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Abstract—Robotic systems offer an attractive solution for a large
spectrum of real-world applications that are hosted in dangerous
or inaccessible areas for humans. In such applications, one of the
fundamental tasks is to detect and mark particular features (e.g.,
pollution areas) in order to develop a proper response. In this
paper, we focus on the specific problem of environmental edge
detection using a swarm of homogeneous robots that can sense
and act distributively using a large number of individuals. In our
study, we consider both static and dynamic 2D environments,
in which the spatial distribution of the feature(s) may change
over time. We verify our results using a set of physics-based
simulations.

I. INTRODUCTION

One of the robotics breakthrough in the last two decades
is swarm robotics—communities of large number of simple
robots that can perform complex tasks beyond the capabilities
of their single individuals. The approach was inspired from
natural swarms e.g., birds, fish, and social insects [1]. Swarm
robotics has inherited a set of key advantages from its natural
counterparts such as the high level of fault-tolerance due to its
large number of robots. In addition to the high scalability of
the system that results from relying on local communications
in making their individual decisions which contribute to the
emergence of the swarm global behavior. These advantages
allow swarm robotics to provide a promising solution for a
long list of applications ranging from cell-level (e.g., nano-
robots) to space (e.g., robot swarms used for exploring life on
other planets).
Missions in which robot swarms can be used include dan-
gerous tasks for human, e.g., a field of harmful radiations
or areas with high concentration of pollution. Another type
of applications includes military missions such as isolating or
guarding the borders of specific areas with different sensitivity
levels against potential attacks. Likewise, robot swarms can
offer an efficient solution in construction tasks across large-
scale environments where environmental features may help
as indication points to facilitate the construction process. For
these missions and many others, robots need to be provided
with the fundamental skills of what we refer to in this
paper as the environmental edge detection. Environmental edge
detection is the process of detecting and marking specific areas
in unknown environments—in this paper, we consider only 2D
environments. These areas can be characterized by one feature

or a combination of features, e.g., light, temperature, or radi-
ation. As an example, we can consider a large environment in
which some areas are characterized with a high concentration
of CO2. Drawing boundaries around those areas—referred
to as environmental (CO2) edge detection—may represents a
necessary step to prevent humans from accessing those areas,
and for cleaning up purposes. In case we were interested of
isolating areas with, both, high concentration of CO2 and
high temperature, the detection will be adapted to take the
combination of the two features into consideration. Without
loss of generality, in this paper, we consider one environmental
feature and we setup this to be the color of the environment’s
ground. Environmental edges in this case, represent parts of
the ground where the intensity of the color changes sharply.
A related field for detecting differences in color intensity
is performed in the context of image processing and it is
referred to as image edge detection. Our solution stays valid
for detecting any other environmental features.

In our study, We use a swarm of N homogeneous robots which
cooperate together to achieve a set of collective decisions
concerning their detection of the environmental edges. We
aim to achieve the following goals (i) to perform an efficient
edge detection with the limited number of robots available,
and (ii) to cope with any dynamic changes in the distribution
of the environmental features. Achieving these goals using
a robot swarm is challenging, since no global knowledge
of the environment is available—robots rely only on their
local communications and need to solve the problem distribu-
tively. Furthermore, robot swarms are limited physically and
spatially—i.e. their performance drops when the number of
robots increases beyond a specific threshold [2], [3].

The paper is organized as follows; Section II presents a list of
works that focus on swarm robotics tasks, which are related
to environmental scanning such as exploration and foraging
with a brief discussion on the field of image edge detection.
Section III describes our solution in which we characterize
the robot’s behavior on the microscopic (individual) level
through its different phases. In Section IV, we introduce and
validate through different sets of physics-based simulations the
macroscopic behavior (i.e. the edge detection process) which
emerges from the microscopic rules applied at the individual
level. The paper is concluded in Section V.



II. RELATED WORK

Robot swarms represent a promising solution for large-scale
tasks due to, both, their large sizes and their flexibility [4].
A widely-used example is exploration, in which robots rely
on a set of fundamental behaviors that help them spreading
and dealing properly with tasks that are scattered across the
unknown environment, e.g., to locate items that are of a
particular interest [5], [6]. This behavior is mostly inspired
from the well-known foraging behavior, which is observed
in social colonies e.g., ants [7], [8]. Another fundamental
behavior is to achieve a good coverage across large terrains.
An efficient mechanism that is applied to realize this behavior
is inspired by the physical process of gas expansion. The
mechanism was applied in several studies of swarm robotics,
for example, in [9], [10] to maximize the coverage of an un-
known environment. The collective behaviors mentioned above
are just examples of skills that are required by the robots while
executing different missions such as under-water mission, for
which robots need to explore large open environments and
to locate environmental features [11]. Similarly, for in-body
missions, in which robots need to work collectively in order
to mark specific cells to which medicine should be delivered
[12].
In nature, we observe species, e.g., social insects and animal
groups, which respond collectively to environmental param-
eters such as light or temperature through distributing them-
selves spatially in a particular way according to the intensity
of those parameters, [13]. This behavior is mostly referred
to as aggregation. Nevertheless, this kind of aggregation is
not the collective behavior we are investigating in this study.
Our robots work to mark specific areas based on detecting
a high concentration of one or more environmental features.
In the aggregation—observed in nature—individuals gather at
specific locations as a response to a particular stimulus [14].
Whereas, in our study, robots need to recognize the differences
in the intensity of a perceived feature and to distribute spatially
in a proper way to mark the edges that represent those
differences in their highest values. As mentioned above, we
have set the environmental feature to be the ground color of
the environment. Hence, the nearest field that links to our
study is image edge detection—a fundamental operation in
the context of image processing, in which the goal is to detect
places in the image where the brightness of the color changes
sharply. There are several well-known edge detectors and some
examples can be found in [15], [16]. The techniques used by
such detectors include first filtering (e.g., Gaussian filters) for
smoothing the image. Afterwards, they use some derivation
functions such as the Laplacian or the first-order derivative
function for recognizing changes in the color of the pixels.
All operations and information that is needed for traditional
edge detection such as smoothing, filtering, comparing to the
exact neighboring pixels (i.e. the 8 neighbors), or computing
global measures such as the maximum gradient require to
deal with global knowledge of the image. Furthermore, even
algorithms, which were developed following some collective

intelligence mechanism, e.g., in [17], were relying on global
knowledge as well such as the image threshold. In summary,
both, the techniques and the global knowledge exploited in
the traditional image edge detection make it not feasible to
import these to the robots for performing environmental edge
detection. The only technique that can be imported safely is
thresholding1. Applying the threshold technique helps detect-
ing environmental edges regardless their degree of sharpness—
the rate at which the spatial distribution of the feature changes.
In other words, even in scenarios where the spatial distribution
of the feature changes with small steps (i.e. the edges don’t
represent a sharp change) such as ”gas edges”, the threshold
technique facilitates taking the binary decision, whether the
change represents an edge or not. For robot swarms, thresholds
are computed collectively without any global knowledge.

III. MICROSCOPIC BEHAVIORS FOR ENVIRONMENTAL
EDGE DETECTION

In this section, we describe the behavior of the individual
robots, which is designed to detect the edges of specific envi-
ronmental features. Environmental edge detection is performed
distributively relying only on the robots’ local information—
both the perceived information and the information received
from the local neighbors. This imposes a set of challenges
which we are addressing in the proposed solution. In this
paper, we distinguish between two types of environments;
(i) static environment and (ii) dynamic environment. In static
environments, the edges don’t change over time. While in
dynamic environments, the spatial distribution of the feature
may change over time, hence the robots will need to re-mark
the new edges.

A. Adaptive threshold phase

Thresholding mechanism is used mostly in the traditional edge
detection to identify whether a particular change in the color
intensity represents a true edge—i.e. when the difference is
greater than the pre-defined threshold. The threshold can be
computed using different algorithms, all of those use global
information about the image. In our solution, we similarly
rely on the threshold mechanism for defining the edges of
the environmental feature, however, we differently do so in
unknown environments. Since no global knowledge is avail-
able for such environments, providing the robots with a global
appropriate threshold that reflects properly the feature change
in the environment is not feasible. At the same time, the
success in detecting true edges depends to a large extend
on the use of an appropriate threshold. Trying to overcome
this challenge by providing the robots with a user designed
threshold will probably result in an undesirable edge detection,
since using a high threshold may lead to miss true edges and
using a low one may lead to select false edges. Therefore, this
threshold needs to be computed by the robots distributively
and over a sufficient time to scan the environment throughly.

1A technique used to identify true edges by comparing the change in their
color intensity to some particular threshold.



Computing local thresholds—i.e. robots’ own thresholds—
using a few measures performed by the robots shortly after
starting the task will reflect insufficient information that is not
enough to represent the average change in the intensity of
the feature across the environment. Thus, in our solution, the
robots converge on a proper threshold (i.e. a global averaged
value) only after exploring the environment and collecting
enough samples (observations). This task is performed by the
robots during the first phase of the solution which is referred
to as the adaptive threshold phase.
In this phase, each robot starts in the “exploring” state. In this
state, the robot wanders in the environment to sample enough
observations. An observation is any change in the intensity of
the environmental feature. For the rest of the paper we use
only the ground color as the feature we are focusing on in
our experiments, and as an example of other environmental
features. As soon as, an observation is made or received from
the neighborhood, the robot updates its local threshold. This
update is an aperiodic operation that is triggered whenever a
new observation is obtained and the robot switches to the state
“update observation table”. In this state, the robot updates a
local table that holds a history of all obtained observations by
adding the new observation. This table is used to compute the
robot’s local threshold by each robot individually. According
to the size of the robot’s memory, previous observations are
kept and removed when needed by their time of creation.
As mentioned above, the threshold is used in the traditional
edge detection for images to indicate true edges by comparing
the threshold with the slop of the zero-crossing in the colors.
In the case of environmental edge detection, this threshold
is used to recognize potential edges from being compared to
the observations performed by the robots and which represent
the differences perceived in the intensity of ground color.
An observation occurs when the difference between any two
values of the sensed color is larger than zero. We define the
robots’ observations as a triple, O(i, j, k), where j is feature
(color) for which the observation is made, by robot i at time
step k. This observation is defined as the maximum difference
between the values perceived of feature j at the time step k
using all the sensor inputs:

O(i, j, k) = max|Ol(i, j, k)−Om(i, j, k)|, (1)

where Ol(i, j, k) and Om(i, j, k) are the observations obtained
from the sensors l and m, respectively. (l,m) =2 Pw, where
w is the set of sensors used to perceive the environmental
feature j (i.e. color sensors), and 2Pw are the permutations in
pairs of all the sensors in w. Figure 1 illustrates an example of
how a robot that is equipped with 4 feature sensors compares
the data perceived from these sensors in order to compute the
value of its observation as in Eq. (1).
Each time a new observation is obtained or received, the robot
updates its local threshold as in the following:

θi(t) = (1− α)

∑
Mi
fO(i,j) ×O(i, j)

Mi
+ C, (2)

2

4

1

3

|O(1)	 – O(2)|

|O
(1
)	–

O(
3)
|

|O(3)	 – O(4)|

|O
(2
)	–

O(
4)
|

Fig. 1: An illustration of how a robot with 4 sensors for the
environmental feature compares the perceived data in order to
compute the value of it observation.

where θi(t) is the local threshold of robot i computed at time
t, O(i, j) is an observation of the feature j, that is either made
by robot i or by one of its neighbors, fO(i,j) is the frequency
of the particular observation O(i, j)—i.e. the number of times
this specific observation was obtained up to the time point t.
(Repetitive observations at different time steps are considered
as one observation with > 1 frequency). Mi is the total number
of observations made or received by robot i up to the time
point t. α ∈ [0, 1[ and C > 0 are design parameters that
control the relation between the computed threshold and the
average change in the intensity of the environmental feature.
Setting α to a high value or/and C to a low value results
in lowering the robot’s local threshold below the average of
differences in the intensity of the feature. This will allow the
robots to detect and mark weak edges, which can be useful
in detecting dangerous environmental features, where even the
areas with low concentration of the feature are required to be
detected and isolated. The main restrictions associated with
this approach are related to the size of the swarm which may
limit the number of edges possible to mark. In addition the
physical constraints that are common in robot swarms such
as the influence of spatial interferences on the performance
of the swarm. Finally, lowering the threshold has the well-
known side effect of increasing the probability of detecting
and marking false edges. Marking false edges in traditional
image edge detection is not desired from the correctness point
of view. However, in our system, in addition to the condition of
correctness, marking false edges leads to losing robots, which
is a limited resource. In general, the selection of both α and C
can be performed as a function of (i) the number of available
robots, and (ii) the level of detection required for the specific
environmental feature(s).
Using a collective robotic system to converge distributively on
a proper threshold includes a set of robotic-related challenges,
In the following we list the main challenges, which we needed
to overcome during our study:

• Robots’ spatial distribution vs. the edges’ spatial
distribution: in order to obtain a proper threshold that
reflects the average change in the feature’s intensity, the



coverage of the environment needs to be maximized
to allow the robots to maximize the range from which
they sample their observations. For coping with this
challenge, we applied the well-known mechanism of gas
diffusion for spreading the robots across the environment
during their motion. This mechanism facilities a better
exploration with a maximized coverage [18].
We allow robots to start their task from a uniform spatial
distribution. Uniform distribution is used in order to
synchronize the best with the process of traditional edge
detection (where any pixel in the image can be considered
from the starting point of the process). In general, robots
could also start from a particular location (e.g., nest).
This will not influence the logic of the solution. It may
just prolong the time until a proper threshold is adapted.
By using the uniform distribution, the robots’ initial
observations will reflect the average changes in the fea-
ture’s intensity across the whole environment. However,
since edges are located at positions with a remarkable
difference in the intensity, robots need to explore and
sample beyond the observations obtained at their starting
positions. This will allow their local thresholds to change
until they stabilize around an average value that reflects
a proper threshold.

• Sharing the observations with the neighborhood:
when a new observation is made, this observation is
broadcast to the robot’s neighborhood. The broadcast of
the recent observation continues until a new observation
is obtained. This continuous broadcasting makes use
of the mobility of the system to help spreading the
obtained observation to the largest number of robots
while moving around. Motion provides the robots with
a dynamic neighborhood list, in which the neighbors of a
robot change during its motion. This allows the robot to
convey its observations to different neighbors, and since
robots in swarms rely only on their local communications,
maximizing the number of neighbors who receives a
particular message can be only achieved by prolonging
the transmission period of that message. Nevertheless, the
challenge here emerges from the significant difference
between the communication speed and the motion speed.
Because of this difference, the robot may receive the
same observation from the same sender multiple times
before the robots get out of the communication range
of each other. This may bias the computation of their
local thresholds—amplifying the weight of a particular
observation. In order to solve this problem, the robot
broadcasts both its ID and a time stamp associated with
that specific observation. The receiver, in this case, uses
this information to identify whether this observation is
a new one. In case the observation is new, the local
threshold is updated, otherwise the receiver ignores the
message.

The robots continue to explore their environment and to update
their local thresholds until the end of this phase is reached.

This end is decided by each robot individually, when the
change in the computed threshold stabilizes for a given period
of time ∆tθ. This change is measured by the robot using
the average deviation around the mean of the local thresholds
computed by that robot over the time period ∆tθ. As soon the
average deviation becomes smaller than a given error θerr, the
robot decides to end adapting its local threshold. The stopping
condition is given by:∑Mi(∆tθ)

k=1 |θi(k)− θ̂i|
Mi(∆tθ)

≤ θerr, (3)

where Mi(∆tθ) is the number of thresholds which were
updated by robot i within the time period ∆tθ, θi(k) is the
k − th threshold computed by robot i within the time period
∆tθ, and θ̂i is the mean local threshold computed by robot i.
The behavior of the individual robots in the adaptive threshold
phase is described in Algorithm 1.

Algorithm 1: The algorithm followed by the individual
robots in our physics-based simulations during the adaptive
threshold phase.

1 while Not(End the adaptive threshold phase) do
2 Explore the environment using diffusion;
3 for any made or received observation O(i, j, t) do
4 if O(i, j, t) is a new observation then
5 Update the local table of observations;
6 Re-compute the local threshold;

7 else
8 Ignore the observation;

9 if O(i, j, t) is made by the robot then
10 while no new observation is made yet do
11 Broadcast O(i, j, t) + robot ID + time

stamp;

12 if Eq. (3) returns true then
13 End the adaptive threshold phase

B. Edge detection phase

The second phase in our solution is dedicated to the process
of finding and marking the edges of the environmental feature
(i.e. the ground color). This phase is referred to as the
edge detection phase. Edge detection is performed based on
the robots’ local thresholds, which were computed in the
previous phase. In this phase, each robot starts in the state
“edge searching”. In this state, the robots wander in the en-
vironment, applying the diffusion mechanism for maximizing
the coverage of the environment and visiting as many edges as
possible. While moving around, robots measure the changes
occurring in the intensity of the environmental feature as
explained in Section III-A. In case any of these observations,



e.g., O(i, j, t)—perceived by robot i at time t according to
Eq. (1)—has a higher value than the robot’s local threshold
θi, the robot marks the location at which this observation was
made as an edge. This is performed by simply stopping at
the location of the particular observation. After marking the
location, the robot switches its state to the “edge marking”
state.
While in the state “edge marking”, the robot continues to
perceive the intensity of the environmental feature at its
location, however, with a lower frequency than the frequency
applied when the robot was in the “edge searching” state. This
continuous assessing of the feature’s intensity at the marking
location allows the robot to capture any change in the spatial
distribution of the environmental feature. In case, the feature’s
intensity changes, the robot switches back to the adaptive
threshold phase, and starts exploring its environment for com-
puting its new local threshold. Additionally, this robot starts to
broadcast messages to its neighborhood—for a limited time—
to inform it about the change in the spatial distribution of
the environmental feature. Robots which receive this message,
even if they still don’t sense the change, they switch similarly
to the adaptive threshold phase. The message keeps spreading
by all robots which switched to the adaptive threshold phase,
and reaches the maximum number of other robots thanks to
the robots’ motion.
This above-described behavior allows robots to cope with
dynamic environments, in which changes in the feature can
occur over time and hence, require the robots to redistribute
automatically. The behavior of the individual robots, in both
phases, is captured by the state machine shown in Figure 2.
Using a collective robotic system to search and mark edges
includes a set of robotic-related challenges. In the following
we list the main challenges, which we needed to overcome
during our study:

• Building closed areas and block searching robots:
when robots start to mark edges, they stop as soon as
the change in the intensity of the feature exceeds their
local thresholds. This behavior can lead to build up closed
areas, in which robots are spatially arranged in closed
shapes. This can block other searching robots that happen
to be in the closed shapes when the edges were marked.
The solution we have adapted to overcome this challenge,
was to allow the robot which is in the “edge searching”
state to notify it neighbors in the “edge marking” state of
its need to pass through. As a response to this message,
the robot in the “edge marking” state preforms a limited
motion in its most-free direction—i.e. the direction in
which the obstacle avoidance sensors used by the robot
(e.g., infrared sensors) report the lowermost measures
associated with the most free space to move through.
Afterwards, it waits for the blocked robot to escape before
it reverts its motion direction back and return to mark its
edge. Robots use logical flags to avoid switching to the
“edge marking” state while passing the edge which was
marked by the other robot. It is designed this way to avoid
exchanging the observation tables between the two robots

edge searching edge marking

exploring

update obs. tablecompute θi

O(i, j, t) ≥ θi

No intensity change

Intensity change

New observation

Phase 1

Eq. (3)

Phase 2

Fig. 2: The state machine used by the individual robots in
both phases of the edge detection solution. The start state is
”exploring”.

and additional messages to switch roles. This solution has
proved its efficiency in most cases, however, there are
still some scenarios in which getting the blocked robots
free is a none-trivial task. Examples include cases where
moving the marking robot doesn’t provide an appropriate
exist for the blocked robot.

• Limited number of robots: albeit swarm robotics is
characterized with its large sizes, however, robots are
still a limited resource. This limitation influences the
capability of the system to mark the environmental
edges in case those need more robots than available.
One possible solution that may help in balancing the
number of available robots with the density of edges
in the unknown environment would be through adapting
the distance between the neighboring robots, which are
marking the same edge. This should be performed so that
the minimum number of robots (but enough) mark the
edge. The additional robots can then be used in marking
the other edges.

IV. THE MACROSCOPIC PERFORMANCE OF THE
ENVIRONMENTAL EDGE DETECTION

In this section, we evaluate our solution including its two
phases by investigating the macroscopic behavior of the
swarm, i.e (i) the convergence on a proper threshold by
all robots that allows them to perform an efficient edge
detection, and (ii) the proper detection and marking of the
feature’s edges. We test the macroscopic behavior using a



set of physics-based simulations performed using the state-
of-the-art simulator for swarm robotics, ARGoS [19]. ARGoS
allows to simulate a large number of robots efficiently while
taking the detailed characteristics of the robots’ physics into
consideration. In our experiments, we use Footbots2 to build
our homogeneous swarms. We split our experiments in the
following parts; First, we launch experiments to verify the
efficiency of our solution in converging on a global average
threshold (GAT). The second set of experiments is dedicated to
illustrate the efficiency of our swarm in detecting and marking
edges using the thresholds computed in the first phase. The last
set of our experiments is used to validate the efficiency of our
solution in coping with dynamic environments.
In our experiments, we use three images for the environment’s
ground (i) the moon ground, (ii) the bubbles ground, and
(iii) the flower ground, see Figure 3. We assume that areas,
which need to be isolated (e.g., hazardous areas) by marking
their edges, are the bright (white) areas in the images. The
need to isolate such areas decreases gradually with the color
of the ground getting darker (black areas don’t need to be
isolated). We use an arena of 8 × 8 m2 and we experiment
with different swarm sizes.

(a) (b) (c)

Fig. 3: The three grounds used in our physics-based simula-
tions. (a) the moon ground, (b) the bubbles ground, and (c)
the flower ground.

A. Results of the adaptive threshold phase

In this set of experiments, we aim to validate (i) the efficiency
of our solution in allowing the swarm to converge on a proper
threshold. (ii) How this convergence changes according to,
both, the complexity of the ground—the density of edges in
the image—and the size of the swarm. We have set, both, α
and C in Eq. (2) to zero for all the experiments in this set,
since these two parameters have their influence when robots
start to mark edges (in the second phase) and not during
the computation of the adaptive threshold. Therefore, their
values will be adapted for the experiments dedicated to the
edge detection in Section IV-B. Additionally, θerr in Eq. (3)
is set to 5%. Figure 4 depicts the process of converging on
a global average threshold (GAT) in the swarm. On the left
side of the figure, we can see the progress of GAT—i.e. the
average of the robots’ local thresholds—over time. Whereas,

2Footbot is a wheeled robot which is used widely in the research of swarm
robotics, you can check it out at www.swarmanoid.org/swarmanoid hardware.
php.html

on the right side of the figure, we can see the local thresholds
computed by the robots throughout the time of the experiment.
The experiments stop when all robots have managed to mark
edges, or when a specific termination time is reached (this
was set to 3000 time step). The threshold computed for the
moon ground is illustrated in Figures 4a,b, for the swarm sizes
250 and 150, respectively. First, we can notice that for both
sizes, the swarm is reaching the same global average threshold
(GAT). Secondly, we can notice that smaller swarms need
longer time to converge on their GAT. Figures 4c,d, show the
same results for the bubbles ground, and Figures 4e,f, for the
flower ground. Similarly for these grounds, our conclusions
stay valid. Our results were collected over 35 runs for each
configuration; i.e. environment ground and swarm size, hence,
210 total runs.
A further remark is related to the fast convergence on the final
GAT. This can be explained due to the uniform distribution
of the robots across the environment with association to the
spatial distribution of the edges, which is more or less equally
distributed across the environment. This allows the average
of the robots’ local thresholds (GAT) to stabilize around a
proper value that reflects the changes in the intensity of the
ground color in a short time. The further updates of the GAT
after the big convergence jump and before stabilization are
due to the contributions of the observations made by the
robots at locations which were not visited yet. The individual
contributions of such observations result in the small updates
of the GAT until it stabilizes and the adaptive threshold phase
is terminated.
We analyze the results from the ground complexity point
of view. For this purpose, we have plotted in Figure 5 the
convergence time of GAT for the three grounds we are using
in our experiments. For all grounds, we can notice that the
convergence time increases with increasing the complexity of
the ground—here the ground complexity is a measure of the
edge density in the image used for the ground. For example,
the flower ground has a higher density of edges than the moon
ground, hence the convergence time of GAT on the flower
ground is longer than that one on the moon ground.

B. Results of the edge detection phase

In this set of experiments, we aim to validate (i) the efficiency
of our solution at leading the swarm to perform a proper
edge detection, in addition to (ii) validate the adaptivity of the
detection level in relation to the robots’ local thresholds. Using
the color feature, as our environmental feature, has helped us
in evaluating the quality of the edge detection performed by the
swarm. This is due to our a priori knowledge of the edges in
the images used for the ground. Hence, we could compare the
edges marked by the robots with the true edges in those images
and verify to which degree the level of detection matches with
the edges of the images. The level of detection refers to the
level of intensity in detecting edges—from the detection of
the strongest edges to the detection of the weakest ones. This
measure is evaluated in our experiments as a function of the
robots’ local thresholds computed in Eq. (2).

www.swarmanoid.org/swarmanoid_hardware.php.html
www.swarmanoid.org/swarmanoid_hardware.php.html
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(a) 250 robots on the moon ground.
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(b) 150 robots on the moon ground.
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(c) 250 robots on the bubbles ground.
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(d) 150 robots on the bubbles ground.
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(e) 250 robots on the flower ground.

Figure 6 shows the detected edges using a swarm of 300
robots on the three ground images3. The robots, in this set of
experiments, have computed their local thresholds with setting
both α and C in Eq. (2) to zero and θerr in Eq. (3) to 5%.
In some trails of these experiments, all robots have succeeded
in detecting edges and have stopped for marking them before

3The Footbot robot which we are simulating with has a diameter of 17 cm,
hence, our arena of 8× 8 m2 can contain up to 1936 Footbot
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(f) 150 robots on the flower ground.

Fig. 4: The global average threshold (GAT) computed over the
three different grounds using swarms of, both, 250 and 150
robots.
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Fig. 5: The convergence time of the global average threshold
(GAT) over the three grounds using two swarm sizes, 250 and
150 robots.

the experiment has terminated. Whereas in most of the trails,
there was a few robots, which were still searching for edges,
when the time of the experiment has reached its end (here
3000 time step). In the left column of Figure 6, we can see the
final spatial distribution of the robots over their detected edges.
The same robots’ distribution is shown in the right column of
Figure 6, however on a black ground for helping to obtain
a better recognition of the image, whose edges are marked
by robots. In all the cases, we can notice a high degree of
matching between the original image and the image evolving
from the edges detected by the robots.
As mentioned above, the robot’s local threshold can be tuned
using either the parameter α or the parameter C in Eq. (2). By
tuning the robot’s local threshold, the level of edge detection
changes as well. In order to validate this, we use three
variants of the parameter α while keeping the parameter C
not changed. The bubble ground is used in this test with the
following settings (i) α = 0.9, (ii) α = 0.5, and (iii) α = 0.
We check accordingly the level of edge detection that was
reached by a swarm of 300 robots.
Figure 7 illustrates the different detection levels that can be
reached with the three settings of α. A high α leads to decrease
the robot’s local threshold, and therefore allows that robot to
detect weaker changes in the intensity of the color as edges.
This what we can notice in Figure 7a, where even the edges
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Fig. 6: Edge detection using a swarm of 300 robots on the
three different grounds. (a) the moon ground, (b) the bubble
ground, and (c) flower ground.

of the very dark bubbles were marked by the robots (yellow
rectangles are used in Figure 7a to highlight the dark edges
which were marked by the robots). While decreasing α to 0.5,
allows robots to skip the weakest edges, notice in Figure 7b,
white rectangles are used to highlight the edges that robot
have missed in comparison to the edges marked in Figure 7a.
The smallest number of edges, however, the strongest ones,
are marked when α was set to 0. Those are the edges of the
bubbles with the lightest colors. We can observe this results in
Figure 7c, in which robots have missed all dark edges which
were detected for higher values of α. White rectangles are
used again to highlight the edges that robot have missed in
comparison to the edges marked in Figure 7a and Figure 7b.
Additionally, we have implemented the percentage of the
correctly detected pixels by the robots to the total number
of pixels in true edges—as a quantitative measure—that are
detected following the well-known Laplacian detector. This
measure can be denoted as PTC . We have tested using the
bubbles ground image and repeat our experiments over 30
runs. For all values of α(s), the detected pixels were all
correctly belonging to true edges. For α = 0.9, we had
PTC = 0.63, for α = 0.5, we had PTC = 0.57, and for
α = 0, we had PTC = 0.51. Using more robots may increase
this measure.

C. Results in dynamic environment

The last set of experiments is performed to validate the effi-
ciency of our solution in coping with dynamic environments.
The changes in such environments are modeled as a set of dis-
crete consecutive events of change in the spatial distribution of
the environmental feature. For ground images, this is simulated
as a sequence of images which change over time. Without lose
of generality, we limited the sequence of images, in this set
of experiments, to two in the first experiment and three in the
second one. Using a larger set of images to allow simulating
a smoother change in the distribution of the feature can be
handled by a repetitive execution of our solution. However,
this would be a time-consuming process that will provide no
added value to the validation of the approach. We similarly
use a swarm of 300 robots and for the first experiment two
of our grounds; the bubbles ground and the flower ground.
We start by distributing the 300 robots uniformly over the
bubble ground. We launch the experiment and allow robots to
compute their local thresholds and to search for edges on the
bubbles ground and mark those. Robots which are marking
edges will keep sensing the ground over relatively long time
periods (i.e. with a lower frequency than the one used when
robots were still exploring the environment). At the time step
2000, we changed the ground to the flower one. Robots which
sense a change in the intensity of the color at the edges,
which they are marking, switch to the adaptive threshold phase
and start exploring their environment. These robots start to
broadcast a message informing their neighborhood about the
change in the spatial distribution of the ground color. Robots
which receive this message perform the same behavior by
switching to the adaptive threshold phase and start exploring.
After a short time (the time required for this message to
reach the edge of the swarm) all robots start moving around,
computing their new local thresholds and searching for the new
edges to mark. This what we are capturing in Figure 8, that
depicts the system at different time steps, including: (i) the
robots wandering while computing their local thresholds on
the bubbles ground, in Figure 8a, (ii) the detection of edges
on the bubble ground, in Figure 8b,c, (iii) the switch to
the adaptive threshold phase when the change in the spatial
distribution of the ground color was detected. Here, we can
notice that robots have started from their positions on the
edges, which they have marked in the first environment, see
Figure 8d, in which the robots with the red LEDs start from the
edges of the marked bubbles. (iv) the computation of the new
local thresholds for the flower environment, in Figure 8e, and
(v) the detection of edges on the flower ground progressively,
in Figure 8f,g,h. On the contrary to abrupt changes in the
environment, we have validated our solution in a dynamic
environment that changes gradually by enlarging the size of
the bubbles in the bubbles ground over three discrete images.
The results are depicted in Figure 9 and show a high degree of
adaptivity of the robotic system while marking and re-marking
the environmental edges.
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Fig. 7: Edge detection using a swarm of 300 robots performed with different values of α (see in Eq. (2)). (a) α = 0.9,
(b) α = 0.5, and (c) α = 0. The yellow rectangles surround detected edges which will be missed when lower α(s) are applied,
whereas the white rectangles surround the missed edges when higher α(s) were applied.
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Fig. 8: Several snapshots taken over the simulation time for environmental edge detection with a swarm of 300 robots in a
dynamic environment that experienced an abrupt change.

V. CONCLUSION

In this paper, we have focused on the problem of environmen-
tal edge detection using a swarm of homogeneous robots. We
have tackled both static and dynamic environments, in which
the spatial distribution of the feature can change over time.
The highlighted problem can be a fundamental requirement in
a large spectrum of applications, in which robots are used
to select, isolate, or detect particular parts of an unknown
environment. This selection can be required based on a set of
specific features, which the robots can perceive distributively.
In our paper, we have presented a collective solution that
allows robots to, first, explore their environment, second,
decide collectively on a threshold that allows them to detect
any change in the intensity of the environmental features as a

true or a false edge. Finally, to search their environment, and
mark the true edges.
Our solution has shown it scalability through being efficient
while changing the size of the swarm. It has shown its
high level of efficiency in detecting and marking edges with
different level of detection based on the system requirements.
Furthermore, we have demonstrated the high flexibility of our
solution in identifying changes in the spatial distribution of the
environmental features in the context of dynamic environments
and its ability to adapt to such changes.
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Fig. 9: Several snapshots taken over the simulation time for environmental edge detection with a swarm of 300 robots in a
dynamic environment that change gradually.
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[9] A. Howard, M. J. Matarić, and G. S. Sukhatme, “An incremental self-
deployment algorithm for mobile sensor networks,” Autonomous Robots,
vol. 13, no. 2, pp. 113–126, 2002.

[10] H. Hamann and H. Wörn, “A framework of space–time continuous
models for algorithm design in swarm robotics,” Swarm Intelligence,
vol. 2, no. 2, pp. 209–239, 2008.

[11] T. Schmickl, R. Thenius, C. Moslinger, J. Timmis, A. Tyrrell, M. Read,
J. Hilder, J. Halloy, A. Campo, C. Stefanini et al., “Cocoro–the self-
aware underwater swarm,” in Self-Adaptive and Self-Organizing Systems
Workshops (SASOW), 2011 Fifth IEEE Conference on. IEEE, 2011, pp.
120–126.

[12] S. Hauert and S. N. Bhatia, “Mechanisms of cooperation in cancer
nanomedicine: towards systems nanotechnology,” Trends in biotechnol-
ogy, vol. 32, no. 9, pp. 448–455, 2014.

[13] C. Devigne, P. Broly, and J.-L. Deneubourg, “Individual preferences and
social interactions determine the aggregation of woodlice,” PLoS One,
vol. 6, no. 2, p. e17389, 2011.

[14] R. Jeanson, C. Rivault, J.-L. Deneubourg, S. Blanco, R. Fournier, C. Jost,
and G. Theraulaz, “Self-organized aggregation in cockroaches,” Animal
behaviour, vol. 69, no. 1, pp. 169–180, 2005.

[15] D. Marr and E. Hildreth, “Theory of edge detection,” Proceedings of
the Royal Society of London. Series B. Biological Sciences, vol. 207,
no. 1167, pp. 187–217, 1980.

[16] J. Canny, “A computational approach to edge detection,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp.
679–698, 1986.

[17] Y. Khaluf and S. Gullipalli, “An efficient ant colony system for edge
detection in image processing,” in Advances in Artificial Life, ECAL,
2015, pp. 398–405.

[18] W. Kerr, D. Spears, W. Spears, and D. Thayer, “Two formal gas models
for multi-agent sweeping and obstacle avoidance,” in International
Workshop on Formal Approaches to Agent-Based Systems. Springer,
2004, pp. 111–130.

[19] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M.
Gambardella, and M. Dorigo, “ARGoS: a modular, parallel, multi-engine
simulator for multi-robot systems,” Swarm Intelligence, vol. 6, no. 4, pp.
271–295, 2012.


	Introduction
	Related Work
	Microscopic Behaviors for Environmental Edge Detection
	Adaptive threshold phase
	Edge detection phase

	The Macroscopic Performance of the Environmental Edge Detection
	Results of the adaptive threshold phase
	Results of the edge detection phase
	Results in dynamic environment

	Conclusion
	References

