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AUTOMATIC KINETIC MODEL GENERATION

CONCLUSION REFERENCES

RULE BASED

1. The algorithms of two types of termination criteria, rule-based and
rate-based, are implemented in the automatic kinetic model
generation software Genesys

2. The number of species and reactions in the final kinetic model are
evaluated for both termination criteria by varying constraints and
tolerances for a heptane pyrolysis example

3. Two algorithms are combined to have an optimal kinetic model size

RATE BASED

• The size of the model developed with the rule-based criterion increases fast. Long simulations times and
memory issues are present for too large reactants. The model performs well for all conditions.

• Simulation times for the rate-based criterion are already high for only small kinetic models. The core depends
on the availability of good kinetic data. The model performs well only for the selected reactor conditions.

• The choice of the termination criterion depends on the user’s knowledge, the availability of good kinetic and
thermodynamic data and the purpose of the final kinetic model.

• Combining rule and rate based termination enables the automatic generation of small kinetic models with
good model performance in reasonable simulation time.
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COMBINED TERMINATION CRITERIA
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Construction of microkinetic models, that contain essential chemistry
while maintaining a manageable size, with software like Genesys [1,2]

Model development by hand is tedious, error prone and often
incomplete

Automatic generation of microkinetic models starts from a list of
reactants, reaction families and constraints or reactor conditions

Unique representation of molecules, reaction recognition, fast
thermodynamic property and kinetics assignment and control of the
reaction network size are key properties of automatic kinetic model
generation

Application of constraints based on users knowledge of 
present characteristic structural features in species

1. Constraints on reaction families

2. Constraints on product species 

All possible reactions of species in the core are included in the edge. 
Species in the edge are included in the core based on their rate of 
production after reactor simulations.
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Pros

Controlled by the user

Includes species independent of kinetics

Model valid for wide range of conditions

Cons

User’s knowledge required

Lots of redundant species included

Pros

No user’s knowledge

Only most important species

Cons

Good kinetics required

Kinetic model only applies for specified 
reactor conditions

Solving reactor equations takes time

Example 1: The size of product species

Example 2: The size of abstracting and 
adding species Example 3: The number of double bonds

Example: The influence of ε on the size of the core, on the size of the edge and on the simulation time 

Apply constraints while performing rate-based simulations with ε=0.01. 

# heavy species Species Reactions

7 720 8667

8 2596 15458

9 Memory issues

Rule based criterion not for too large species 
Network size increases quickly

Extra constraints: max 3 C=C, max 3 C in abstracting species, 
max 2 tertiary C, no quaternary C

Stabilizes at max 3 double bonds
(No C=C=C allowed, max 7 heavy atoms)

Number of reactions increases fast 
(max 7 heavy atoms)

Larger tolerance↔ smaller networks ↔ smaller edge ↔ shorter simulation time

Optimal ε depends on the system, model performance for different ε needs to be evaluated

Vary ε at “optimal” conditions “Optimal” conditions: 
max 2 double bonds, max 8 heavy atoms, abstracting or 
adding species max 3 heavy atoms

Size of the species and reactions in the core varies little
when applying constraints. Most of the time, the size of the
edge and simulation time reduce when the constraints are
more stringent.

If constraints are applied, the number of species and
reactions in the core remain the same with varying ε. The
size of the edge for ε = 0.001 reduces from 1644 to 88
species and the simulation time goes from 2856 s to 151 s.

Applying constrains to rate-based algorithm reduces
simulations time and edge size significantly, while a
similar microkinetic model is obtained in the end.

Reactor simulations done on-the-fly with CHEMKIN [3]

One set of conditions, possible reactors:

1. Plug flow reactor

2. Perfectly stirred reactor

3. Homogeneous batch reactor 

Example: Plug flow reactor, Fm,0 = 6 g/s, p = 1 Mpa, 
T = 1100 K, L = 23.14 m, d = 0.01 m
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