a�ention is
given to cycling-specific road infrastructure and creating awareness for slow
tra�ic. Exemplary is the more than 12 000 km signposted cycling network
transecting the northern parts of Belgium. In the context of our use case, we
use this network in our study area to apply our methodology and convert
this to a thematic network for cyclists focused on WWI ba�lefield explo-
ration. This makes our study area a valid and interesting case study for our
methodology.

Figure 3.3: Proposed workflow for cultural heritage POI collection,
(meta)data enrichment and recreational cultural heritage
routing.

A general overview of the proposed setup is shown in Fig. 3.3 on page 58. The
remainder of this use case is organized in a similar manner. A�er introducing
the procedure to select thematic entities, we present the geographic annota-
tion and media enrichment techniques that are used in our cultural heritage
POI collection. We subsequently discuss our proposed tool set. Next, we
introduce our novel thematic routing algorithm and compare its performance
with traditional routing methods. Finally, we conclude this use case with and
point out directions for future work.

58



Cultural heritage routing

3.2 Cultural heritage POI collection

In order to perform heritage-based thematic routing, it is important to have a
representative coverage of cultural heritage locations within the study area.
Currently, however, the number of cultural heritage POIs and their (meta)-
data quality in dedicated databases is still a fraction of the large amount of
cultural heritage multimedia that can be found on the web. Figure 3.4 on page
60, for example, shows the current POIs of RouteYou that are labeled as CH -
WWI compared to the WWI heritage dataset of the Flemish organization for
Immovable Heritage5. Analyzing the heatmaps in Figure 3.4 shows the added
value of incorporating POI data from thematic websites. In order to extend
the thematic RouteYou POI sets, we suggest an automatic collection mech-
anism for retrieving locations and (meta)data of thematic cultural heritage
POIs. Given a website listing of sources for geotagged and non-geotagged
thematic entities (POI names), a dataset of location-aware POIs can be gar-
nered that can be fed to the multimodal enrichment building block. We focus
on two important building blocks which receive a burgeoning a�ention in
both academic literature and commercial applications: (i) address geocoding
and (ii) geographic entitiy recognition. We give an overview of current state-
of-the-art and emphasize their value in our specific use case.

3.2.1 Collection of geotagged thematic cultural heritage POIs

The first step in analyzing the website listing of sources for thematic geo-
tagged and non-geotagged entities (POI names) is to extract or detect the
exact location of the di�erent entities. If the website is well structured, e.g.
with HTML hCard-address microformats and tags6, address geocoding can
be used. For non-structured web documents, we propose to use geographic
entity recognition techniques.

3.2.1.1 Address geocoding

Address geocoding is the process of determining an estimated latitude and
longitude position for the location of a street address. In the example given
in Figure 3.2 on page 56, address geocoding can be used to convert the ad-
dress element “Krijgskerkhof, Heldenweg, De Panne” into the coordinates
(51.0757098,2.6019398) of this place.

5. h�ps://inventaris.onroerenderfgoed.be/
6. h�p://www.htmlandcssbook.com/extras/introduction-to-hcard/
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(a) RouteYou dataset of WW Ba�lefield POIs.

(b) WW Ba�lefield POIs in dataset of Flemish organization for Immovable Heritage.

Figure 3.4: Comparison between current WW Ba�lefield POIs in a)
RouteYou database and b) the dataset of the Flemish organiza-
tion for Immovable Heritage.

First of all, a parser (such as the Microformats Parsing API7) will break down
the address element into a number of components. Then, address standard-
ization identifies each address component (e.g., street number, street name,
city and zip code) and places them in order. Finally, the values for each
address component are matched to the reference database and an estimate
of the spatial location is given. Several matching problems can occur during
this process, such as misspelled street names, outdated reference data, and
incorrect numbers.

In order to automatize the address geocoding process, several address geocod-
ing web services can be used, such as the ArcGis Geocoder 8 and the Mapquest
Geocoding API 9. The former one is integrated in ESRI’s geospatial processing
programs and can be used, for example, to automatically geocode a table
of addresses. It is important to mention, however, that a large amount of
cultural heritage websites do not (yet) contain structured address elements.
This, of course, limits extensive use of address geocoding for the geotagging
of thematic cultural heritage POIs. For non-structured websites, we propose
the use of geographic entity recognition (GER).

7. h�p://www.alchemyapi.com/products/alchemylanguage/microformats-parsing
8. h�p://geocode.arcgis.com/arcgis/index.html
9. h�p://www.mapquestapi.com/geocoding/
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3.2.1.2 Geographic entity recognition

Named Entity Recognition (NER) labels sequences of words in a text belong-
ing to predefined categories, such as the names of persons, organizations,
and locations. NER plays a significant role in many application domains,
such as information extraction, summary generation, document classifica-
tion and internet search optimization. In our work, NER is used to create a
geographical representation of a text or web page, based on the geographic
entities that can be detected using a specific set of NER techniques, i.e., the
GER techniques.

In broad terms, two main types of GER techniques can be distinguished:
knowledge-based and learning-based GER. Knowledge GER techniques use
regular expressions, rules and context pa�erns to detect a particular entity
type. In general, this type of NER technique is very precise and only needs
small amount of training data. The drawbacks of Knowledge NER, however,
are its expensive development cost and domain dependency. Learning sys-
tems, on the other hand, have a higher recall and do not need grammars,
but require a lot of training data. For Geographic Entity Recognition (GER),
learning-based systems have proven to perform best (Mikheev et al., 1999;
Silva et al., 2006).

An important aspect in the success of GER are the languages that are sup-
ported by the NLP tool. Depending on the language of the input text, dif-
ferent NLP tools can be used. However, correct language detection will be
needed in order to select the most appropriate NLP tool in an automatic way.
The language detection itself can be performed using the language identifier
of the FP7 OpeNER project10.

For English texts we have evaluated the entity extraction demo of the Dan-
delion API11, which performs well in extracting historical concepts and global
location entities, such as city and country names. An example of the output
that the Dandelion API generates is given in Figure 3.5 on page 63. For
accurate location/address extraction, however, further research is needed.
Combining this GER approach with a regular expression based approach
like Pyap12 will be part of our future work. Since a lot of Flanders Fields
related texts are wri�en in Dutch, we have also evaluated di�erent Dutch-
based GER tools, such as Frog13 (van den Bosch et al., 2007), Namescape 14,
and iRead+ (Paulussen et al., 2014). The la�er tool extracts Dutch entitites/lo-

10. h�p://opener.olery.com/language-identifier
11. h�ps://dandelion.eu/semantic-text/entity-extraction-demo/
12. h�ps://pypi.python.org/pypi/pyap
13. h�p://languagemachines.github.io/frog/
14. h�p://ner.namescape.nl/namescape/tagger
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cations out of structured and unstructured text documents and presents ge-
ographic features with metadata. The geocoding is done with help of an
OpenStreetMap (OSM) gaze�eer of Flanders, i.e. an existing list of entities
that automatically can be generated from OSM data.

Important to remark is that geographic entities are prone to temporal change
both in toponymy and geographical extent. As such, a GER algorithm should
also be able to take into account the temporal dimension of place names and
their geographic properties at that moment. However, the major online world
gaze�eers still ignore time. They provide millions of place names, but lack
the tracking of name changes over time. They mainly focus on actual geo-
graphic references and contain only a small amount of historic place name
information and spelling variants of places. As suggested by Berman (2008),
gaze�eers should be extended with place names over time (and their date
of validity information and location description), turning them into spatio-
temporal gaze�eers and enabling Geo-Temporal Information Retrieval. Time-
location (meta)data should be included and can be collected in various ways,
e.g. from online mapping services/spatial databases providing or sourced ini-
tiatives (like HeuristScholar 15 and the Perseus Project 16). Several initiatives
in building historical gaze�eers are being undertaken, like the Edinburgh
geoparser Grover et al. (2010) used in the Google Ancient Places project 17,
the Iberian historical gaze�eer presented in Hibberd and Owens (2015), and
the work of Blank and Henrich (2015) that investigates the geocoding of place
names from historic route descriptions. For Dutch texts, we did not yet find
an appropriate gaze�eer that takes into account the “naming during time”
aspect. As such, we currently only focus on actual geographic references
collected by the above mentioned Dutch gaze�eers.

3.2.2 Multimodal enrichment of the POI

Based on the geotag of the POI (retrieved by address geocoding or GER), its
entity name and related entities that appear in the text (detected by NLP), we
can perform the multimodal enrichment of the POI and improve its (meta)data
quality. First of all, we construct the geo-textual media object o, which is
represented as a tuple o =< S, p, t,M >, whereS is a set of text annotations,
p is a location, t is a time indicating the last object modification, and M is
the list of available media files. The creation time is used to sort information
and analyze/visualize the POI history. In order to detect t, we use the last-
modified header which can be found in the metadata of the web document(s).

15. h�p://heuristscholar.org/
16. h�p://www.perseus.tu�s.edu/
17. h�ps://googleancientplaces.wordpress.com/about/
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Figure 3.5: Dandelion API for named entity recognition.

The media filesM are found by document element analysis in the document
object model (DOM). Important to mention, however, is that this DOM-based
technique can only be used if the web document is well structured, i.e., using
HTML5 image/video/audio elements. For less structured websites, multime-
dia hyperlink scraping techniques can be used. Next, when all object tuples
have been constructed, we perform a spatio-textual similarity clustering over
the entire set of POI tuples in our dataset. The spatio-textual similarity
clustering groups objects that are spatially close and textually similar (Bouros
et al., 2012). This grouping forms the basis for our multimodal-enrichment
approach.

3.2.2.1 Spatio-textual similarity clustering of POIs

Given a collection R of geo-tagged objects with associated textual descrip-
tors, the spatio-textual similarity clustering problem is to identify all pairs
of similar objects that are close in data and distance (Rao et al., 2014; Zheng
et al., 2010). In general we want to find (o1, o2)|o1, o2 ∈ R, where overlap
(o1, o2) ≥ t and o1 <> o2. Di�erent technologies can be used in order to
measure this overlap and di�erent weightings for S,p and M can be taken
into account. Text similarity of text annotations in S, for example, can be
measured using the Dandelion API’s text similarity scoring tool, which es-
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timates the textual semantic overlap. For multimedia similarity in M , deep
learning-based semantic analysis seems the most appropriate technique in
state-of-the-art research. In Karpathy and Fei-Fei (2017) for example, they
generate natural language descriptions (i.e., textual image labels) in order to
represent and cluster the images. Important to mention is that it is out of the
scope of this use case to give an overview of all similarity metrics that can
be used. A minimal set of techniques is selected based on our POI dataset
evaluation. However, in the proposed framework additional or alternative
metrics, such as those discussed in Bar et al. (2012) and Bell and Bala (2015),
can easily be investigated and evaluated.

The example in Figure 3.6 discusses the result of the Dandelion text similarity
API 18 for two short segments of text describing the "Last Post in Ypres"
POI. The segments were extracted from two di�erent web resources. The
presented approach calculates a semantic and syntactic similarity. The la�er
summarizes the grammatical resemblance of both segments. Semantic simi-
larity on the other hand is driven by the question "How much is term X related
to term B?". Considering both text segments, their syntactic similarity is low
(29%), but have a very high semantic similarity of 80%. Furthermore, when
comparing the semantic concepts that are generated from the images that
appear alongside the texts, we get an image similarity of 62.5% (based on the
cosine similarity 19 of the semantic image tags). Averaging both the textual
and image similarity results, gives an overall similarity of 71% between the
two POI instances. In order to generate the semantic image concepts, we
used the MIT places CNN for scene recognition (Zhou et al., 2014), and the
Cafe deep learning framework for object recognition (Jia et al., 2014). Fig-
ure 3.6 only shows object tags detected by Cafe, but similar scene tags are
retrieved with the MIT places CNN.

3.2.2.2 Social media querying for additional cultural heritage multi-
media

In order to retrieve additional multimedia data (i.e., images, video, text, and
music) that are related to the location of the selected POI, we can feed the
POI and its coordinates to a set of social media web services that support geo-
based queries. Our geo-based DBpedia Flickr service, for example, makes use
of DBpedia, SPARQL and the Flickr API to perform this task (Verstockt et al.,
2013a). DBpedia 20 is a crowd-sourced community e�ort to extract structured

18. h�ps://dandelion.eu/semantic-text/text-similarity-demo/
19. h�ps://bioinformatics.oxfordjournals.org/content/suppl/2009/10/24/btp613.DC1/bioinf-2008-

1835-File004.pdf
20. h�p://wiki.dbpedia.org/
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Figure 3.6: Semantic text and image similarity of two POI instances of the
"Last Post in Ypres".

information from Wikipedia and make this information available on the Web.
SPARQL 21 is similar to SQL and is a query language to select data from
DBPedia. Our approach is split up in 2 steps, as shown in Figure 3.7. First,
we extract relevant DBpedia entities using a location-based SPARQL query.
In the second step, we use the retrieved DBpedia entities as parameters in a
query to the Flickr API22. This process (illustrated in Figure 3.7) can be used
for both location- and entity-based search.

Figure 3.7: DBPedia based Flickr �erying for additional Cultural Heritage
Multimedia.

21. h�ps://www.w3.org/2009/sparql/wiki/Main_Page
22. h�ps://www.flickr.com/services/api/
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3.2.3 �ality estimation of cultural heritage POIs

Despite the wide agreement on the need to produce high quality metadata,
there is less consensus on what high quality means and even less on how
it should be measured. In many instances, POIs are produced with inad-
equate metadata or, in the worst instance, no metadata at all. Producing
qualitative metadata can be time consuming. However, it is important for
thematic routing (like for other data-driven multimedia products) to have
reliable, accurate, and coherent information (Cartwright et al., 2007). Con-
sistent with this growing demand, we devise a quality estimation based on
four measures that have been proposed in Ochoa and Duval (2009) and Bruce
and Hillmann (2004), that is, the completeness, coherence, provenance and
accuracy metrics. The combination of all these metrics generates a score
for each resulting cultural heritage POI from the above described building
blocks. These scorings can be used by the thematic routing proposed in the
next section. Important to mention is that it is a set of metadata metrics
based on the same quality parameters used by human reviewers but with
the di�erence that they can be calculated automatically.

3.2.3.1 Completeness metric

A metadata instance of a cultural heritage POI should describe the POI as
fully as possible and metadata fields should be filled in for the majority of
the POI descriptors in order to make sense for a thematic routing service. Fur-
thermore, there is certain information, that, due its nature, should be present
and is more important than other metadata, i.e., not all metadata elements
are equally relevant to all contexts. Di�erent weighting parameters can be
defined to express the importance of a metadata element. The calculation
of the completeness metric Qcompis given in Eq. 1, where αi is the relative
importance of the ith field, P (i) is 1 if the ith field has a no-null value, and 0
otherwise, and N is the number of fields defined in the metadata standard.

Qcomp =

∑N
n=1 αi ∗ P (i)∑N

n=1 αi

(3.1)

3.2.3.2 Accuracy metric

The information provided about the POI in the metadata instance should be
as correct as possible. Several metadata errors, e.g., broken links, spelling
or typographical errors and inaccurate technical properties (such as size or
format metadata errors), a�ect this quality dimension. In order to measure
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these errors, we use easy to calculate accuracy metrics, such as those pro-
posed in Moen et al. (1998). Moen et al. count the number of “visible” errors in
each record (e.g., spelling or typographical errors, file forma�ing errors, or in-
correct date formats) using spelling, format and regular expressions checkers
and express the derived accuracy metrics g(xi) of the i-th metadata field as
0 if an accuracy issue is detected and 1 if no problem is found. The combined
POI metadata accuracy Accmeta, based on Bellini and Nesi (2013), produces
a weighted average across all the Nfields metadata fields and becomes:

Accmeta =

∑Nfields

i=1 g(xi)× wi∑Nfields

i=1 wi

(3.2)

where wi is a weighting factor for the i-th field. Relevant fields to be taken
into account in the evaluation of the quality assessment are the date, file
format/size, language, subject, title and type, as proposed by Bellini and Nesi
(2013). A similar approach for calculating the metadata accuracy is discussed
in Ochoa and Duval (2006).

In addition to the Accmeta metric, we introduced a spatial accuracy compo-
nent DEVloc (shown in Eq. 3) which focuses on the spatial di�erences in
the retrieved set of POI locations loci. DEVloc indicates the geographically
diverse distribution of each POI and is calculated by computing the standard
deviation of all itsN geographical locations loci with the mean geographical
location loc of the POI. Similarly as in Hughes et al. (2012), allDEVloc values
are normalized in the range 0 - 1. If huge di�erences are observed in the POI
locations, DEVloc will be close to 1, otherwise it will be close to zero.

DEVloc =

√√√√ 1

N

N∑
i=1

(loci − loc)2 (3.3)

The final Qacc score for each POI (shown in Eq. 4) is a combination of its
Accmeta and the geographical variation of its locations (DEVloc). This can
be formally defined as:

Qacc = Accmeta × (1−DEVloc) (3.4)

3.2.3.3 Coherence metric

The POI coherence is related to the degree to which all metadata items de-
scribe the same cultural heritage object in a similar way. All items should
describe the same resource and if the information is a combination of data
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from di�erent web resources, the coherence in the data should be high. For
text items, we perform a correlation-based estimation of the coherence. The
semantic distance is calculated between the di�erent text items and the av-
erage semantic distance is used as a measure of the coherence quality. This
method is based on Vector Space model techniques used in Information Re-
trieval (IR) to calculate the distance between texts, but can also be used on
semantic descriptions of other media types. A more detailed description of
this technique can be found in Ochoa and Duval (2009). A low coherence
value for a considerable number of POI instances could be the signal of poor
titles or descriptions. More complicated coherence metrics, e.g. based on
semantic co-occurrence graphs (Sonawane and Kulkarni, 2014), will be inves-
tigated in future work. For images and other types of multimedia content,
coherence can be measured using semantic similarity metrics (Fang and Tor-
resani, 2012).

3.2.3.4 Provenance metric

Provenance quality measures the trust in the web resource of the metadata
instance, i.e., it measures the quality of the web resource from which the
POI is extracted, not the quality of the POI itself. Knowledge about who
created the POI instances, the level of expertise, the methodologies used at
data collection and the transformations the metadata has passed through,
could provide insight into the quality of the instance. However, a scalable
way to estimate the provenance of a source of metadata is to analyze the
quality values of all its N instances. First, we obtain an average quality
(Qavg) for each POIi of this web resource based on the above mentioned
metrics, and a�erwards, the average of all these Qavg values of a particular
web resource are calculated using Eq. 5. Once this provenance quality Qprov

of the source has been obtained, it is assigned to each of its POIs.

Qprov =

∑N
i=1Qavg(POIi)

N
(3.5)

Important to mention is that Qprov can only be calculated once the other
quality metrics have been calculated. Furthermore, each time a new cultural
heritage POI object is imported, the reputation of its web resource should be
recalculated and the Qprov of all its objects needs to be updated. As such,
the provenance of a source is not static, but a dynamic changing value over
time.

Each of the above mentioned metrics are combined in the POIs final quality
score QPOI , which is a weighted average of the completeness, accuracy,
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coherence and provenance scores. We leave it up to developers to assign
the weights. Depending the type of application they are focusing on they
can decide themselves which weights they want to give to each metric. In
our experiments, we currently use equal weights for all metrics.

3.3 Routing in cultural heritage environments

To facilitate thematic routing, we now focus our a�ention on conveying and
aggregating the previously discussed location-based information and its qual-
ity index on a network. We follow a similar workflow as described in the
previous chapter to remodel the count variable on the network. First, we
focus on an aggregation approach of the location-based information and
calculate a thematic index on the network. We direct our a�ention on well-
known a�raction-accessibility measures (AM) to condense potential interac-
tions between recreational cyclists and cultural heritage along the network.
Second, we remodel the index to a cost function to make it readily applicable
in performance demanding shortest-path problems. As a result, we have a
thematic and activity-specific graph.

3.3.1 A�raction-accessibility measure

Following the classification of Okabe and Sugihara (2012), we define cultural
heritage sites as alongside-network events. The basic idea in this methodol-
ogy is to model the spatial interaction between the cycling network and the
alongside-network events and calculate an AM for every location on the net-
work. Previous studies (see for example Miller, 1999) have proposed several
methods of calculating an AM. For brevity, we highlight one method. Assum-
ing that both the number of events and the accessibility of the event have a
positive impact on our measure, we use an addition of all distance-weighted
event scores within a certain distance band. Similar to other network analysis
methods, we divided the network in basic spatial units (BSU) and calculate
AM for these units. We considered 100m long non-overlapping segments.
Consistent with the work of Steenberghen et al. (2010), we used a moving-
segment analysis. This approach is similar to well-known moving-window
analysis in raster toolsets, doing calculations on local subsets of the data. In
doing so, we calculated the AM for every segment in our network based on
a subset of cultural heritage sites within an influence distance of the specific

69



Routing in cultural heritage environments

segment. Eq. 3.6 presents AM for an event e based on all segments n in our
network.

AMe =
n∑

g=1

Wegescoref(Deg) (3.6)

We introduce Deg as a distance metric between event e and segment g. Be-
cause we are modeling movements limited to a road network and constrained
by time, distance and connectedness, we used the Dijkstra shortest path on
the underlying road network as a heuristic for these constrained movements.
Previous research (e.g. Miller, 1999; Okabe and Sugihara, 2012; She et al., 2015;
Steenberghen et al., 2010) has already proven that network distance is a more
realistic and more generic approach in spatial clustering of location-based
events. For simplicity, distance metric Deg is calculated between the event
point and the midpoint of the segment. Next, The weight Weg represent
a binary weight: if weg = 1 then event e lies within the influence distance
of segment g, and 0 otherwise. Figure 3.8 on page 71 represents AM for
one segment (red dot) in the cycling network. All shortest paths within the
influence distance of a this segment are shown as black lines. Finally, f(Deg)
is a distance decay function weighting the event score. This decay function
reflects the impact distance has on the relevance of the event for segment
g. As time-distance is a strong deterrent factor in valuing leisure activi-
ties (Pigram and Jenkins, 1999), we use an inverse-distance decay function
and introduce a distance band of 5 km. Figure 3.9 on page 71 serves as an ex-
ploratory visualization of the spatial distribution of the cultural heritage sites
and our AM. In addition, we also want to highlight the impact of a planar-
space AM with as-the-crow-flies distance and the resulting overestimation of
the impact of an event on a location. When we compare the devised network-
space AM with a planar-space AM, we see an overestimation. Figure 3.10 on
page 72 presents a comparison between both in our study area. The cluster
around zero on the y-axis is a result of segments with few or no sites in their
influence distance and is clearly visualized in Figure 3.11 on page 73.

3.3.2 Path exploration and generation

In the following section we address the generation of a shortest-path alterna-
tive based on the a�raction-accessibility measure. We compare two methods
that are o�en used to generate alternative shortest paths based on a criterion.
A first method implements the k shortest paths algorithm to maximize this
criterion (Eppstein, 1994). This algorithm generates the shortest path be-
tween a source-destination couple and subsequently produces the shortest-
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Figure 3.8: Mapping of the parameters in the a�raction-accessibility mea-
sure for one segment (red dot) in the cycling network. Black
dots represent the cultural heritage sites in the study area and
the black lines represents the distance metric (i.e. Dijkstra short-
est paths on the underlying road network within the influence
distance of a segment).

Figure 3.9: The right side image visualizes the spread of the network-space
AM. As a reference, a grid-density plot of the cultural heritage
sites is added on the le� side.
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Figure 3.10: Visualization of the normalized network-space AM in a func-
tion of the di�erence between the normalized network-space
AM and the normalized planar-space AM. This plot clearly
shows the overestimation in the planar-space AM to the
network-space AM. Next, we also see that a low number of
segments receive a higher AM while using the shortest path
as distance metric. The green line represents the density esti-
mation of the plo�ed points.

path alternatives with increasing length between this s-d couple. In the
context of our approach, this allows the exploration of the calculated AM in
di�erent paths in the cycling network between source and destination. This
method also allows the analysis of the trade-o� between increasing length
of the shortest-path alternatives and AM maximization.

As e�iciency and tractability of route planning applications becomes more
important, an o�en preferred second method is the implementation of the
Dijkstra shortest path with an alternative cost function. From a theoreti-
cal perspective, the cost function involves the approximation of the theme-
specific travel expense of every segment in a network. While the use of a
single-cost method has o�en been described as a naive approach to generate
optimal paths (Mooney and Winstanley, 2006), many state-of-the-art routing
algorithms in performance-demanding applications still use this method (Luxen
and Ve�er, 2011). In order to facilitate thematic routing in these algorithms,
we propose a cost function based on our AM. First, we invert and normalize
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Figure 3.11: This figure gives a spatial impression of the overestimation seen
in Figure 3.10 on page 72.

our AM resulting in a cost c for every segment i for heritage exploration.
0 means a low cost for heritage exploration, thus a high relevance for a
thematic shortest-path alternative, and 1 means a low relevance. Because
all BSU in our network analysis are approximately equal in length, it is not
necessary to incorporate segment length in our cost function. This cost ci,
however, does not su�iciently emphasize the relevant segments in the sparse
cycling network to generate an alternative path. As a second step and similar
to the research of Pippig et al. (2013) and Hochmair and Navratil (2008), we
incorporate a scaling factor a to increase the reduction in cost by incorpo-
rating relevant segments to make up for the gain in path length. Best results
were generated with a = 109 in Eq. 3.7.

segment cost = aci where ci = 1− AMi

max(AMi)∀i
(3.7)

In the following paragraph, we present the resulting paths generated by the
above methods. This comparison allows us to evaluate the optimality of
the shortest-path alternatives generated by both methods. In our context,
optimality of a path is defined as the maximization of the sum of AM along
our path with a minimal increase in length to the shortest path. Figure 3.12
on page 74 shows two randomly chosen couples. The le� plot indicates that
the second method approaches the most optimal choice, while the right plot
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depicts a situation where our alternative cost function chose a less e�icient
path (i.e. a longer path) while maximizing the sum of AM.

Figure 3.12: Comparison of the resulting paths generated by the k shortest
path algorithm and the alternative cost approach. Both plots
represent a randomly chosen s-d couple with gray dots repre-
senting k (k = 100) shortest-path alternatives, the blue dot
representing the shortest path and the green dot the chosen
shortest-path alternative based on our cost function with a =
109

Next, we analyze all shortest paths and their thematic alternative based on
our cost function within a specific geographical region. We chose to use the
geographic region of the Ypres salient, simulating users planning a route in
this region by bike in the context of ba�lefield exploration around Ypres.
Exploratory analysis of this case study showed that the sum of AM along
the path on average increases by 6.52 with a standard deviation of 4.72.
Length on average increases by 2140 m with a standard deviation of 2320
m. Additionally, Figure 3.13 and Figure 3.14 on page 76 indicates that our al-
ternative cost function successfully identifies salient corridors for ba�lefield
exploration and, thus, thematic routing applications. The higher number of
times the edges are used around the city of Ypres, fulfills our expectations of
more alternative paths along locations with a higher AM.

3.3.3 Discussion

While the above results underpin the feasibility and e�ectiveness of our ap-
proach, some points of discussion have to be taken into account. As already
mentioned, we probably underestimate the complexity and the concurrent
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Figure 3.13: This image shows the ranksize plot of number of times a seg-
ment was used both in all shortest paths (light green line) and
all shortest-path alternatives (dark green line) in the region
of interest. This plot shows that our proposed shortest-path
alternative successfully creates salient corridors for ba�lefield
exploration (i.e. same ranks receive a higher number of times
used).

objectives of a cultural heritage tourist. Real-life routing problems are most
o�en not a single-objective problem. In this context, Jozefowiez et al. (2008)
reviewed several multi-objective optimization techniques to reach a Pareto
optimality between a set of observed objectives. Similarly, Tarapata (2007)
proposed a number of solutions for multi-objective shortest-path problems,
such as mathematical optimization. For example, Maervoet et al. (2013) pro-
posed a heuristic to incorporate both cost minimization and POIs of some
given types to calculate an optimal closed path for an outdoor tour. While
our approach incorporates a more holistic view on the set of cultural her-
itage locations in our network, these techniques describe a combinatorial
optimization of a set objectives in a network. Although both techniques have
their merits, a more in depth comparison, evaluation and integration of both
approaches will be imperative in future work.

From a cyclist’s perspective, the increase in length between the shortest path
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Figure 3.14: This image illustrates the cycling network in the region of inter-
est shaded by number of times (count) used in all shortest-path
alternatives. As a reference, a dot-density map of each site for
ba�lefield exploration is added to the map.

and the shortest-path alternative seems acceptable to achieve a be�er expe-
rience during a leisure activity. However, we lack the data to do a formal
evaluation of the perceived di�erence. User satisfaction will be of vital im-
portance in this evaluation. While an assessment of this user satisfaction is
considered as future work, the remainder of this section addresses some of
the possible research tracks to source the necessary information. The most
straightforward one is the collection of stated preferences. Huang et al. (2014)
proposed the use of mobile applications to collect on-site knowledge. In a
similar manner, a location-based questionnaire could allow the collection
of unique information about our path suggestion (Zhao and Han, 2016). In
this context, design, user experience and conduciveness of the user interface
will be important drivers for success. Nielsen (2006) noted that contribution
should be made a side e�ect of the experience. Another research track could
be the analysis of human-mobility pa�erns during cultural heritage activi-
ties. Prato (2009) stated that aforementioned route choice modeling studies
are essential to understand needs and trade-o�s in path suggestions. While
these analyses are well documented in literature, the data collection prior
to this analysis is o�en problematic. Future work will have to address the
collection and composition of this data set to allow more in depth evaluation
of our proposed approach.
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3.4 Conclusion and main contributions

The results in this use case proved that the geographical context of POI
can be used beyond well-known map exploration of location-aware infor-
mation. Given enough POI, we are able to create ancillary data to improve
and personalize navigation services. We mainly focused on (i) the automatic
collection and multimodal enrichment of thematic cultural heritage POIs and
(ii) how an a�raction-accessibility measure can be used to aggregate these
enriched POIs, making new ancillary data readily available in navigation
services. We used this use case to introduce two more specific research
questions linked to overarching second research question in this dissertation.

The devised workflow gave a detailed overview of how the current state-of-
the-art in geographic enrichment can be used in a topical/thematic context
(RQ1). While the majority of the proposed steps are generic and readily ap-
plicable, thematic nuances should always be taken into account. For example,
the impact of temporal changes in place names and their geographical space
can be significant in a cultural-heritage context. Next, we focused on one
specific type of contextual analysis which can be used to model the potential
interaction of location-based information on an individual along a network,
namely a�raction-accessibility measures (RQ2). A moving-segment analysis
was used to calculate this measure on basic spatial units of the network. This
approach proved to be comprehensible, elegant and powerful to create a user-
centered model. The use of network space to model potential interaction
proved its performance. At the same time, individual weighing of every POI
makes it a highly generic approach. In the current design we used a quality
index of each POI similar to the introduced quality estimation. In future
work, more intricate weighting of individual POI can easily be added, which
makes it a flexible and extensible tool.

The proposed technological building blocks will facilitate cultural heritage
exploitation in tourism in various ways. Applications ranging from spatio-
temporal exploration to thematic routing will benefit from our collection,
enrichment and routing tools. Furthermore, due to its generic architecture,
the proposed framework can easily be used in other thematic routing and
exploration applications too, making it a widely applicable approach. Our
approach is not limited to recreational exploration of cultural heritage as
such. Future work will mainly focus on the overall evaluation of the pro-
posed methodology, more specifically, to investigate its conformance to user
expectations (which has not been tested yet) and to evaluate the impact of
the type of road network and POI coverage.
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4
Knowledge sharing in a route-sharing

community to improve navigation services

“Help Me Help You”
Jerry Maguire, Jerry Maguire

The aim of this chapter is to gain a be�er understanding in how active user
interaction can be used within route-sharing platforms to improve their services.
In this context, route-sharing communities have a great potential to harvest
local knowledge and expertise. These communities have engaged users that
create a vast amount of routes and POI. This user-generated content is strongly
interwoven with these indiviuals’ cognitive map. This third and final use case
evaluates a new low-level strategy to query these individuals’ cognitive map
beyond their user-generated content to infer road-network updates. We provide
both theoretical grounding of this strategy and its practical implementation
in the online route-sharing community of RouteYou. A web-based feedback
tool is designed and embedded in this online community. More specifically, we
combine (i) road-network a�ributes and (ii) specific route information to create
personalized tasks where user feedback is required. To evaluate and underpin the
validity, technical feasibility and e�ectiveness of this new strategy, we present
experimental results and study the contribution pa�erns of 325 active contrib-
utors. The results prove the feasibility of the proposed strategy. Several future
research tracks are discerned to further analyze and improve the results and the
user experience of our experiment.

The work presented in this chapter is based on a working paper prior to submission:
Kevin Baker, Kristien Ooms, Steven Verstockt, Pascal Brackman, Philippe De Maeyer
and Rik Van de Walle. (2017). Knowledge Sharing in a Route-sharing Community to
Improve Navigation Services.
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4.1 Introduction

A growing number of individuals no longer rely on their cognitive map for
wayfinding. Rather, they follow instructions from online and mobile navi-
gation services to find their way (Vanclooster et al., 2016). As the number of
guidance services is growing, so has the demand for ad-hoc created routes for
specific sports and leisure activities, such as cycling or hiking. While these
services solve a lot of knowledge-based wayfinding problems on unfamiliar
routes (Golledge, 1999), flawed representation of road infrastructure in the
map data impair guidance performance (Burns, 1998). Because these services
become more personalized, user-centered and interwoven in daily life (Gao
et al., 2010), many of these mistakes are still being found by individual users.

Giving users the means to share their local expertise, low-level error-reporting
tools are o�en implemented in online maps and mobile services. Coleman
et al. (2009) stated that these tools are still considered key components to
get users involved in mapping projects. However, managing and solving
these bugs quickly becomes a laborious and high-cost task. Previous research
has already highlighted some of the di�iculties with these tools. First and
foremost, Be�enburg et al. (2008) found that similar bug-reporting tools o�en
result in ill-defined or fuzzy information. They noted that a complete, clear
and correct description is imperative to facilitating solving reports. Next, the
tedious work of triaging reports still hampers bug solving and is an o�en-
studied aspect of error-reporting tools in literature (e.g. Anvik et al., 2006;
Hooimeijer and Weimer, 2007). Finally, Haklay (2016) also voiced that low-
ering the hurdles to participate in mapping projects is not always the key to
success. Moreover, Nielsen (2006) stated that most users in online communi-
ties just do not contribute.

As a result, recent years have seen a paradigm shi� toward data-driven ap-
proaches to infer quality assurance. Both knowledge-discovery and data-
mining techniques are used to assure a correct, detailed and mode-specific
annotation of digital road networks based on ancillary data sources har-
vested within crowds (e.g. routes recorded as GPS traces). Basiri et al. (2016)
highlighted the value of these data sources to detect anomalies and abnor-
malities based on rules and pa�erns seen in clusters of routes. As a result,
errors and bugs can be detected with a certain degree of trust. Despite
this new self-healing map paradigm, however, specific local knowledge still
resides with the individuals within these IT-mediated crowds. Sourcing this
unique knowledge is of vital importance to improve new data-driven knowl-
edge inference and, hence, the aforementioned navigation services. As such,
the overarching theme of this use case is the possible synergy between both
error-reporting tools and data-driven knowledge discovery. This use case is
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devised around two specific questions linked to the third research question
in this dissertation:

• RQ1: How can routes created on route-sharing platforms be used by a
task-recommendation mechanism to foster knowledge sharing?

• RQ2: Is active user interaction outperformed by current data-driven
approaches (cfr. Chapter 2)?

First, this use case presents a detailed description of a new low-level strategy
to collect knowledge from online route-sharing communities. While this use
case focuses on routes shared on the RouteYou 1 platform, our approach is
applicable in other route-sharing communities where leisure activities are
shared and classified according to type of activity, such as road cycling or
mountainbiking. More specifically, we study how error-reporting tasks can
be restructured to increase awareness of possible errors in the underlying
map data and encourage knowledge sharing by linking it to a user-specific
context, that is, a user’s route.

This approach in doing so addresses one of the major challenges in current
community-driven mapping project See et al. (2016): "how can citizens be
encouraged to map an area that has already been mapped in the last few
years or be more actively engaged in change detection mapping? (p 18)".
We combine the route’s information and meta-information shared on this
platform with OpenStreetMap (OSM) road network information to create
and present context-aware and location-based human information tasks to
detect errors, omissions, or other inaccuracies in map data. Thus, we convert
the user’s actions of creating, classifying and annotating an error report to
an easier and user-specific task.

In order to evaluate this new strategy, we designed a prototype of a web-
based feedback tool and embedded this tool in RouteYou’s web platform.
We chose to focus our a�ention on errors of commission in road condition
tagging in OSM, based on routes with a type tag cycling in this route-sharing
community (e.g. road cyclist, leisure cyclist). This was done for two reasons:
(i) OSM has a very intricate tagging structure for road condition and (ii)
previous research (Bergström and Magnusson, 2003; Damant-Sirois et al.,
2014) showed that road condition is a key factor in cyclist typology and,
hence, very suitable for the proposed methodology to detect conflicts.

Haklay (2016) also noted that for a crowd-sourcing project to become useful,
it is imperative to understand the contribution pa�erns within this project.

1. h�p://www.routeyou.com
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These pa�erns have value to understand the shared data and streamline
e�orts to increase both user experience and user engagement. As such, a
second objective is to gather insights on the contribution pa�erns during the
rollout. For this purpose, we present both a general overview and an analyt-
ical approach to these contribution pa�erns addressing the user lifetime.

Finally, if successful, the above-described harvested verification of errors has
the potential to provide valuable information for knowledge-based pa�ern-
and rule-mining techniques. Hence, the third objective is to provide an ex-
ploratory analysis of the rules and pa�erns seen in clusters of routes linked to
these location-aware errors in map data. The shared routes within RouteYou
allow us to compare both user and type diversity in these clusters as well as
the size, that is the number of routes, of these clusters against the harvested
verification. In doing so, we aim at opening the door to new ways of un-
derstanding the synergy between both error-reporting tools and data-driven
knowledge discovery and, hence, foster future advances of the presented low-
level strategy to improve navigation services.

This use case is structured as follows. Section 4.2 addresses related work
shaping the frame of reference of this use case. Subsequently, we address the
experiment design in Section 4.3. We elaborate on the active contributors, the
back- and front-end design of the web-based experiment and the procedure
to create and answer tasks. In Section 4.4, we present the results linked to
contribution pa�erns in the experiment. Section 4.5 presents the harvested
verification during this experiment design. Finally, the exploratory data-
driven analysis in described in Section 4.6. We conclude with a discussion
of the presented approach and future work.

4.2 Context

4.2.1 Knowledge sharing in mapping projects

In the last decade, community-driven mapping projects such as OSM have
been receiving a burgeoning interest. Similar to low-level error-reporting
tools, these projects give individuals the means to share their local knowledge
and expertise. The merits of these tools are clear: accessibility and trans-
parency in these online user communities empowers these individuals and
draws them together, resulting in a virtuous circle. Not surprisingly, however,
these communities are not a generic task force. To create an awareness
of possible errors and facilitate contribution, this mapping community also
creates a multitude of tools, such as bug-reporting, error-detection, visual-
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ization, monitoring or assistant tools2. However, participation inequality,
in time, space and quality, still shapes this and similar approaches (Haklay,
2016). Consequently, there has been a growing research trend towards un-
derstanding the on-boarding process in online mapping communities and
modeling the participation inequality and quality in taxonomies, ranging
from novice to power users (e.g. Coleman et al., 2009; Flanagin and Met-
zger, 2008; Haklay, 2013; Neis and Zielstra, 2014; Neis and Zipf, 2012). How-
ever, Panciera et al. (2010) also noted that research in online communities is
o�en hampered by what researchers cannot see. Motivating factors such as
altruism, professional or personal interest or intellectual stimulation are im-
perative in information-sharing communities or distributed problem-solving
and production models. Wang and Fesenmaier (2003) also proposed social-
economic status and personality of the participant as important drivers in
contribution behavior. Furthermore, game-design elements and rules are a
popular way to increase participation and encourage contributors (Matyas
et al., 2011; Vyron and Schlieder, 2014; Yanenko and Schlieder, 2014). For
example, Martella et al. (2015) reviewed several gamification approaches to
gather volunteered geographic information, such as maproule�e.org, using
several game-design elements to improve OSM. However, Ferrara (2013) also
pointed out that integrating game elements, such as leaderboards, rankings
or badges, is not a guarantee for engagement. Wang and Fesenmaier (2003)
and Deterding et al. (2011) stated that the quality of the user experience and
the conduciveness of the user interface are maybe more important drivers
for success.

Furthermore, not all users are contributors. As the quality of these online
maps improves, map-seekers start using these maps for a number of activities.
For example, we see a growing use of OSM for navigation services for leisure
activities. This clearly shows the unique position and popularity of OSM
within these user groups (Kessler, 2011). However, these users o�en lack
intrinsic motivators to become an OSM contributor. To lower the overhead,
error-reporting tools such as OSM Notes allow users to report and discuss
location-based flaws or omissions in the map. Similarly, many leisure ac-
tivity communities using OSM incorporate this or similar reporting tools
(e.g. RouteYou, Strava, Bikemap or Runkeeper), but many possibilities to
collect new information from these communities remain, to our knowledge,
unexplored. Zhao and Han (2016) noted that this type of social networking
could provide a valuable context to further crowdsourcing. Instead of provid-
ing specific tasks to a generic crowd-sourcing task force, such as Amazone’s
Mechanical Turk workers3, it is more reasonable to assign tasks concerning

2. h�p://wiki.openstreetmap.org/wiki/�ality_assurance
3. h�ps://www.mturk.com/mturk/welcome
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cycling to a social group tagged "cyclists". Doan et al. (2011) argued that how
to recruit contributors is one of the biggest challenges in crowd-sourcing
approaches. For a more in depth overview of techniques of personalized task-
recommendation mechanism we refer to the literature review of Geiger and
Schader (2014). To our knowledge, the use of embedded procedures to har-
vest local knowledge (i.e. a piggyback approach (Doan et al., 2011)) in a route-
sharing community has not yet been investigated in academic literature. As
such, our use case has the potential of providing valuable insights in the
opportunities, challenges and limitation in using a route-sharing community
in a task-recommendation approach.

4.2.2 User contribution and activity

A growing body of research focuses on Human Computer Interaction (HCI),
user-centered design and usability to improve the sharing behavior in on-
line communities (Preece, 2000). However, we already highlighted that, de-
spite these e�orts, participation inequality is inherent in these communities.
Participation inequality is know to have a theoretical distribution of 90 %
consumption (lurkers) and 10 % contributors in online communities (Haklay,
2016). While many e�orts have been made to achieve a more equitable lurker
distribution, this inequality is believed to be an inherent characteristic of
sharing behavior (Nielsen, 2006). Secondly, research in online communities
and webgraphs (Broder et al., 2000; Kumar et al., 1999) noted that power
law behavior is also o�en seen in web-based platforms. This behavior model
states that a small fraction of contributors create the majority of contribu-
tions and a long tail of non-loyal contributors provide the additional contri-
butions. In addition, analytical work on contribution pa�erns and user life-
time in knowledge-sharing oriented online communities, such as Guo et al.
(2009), also stated that contribution pa�erns in online communities show
strong daily and weekly pa�erns. Research including, but not limited to, the
work of Guo et al. (2009); Oentaryo et al. (2012) also highlight the negative
impact a user’s communal lifetime can have on keeping users active in these
knowledge-sharing communities. While it is not within the scope of this
use case to provide an in-depth analysis of intrinsic and extrinsic factors
influencing the contribution pa�erns in our experiment, we want to provide
a general overview of these contribution pa�erns to guide future work in
addressing possible factors hampering contribution.
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4.2.3 Context-driven knowledge discovery

As introduced above, a growing body of research also uses more data-driven
approaches to infer knowledge from routes. Applied techniques focus on
detecting spatial, temporal or spatio-temporal correlations or clusters in this
data to infer insights (e.g. Biagioni and Eriksson, 2012; Kasemsuppakorn and
Karimi, 2013; Liu et al., 2012; Schroedl et al., 2004). However, the value of
meta-information linked to these traces is, in our opinion, underestimated
in current literature. Many route-sharing platforms provide tagging sys-
tems to link a route to a type, theme, group or characteristic. In doing so,
users link valuable information which can be of interest for contextual anal-
ysis and information retrieval. The presented approach explores the poten-
tial of this type tagging to infer novel information. Besides the e�orts to
create personalized task-recommendation mechanism in this use case, we
also want to address the possible value of this meta-information in future
data-driven approaches. Basiri et al. (2016); Zheng (2015) noted that afore-
mentioned knowledge-discovery techniques mainly focus on detecting travel
modes, group movement pa�erns or unusual behavior detection. As such, we
approach this knowledge discovery from a di�erent angle moving away from
purely data-driven to a more context-driven knowledge discovery.

4.3 Experiment design

4.3.1 Active contributors

Participants were sourced from the online route-sharing platform RouteYou.
In total, 325 active contributors were included in the evaluation within this
use case. Contributor acquisition was conditioned by a phased rollout and
user’s community involvement. The first phase was used to evaluate the
experiment with highly-involved users in the RouteYou community and ran
in the first 435 days of the experiment. As a proxy for a user’s community
involvement, we used the individual user score generated by the user reputa-
tion algorithm in RouteYou. Similar to other reputation algorithms in online
communities, this algorithm uses the number of contributions made by a
specific user and the contributions’ quality and ratings. The resulting metric
is scaled between 0 and 1, ranging from novice to expert users. This resulted
in a limited group (86) of users with a low variance in the user score. The
second phase (last 325 days of the experiment) was not conditioned by user
score filtering and featured a broader rollout to all users in the community of
RouteYou. The le�-hand plot of Figure 4.1 presents the evolution of the vari-
ance in user score throughout the experiment. The right-hand plot presents
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the user scores in the second phase of the experiment. All participants took
part in this study on a voluntary basis. Although no direct reward incentives
were linked to task completion, all routes with user answers were prioritized
in RouteYou’s semi-automatic content rating system. As a result, a recogni-
tion and appreciation incentive was introduced in this study.

Figure 4.1: This plot summarizes the distribution of the participants’ user
score throughout the experiment. In the le�-hand plot, the upper
and lower black line represent the 90 and 10 percentile in the user
score. The dashed line represents the average. The right-hand
plot presents a histogram plot of the user scores in the second
phase of the experiment.

4.3.2 Procedure

The objective here is to provide a detailed view on the proposed procedure
to create and answer a task set linked to a user’s route (see Figure 4.2). This
procedure constitutes three main parts: (i) questions, (ii) route segmentation
and (iii) linking questions to segments.

The experiment featured three main questions. The first question (Q1) ad-
dressed the overall user experience of the route. The user is asked to rate his
experience with the route on a scale from 1 (really bad experience) to 10 (great
experience). The second question (Q2) was used to ask the user whether
a segment is accessible for the activity type of his route. A dichotomous
answering scale (yes/no) was linked to this question. The third question (Q3)
requested feedback on the road condition of a segment. More specifically,
we ask ’Is this segment paved?’. Keeping in mind the complex interaction
between road condition and type of cyclist, we applied a nominal answering
scale featuring four categories: (i) paved good condition; asphalt, concrete
or tiles in good condition (pg), (ii) paved bad condition; paved but with lots
of vibrational discomfort during cycling (pb), (iii) unpaved good condition;
gravel or heavily compacted road surface (ug) and (iv) unpaved bad condition;
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Figure 4.2: This flowchart presents the main steps in the procedure to garner
local expertise from RouteYou users

so� materials with substantial ru�ing (ub). In the analysis of the results
further on in this use case, the la�er answer scale was mapped to binary
responses, paved or unpaved, to avoid bias.

Trajectory segmentation is a well-studied procedure, dividing a route into
comprehensible parts to reduce computational complexity and mine richer
knowledge (Zheng, 2015). Stay and turning points or other semantic-change
points (e.g. mode, long/short stay) are o�en used to split a trajectory in
these parts of interest. In our approach, we use the underlying OSM road
network as driver for a semantic segmentation. A segment is defined as a
part of a route that matches a specific road in this road network. This step
is necessary to unambiguously link a set of road-specific object a�ributes
to parts of the route. This segmentation is illustrated in Figure 4.3 and is
based on a map-matching approach. Map matching is a procedure that
uses spatio-temporal input of a moving object (i.e. geographical longitude
and latitude and time of recorded object location) and a road network to
provide an enhanced positioning output (�ddus et al., 2007). While this
approach has already proven its value in on-vehicle navigation systems to
alleviate noise while determining which road a tracked object is travers-
ing (Newson and Krumm, 2009), this procedure is equally valuable to mitigate
noise while post-processing network-constrained sequences of locations as
seen in routes. In doings so, we can redefine a segment as a sequence of
locations matching a specific road object in the OSM road network. We
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applied the hidden Markov matching algorithm implemented in the Open
Source Routing Machine project (Luxen and Ve�er, 2011). This results in
a set of route segments st of route t matched on the OSM road network.
Every route segment has a segment length l and an OSM identifier4. We
also generate a set of segments dt containing the parts of a route which did
not match with the road network. This can be seen as a di�erence between
the OSM road network and the route (see Figure 4.4 on page 95). While we
are aware of possible errors in the results of map-matching algorithms due
to complex road lay-outs or dense urban networks (�ddus et al., 2007), the
analysis of these errors is put beyond the scope of this use case.

Figure 4.3: This image shows the segmentation procedure of a route. The
detail shows the segmentation result of a part of a route (seg-
ment 1- 8). For visualization purposes the original route is given
a vertical o�set.

4. Every object in OSM has a unique resource identifier, for example:
h�p://www.openstreetmap.org/way/165289583
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Figure 4.4: This image shows an example of a segment as a result of di�er-
ence between a route and the road network. For visualization
purposes the original route is given a vertical o�set.

Finally, a decision tree links questions to segments. From a practical per-
spective, this step creates records in a relational database. Figure 4.5 on page
96 represents the entities and relationships in this database. A problem is
described as a segment-question pair. In the remainder of this paragraph, we
present the decision rules to link a problem to a task list. Without exception,
Q1 was linked to a task list. The next decision rule featured missing road
geometry, linking Q2 to a segment. This task was linked to a segment if
it was part of the dt set and was longer than a length threshold. A second
decision rule was introduced to detect conflicts between the surface tag of an
OSM Way and the activity type tag of a route. Similar to other route-sharing
platforms, Routeyou has a hierarchical tagging system allowing users to link
activity type or sub-type tags to a route. For example, a user can tag a route
as a cycling activity, which is a general type tag. However, the user can also
link a sub-type tag, such as mountainbike or road cycling, to a route if suited.
Previous research in Chapter 2 has already highlighted the importance of
road condition during these activity (sub-)types. Using this as a heuristic, we
created links between segments and Q3 where an OSM highway or surface
tag5 indicating an unpaved road condition or a paved but bad road condition

5. a tag is the popular term of an a�ribute linked to an object within the OSM community.
Tags are defined as key-value pairs. An non-exclusive overview of possible tags is listed on
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co-occurred with the activity type tag cycling or sub-type tags road cycling
or leisure cycling. Inherent to many tagging systems in web-based platforms,
we do not have quality metrics of the tagging. However, these quality issues
were placed beyond the scope of this article. Therefore, the tags were deemed
correct and unambiguous.

Figure 4.5: Entity Relationship Diagram describing how the di�erent ele-
ments are related in the proposed database model.

While we also do not address the full extent of the expert-based mapping
of OSM highway and surface tags to our road condition classes, previous
research (e.g. Hochmair et al., 2015) has already shown the feasibility of
similar approaches. The mapping uses the characteristics of individual tags
as well as the co-occurence of certain tags on a road object in OSM to classify
roads in the aforementioned four road condition classes. For example, a tag
highway:track6 has a high probability of being unpaved. If there are no addi-
tional tags specifying the quality of the track, we define a track as ’paved bad
condition’. highway:residential, as a second example, has a high probability
of being paved. Unless there are surface tags indicating otherwise, we define
a residential road in OSM as ’paved good condition’. To give a general idea of
the mapping of the surface tags, Tabel 4.1 on page 97 presents a selection of
the most popular surface tags and how we mapped them to our four classes.

If a user submits an answer on a task, the answer is stored and linked to a
problem. In addition, meta information of the answering session is stored. If
the user was logged in during the answer session, the answers are linked to a
user’s unique resource identifier (URI) and a session identifier of a unique IP
address. A session can encompass answers on multiple task sets. Both user
and session identifiers are imperative to facilitate and broaden the analysis
of user contributions and their contribution pa�erns.

h�p://wiki.openstreetmap.org/wiki/Map_Features.
6. h�p://wiki.openstreetmap.org/wiki/Tag:highway%3Dtrack
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Surface tag road condition class
asphalt pg

unpaved ug
paved pg

ground ub
gravel ug

concrete pg
dirt ub

paving_stones pb
grass ub

compacted ug
sand ub

cobblestone pb

Table 4.1: This table lists an extract of the mapping between OSM surface
tags and our four classes, (i) paved good condition (pg), (ii) paved
bad condition (pb), (iii) unpaved good condition (ug) and (iv)
unpaved bad condition (ub)

4.3.3 Apparatus and stimuli

As mentioned earlier, a minimal-complexity user interface was built around
the task sets (see Figure 4.6 on page 98). A task set is linked to a route and
features its problems. To provide maximal flexibility to the end users, we also
introduced three action bu�ons: (i) ’Submit’ saves the answer to the answered
database table (see Figure 4.5), (ii) ’Skip’ allows the user to skip the presented
task and (iii) ’Stop’ allows users to quit the current set. Furthermore, to
increase the user experience and avoid duplicate answers from the same user,
we checked if a user was already linked to an answer on a specific problem.
If this was the case, the task was removed from the set.

As described in the previous section, the online experiment comprised two
phases. While the design of the user interface remained the same in both
phases, users were introduced to the experiment in a di�erent manner. In
the first phase users were invited to contribute in the experiment by direct
contact. They were asked if they were willing to participate in the experiment
and were given the possibility to exclude their activity on RouteYou from the
online experiment. Next, they received a notification via email that a new
task set was linked to their route. In the second phase, the email notifica-
tion was replaced by the notification- and comment-system in the RouteYou
platform. A comment was generated on every route with a task set, showing
general information about the route and the link to a question set. Figure 4.7
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on page 99 presents an actual example of a comment.

Figure 4.6: This image shows both a mock-up with a task’s general structure
and the appearance of the user interface in the online experi-
ment.

4.4 Contribution pa�erns

As mentioned in Section 4.3.1, the experiment had 325 active contributors.
These contributors submi�ed 4816 answers during 1605 sessions. 1339 an-
swers on Q1, 2091 on Q2 and 1386 on Q3. From all the answers on Q3 only
115 problems received multiple answers. The number of answers per session
has a median of 2. Figure 4.8 on page 100 presents the active contributors
per week as well as the first-time contributors to the experiment in this
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Figure 4.7: An actual example of a comment as stimuli to start contributing
in the online experiment. These comments were embedded in
the comment- and notification-system within RouteYou.

99



Contribution pa�erns

week7. Visual analysis of this figure already highlights both clear global
trends and horizontal and vertical variations. First, we see a clear start-up
peak and a subsequent fall back. Second, the aforementioned phases in the
online experiment are distinctly visible. As the second phase opened up the
experiment to a broader group of potential contributors, we see a larger part
of first-time contributors in the active contributors per week. Third, we also
see periodic variation when contributors start (vertical variations) and stop
(horizontal variations). For example, we see a clear horizontal variation in
the first phase. For example, from December 2014 to March 2015 there is a
noticeable lower contribution rate. Another observable horizontal trend is
the decline in contributors as the first phase nears its end.

Figure 4.8: This plot presents the active contributors per week (white circle)
during the run time of the online experiment. The black circles
represent the first-time contributors to the experiment in the
particular week and the squares represent the non-returning
fraction of these first-time contributors.

Next, we report on additional measures of the contribution pa�ern. Con-
version rate or acquisition rate can be defined as the fraction of users who
answered at least one task linked to a route. As mentioned earlier 325 users
answered, which is 1.65 % of the total users (19 725) who were linked to a task
set. In contrast to the conversion rate, the returning or retention rate models

7. An updated version of this plot at the moment of writing can be found in Appendix B
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the users in the learning curve of the project (i.e. returning a�er their first-
time contribution). This metric can be generated by counting the occurrence
of a user URI in the answered table with a di�erent session token. 39.23
% returned during the experiment. Furthermore, 10 % of the users started
more than 11 answering session and the users in the top 1 % started more
than 66 answering sessions. Furthermore, Figure 4.8 on page 100 shows that
the majority of non-returning visitors contributed in the second phase of the
experiment. These non-returning contributors have an average individual
user score of 0.26. During the total run time of the experiment, we observe
an average days between contributions of 18.66.

4.4.1 User lifetime

Because the experiment was embedded in an existing online community, we
did not have user lifetime parameters such as profile creation date and last
login information for our experiment. We replaced this by first and last task
set linked to a user’s route to model his lifetime in the experiment. We apply
three metrics to model a specific user’s lifetime within the experiment:

• Total User Lifetime (TUL) - defines the period (days) between the first
and last task set linked to a user’s route,

• Active User Lifetime (AUL) - defines the period (days) between the first
and last answering session,

• Passive User Lifetime (PUL) - defines the period (days) between the
last answering session and the last creation date of a task set linked to
a user’s route. The number of days is negative or zero when the last
created task set was completed in the user’s last session. In contrast,
the number of days is non-negative when there are unanswered task
sets linked to a user.

Figure 4.9 on page 102 shows the cumulative frequency plots of all active
contributors for the above lifetime metrics. The plot at the top of Figure 4.9
clearly shows the impact of both phases on the total user lifetime. We see
that less than 30 % of participants have a total lifetime of 325 days or more.
The center plot in Figure 4.9 confirms the fact that many active users are non-
recurring contributors. In addition, we also see that a fraction of the active
contributors are long-term contributors. The bo�om plot in Figure 4.9 also
indicates that 29 of the contributors still have a high probability of returning
if we use ’average days between contributions’ (18.66 days) as a benchmark.
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Figure 4.9: These cumulative frequency plots present the user lifetime met-
rics analyzed in this use case. All plots show these metrics for
the active participants in the online experiment.
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As the PUL of contributors further increases above this benchmarck, we
expect a diminishing probability of returning.

To further our understanding of the contributor types in the experiment,
we explore the relationship between our lifetime metrics and explanatory
variables in the online experiment. For brevity and comprehensibility, we
only present these results for the second phase of the experiment. While
correlation can have limited explanatory value in online experiments due
to heavy-tailed distributions or power-law behavior, they can be used to
explore expected pa�erns in contributions (Lang and Wu, 2013). We ex-
plore the relationship between three user-engagement parameters in route-
sharing communities: (i) number of routes, (ii) user score and (iii) number of
sessions.

First, we test the direct correlation between the number of routes per user
linked to a task set and our lifetime metrics. TUL shows a relatively strong
correlation with the number of routes per user (0.54). in contrast, we see a
weaker correlation between number of routes per user and AUL (0.19). Fi-
nally, PUL shows a similar weak correlation (0.25). Next, in order to compare
users’ involment in the RouteYou community and their lifetime metrics in
our experiment, we have also analyzed the correlation between AUL, TUL
and PUL and the individual user score. There is a significant but relatively
weak positive correlation between AUL and the user score (i.e. a higher
user score results in a higher AUL) (0.38). On the other hand, TUL shows a
stronger positive correlation (0.48). PUL and the user score are more di�icult
to interpret as the correlation between both is rather weak (0.20). Finally, we
can also compare the number of sessions per user with the defined lifetime
metrics. We only see a relatively strong correlation between AUL and number
of session (0.55). In contrast, TUL shows a weaker positive correlation with
the number of user sessions (0.19). PUL has no significant correlation with
this variable. Furthermore, correlation between the number of routes and
sessions is also weak (0.33).

4.5 Experimental results

In order to assess the validity of the presented experiment design and the
value of contributions, we now focus our a�ention on a descriptive overview
of data collected during the experiment’s run time. We also present a sam-
ple of the harvested data to study the nature of these data. Figure 4.10 on
page 105 gives a grid overview of the full segment set linked with Q3. With
increasing detail, we first present the full spatial coverage of this segment
set. Next a detail of a specific region in Belgium and finally a detailed grid
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with a segment overlay is presented. Tiles with at least one segment running
through it are black and tiles with segments which have answers onQ3 linked
to it are green. The tiles have an approximate size of 1.5 km2. As expected, the
spatial distribution of segments is spatially correlated with included routes
in the experiment. It is also clear that answers are locally clustered and will
be linked to a contributors region of interest.

highway answer fraction
unclassified 12.0%
secondary 0.5%
track 40.7%
footway 4.4%
cycleway 11.0%
service 0.7%
living_street 0.1%
tertiary 3.4%
path 19.4%
residential 5.8%
pedestrian 0.8%
bridleway 0.6%
road 0.1%

Table 4.2: This table gives an overview of the highway tag values where
segments occur and their fraction of the answers linked to them

Table 4.2 indicates that the largest number of answers where collected on
the highway tag value track, path and cycleway. Approximately 60% of the
answers were collected on roads with an unpaved road condition class. More-
over, 47% of this answer fraction contradicted the unpaved road condition
classes. Figure 4.11 on page 106 presents a more detailed view on five ran-
domly selected answers in the segment set. Next to the OSM road object on
the le�-hand side of the image, we also show a Google StreetView image
along the segment to give a general impression of the segment. On the
right-hand side, we list the OSM URI, tags linked to this road object and
the submi�ed answer and remark linked to the segment. The first (OSM
Way 73905335) and fi�h (OSM Way 24497283) example are situations where
the harvested answer is an added value to the current state of the OSM
road object, specifying that the road is paved. These answers are in con-
trast with the general characteristics of a track. The Google StreetView im-
ages confirm the answer given by the contributors. The second (OSM Way
112129773), third and forth example (OSM Way 367047242) are a verification
of the information-bearing tag surface.
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Figure 4.10: This overview presents tiles (approximately 1.5 km2) with seg-
ments (black) and tiles with answered question onQ3 linked to
a specific segment (green). The bo�om image is a detail with a
segment overlay.
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Figure 4.11: Detail of five harvested answers accompanied by their OSM
road object (le�-hand side) and its characteristics (right-hand
side) and a Google StreetView image along the segment. Re-
marks are translated and paraphrased.
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4.6 Context-driven knowledge discovery

In this section we study the possible redundancy of a user task compared to
underlying rules and pa�erns based on the routes linked to a task’s segment.
Within this evaluation we again focus on the tasks linked to Q3 and use the
answers as ground truth. This exploratory analysis is of importance to future
work, streamlining community e�orts to answer questions.

We define a group of routes linked to a segment as a cluster. If we analyze
the presence of these clusters and the contributed answers we see that 82%
of the included routes in this analysis co-occur with a paved road condition.
Furthermore, the experiments’ database (see Figure 4.5) allows us to study
three more specific features within these clusters. We define the presence
of specific activity types in a cluster as a first feature. As described in the
experiment design, the decision to link certain questions to segments was
already based on this co-occurrence. Hence, we study both the predictive
value of a route’s activity type in future work as well as the validity of the
co-occurrence in our experiment design. Secondly, we evaluate the size of
the cluster (i.e. the number of routes linked to a segment) as a predictive
feature. Previous work (Baker et al., 2017) already highlighted the value of
location-based route clusters to infer a suitability or a�ractiveness of a road
or path for a specific leisure activity type, such as road cycling. As such,
we study if this cluster size also has a predictive value for the surface type
of a road. Thirdly, we study user diversity in these clusters. Within our
experiment design, user diversity can be defined as the number of unique
owners of routes linked to a segment. As such, we evaluate if the popularity
of a road or path within the social group "cyclist" or, more specifically, "road
cyclists" has a predictive value for the surface type of a road. Three clear
and comprehensible association rules can hence be proposed based on this
feature set:

rule 1 - {A} =⇒ {Paved}: This association rule suggests that
certain activity type tags constitute a strong argument for a paved road
condition class.

rule 2 - {R1, R2, ..., Rn} =⇒ {Paved}: This association rule suggests
that a higher number of routes linked to a segment constitutes a strong
argument for a paved road condition class

rule 3 - {U1, U2, ..., Un} =⇒ {Paved}: This association rule suggests
that a higher number of di�erent users on a segment constitutes a
strong argument for a paved road condition class
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The predictive value of a rule can best be described by its confidence, support
and li� (e.g. Agrawal et al., 1993; Hipp et al., 2000). If we apply these perfor-
mance metrics to our rule set, support represents the occurrence of the rule
in the clusters on all segments. Confidence, on the other hand, represents
the number of times the right-hand side of the rule is true in comparison
to the total times the le�-hand side occurs. Finally, li� indicates whether
the support of the rule is higher than what could be expected if the le�-
hand side of the rule was independent from the contributed answers in our
experiment. Hence, if li� is higher than 1, the value of the rule is perceived
higher. Table 4.3 lists the confidence, support and li� of the first rule with
specific cycling type tags. It is clear that the applicability and relevance of
our first rule with more general type tags "Cycling" and "Leisure Cycling"
is hampered. In contrast, a single route with the specific type tag "Road
Cycling" has a predictive value. The upper three plots in 4.12 on page 109
show the confidence, support and li� of rule 2. A clear impact of increasing
number of routes can be observed in this rule. The confidence reaches its
upper limit as all segments with a cluster size above 120 routes always results
in the paved road condition class. The support has an exponential decay.
The plots linked to rule 3 in 4.12 can be interpreted in a similar manner as
the trends seen in rule 2; the observed trends are very much alike. With a
higher number of di�erent users on a segment there tends to be a higher li�
and confidence together with exponential decay in support. This exploratory
analysis shows that our three rules have a predictive value in the harvested
answer set.

Type Confidence Support li�
Cycling 0.61 0.14 0.74
Leisure Cycling 0.55 0.04 0.83
Road Cycling 0.94 0.63 1.13

Table 4.3: This table lists the confidence, support and li� of rule 1 with
specific cycling types

4.7 Discussion

4.7.1 Participation inequality

As mentioned before, participation inequality is known to have a theoretical
90/10 distribution (Haklay, 2016). The conversion rate in our experiment
shows a strong participation inequality. Unquestionably, the user lifetime
metrics suggest that there is room for improvement in both user experience
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Figure 4.12: This image presents an overview of the perfomance metrics as
seen in rule 2 and 3 respectively with increasing number of
routes on a segment and increasing number of unique route
owners (users) in the route set on a segment.

and user engagement. In an ideal situation, a user’s TUL should be similar
to his AUL and his PUL should be reduced to a minimum. Our results re-
flect a more complex interaction between these metrics. This underpins the
statement that contribution in online communities is not solely explained by
use time and frequency, but is also influenced by a degree of serendipity. We
discuss some of the possible trends shaping the contribution pa�erns.

User life cycle in the route-sharing platform has an impact on our experiment.
Other work in route-sharing platforms and mobile sports tracking applica-
tions (see for example Oksanen et al., 2015) already noted the impact of
periodic and non-periodic events, such as seasons or weather, on contribution
rates. This hypothesis is supported by the horizontal variations in the first
phase. However, a similar impact is more obscured in the second phase by
other drivers of contribution. As expected, the number of routes shows a
relatively strong positive correlation with TUL. The fact that this correla-
tion is not stronger can be explained by two factors. First, the previously
mentioned periodic and non-periodic events can result in surges of route
creation and, hence, create outliers of low TUL and higher number of routes.
Similary, the correlation between user score and TUL can be influenced by
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these surges. Secondly, we also see a power law behavior in the experiment
results. The proposed Pearson coe�icient lacks robustness to model these
distributions and handle the inherent extreme outliers, for example a high
TUL and very high number of routes. Next, all correlations with AUL are
clearly impacted by the high number of non-returning contributors in the
second phase. The results also showed that non-returning contributors were
found in all ranges of user types in the route-sharing community. However,
we also observed that if users got involved for a longer time it was more
likely that they returned more o�en. Evaluating, analyzing and monitoring
the proposed metrics in the future will certainly give valuable insights in
the evolution of the performance of this and similar experiments. Especially
noteworthy is the possibility to further characterize contributors and focus
on more in-depth analysis of specific characteristics. Figure 4.13 highlights
one contributor group that could be of particular interest for further analysis.
This arbitrary group of users have a high TUL and high AUL, which make
them valuable subjects to study why the stayed engaged in the experiment.
This example highlights the value of the discerned life time metrics in future
research.

Figure 4.13: This sca�erplot presents total user lifetime in function of active
user life time. The green area highlights contributor types
which could be of particular interest for further analysis.

There is also a noticeable di�erence between both phases. Next to the already
mentioned explanations, the methods we used to reach contributors have an
impact on the contribution pa�ern. Based on the results of our experiment,
some research theses can be discerned for future work. In the last decades, a
growning body of research addressed the current email overload (Whi�aker
and Sidner, 1996). This was also the reason why we moved away from this
method to reach users in the second phase of our experiment. However, email
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contact in the first phase showed its merits to source returning contributors.
Based on these results, direct contact could be deemed more personal and
suitable to reach highly-involved users. Future work will have to address
if, how and when direct contact can be used to lower the number of non-
returning visitors. However, while future work should certainly study these
drivers and reveal the stimulation needed to encourage contribution, they
will always be nuanced by what cannot be seen or measured in proxies.

Finally, the validity of a user’s routes as proxy for his local knowledge and
expertise should be discussed. A�er all, users also use RouteYou’s tools to
explore regions with li�le or no local knowledge. While the results clearly
indicated that an active contributor consciously chooses which task sets to
answer, future work will be necessary to underpin our approach with an
assessment of relevance and trust of an answer. Due to the low fraction of
multiple answers to the same problem, we choose not to evaluate the cor-
respondence between answers on the same problem. However, a commonly
used technique to elicit trust and relevance of a crowd-sourced answer is the
evaluation of corresponding answers on the same problem. A higher number
of contribution and a larger overlap in the local expertise of contributors will
be imperative to introducing similar techniques. A second important rele-
vance factor is the time and geographical place that a contributor is asked for
feedback. In the current design, a task set is linked to a route on the creation
date of the particular route and the contributor is free to choose when to
answer the set. However, the local knowledge of a user changes in time and
space. For example, it is be�er to ask feedback a�er an actual activity on
a particular route. Similar work of Huang et al. (2014) proposed the use of
mobile applications to collect on-site knowledge. Finally, further, more in
depth, user study of the experiments’ active contributors can certainly give
insights in the validity of the assumption that a route encompasses a part of
his mental map.

4.7.2 Rule mining

We chose to analyze three clear and comprehensible rules. In the follow-
ing section we discuss some of the insights gained from this analysis. The
performance metrics of these rules indicated co-occurrences which can not
merely be explained by chance. Furthermore, it is also clear that our rules
are, to a certain degree, interwoven with each other. As described in the
experiment design, the decision to link certain questions to segments was
already based on this co-occurrence. However, the results in Section 4.6
proved the validity of this approach, but also showed that a more intricate
decision tree is possible to guide users to more specific task which need local
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knowledge. Future work will certainly need to address the applicability of
more intricate data-driven approaches to infer new decisions on route sets
and study their possible consequences. Furthermore, Machine-learning lit-
erature (e.g. Bishop, 2006), has already noted the risk of overfi�ing an inferred
model, resulting in algorithmic blind spots. The exploratory analysis of rules
was based on the answers gathered in our experiment. As such, the spatial
generality of the inferred rules will be a necessary subject to avoid these
blind spots in future work. As mentioned in the previous section, trust and
relevance metrics will be crucial to support these data-driven approaches. A
quality indication of both the answers and the meta information of a route,
such as type tag, could greatly improve trust in the presented approach. More
in depth verification of the answers given in our experiment could also result
in a unique ground-truth dataset.

4.8 Conclusion and main contributions

In this use case we introduced an online experiment using a personalized
task-recommendation mechanism. This is an example of a piggyback ap-
proach of a crowd-sourcing system. We studied the value of active user
interaction to improve the problem-solving ability of maps and used the con-
tent (i.e. routes) shared within route-sharing communities as driver for this
task-recommendation mechanism (RQ1). Next, we studied the validity of the
inferred knowledge both as a single source of new information and within
more context-driven knowledge discovery (RQ2). The later was studied by
comparing a set of features found in route sets co-occurring with the har-
vested answers.

RQ1 - This question focused on the methodological approach to create per-
sonalized tasks based on shared content. The route segmentation approach
proved its value to create semantically coherent pieces of information upon
which could be reasoned to create a crowd-sourcing task. In this specific use
case, a task-recommendation mechanism was used to address the generic
surface classification in OSM. Due to the generic nature of object a�ribu-
tion in OSM and its proneness to errors (Challenge III - dirty nature of the
collaborative data sources), expert-based classifications can fail and hamper
activity-specific navigation services. The design succeeded to engage users in
change detection mapping in this context. Consider the 47% of the harvested
answers contradicting the expert-based classification. In addition, several
benchmarks can be recommended to evaluate the design performance in the
future. Next to well-known measures such as conversion and returning rate,
the devised design allowed us to evaluate three more specific user lifetime
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metrics. First, conversion rate is an important measure in online behavior.
Despite the high number of generated tasks, the fraction of solved task sets
is low, that is, a low conversion rate. While this can be a sign of a hampered
user experience, participation inequality is inherent in crowds and their con-
tribution behavior. Yet a more equitable distribution is desirable. However,
the increase will be asymptotic. Secondly, the users in the learning curve of
the experiment should increase. A low returning rate, low active user lifetime
and high passive user lifetime are signs that users lack incentives to keep
contributing. A stronger linear relation between the total user lifetime and
the active user lifetime will be an important benchmark in future evaluations.
Furthermore, returning contributors are essential to incorporate trust and
relevance metrics in the design. Streamlining the e�orts of contributors will
be imperative and can be addressed by the second research question in this
use case.

RQ2 - We found that a single route has a predictive value. Yet it is hampered
by the generality of certain types, such as ’Cycling’, and obviously prone
to misclassification. The predictive value increases as the size of the route
set and its user diversity increases. We can conclude that the presented
exploratory analysis of actionable rules showed potential to streamline the
e�orts of contributors. Hence, there is a clear synergy between the data-
driven approach devised in Chapter 2 and active user interactions. Exploiting
this synergy further will be imperative. More insights in what, when and
where users are willing to help are essential. This will both increase the
performance of our design and the quality of the shared information.
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5
General discussion and conclusion

"Never send a human to do a machine’s job"
Agent Smith, The Matrix

5.1 Summary

There are several important findings that stem from the specific use cases
presented in this book. It is the aim of this section to provide a link between
these findings and create a broader context. In addition, more specific re-
search questions were introduced in each chapter to guide the reader and
highlight the chapter’s major contributions. Figure 5.1 presents a summary
of these topical research questions. Next, we draw upon the introduced
overarching research questions to reassess and summarize these findings.

RQ1: How can large route sets maintained on route-sharing platforms be used
to improve activity-specific navigation services?

Chapter 2 and 4 demonstrated that an activity-specific route set has a
predictive value to characterize roads and paths in the models supporting
navigation services. Both chapters showed how to capture and analyze
new information from a route set using a novel contextual analysis. We
moved beyond statistical exploration of road object a�ributes in a route
set to improve expert-based models (i.e. Route Choice Modeling (e.g.
Prato, 2009)). By eliciting and using the context within activity-specific
route sets as a proxy for certain characteristics of a road or path, we
were able to study how navigation services for leisure and sports can
be improved. We also want to highlight that routes, even if they lack
a temporal dimensions, can be used for more than popular trajectory
pa�ern mining or anomaly detection (i.e. missing roads) as discussed

119



Summary

Figure
5.1:Sum

m
ary

ofthe
topicalresearch

questions
presented

in
each

chapter

120



General discussion and conclusion

by Zheng (2015) and Basiri et al. (2016) or novel visualization approaches
such as heat maps (e.g. Oksanen et al., 2015) to reveal new insights. We
readdress certain aspects within the specific use cases.

Map matching is a well-studied tool to alleviate noise while recording
location of moving objects in a road network (e.g. humans, vehicles) (New-
son and Krumm, 2009; �ddus et al., 2007). It also proved to be an impor-
tant preprocessing step in our contextual analysis. Besides noise reduc-
tion, Zheng (2015) hinted at its importance as an alternative to complex
trajectory clustering based on similarity in feature vectors. Our research
together with other recent work (such as, but not limited to, Bergman
and Oksanen (2016)) support this hypothesis. It allowed us to create a
semantic route segmentation, linking sets of road object a�ributes and
clusters of routes and their meta information. While this map-matching
approach is constrained in complex road lay-outs or dense urban networks
and hampered by inaccuracies in digital road networks (Bierlaire and Fre-
jinger, 2008; �ddus et al., 2007), the map-matching results presented in
both use cases proved their value in exploiting the potential in routes in
our research context. As such, it succeeded in simplifying the complex
task of trajectory clustering and studying spatial pa�erns in route sets to
more comprehensible analyses of network-constrained events.

However, there are several limitation for future valorisation. First and
foremost, the constrainedness to a network is both its strength and weak-
ness. Due to the high degree of freedom in both the route-plannning
tools and recorded movements in GPS traces during sports and leisure
activities, map-matching approaches will always be constrained in iden-
tifying all real-world movements. Furthermore, we also want to note that
map matching large route sets can be a time-demanding task despite
the current high-performance algorithms and increased computational
power of hardware. Finally, the matching results are a static snapshot of a
road network which becomes invalid when the digital record of the road
changes. For example, the simple task of spli�ing a road object makes
the link between route and road network useless. Future challenges lie
in devising new data management techniques fostering e�icient storage,
retrieval and mining without losing the advantages of map matching.

Especially noteworthy is the predictive value of a cluster size or route
count on a specific road object as a result of above-described preprocess-
ing step. Chapter 2 documented a localized remodeling of this count
to infer an a�ractiveness index of every road object in a network. We
analyzed the spread of the derived popularity score in four shortest-path
alternatives of popular routing engines for this activity. This analysis
successfully discriminated these shortest paths based on the scoring value
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and three morphological parameters of the path. However, the robustness
of the model should be improved to ensure the viability of the proposed
approach in future work. More specifically, further research on the local
optimality of the route choices will be imperative.

A distinguishable benchmark in cluster sizes is crucial to achieve repro-
ducibility and scale in future work. We need to know how much routes are
necessary to a�ain a certain degree of predictive performance, that is a
critical mass. We propose the use of across-network cluster size variation
and network autocorrelation as powerful tools to study this in future
research tracks.

From another viewing angle, the la�er was also studied in Chapter 4.
We evaluated the predictive value of a segment’s cluster features, such
as route count, in relation to the harvested answers. We found that a
relatively small route count has a high predictive performance if combined
with specific activity types, such as road cycling. A single route tagged as
road cycling, for examples, co-occurs in 94% of route-segment pairs with
an answer indicating a paved road condition. This not only emphasizes
the potential to streamline the e�orts of contributors by using a more in-
tricate decision tree based on segment’s cluster features in the presented
task-recommendation approach. It also underpins the value of the route
count in Chapter 2 to improve activity-specific navigation services. Yet,
the impact of mis matches in type tagging should be studied in more
depth.

Furthermore, the value of content-rating systems in route-sharing plat-
forms or more intricate use or popularity proxies ,such as downloads or
views, could provide additional predictive value to the feature set of a
cluster. For example, it can be expected that two highly-rated routes have
a higher predictive value than two routes without any rating score. How-
ever, we have to be aware that proxies of reality, such as routes and their
meta information, are inherently fallible. This does not undermine the
value of the presented work, but emphasizes the need for a combination
of expert-based and data-driven explanations to exploit the full value of
route sets to improve activity-specific navigation services. By integrating
both explanations in model-based logic, we can condense knowledge in
these models which can not be encompassed in clear causalities or as-
sociation rules such as "When a path has a characteristic X and Y , it is
(highly/not) suitable for race cyclist".

Another interesting finding for future valorisation trajectories is the value
of a route to create a context within which an individual is able to
share his local knowledge. Finding the right contributors is one of the
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main challenges in crowd-sourcing approaches (Doan et al., 2011; Geiger
and Schader, 2014). A task-recommendation mechanism and a web-based
feedback tool were devised in Chapter 4 based on the aforementioned
route segmentation. In doing so, we tried to search through the local-
ized knowledge collection of end-users and connect this knowledge with
specific data pa�erns in route segments. Almost half of the harvested
answers at least questioned the quality of road object a�ributes describing
the road condition. It underscored that given the right tools at the right
time, valid and actionable knowledge can be collected from a variety of
user types based on their routes. This finding is also related to RQ3 and
will be discussed further in the following sections linked to this questions.

RQ2 - Which opportunities do POIs provide to enrich current navigation services
beyond well-known map exploration?

Points of interest or POIs are an important aspect to enable storytelling
within route-sharing communities. They have the potential to create a
richer and personalized experience for a long tail of smaller niche markets
within tourism and leisure activities. A cycling round trip in the coun-
tryside, for example, can a�ract di�erent, but very specific user groups
depending on the location-based information, such as pictures, text or
videos, linked to the route. Consider, for example, recreational cyclists
interested in geology, industrial buildings and history. Automating this
route- and content-generation has the potential to a�ract a large and
diverse user group with a decreasing marginal cost. Using the multidis-
ciplinary view point within this dissertation, Chapter 3 documented and
discussed a generic toolset to address this need.

First, we focused on content creation. There is a current trend of making
information location aware. Yet valuable information remains location-
and context-unaware. This makes this aspatial information useless within
spatial knowledge-discovery techniques and GIS, central in this disserta-
tion. We presented di�erent building blocks to condense information in
space beyond what is user generated, creating trustworthy and actionable
knowledge; for example a user-generated geotag in contrast to the applied
geographic entity recognition in our approach. An important aspect in
automated content generation is quality propagation of meta data. As
such, a quality metric was devised based on the work of Moen et al.
(1998), Ochoa and Duval (2009) and Bruce and Hillmann (2004) to mitigate
trust and credibility problems while reusing the harvested information.
While further testing of this framework is necessary to come to a formal
evaluation, it provides valuable insights to build on during future valori-
sation trajectories. Understanding the quality of a POI, can tell us how
and when it can become valuable for a user group.
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While the opportunities presented by the growing availability of open
APIs and other so�ware-as-a-service are vast, data management will be-
come an important challenge in future valorisation. Performance-deman-
ding services are constrained in condensing the necessary information
on the fly. Pre- and post-processing steps will be necessary to keep the
actionable data available and fresh. Furthermore, the commercial context
in future valorisation can limit the availability of certain resources and
increase costs to acquire the necessary information.

Next, we reused a set of quality-controlled poi in a network-constrained
accessibility measure. Concurrent with the state-of-the-art in cluster-
ing events on a road network (e.g. Okabe and Sugihara, 2012; She et al.,
2015), we documented an approach to measure the thematic utility of
an activity-specific network to increase storytelling-functionalities of cur-
rent navigation services in a cost-e�ective way. It catches a location-
specific a�ractiveness and guides the user’s route choices to maximize
the utility of the generated route within a specific sightseeing theme (i.e.
World War I ba�lefield exploration). In this sense, it di�ers from the more
holistic a�ractiveness index in chapter 2 and RouteYou’s a�ractiveness
model. While we lack formal end-user validation, the experimental re-
sults prove the potential of our a�raction-accessibility measure to detect
salient corridors in activity-specific networks and its value as a travel-
cost alternative in theme-based services. We concluded that the largest
valorisation potential lies in using the presented measures to improve the
results of combinatorial routing problems such as described by Maervoet
et al. (2013). By incorporating more contextual measure such as ours
in path suggestion algorithms, the optimized route connecting a set of
theme-specific POIs can be enriched with additional cultural value and
historical significance.

RQ3 - Do route-sharing platforms have engaged end-users that are able to help
improve the problem-sovling ability of maps? If so, what is the value of active
user interaction?

Considering the vast amount of created content on route-sharing plat-
forms, these communities have engaged members which spend signifi-
cant time to create routes and poi. The results linked to RQ1 and RQ2
already highlighted that as a route-sharing platforms and their commu-
nities mature (i.e. more engaged users that share content, a�racting other
engaged users), the results harvested from the adapted methods have
the potential to also improve. Services can benefit from this network
e�ect. The performance to present real-world situation and collect this
information in a time-e�ective manner increases. In this scenario, user-
generated content and provided services are deemed reciprocal in the
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customer relationship. Users receive a basic set of tools to manage their
content. In exchange, service providers create value on top of the created
content by a�racting new users, by data-driven improvements of services,
by targeting advertising or by popular freemium models (e.g. advanced
features behind a paywall).

Yet these data-driven approaches underestimate the full value of an en-
gaged end-user. Coleman et al. (2009) noted that many map-based ser-
vices recognize this value and incorporate error-reporting tools to facil-
itate low-level knowledge sharing about potential errors, ommisions or
inaccuracies. However, we stated that these tools are maybe not the right
tool for di�erent levels of engaged users in route-sharing communities.
Chapter 4 focused on the steps to foster continuous user contributions
in a specific problem-solving type of crowdsourcing. Especially notewor-
thy is that given a well-defined context, we found that specific informa-
tion can be collected from individual users without any financial reward.
Not unexpectedly, however, we also saw clear constraints, consistent with
other research (e.g. Haklay, 2016; Panciera et al., 2010; She et al., 2015),
in what can be collected within a given time frame (e.g. participation
inequality, power-law behavior and limited spatial density). It is clear
that future work will have to focus on finding the right contributor in the
right contextual se�ing, such as time, place and medium. If successful, it
has the potential to not only harvest new knowledge, but also increase the
involvement and engagement of end-users of route-sharing platforms.

5.2 General discussion

The aim of this section is to present additional topics of discussion and re-
maining issues. With the benefits of hindsight, the following sections (re-
)addresses some aspects which present challenges for future valorisation. We
use both the insights summarized in the previous section and those gathered
during four years of project-based research focused on improving navigation
services for leisure activities to bring this dissertation to a more general out-
look on this research topic.

5.2.1 Generalizability of methods

This dissertation describes topical use cases within a specific frame of ref-
erence. Several of the proposed methodologies were evaluated within one
route-sharing community (i.e. RouteYou), in a confined region of interest
(e.g. regions in Belgium) and with very specific types of leisure activities (e.g.

125



General discussion

race cycling, cycling in a sightseeing context). Yet the value of the di�erent
building blocks discussed throughout this dissertation is not limited to these
specific set-ups. The implementation of the presented tools, methods and
ideas in the thriving community of RouteYou allowed us to evaluate these
building blocks within other set-ups.

Several opportunities and challenges were already hinted upon throughout
the di�erent use cases. Country-specific road network layouts and charac-
teristics, for example, were already discussed as a challenge when scaling
and reproducing the introduced methods. But this is hardly a new truth.
Local or regional road network characteristics also hamper current expert-
based models. Functional road classes and their characteristics are defined
network- and continent-wide, but o�en lack subtle local changes which can
be very important for activity-specific navigation services. Incorporating a
high granularity in tools will be necessary in future work, balancing between
a coarse-grained model or a too ad-hoc solution. In the remainder of this sec-
tion, we (re-)assess additional drivers in the generalizability of our methods.

User contributions in route-sharing communities can also have a very re-
gional character and, hence, condition the applicability of our methods. The
community size and country focus of a route-sharing platform can impact
this regional character. Furthermore, this regionality also varies between
types of leisure activities. Consider the activity space of a hiker. In gen-
eral, a hiker’s activity space is much smaller and has a much stronger local
character than, for example, a race cyclist (Chapter 2). As such, the appli-
cability of the presented methods is not only conditioned by the size of the
active community, but also by the activity space of the modeled recreational
pastime. Hence, this conditioning factor has to be taken into account when
transposing the gathered insights on other leisure activities.

The in-house research character of this dissertation had clear benefits. It
made it possible to directly interact with an active community project and
understand the di�erent aspects when sourcing specific information. Fur-
thermore, it presented hands-on insights which could not have been con-
ceived without this context. However, as already mentioned throughout the
di�erent use cases, all methods are reproducible on other route-sharing com-
munities and their crowd-based sources. Yet understanding when and why
certain data and meta data are collected remains important and emphasizes
why these sources can not just be seen as a commodity. Consider the type
tagging of routes. Platform-specific incentives to link correct types to shared
content can have an impact on the quality of the tag. Some platforms make
the type tagging embedded in the content-creation process, while other plat-
forms make this type tagging optional. Understanding these nuances while
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reusing crowd-based sources impacts the value of derived ancillary data and
their ability to improve maps.

5.2.2 OpenStreetMap

In the last five years, a growing number of commercial service providers
use the free-for-use1 map data from the OpenStreetMap project to increase
performance and reduce costs. RouteYou, the industrial partner within this
dissertation, did the same thing. As the community behind this mapping
project is reaching a critical mass and commercial geographic data and ser-
vice providers such as Mapzen2,Mapbox3 or Telenav 4 invest in improving
this map and its community, the value for activity-specific navigation ser-
vices also increases (Kessler, 2011). However, as the project matures, a grow-
ing body of research focused on this specific crowd-sourcing project still
highlights the impact of participation inequality in space and time (Haklay,
2016). This results in a regional-dependent (in)completeness and (in)accuracy
in both road geometry and object a�ributes. Similar to other community-
driven projects, mappers can lack experience, intrinsic motivators or incen-
tives, knowledge, time or a�ention to fix inaccuracies or omissions. At the
same time, a regional lack of mappers results in under-mapped places in time
and space.

See et al. (2016) discerned change detection mapping as one of the most
important future challenges of community-driven mapping projects. The
results in chapter 4, for example, underpinned that statement. 47% of the har-
vested answers on unpaved roads or paths in OpenStreetMap contradicted
this classification. This highlights the value of the presented work in this
dissertation to improve machine-readable maps, and more specifically those
based on OpenStreetMap, for activity-specific navigation services. Future
research will have to focus on how this synergy can be further exploited
and which role di�erent stakeholders can play. Especially interesting are
possible overlapping and conflicting interests in this updating process. The
question arises if the goals of the di�erent stakeholders, such as commercial
data/service providers or individual community members, will remain the
same as this project further matures.

1. OpenStreetMap is open data, licenced under an Open Data Commons Open Database License
2. h�ps://mapzen.com
3. h�ps://www.mapbox.com
4. h�p://www.telenav.com
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5.2.3 Personalization and privacy

Personalization is an important aspect in every facet of social media plat-
forms (Gao et al., 2010). As such, the presented work can have a big potential
in all facets of a route-sharing platform. Navigation services, the main focus
of this dissertation, is only one example. But this is just the start. Personaliza-
tion can also, for example, help you find your coming Sunday morning ride,
making it a personalized and user-centered experience. An inferred user-
specific geographical context and its characteristics can help a�ain this type
of service. A simple place to start this personalization is a user’s shared and
used content, such as routes, and their geographical context. Based on a
user’s content of interest a (spatial) area of interest can be defined.

However, concurrent with the increasing commercial interest in personalized
services, the public concern about privacy is also growing. There are obvious
ethics in re-using shared content. Many commercial companies focusing
on this personalization underestimate the value of an emotional customer
relationship to mitigate these privacy concerns. Of particular interest in this
context is the value of active user interaction. Aside from knowledge collec-
tion, it can be used to sensitize end-user to the potential value of (personal)
data collection and how it is used to improve services for everyone. Creating
a transparency in data re-usage is imperative. In addition, doing this in a
cost-e�ective way is equally important.

5.2.4 Maintaining up-to-the-minute navigation services

As discussed in the introduction, the success of navigation services lies in the
combination of the right machine-readable data and recent online and mobile
technological advances. We presented three use cases to infer new informa-
tion to improve this machine-readable data to create up-to-date navigation
services. In this section, we want to (re-)address why a reality gap can persist
through time despite fresh information.

Within the use cases, we already referred at the importance of choosing
the right routing algorithm. The most suitable algorithm to solve a specific
query to a navigation service can change both for reasons of performance
and optimality of the given solution. The work of Bast et al. (2016) gives
an overview of several state-of-the-art routing algorithms in performance-
demanding applications and their strengths and weaknesses. Certainly when
maintaining continent-size services, as RouteYou does, algorithm choice can
have a major impact on perceived performance by end-users (i.e. latency),
but also on service-provider side in preprocessing e�orts and space usage
and, hence, costs. As such, even if up-to-the-minute information becomes
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available in trustworthy and actionable data structures, the capacity to in-
clude this information can be limited by available resources. Furthermore,
providing a customized navigation service also entails maintaining a spatial
database storing both the geographic objects (lines and points) and their
intricate a�ribute structure. While speed-up techniques increase the per-
formance of necessary data transformation, specific manipulations are still
hampered when working on world-wide or continent-size road networks. As
such, available resources can again limit the speed with which new infor-
mation can be integrated in these navigation services. While this does not
undermine the validity of the presented use cases, future work will certainly
focus on further valorization of the research results within this context.

5.2.5 Data graveyards

There is a disincentive to trade as each side will worry that it is ge�ing the short end of
the stick

The Economist
"Fuel of the Future: Data is Giving Rise to a New Economy"

The crowd-based sources used in this research were explicitly shared within
the community of RouteYou: (i) routes and (ii) POI. However, there are other
sources which could provide valuable insights in the context of our research.
Up until a decade ago private firms have been able to collect a great deal
of information about our leisured self (e.g. Gri�in and Jiao, 2015; Lupton,
2016; Silk et al., 2016; Stragier et al., 2016). However, many of these sources
are still stored in so-called data silos and linked to single-source applica-
tions. Consider brand-based platforms such as Garmin Connect, collect-
ing all tracking logs of Garmin devices. The aforementioned disincentive to
trade still hampers harnessing the full potential of these sources, resulting
in data graveyards from the viewpoint of our research. Searching for cross-
correlations between platforms could prove to be a very valuable research
track for future work. On example is measuring the reuse of shared content.
A community of a route-sharing platform thrives on reuse of shared routes.
However, this reuse is most o�en not explicitly shared within the community.
Highly-engaged users will use feedback mechanisms such as up- and down-
votes or other comment systems, but a lot of users lack this engagement.
Cross-correlations could provide further contextual information improving
the presented analyses in this dissertation. Especially noteworthy in this
context is the growing availability of web-enabled applications and APIs with
end-user authentication, fostering a cross-platform sharing of content. While
these data sources can prove to be valuable in a research context, guidelines
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on how to use these APIs in a commercial context are at the least fuzzy and
hard to interpret.

Another potential source in this research are other sources of probe data.
Probe data is best described as the spatio-temporal residue of the aforemen-
tioned mobile sensing revolution (Srivastava et al., 2012); traces of locations
and time stamps lumped in logs as a result of the burgeoning amount of
location-based services and location-aware devices. Many commercial map-
ping agencies such as Mapbox or Google already collect this data through
free and reusable so�ware development kits (SDK) for application builders.
However, to our knowledge, few e�orts have been made to use this data to
address the main objective of this dissertation. The competitive advantage of
collecting this data is also in this situation inseparable from the disincentive
to trade. The question rises if it is up to route-sharing platforms to create a
new data silo with self-collected probe data from a dedicated applications to
improve their services.

5.3 Conclusion and further research avenues

We started this dissertation by stating that maps and their problem-solving
ability have limits as information is inevitably le� out. Within the bounds set
by their business model, mapping companies fail to capture specific informa-
tion. Reality gaps exist in maps and their underlying data. As such, missing,
erroneous or out-dated information in machine-readable maps hamper nav-
igation services and their model-based logic. Because of these reality gaps
they fail to unravel the full complexity of route choices and parametrize cer-
tain factors. This limits their current use in a burgeoning amount of location-
based services such as popular navigation services for leisurely sports or
recreational pastime activities (e.g. cycling, sightseeing).

Considering both the crowd-based sources managed on route-sharing plat-
forms and the crowds creating these data, we directed the presented research
to how crowds and their leisured data doubles can be used to cross these
gaps in a creative and cost-e�ective way. In doing so, we based three use
cases on two specific data sources managed within these communities: (i)
routes and (ii) POI. The research specifically focused on their capacity to
create ancillary data and streamline a community’s e�orts to further activity-
specific navigation services.

Overall, all three use cases showed their merits to gauge the intrinsic value
of specific paths and roads for these services. Route-sharing communities
and their crowd-based sources are a resource and a tool. The presented use
cases amply illustrate their potential to improve and personalize navigation
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services. Furthermore, the adapted methods have the potential of doing this
in a more cost- and time-e�ective manner. It is, however, recognized that
the created ancillary data from a single source of content (e.g. a route set
or topical POIs sourced from thematic websites) is not perfect. The ensuing
discussion highlighted both specific and more general insights together with
important issues which require further research in the future. We briefly
summarize these insights and give an outlook on future work.

As mentioned before, research in online communities is o�en hampered by
what researchers cannot see or measure. There is a necessity to assume a
certain user behavior. However, the di�erent use cases showed how these
used assumption have a validity to source actionable ancillary data and at-
tain the goal of this dissertation. The presented use case can prove to be a
good starting point to posit new and more di�erentiated research question
to gather new insights in future research.

Secondly, we again want to highlight the fact that these sources should not
just be seen as a commodity. Understanding the biasing factors in crowd-
based sources such as routes is challenging, but is necessary to move beyond
"what" can be seen and comprehending "why" something is seen. Making the
feedback loop more interwoven in communities such as those managed on
route-sharing platforms has a clear potential in this process, but closing this
loop has proven to be challenging. Future work will have to create deeper
interpretation of what, when and where users are willing and able to give
valuable feedback. Furthermore, the strengths of both active and passive
information collection will have to be more intricately combined to a�ain
this goal.

From a broader perspective, the major challenges hence still lie in the combi-
nation and fusion of di�erent community-driven or authorative (spatial and
aspatial) data sets and their derived ancillary data. Linking di�erent sets
of ancillary data onto a specific contextual spatial element, such as a road
network segment or a location with a rich context, has the potential to create
holistic characteristics of these spatial elements. This insight o�ers new ways
of looking at geographical data sources and emphasize their value for a wide
variety of applications.
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A.3 Bachelor’s and master’s theses (advisor)

Academic year Student Title
2014-2015 Bram Van Impe Generatie van trainingss-

chema’s voor wielertoeris-
ten met verrijkte kaartdata

2014-2015 Karel Geiregat Active Crowdsourcing Issue
Detector

2016-2017 Mathijs Raats Ontwikkeling van
een Methode om de
Tagkwaliteit van Routes Na
te Gaan

2016-2017 Lennert Teugels Optimalisatie van het
SRTM-model op basis van
fitness sensor data

2016-2017 Gert Blanchaert Route Matching op basis
van Community Data met
Kwaliteitsverificatie als doel

2016-2017 Thomas Van de Weghe Dynamische routeringsal-
goritmes

A.4 Internships (advisor)

Academic year Student
2014-2015 Tim Baert
2014-2015 Karel Geiregat
2015-2016 Mathijs Raats
2016-2017 Gert Blanchaert

A.5 Student projects (advisor)

Academic year project
2015-2016 Concor
2016-2017 Runamic Ghent
2016-2017 Running in Ghent 2.0
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B
Contribution pa�ern

This should be seen as an appendix to Chapter 4 and, similar to Figure 4.8 on
page 100, shows the contribution pa�erns in the devised experiment at the
time of writing.

Figure B.1: This plot presents the active contributors per week (white circle)
during the full run time of the online experiment. The black
circles represent the first-time contributors to the experiment in
the particular week and the squares represent the non-returning
fraction of these first-time contributors.
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Probleemstelling

Kaarten vormen een belangrijk hulpmiddel om complexe ruimtelijke pro-
blemen op te lossen. Dit proefschri� focust op één van deze problemen:
navigatie. Kaarten hebben immers de mogelijkheid om dit probleem op een
duidelijke, snelle en begrijpelijke manier op te lossen.

Echter, de volledigheid waarmee de wereld in kaart gebracht wordt, en dus
ook het probleemoplossend vermogen van kaarten, hee� zijn beperkingen;
informatie wordt immers onvermijdelijk weggelaten. Eén reden hiervoor is
duidelijk: rekening houdend met de schaal en het doel van het kaartproduct,
moet bepaalde informatie gegeneraliseerd worden. Een tweede oorzaak vin-
den we in het bedrijfsmodel van kaartproducenten. Door economische en
budge�aire keuzes wordt namelijk bepaalde informatie niet (tijdig) verza-
meld.

E�iciënt ontbrekende of onvolledige informatie inwinnen, zowel in kost als
in tijd, is bijgevolg één van de belangrijkste uitdaging voor kaartproducenten
om aldus aan de groeiende vraag voor specifieke ruimtelijke informatie te
voldoen. Deze groei dient niet alleen gezien te worden in aantal vragen; ook
de complexiteit neemt toe. Navigatie is daarenboven al jaren niet meer be-
perkt tot analoge kaarten. Digitale navigatiediensten gaan machine-leesbare
kaarten interpreteren om eindgebruikers te helpen hun weg te vinden tijdens
verschillende activiteiten.

Bovenstaande uitdaging staat centraal in dit proefschri�, waarbij we de focus
leggen op de specifieke nichemarkt van digitale recreatieve navigatiedien-
sten. Het voorbije decennia zijn er verschillende technologische vooruitgan-
gen geboekt binnen deze sector zoals mobiele, locatiebewuste toestellen en
applicaties die navigatietoepassingen tijdens vrijetijdsbesteding zoals fietsen
of wandelen mogelijk maken. Echter, voor vele van de kaartproducenten is
juist deze informatie moeilijk te verzamelen om verschillende redenen. Zo is
een reden de beperkte toegankelijkheid van de plaatsen die van belang zijn
voor recreatieve navigatie, zoals smalle paden en lokale wegen. Hoewel in
het laatste decennia grootschalige karteringscampagnes veel e�iciënter zijn
geworden (bijvoorbeeld door mobile mapping), blijven deze plaatsen kostelijk
om op te nemen in deze campagnes. Daarnaast zijn, zoals reeds vermeld, de
verwachtingen van de dienstverlening van applicaties in recreatieve navigatie
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hoog. Men verwacht correcte, gepersonaliseerde informatie, wat vandaag de
dag echter nog niet vaak verzameld wordt tijdens karteringscampagnes.

In dit boek zoeken we een antwoord op deze uitdaging in de huidige stroom
van geografische informatie gegenereerd door een grote groep individuen.
Afgelopen jaren zijn er immers verschillende online platformen ontstaan waar
gemotiveerde eindgebruikers hun persoonlijke interesses, ervaringen en ge-
voelens over hun vrijetijdsbesteding kunnen delen. Een van deze platformen
is RouteYou, de industriële partner binnen dit proefschri�. We onderzoeken
hoe deze nieuwe, door gebruikers gegenereerde, geografische informatie kan
ingezet worden om recreatieve navigatiediensten te verbeteren op een kost-
e�iciënte manier. Centraal hierbij staan twee types van informatie: (i) routes
en (ii) bezienswaardigheden.

Dit proefschri� beoogt twee doelstellingen. Ten eerste beschouwen we drie
verschillende methodologische benaderingen om deze nieuwe bronnen te
gebruiken om navigatiediensten te verbeteren. Ten tweede willen we in-
zichten verwerven in zowel de opportuniteiten als de uitdagingen in deze
context. Naast bovenvermelde opportuniteiten zijn de vier voornaamste uit-
dagingen: (i) hoe willen eindgebruikers helpen om diensten te verbeteren, (ii)
de geschiktheid van deze bronnen voor onderzoek, (iii) ‘ruwheid’ van deze
bronnen en (iv) begrijpbaarheid en verklaarbaarheid van de gegenereerde
informatie. Deze doelstellingen worden verder uitgediept in drie specifieke
onderzoeksvragen:

• OV1: Hoe kunnen beschikbare sets van routes beheerd binnen een on-
line community gebruikt worden om navigatiediensten voor specifieke
activiteiten beter te maken?

• OV2: Welke opportuniteiten bieden bezienswaardigheden om naviga-
tiediensten te verrijken zodat ze verder gaan dan huidige toepassingen?

• OV3: Hebben online communities waarbinnen routes worden gedeeld
geëngageerde eindgebruikers die bereidt zijn te helpen het probleem-
oplossend vermogen van kaarten te verbeteren? Indien wel, wat is de
waarde van actieve intereactie met deze gebruikers?

Overzicht van belangrijkste bevindingen

In hoofdstuk 2 beschrijven we een benadering die de focus legt op het in-
tegreren van een uniek gebruikersperspectief in navigatiediensten. Daarbij
wordt een specifieke activiteit uitgelicht, namelijk racefietsen. We ontwik-
kelden een methodologische benadering die een appreciatie-index berekent
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voor iedere weg in een wegennetwerk. We baseren ons hiervoor op een clus-
tering van identieke bewegingen beschreven in een grote set routes (OV1).
De belangrijkste bijdragen hieromtrent kunnen samengevat worden in drie
delen.

De methodologische stappen vormen een eerste bijdrage. We geven een
overzicht van de uitdaging bij het gebruiken van routes om identieke be-
wegingen in een wegennetwerk te bepalen. Hiervoor gebruiken we een map
matching algoritme, waarbij we verschillende heuristieken introduceren om
de herberekening van bewegingen langsheen het wegennetwerk te verbete-
ren (cfr. 10%-regel, halfweg-regel). Analyse van de match resultaten toont
aan dat geclusterde bewegingen op wegsegmenten karakteristieken hebben
van menselijke bewegingspatronen, zoals een verdeling met een dikke staart
en geen significante netwerk autocorrelatie.

Een tweede bijdrage zit in de modellering van de clusters op de wegseg-
menten in het netwerk waarbij het gebruikersperspectief centraal staat. Dit
perspectief wordt beïnvloed door afstand en netwerkconnectiviteit. We ge-
bruiken netwerkgebaseerde afstandsweging om dit perspectief te integreren
in onze modellering. Daarnaast biedt de β-transformatie een generieke op-
lossing om de appreciatie-index om te ze�en naar een kost in een kortste pad
algoritme. Een laatste bijdrage zit in de evaluatieprocedure om kortstepad-
alternatieven te vergelijken. De voorgestelde procedure gebruikt nieuwe vi-
sualisaties en analyses om verschillende alternatieven tegenover elkaar af te
wegen.

Tenslo�e concluderen we in dit hoofdstuk dat belangrijke inzichten verwor-
ven worden over hoe routes gebruikt kunnen worden om navigatiediensten te
verbeteren. Het grootste potentieel in toekomstige valorisatie zal gevonden
kunnen worden in het combineren van dergelijke datagedreven benaderin-
gen en expertgebaseerde modellen. Hierdoor kan de impact van ontbrekende
of onvolledige informatie opgevangen worden en kan op een kost-e�iciënte
manier aan de groeiende vraag voldaan worden.

Hoofdstuk 3 is gelinkt aan OV2 en documenteert een benadering om de ge-
ografische context van bezienswaardigheden te gebruiken om navigatiedien-
sten te verrijken. Hierbij focussen we op twee bijdrages: (i) het automatisch
vergaren en verrijken van thematische bezienswaardigheden van cultureel
erfgoed en (ii) het gebruiken van toegankelijkheidsmetrieken om een set
bezienswaardigheden te aggregeren op een activiteitspecifieknetwerk.

Ten eerste toont het beschreven generieke stappenplan aan dat de huidige
state-of-the-art in geografische verrijking gebruikt kan worden in een thema-
tische context. Het leggen van thematische nuances is hierbij evenwel nodig
om het potentieel volledig te benu�en. Bijvoorbeeld, de temporele verande-
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ringen in plaatsnamen krijgen weinig aandacht in de huidige technologische
bouwstenen om geografische entiteiten te detecteren in teksten, hoewel deze
een belangrijke impact kunnen hebben in thematische beschrijvingen van
cultureel erfgoed.

Vervolgens wordt een contextuele methodiek opgezet om de potentiële in-
teractie tussen een netwerk en de gegeorefereerde informatie, met name be-
zienswaardigheden, te modelleren. Hiervoor gebruiken we een bekende be-
nadering, namelijk toegankelijkheidsmetrieken (a�raction-accessibility mea-
sures). Deze benadering wordt gebruikt binnen een segmentfunctie die deze
potentiele interactie berekend voor kleinere delen van het netwerk (m.n. seg-
menten van 100 m). Deze benadering bewijst zijn begrijpbaarheid, elegantie
en kracht om dit doel te bereiken.

We concluderen dat de beschreven technologische bouwstenen nieuwe op-
portuniteiten blootleggen om actieve toeristen dichter bij cultureel erfgoed
te brengen. Daarnaast biedt de generieke architectuur van deze bouwstenen
ervoor dat deze zich niet alleen beperken tot cultureel erfgoed, maar ook kun-
nen gebruikt worden voor andere activiteitsspecifieke bezienswaardigheden.

De derde en laatste voorgestelde benadering in hoofdstuk 4 spitst zich toe
op OV1 en OV3. Hierbij ligt de focus op actieve interactie met eindgebrui-
kers op basis van hun gedeelde routes op online platformen zoals Route-
You. We beschrijven een experiment dat een gepersonaliseerd taakalloca-
tiemechanisme gebruikt om deze actieve interactie te verbeteren. Dergelijke
benaderingen worden ook wel piggyback-benaderingen genoemd omdat ze
een bestaande applicatie en hun geëngageerde eindgebruikers inze�en om
nieuwe informatie te verkrijgen via crowdsourcing. Hierbij stellen we twee
doelen voorop. Ten eerste willen we actieve interactie gebruiken om het
probleemoplossend vermogen van kaarten te verbeteren. Daarnaast willen
we analyseren hoe deze informatie ook kan gebruikt worden om meer data-
gedrevenbenaderingen, zoals beschreven in hoofdstuk 2, te verrijken. Deze
analyse vergelijkt de verzamelde antwoorden met een specfieke feature set
verkregen uit een route set.

We gebruiken de actieve interactie om specifieke vragen te stellen over het
verhardingstype van een weg. Deze vraagstelling is gestuurd door een con-
flictdetectie tussen het activiteitstype gelinkt aan routes (bv. racefietsen) en
a�ributen van het onderliggende wegennetwerk beschreven in OpenStreet-
Map. Bijvoorbeeld, racefietsers wensen routes die niet over onverharde we-
gen gaan. Op basis van een routesegmentatie-algoritme, een beslissings-
boom en een webgebaseerde feedbackapplicatie linken we een specifieke
vragenset aan een individu.

De experimentele resultaten geven aan dat we de lokale kennis van eindge-
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bruikers kunnen inze�en om specifieke informatie te verkrijgen. Zo geven
47% van de verkregen antwoorden een contradictie aan met het verwachte
verhardingstype op basis van wega�ributen.

Hoewel de resultaten waardevolle informatie beva�en, zijn er ook beperkin-
gen in wat kan verwacht worden van dergelijke crowdsourcing-benaderingen.
Zoals aangegeven in de academische literatuur rond actieve interactie op het
web, zal altijd maar een kleine fractie van de beoogde populatie deelnemen
en zal het overgrote deel van de contributies komen van een nog kleinere frac-
tie. We moeten dus op een intelligente manier omspringen met de beperkte
waardevolle informatie.

De vergelijking van de verkregen antwoorden met de feature set verkregen
uit een routeset toont aan dat er verschillende mogelijkheden zijn om de
opgestelde beslissingsboom krachtiger te maken. Zo zien we dat zelf één
route al een voorspellende waarde kan hebben voor een antwoord van een
eindgebruiker. We kunnen concluderen dat er een duidelijke synergie is tus-
sen een datagedrevenbenadering en actieve interactie om de uitkomst van
crowdsourcing-applicatie te versterken. Deze versterking zal zowel leiden tot
een meer performant design alsook een verhoogde kwaliteit van de bijdrages
van eindgebruikers.

Relevantie en verder toepassingen

We concluderen dat de voorgestelde benaderingen een onmiskenbaar poten-
tieel hebben om recreatieve navigatiediensten beter te maken. Daarenboven
is het duidelijk dat de verworven inzichten niet alleen een meerwaarde heb-
ben om het probleemoplossend vermogen van kaarten te verbeteren; perso-
nalisatie van social media-platformen, zoals een platform waarop recreatieve
routes gedeeld worden, is belangrijk in elk facet. Zo is het ruimtelijke aspect
in de beschreven contextuele analyses is een aspect dat kan gebruikt worden
om de interactie tussen gebruiker en platform persoonlijker te maken. Ook
het aanbieden van content gefocust op een regio waarin een gebruiker reeds
actief is, kan voor een sterkere emotionele relatie tussen gebruiker en plat-
form zorgen. Verschillende technieken die beschreven zijn in dit proefschri�
kunnen gebruikt worden om deze region of interest te bepalen. Daarnaast wil-
len we ook wijzen op het potentieel van actieve interactie om eindgebruikers
te sensibiliseren waarvoor hun gedeelde informatie gebruikt wordt. Er is een
toenemende vraag naar privacy en transparantie tijdens het hergebruiken
van persoonlijke gegevens. Benaderingen zoals beschreven in hoofdstuk 4
kunnen hierbij een belangrijke rol spelen.
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