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ABSTRACT 

Source localization using microphone arrays has now become common practice for many applications. Their 

application for long term monitoring of industrial noise nevertheless remains uncommon. Hence, in 2016 we 

deployed four microphone arrays near a large industrial area for a period of 12 months and explored the 

challenges involved. The difficult meteorological conditions leading to strongly varying attenuations, 3D 

refraction, and scattering turned out to be one of these major challenges. Changes in predicted source 

locations and estimated source power are quite often the result of abrupt changes in local weather conditions. 

Notwithstanding the careful weather monitoring, assumptions and hypotheses on the sources’ temporal 

behavior and spectra combined with a statistical locator were still needed to obtain satisfactory results. 

Validation of the proposed approaches on a known source with stable noise emission over time is presented in 

the paper. 
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1. INTRODUCTION 

When noise complaints arise near large industrial areas such as harbors, it is often quite difficult 

to pinpoint the main source of noise at the time of the complaint. Often distances between the source 

and receiver are rather large and therefore noise levels at the receiver strongly depend on instantaneous 

meteorological conditions. Microphone arrays have now become common tools for finding the 

direction of a source both in indoor and outdoor conditions (1). However, the use of such arrays for 

semi-permanent monitoring of industrial noise remains uncommon. 

In military context however, very low frequency arrays have been deployed around the world to 

detect high intensity blasts (2) since the days of the cold war. Civil applications include the detection 

of fireworks, volcanic activity, etc. In the majority of these applications the sound source produces a 

short impulse-like signal. Arrival times of this impulse at different sensor locations is the core 

information used in the algorithms. 

Within the industrial context more continuous sounds are expected, hence algorithms that were 

developed originally for small arrays – where small is defined by the source being in the far field of the 

array – and to operate in a homogeneous and time invariant propagation medium, were extended to 

cope with the outdoor propagation conditions and the wider distribution of microphones. The vast 

majority of algorithms developed for such small arrays uses cross correlation between the signals 
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received at different sensors as a first step. For linear time invariant propagation, the impulse response 

and frequency response provide exactly the same information on the propagation, and thus allow to 

estimate the location of the source with the same precision. In this case a broadband sound source 

would be as easily located as a short impulse. However, atmospheric turbulence makes the propagation 

environment time variant. Several researchers have tackled the problem of coherence loss that was 

identified as a limiting factor on outdoor use of extended sounds sensor networks which is adding 

another factor to the Cramer–Rao lower bound (CRLB) (3). Often a distinction is made between close 

sensors forming a sub-array and sensors that are further apart. In (4) it is shown that bearing estimation 

from the sub-arrays combined with time delay estimation between sub-arrays performs as good as a 

fully coupled estimator once coherence loss between sub-arrays occurs. Explicitly accounting for loss 

of coherence between more distant parts of the array considered as a whole, can lead to improved 

performance of maximum likelihood estimators (5). Others have attempted to make signal subspace 

techniques more robust against inaccuracies of the estimation of the spatial covariance matrix (6). 

In addition to inducing coherence loss, meteorological conditions also directly affect signal to 

noise ratio at the microphone arrays. Wind increases noise in the array microphones, in particular at 

low frequencies. In addition to wind noise induced in the microphone, also turbulence carried by the 

wind is of major importance. Meteorological conditions also influence signal levels as upward 

refraction could significantly reduce noise levels at the distances from the sources that are of interest. 

This manuscript investigates the effect of meteorological conditions on the localization of 

industrial sound sources in a harbor area of 8 by 6 kilometer. Around this area, four microphone arrays, 

each consisting of 40 non-equally spaced microphones have been deployed for 12 months. In view of 

the above mentioned effects of coherence loss, signals from the four arrays are processed individually 

and combined afterwards. The technological challenges involved have been discussed in (7), the 

estimation of propagation in (8), and the fusion of data from different arrays in (9). Here we elaborate 

on the effect of meteorological conditions on performance of the system and introduce uncertainty 

estimates as a way to account for them during data fusion. 

2.  Measurement setup 

2.1 Arrays and additional microphones 

To cover the study area, 4 microphone arrays consisting of 40 microphones each and 6 additional 

microphones are placed around the industrial area. Technological details can be found in (9). Figure  1 

shows the location of these sensors on a sketch of the area layout. Tick marks on the axis are shown 

every 2 kilometer and give an impression of the size of the area. Data from the arrays are collected for 

about 30 seconds every 10 minutes during one year. The 10 single microphones monitor the 

environment using 1/8 second 1/3 octave band spectra continuously.    

 

Figure 1 – Schematic layout of the industrial area with the arrays (numbers 1 till 4) and additional 

microphones (numbers 5 till 10) indicated. 

2.2 Weather stations and meteorological data 

Four weather stations are deployed in the area to carefully monitor local wind and temperature as 

well as gradients in wind and temperature. The masts provide data each minute on temperature, 

humidity, pressure, rain, wind speed and direction. The wind direction and speed are measured at a 

height of 10 meters. To determine the time varying sound propagation between each source area and 

4290



 

 

each receiver position the wind, temperature and humidity needs to be known, preferably at several 

heights. Meteorological data from HiRLAM (High Resolution Limited Area Model) is used which 

provides data at several heights (10 levels with a maximum of 700 meters are used). Data assimilation 

is then applied to combine the HiRLAM data with the measurements to obtain data for pe riods of 10 

minutes. 

3. Detection of a reference source under varying meteorological conditions  

3.1 Calculated contribution of the reference source to overall level at the arrays 

One of the sound sources in the industrial area is well known and operates continuo usly. It 

constantly emits a broad band noise between 100 and 630 Hz but consists of a large number of smaller 

incoherent sound sources. In Figure 1 it is shown as the small rectangle close to microphone 7. To 

illustrate the effect of weather conditions on the localization performance of the array, a specific 

summer night where a mild wind turns from east to west, is investigated. The assumption that the 

source under study emits a constant sound power is easily validated by analyzing L A50 at microphone 

7. This measurement remains within 5 dB of the theoretical estimate during the whole night for all 

1/3-octave bands between 100 and 630 Hz. Figure 2 compares the calculated levels at 250 Hz with 

noise level measurements near the four arrays starting at 21:00 UTC or 23:00 local time. For reference 

the microphone wind and sensor noise is also shown (see Section 4). According to (3) the signal to 

noise levels observed would cause the CRLB to be determined by signal to noise ratio rather than to 

coherence loss, except for array 4. In the latter, the distance between the reference source and the array 

is less than 1 km which would in turn limit the effect of coherence loss.  

1 2 

3 4 

Figure 2 – Comparison of sound levels (L50) at a microphone close to each of the four arrays (green line) 

with predicted contribution of the known source (black line) and array microphone wind noise and sensor 

noise (blue line); 250Hz 1/3 octave band; the time axes represents 10 minute observation intervals.  
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3.2 Atmospheric conditions 

The night period that is observed starts at 21:00 UTC or 23:00 local time on a summer day in 

August. This is well after sunset and thus a temperature inversion starts building up. Figure 3 shows 

the temperature and wind profiles at the start of the night under investigation and at the end measured 

at the meteorological tower co-located with Array 4 and extended to greater heights using the 

HiRLAM model close to the reference source. With the observed temperature inversion and relatively 

low wind speeds a stable atmosphere and thus low degrees of turbulence are expected.  

  

  

Figure 3 – Temperature as a function of height (left) and wind speed as a function of height (right) at the 

beginning (top) and the end (bottom) of the focus night.  

3.3 Beam forming from array 3 and array 4 during changing wind direction 

Several beam forming techniques are used and combined in the overall measurement system. To 

illustrate the effect of meteorological conditions, the results of a maximum likelihood beam former 

using 36 microphones (ignoring the more closely spaced microphones in the middle of the  array) are 

shown. This beam former is applied 4 times on a 6 second interval and results are combined using a 

multiplication. The latter is inspired by a desire to remove occasional sounds such as trucks, trains, and 

ships passing close to the arrays. 

Arrays 3 and 4 are located closest to the reference source, hence the effect of meteorological 

conditions and other sources on beam forming is investigated for these arrays. The selected night is 

particularly challenging with a wind direction that causes upward refraction between the reference 

source and Array 4 and also Array 3 during a long portion of the night. Figure 4 shows the intensity of 

the beams in different directions at different time steps (10 minute intervals) corresponding to Figure 

2. Array 4 (left) points at the reference source consistently. At t=9 and t=11 other sources are detected  

(the events could clearly be identified on a spectrogram), but in general even when the expected 

contribution of the reference source is more than 10 dB below the overall sound level and 5 dB below 

the sensor noise, detection is still very good. Array 3 (right) on the contrary only vaguely points in the 

direction of the reference source at t=1 but quite quickly points towards the west rather than the east. 

Until t=6 a faint beam can still be detected in the direction of the reference source. From Figure 2 it 

becomes obvious that this is mainly due to the presence of another important source that increases the 

overall noise level at the array by up to 10 dB at 200 Hz. Jumping to t=26, where the overall noise level 

has dropped, the faint beam in the direction of the reference source is again visible. This is remarkable 

as the calculated expected contribution of the reference source to the sound level is now 20 dB below 

the overall noise level and 15 dB below the sensor noise. This is close to the limit one can expect with 

a 36 microphone array. The calculated expected contribution during this period with upward refraction 

may have been underestimated, for example due to stronger turbulence scattering. 
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Figure 4 – Intensity plots of beams from array 4 (left) and array 3 (right) at different time steps during the 

night. 
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4. Keeping track of accuracy  

To estimate sound powers emitted by various sources on the area of study, the information from 

the four arrays surrounding the industrial area is combined (9). Due to meteorological conditions and 

simply distance to the array, not all sound sources in the industrial area will be equally well sensed by 

all arrays. Therefore an estimate of the precision of the information obtained from each array is 

included in the data fusion process. For this, an ordered weighted average (OWA, 10) of the estimates 

of the source power obtained from each array is used.  

 

(1) 

where r, f, and t refer to the place, frequency band (1/3 octave), and time (10 minute step) respectively. 

(j) is the accuracy of the estimate of the power by array (j). The brackets indicate that the estimates are 

ordered according to decreasing ’s. 

Several sources of imprecision can be identified. As shown above, the signal to noise ratio of the 

contributions of a source to the array microphone signal is an important source of imprecision. To 

estimate the effect of imprecision caused by low signal to noise ratio at the microphones, the signal and 

noise have to be estimated. The sensor’s inherent noise level as a function of frequency has been 

characterized in quiet anechoic environment and was tabulated. The additional wind induced noise has 

been estimated on site by assuming that wind noise is dominant at the quietest periods of a month. The 

signal is the contribution of a possible source at a given location to the level observed by the array 

microphones. This results in an estimate of the accuracy based on SN given by:  

 

(2) 

with the SN-threshold, SNmin, estimated at -15 dB and the transition region determined by SN. 

Equation (2) is applied for each array separately. The signal to noise ratio SNk is estimated for each 

array k as: 

 

(3) 

where P is the probability of finding the power LWi at location r at time t. As this probability is hard to 

estimate a priori, it is fixed to a single value of 120 dB for each frequency and each location. 

Nevertheless post hoc better estimates could be made. Ak is the attenuation between source location r 

and the k
th

 array, which is calculated using the PE approach. 

The second source of imprecision is due to the calculation of the attenuation between each 

potential sound source location and the arrays and microphones around the industrial area. The 

attenuation appears in the formula that calculates the source power based on the observation at the 

array. The standard error on the propagation is calculated on the basis of uncertainty in input of the 

parabolic equation model that is used to predict the attenuation between source and microphone arrays 

given the instantaneous meteorological data. Imprecision of the choice of a set of 2D PE models for 

approximating 3D propagation is not accounted for. 

To get the attenuation (for each source-receiver combination), a representative sound speed 

profile is determined based on the meteorological data, and this profile is fitted to one of 27 profiles for 

which the propagation has been calculated beforehand. Three different types of ground absorption 

were used: hard (for sand and water), soft (like grass), and very soft (like heathland or forest). The 

sound propagation for paths with a combination of ground types is determined by weighting each of 

the three different propagation results with the corresponding distance. In general, a source height of 

15 meters has been used for the industrial area. 

To estimate the uncertainty of the propagation due to a quickly varying meteorology, also the two 

neighboring sound speed profiles were used for the sound propagation. Additionally, a change in 

source height is used. Based on these four propagation results, the standard deviation, SD, is calculated, 

with a maximum of 10 dB. For the propagation over industrial terrain a 3 dB increase is used to 
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account for uncertainty due to scattering. The standard error on the propagation model is transformed  

to an accuracy in the interval [0,1] using: 

 
(4) 

where A determines the transition to zero.  

 Finally, the effect of instantaneous changes in propagation time due to turbulence at various time 

scales causes deviations in the estimated angle both by instantaneous changes in the angle of arrival of 

the sound at the array and loss of coherence between the signals detected at the different microphones 

of the array. This source of imprecision is currently not taken into account.  

 The accuracy of the estimates used in Equation (1) is simply the product of both sources of both 

accuracies: µ=SN.A.  

Once the sound power level at each location, LW(r,f,t), has been determined, the accuracy of this 

estimate itself, LW, can be determined. It is obtained as the product of the linear average of the three 

largest (j), a term accounting for the mismatch between power estimates originating from each array, 

MM and a calculation of SN (Equations (2) and (3)) now based on the real sound power LW rather than 

on the probability P of finding this sound power. MM is calculated using a formula similar to (4) with 

a weighted mismatch between the different estimates of sound power and MM as arguments. 

5. Sound power levels  

Using the approach described above, the sound power estimate obtained from the four arrays is 

combined. Figure 5a shows the estimated sound power level in a bounding box surrounding the 

reference source. The horizontal lines represent the expected sound power level. It can be seen that 

during the first 10 time steps the calculated sound power level fluctuates around the expected level, in 

particular for the 125 and 250 Hz octave bands. The deviations are mainly due to the imprecision in the 

calculated attenuation. Due to the changing meteorological conditions, at time step 11 the source is no 

longer detected. This is mainly due to the drop in the contribution of the reference source at array 4 

(Figure 2). At time step 15 array 4 again starts to detect the source, but at that time array 2 and 3 no 

longer receive a signal that is sufficiently high to detect the source.  

To avoid the problem of poor detection of the source during periods of adverse meteorological 

conditions, exponential averaging is introduced on each potential source location in the area, taking 

into account the expected accuracy of the source estimation at each time step. Figure 5b shows that this 

results in a much higher probability of finding the stable reference source and hence more precise 

determination of its sound power level. The deviations from the expected source power now have a 

diversity of reasons that can hardly be identified precisely. Apart from the accuracy of the estimation 

of the sound attenuation, the aggregation over longer time intervals conserves the location of 

occasional sources over several time steps. Hence sound power is attributed to them also after they 

have stopped working. Thus the stable sources receive a smaller fraction of the total sound power 

emitted in the area. This immediately also highlights a serious drawback of combining source 

detection over various time steps: occasional sources remain virtually present over a period of time 

that is too long compared to the actual time they are present.  

6. Discussion and conclusions  

Meteorological conditions have a number of effects on the accuracy of detecting sound sources 

and determining their sound power in a large industrial area based on microphone arrays. Based on 

theoretical considerations it was expected that coherence loss due to turbulence would play an 

important role. However, it turned out that upward refraction and the resulting loss of signal amplitude 

at the array position was the main cause of imprecision in detecting sources. When sources are 

detected, estimating their sound power correctly requires extremely accurate propagation models that 

account for the changing refraction and account for turbulence scattering in a timely manner. Although 

a PE-model and accurate effective sound speed profiles are used in this project, the imprecision of 

estimated sound power for a reference source remains in the order of 10 dB dur ing the example night 

with varying wind direction that is shown in this paper. Keeping track of imprecisions in the estimated 

propagation towards each array improves accuracy but it cannot fully compensate for uncertainty in 

the sound power level estimation due to meteorological conditions. It is suggested that more 

meaningful results could be obtained by maintaining sound source positions detected during one of the 

observations at 10 minute intervals where the meteorological conditions are favorable for a longer 
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interval of time. Thus detection during different time intervals could be aggregated to a more 

continuous source power map at least for stable sources.  The impact on occasional sources 

nevertheless needs to be investigated further. 
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Figure 5 – Estimated sound power level inside a bounding box extending 200m beyond the reference source 

in three octave bands as a function of time: (a) as detected by the arrays at every time step; (b) integrated over 

time steps. The horizontal lines represent the expected sound power levels. 
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