
 
 

  

 

Faculty of Economic and 
Social Sciences and 
Solvay Business School  

 Faculty of Economics 
and Business 
Administration 

 

 

 

On the Symbiosis between Conceptual 

Modeling and Ontology Engineering: 

Recommendation-Based Conceptual Modeling 

 

 
Dissertation submitted in fulfillment of the requirements of the degree 
of Doctor of Business Economics  
 

 

Nadejda Alkhaldi 
PhD Candidate 
PhD program for joint supervision and awarding of a doctorate 
diploma between the Vrije Universiteit Brussel and Ghent University 

 

Supervisor Vrije Universiteit Brussel: Prof. dr. Wouter Verbeke 
Supervisor Ghent University: Prof. dr. Frederik Gailly   

Supervisor Universitat Jaume I de Castelló: Prof. dr. Sven Casteleyn 
 

Academic year: 2017 – 2018  

 



pg. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © 2017 by Nadejda Alkhaldi 

All rights are reserved. No part of this publication may be reproduced or 

transmitted in any form or by any means electronic or mechanical, 

including photocopying, recording, or by any information storage and 

retrieval system, without permission in writing from the author. 



pg. 2 

 

 

Examination	Board	

Prof. dr. Wouter Verbeke (VUB)  

Prof. dr. Frederik Gailly (UGent) 

Prof. dr. Sven Casteleyn (Universitat Jaume I de Castelló) 

Prof. dr. Peter De Bruyn (VUB) 

Prof. dr. Tias Guns (VUB) 

Prof. dr. Geert Poels (UGent) 

Prof. dr. Sergio de Cezare (University of Westminster)  

Prof. dr. Monique Snoeck (KU Leuven) 

 

  



pg. 3 

 

Acknowledgement	

I would like to show appreciation for my supervisors: Frederik Gailly, Sven 

Casteleyn, and Wouter Verbeke for their advice and support during the 

writing of this dissertation.  I want to say thank you to my colleagues at the 

VUB and UGent for fun conversations over lunch, and emotional support 

during the time of hardship.  Additionally, I want to thank my friends who 

helped me to get the most of my stay in Belgium, and were there for me 

when needed.  Finally, thank you to my parents and siblings for their 

support and for having trust in me even when I did not seem to find it 

within myself.    



pg. 4 

 

Table	of	Contents	

Examination	Board	...........................................................................................	2 

Acknowledgement	............................................................................................	3 

List	of	Figures	.....................................................................................................	7 

List	of	Tables	.......................................................................................................	8 

Abstract	..............................................................................................................	10 

Introduction	......................................................................................................	14 

1.1   Background ................................................................................................. 14 

1.1.1   Ontology ............................................................................................... 14 

1.1.2   Ontology Engineering ........................................................................... 16 

1.1.3   Conceptual Modeling ........................................................................... 19 

1.1.3.1   Business process modeling ........................................................... 20 

1.1.3.2   Goal modeling ............................................................................... 23 

1.2   Conceptual Model vs Ontologies ................................................................ 24 

1.3   Problem Description.................................................................................... 27 

1.4   Research Goals ............................................................................................ 30 

1.5   Methodology ............................................................................................... 31 

1.6   Publications ................................................................................................. 33 

1.7   Thesis Structure ........................................................................................... 34 

Recommendation-Based	Conceptual	Modeling	and	Ontology	

Evolution	Framework	....................................................................................	36 

2.1   Semantic Alignment of Conceptual Models ................................................ 36 

2.2   Requirements for CMOE+ ........................................................................... 40 

2.3   Development of CMOE+ .............................................................................. 43 

2.3.1   Ontology Evolution Cycle: .................................................................... 45 

2.3.1.1   Ontology setup .............................................................................. 46 

2.3.1.2   Ontological storage and recommendation services ..................... 47 

Recommendation services ...................................................................... 48 

2.3.1.3   Community – based ontology feedback evaluation ...................... 55 

2.3.1.4   Ontology evolution ........................................................................ 56 

2.3.2   Conceptual Modeling Cycle .................................................................. 57 

2.3.2.1   Ontological analyses of the modeling language ........................... 57 

2.3.2.2   Conceptual model creation ........................................................... 60 

2.3.2.3   Conceptual model evaluation ....................................................... 63 

2.4   Correspondence Between CMOE+ Requirements and Phases ................... 65 

2.5   Conclusion ................................................................................................... 67 



pg. 5 

 

Recommendation-Based	Process	Modeling...........................................	72 

3.1   Introduction ................................................................................................ 72 

3.2   Recommendation-Based Conceptual Modeling and Ontology Evolution 

(CMOE+) Framework ........................................................................................... 74 

3.2.1   Ontology Setup ..................................................................................... 74 

3.2.2   Ontological Analysis of the Conceptual Modeling Language ............... 75 

3.2.3   Ontology Storage and Recommendation Services ............................... 76 

Recommendation Services .......................................................................... 78 

3.2.4   The Conceptual Model Creation Phase ................................................ 81 

3.3   Recommendation-Based Business Process Modeling (CMOE+BPMN) ....... 82 

3.3.1   Ontology Storage ................................................................................. 84 

3.3.2   Recommendation Services ................................................................... 85 

3.4   Evaluation of CMOE+BPMN ........................................................................ 86 

3.4.1   Experimental Design ............................................................................ 87 

3.4.2   Experiment Measures .......................................................................... 88 

3.4.3   Experimental Results ............................................................................ 89 

3.5   Conclusions and Future Work ..................................................................... 93 

Aligning	I*	Models	and	BPMN	Models	Using	the	CMOE+	Framework

	...............................................................................................................................	96 

4.1   Aligning Goal and Process Models .............................................................. 96 

4.2   CMOE+ I* Tool ............................................................................................. 99 

4.3   Extending CMOE+BPMN with I*-specific Recommendation Rules ........... 102 

4.3.1   Model Repository ............................................................................... 102 

4.3.2   Rule-Based Recommendation Services .............................................. 103 

4.4   Demonstration .......................................................................................... 108 

4.5   CMOE+X Tool Architecture ....................................................................... 111 

4.6   Conclusion ................................................................................................. 112 

Conclusions	and	Future	Work	.................................................................	116 

5.1  Research Results ........................................................................................ 116 

5.2  Contributions ............................................................................................. 121 

5.3  Limitations and Future Work ..................................................................... 122 

Acronyms	........................................................................................................	126 

References	......................................................................................................	128 

BPMN	Constructs	..........................................................................................	138 

I*	Constructs	...................................................................................................	141 

Unified	Foundational	Ontology	(UFO)	..................................................	144 

Correspondence	between	ESO	and	UFO	...............................................	146 

Loan	Application	Case	Description	........................................................	148 



pg. 6 

 

Pre-survey	......................................................................................................	149 

Post-survey	.....................................................................................................	150 

Reference	Model	...........................................................................................	151 

 

	



pg. 7 

 

List	of	Figures	

Figure 1: Main activity categories within ontology engineering process.  Adapted from (Gomez - Perez 

et al. 2003) ............................................................................................................................................. 17 

Figure 2: Differences between ontology and conceptual model taken from (Fonseca & Martin 2007)

 ............................................................................................................................................................... 27 

Figure 3: Regulative cycles of the PhD inspired by (Wieringa & Heerkens 2006) ................................. 32 

Figure 4: Different phases of CMOE+, and the interaction between them .......................................... 44 

Figure 5: IS research framework followed during the development of CMOE+ ................................... 45 

Figure 6: Recommendation services ..................................................................................................... 50 

Figure 7: Model language-based recommendation service.................................................................. 52 

Figure 8: Label-based recommendation service ................................................................................... 53 

Figure 9: Rule-based recommendation service .................................................................................... 55 

Figure 10: Recommendation-based Conceptual Modeling and Ontology Evolution (CMOE+) 

Framework ............................................................................................................................................ 75 

Figure 11: Ontologies within CMOE+ framework ................................................................................. 78 

Figure 12: BPMN tool ............................................................................................................................ 83 

Figure 13: BPMN meta-model ............................................................................................................... 85 

Figure 14: Ontology Recommendation view (Left) and Ontology Concept Properties view (Right) .... 86 

Figure 15: I* goal dependency ............................................................................................................ 100 

Figure 16: Screenshot of CMOE+i* ..................................................................................................... 102 

Figure 17: An excerpt of an i* model created by the CMOE+i* tool (on the left), and the 

corresponding OWL representation stored in the model repository (on the right) ........................... 103 

Figure 18: Graphical representation of Rule 3 .................................................................................... 106 

Figure 19: Graphical representation of Rule 4 .................................................................................... 107 

Figure 20: Graphical representation of Rule 5 .................................................................................... 108 

Figure 21: Simplified process model for the emergency department ................................................ 110 

Figure 22: Components of CMOE+ tool.  The components highlighted in red need to be altered for 

every modeling language .................................................................................................................... 112 

Figure 23: The final version of CMOE+ ................................................................................................ 114 

Figure 24: Phases of CMOE+ which are elaborated in detail within this dissertation ........................ 119 

 



pg. 8 

 

List	of	Tables		

 

Table 1: Existing approaches to enhancing semantic alignment of models using ontology ................ 38 

Table 2: Requirements for the proposed framework ........................................................................... 65 

Table 3: Summary of different phases of CMOE+ ................................................................................. 67 

Table 4: Correspondence between BPMN and UFO ............................................................................. 85 

Table 5: SWRL rules used by the rule-based recommendation service ................................................ 87 

Table 6: Results of semantic quality evaluation model annotation ...................................................... 90 

Table 7: Naming for BPMN elements with underlying meaning "customer". Columns are modeler-

entered labels; rows are treatments; cells denote number of uses of the label / total number of 

occurrences of BPMN constructs with underlying meaning "customer".............................................. 91 

Table 8: Naming for BPMN elements with underlying meaning "loan application". Columns are 

model-entered labels; rows are treatments; cells denote number of uses of the label / total number 

of occurrences of BPMN constructs with underlying meaning "loan application” ............................... 91 

Table 9: Time needed for model creation ............................................................................................. 91 

Table 10: Post-survey results for Ease of Use (PEOU), Usefulness (PU), and Community Acceptance 

(IU); cell values denote a Likert scale value (1-5), with 1 being best and 5 worst for PEOU, and 5 best 

and 1 worst for PU and IU ..................................................................................................................... 92 

Table 11: Ontological analyses of i* ...................................................................................................... 99 

  



pg. 9 

 

 	



pg. 10 

 

	
Abstract	

 

 

 

Within an enterprise, different conceptual models, such as process, data, and goal models, 

are created by various stakeholders.  These models are fundamentally based on similar 

underlying enterprise (domain) concepts, but they have a different focus, are represented 

using different modeling languages, take different viewpoints, utilize different terminology, 

and are used to develop different enterprise artefacts (such as documents, software, 

databases, etc.); therefore, they typically lack consistency and alignment. Another issue is 

that modelers have different vocabulary selections and different modeling styles.  As a result, 

the enterprise can find itself accumulating a pile of models which cover similar aspects in 

different manners.  Those models are not machine-readable and cannot be processed 

automatically.  Enterprise-Specific Ontologies (ESOs) aim to solve this problem by serving as 

a reference during the conceptual model creation. Using such a shared semantic repository 

makes conceptual models semantically aligned and facilitates model integration.  However, 

managing those ontologies is complicated; an enterprise is an evolving entity, and as it 

changes, the ESO might become outdated. 

This research aims to assist modelers within an enterprise to create aligned conceptual 

models by basing them on the ESO.  To do so, the ESO has to be encapsulated and presented 

to the modelers through an interface which does not require advanced knowledge on 

ontologies.   Since the ESO can be very extensive in size, the proposed solution must 

incorporate recommendation services to support the modeler in viewing the ESO concepts 

in an ordered and supportive manner.   

During the years of research dedicated to this dissertation, the Recommendation-Based 

Conceptual Modeling and Ontology Evolution (CMOE+) framework was developed.  This 

framework establishes a symbiotic relationship between the Ontology engineering and the 

Conceptual modeling fields.   CMOE+ consists of two cycles: the Ontology Evolution cycle 

and the Conceptual Modeling cycle. The Ontology Evolution cycle is responsible for setting 

up the initial version of the ESO and updating it as the knowledge within the enterprise is 



pg. 11 

 

updated.  Additionally, this cycle encapsulates recommendation services to perform 

ontology look-up and to present the most relevant ESO concepts in support of the modeler.  

The Conceptual Modeling cycle is responsible for the creation of conceptual models in 

different modeling languages based on the ESO.  CMOE+ was developed based on 

requirements identified as a result of a literature review and a case study.  The development 

process follows the Design Science Research Methodology (DSRM).  After the initial version 

of CMOE+ was put forward, the focus was narrowed towards the recommendation-based 

conceptual modeling part of CMOE+, and  continued to gradually improve the framework in 

iterations until it reached its current state.  The Ontology Evolution Cycle is not fully 

addressed within this dissertation.  CMOE+ is a general framework which is not bound to a 

particular modeling language.  Moreover, different phases of CMOE+ can be adapted to 

accommodate the particular needs of the enterprise.   

In order to demonstrate the performance and usability of CMOE+, it was exemplified for 

process modeling using BPMN and goal modeling using i*.  This thesis presents a detailed 

instantiation, and explains which steps are to be performed in order to instantiate CMOE+ 

for other modeling languages.  In order to evaluate the process modeling instance of CMOE+, 

a CMOE+BPMN tool was implemented.  This tool incorporates a BPMN modeler, facilitates 

storage and access of the ESO, and includes all algorithms functioning within CMOE+ for the 

BPMN modeling language (as some of the algorithms are language dependent).  Next, 

CMOE+ was exemplified using the i* goal modeling language.  Finally, we tested the ability of 

CMOE+ to perform alignment between i* and BPMN models, in order to show that CMOE+ is 

indeed beneficial in achieving interoperability among models created in different modeling 

languages and covering distinct aspects of the enterprise.   

The main contributions of this thesis are summarized as following:  

1. Proposing a comprehensive framework for conceptual model creation based on an 

ESO, while simultaneously updating the ESO based on the knowledge captured from 

those models.  This framework is language-independent, and it improves semantic 

alignment of models already during model creation.  Additionally, this framework 

applies the theory of ontological analyses of the modeling language in practice.   

 

2. Establishing recommendation services which access the ESO, scan it, and, by using a 

reconfigurable set of algorithms determine the ESO concepts with the most potential 

relevance for the modeler during model creation.   

 

3. Implementing a prototype of the CMOE+BPMN tool which incorporates all the 

features addressed in this thesis.  This tool was evaluated with students using 

Moody’s Method Evaluation Model (MEM).  Moreover, this work explains what 

needs to be adjusted while instantiating CMOE+ for other modeling languages.   

 



pg. 12 

 

4. Establishing semantic alignment between goal models in i* and process models in 

BPMN.  This work demonstrates how CMOE+ framework is used to create BPMN 

models which are semantically aligned to i* models previously created within an 

enterprise.  

 

5. Facilitating semantic annotation of different types of conceptual models.  CMOE+ 

framework allows annotating modeling element with concepts from the enterprise-

specific ontology.  The annotation is performed during model creation.   

 

 

	
 

 

 

 

 

 

 	



pg. 13 

 

 	



pg. 14 

 

	

1		
Introduction	

This chapter provides the background on which the research is built.  It clarifies the main 

concepts and approaches featuring in the thesis including Ontology, Ontology Engineering, 

and Conceptual Modeling.  It explains the difference between ontologies and conceptual 

models within the context of this thesis.  Further, the existing problem, research goals are 

described.   An overview of the followed research methodology is provided.  Finally, this 

chapter lists the papers published within the course of this PhD, and concludes with giving 

an overview of the structure.     

1.1			Background	

This PhD thesis touches upon two main topics: Ontology Engineering and Conceptual 

Modeling.  It aims at exploring the relationship between both concepts and creating an 

environment where both of them can coexist and greatly benefit from each other. This first 

section defines both concepts, and clarifies the difference between the two.  

1.1.1			Ontology	

Ontologies originate in the philosophy discipline, but nowadays they are widely used in 

artificial intelligence, computer science, knowledge engineering, and many other fields.  

Given this popularity, many definitions of ontology were suggested by researchers. One of 

the first definitions of Ontology was put forward by Neches and his colleagues (Neches et al. 

1991, page 4) and states: “An ontology defines the basic terms and relations comprising the 

vocabulary of a topic area as well as the rules for combining terms and relations to define 

extensions to the vocabulary”.  The most cited definition of the ontology was provided a few 



pg. 15 

 

years later by Gruber: “Ontology is an explicit representation of conceptualization” (Gruber 

1993, page 1).  Ontologies are sometimes confused with taxonomies (Studer et al. 1998).  

However, an ontology captures more domain semantics than pure taxonomical arrangement 

of domain concepts.  In addition to taxonomical relationships, the ontology adds 

relationships, properties of concepts, axioms and constraints on concepts’ usage.   

 

Through the years, ontologies were built and represented using a variety of representation 

techniques.  In the beginning of 90s, AI modeling techniques based on frames and first order 

logic were used (Lenat and Guha, 1990). In the same field, Gruber (1993) suggests using five 

main components: classes which represent ontological concepts, relations standing for 

associations among the concepts, functions are special types of relations where one element 

depends on another, formal axioms allow modeling sentences which are always true.  And 

finally, instances represent individuals in the ontology.  Later, when the emergence of 

semantic web, description logics based techniques (Baader et al, 2003) gained popularity for 

ontology representation, and various description logic languages were developed such as 

Ontology Inference Layer OIL (Fensel et al. 2000) and Web Ontology Language OWL 

(Bechhofer et al. 2003).  Description logics techniques permit formalizing ontologies using 

three components: concepts stand for ontological concepts, roles which are binary relations 

among ontological concepts, and individuals represent instances of ontological concepts.  

Representing an ontology by means of description logics allows the separation of 

terminological knowledge from assertional knowledge by using respectively the TBox and 

ABox mechanisms of description logics theory.  TBox is responsible for presenting 

terminological knowledge of the ontology covering concepts with their definitions, formal 

properties and roles, while ABox is used to represent individuals of concepts in a particular 

domain. 

Apart from AI related techniques, ontologies can be represented using software engineering 

techniques, such as the Unified Modeling Language (UML) (OMG 2007). The UML 

representation is easy to understand for people without computer science background, and 

there are many Computer Aided Software Engineering CASE tools available.  UML allows 

modeling ontological concepts, their instances, and relationships between the concepts.  

Database technology can also be used for modeling ontologies, such as Entity / Relationship 

diagrams (ER) (Chen 1976). 

 

Ontology researchers make a distinction between ontologies at three different levels: core 

ontologies, domain ontologies and application ontologies (Guarino 1998). A core (high-level) 

ontology describes general concepts that are independent of a specific domain. Examples 

are the Suggested Upper Merged Ontology (SUMO) (IEEE Standard Upper Ontology Working 

Group n.d.), Descriptive Ontology for Linguistic and Cognitive Engineering DOLCE (Gangemi 

et al. 2002) and the Unified Foundational Ontology (UFO) (Guizzardi & Wagner 2010c). A 

domain ontology describes the concepts, relations and axioms specific to a particular 



pg. 16 

 

domain (van Heijst et al. 1997) (like medicine, or automobiles) by specializing the terms 

introduced in the core ontology. Finally, an application ontology adds specificities to the 

domain ontology which are only relevant for the application considered, but are not shared 

across the entire domain.  

 

An enterprise ontology is considered as a specific type of domain ontologies.  It describes 

shared concepts and relationships across an enterprise.  In literature, the term “enterprise 

ontology” refers to an ontology that has its origins in economic and business theory, and 

that is not specific to a particular business. Well-known examples are the Enterprise 

Ontology (Uschold et al. 1996), and Toronto Virtual Enterprise Ontology TOVE (Fox 1992).   

 

The research presented here benefits from ontologies at various levels but the main concern 

and the final product of this thesis is an Enterprise-Specific Ontology (ESO).  ESOs are a 

special type of ontologies that differ from enterprise ontologies in the fact that their 

Universe of Discourse is a specific enterprise, rather than the enterprise domain. They may 

have their origin in an established domain ontology or in an enterprise ontology, but their 

main goal is describing the concepts, relations and axioms that are shared within a particular 

enterprise. Enterprise-specific ontologies are getting increasingly important in the context of 

data governance and knowledge representation (Bera et al. 2011).  

1.1.2			Ontology	Engineering	

Gomez – Perez et al define ontology engineering as “the set of activities which concerns the 

ontology development process, the ontology life cycle, and the methodologies, tools and 

languages for building ontologies” (Gomez - Perez et al. 2003).    Building and maintaining 

ontologies is a tedious and complex process.  Following a methodologic framework can 

considerably facilitate this process by adding structure, decomposing the process into 

manageable tasks and clarifying the responsibilities of each participant (Simperl & Tempich 

2006).  One of the first researchers proposing such a framework was Fernandez – Lopez and 

his colleagues in 1997 (Fernández-López et al. 1997).  They offered a methodology for 

ontology construction – METHONTOLOGY - which was based on IEEE standards for software 

development (IEEE 1997).  Later, the literature identified three activity categories crucial 

within the ontology development process, especially when the cooperating team is 

distributed over geographical locations.  According to (Gomez - Perez et al. 2003) those 

categories are ontology management, ontology development, and ontology support as 

presented in Figure 1 below. 

 



pg. 17 

 

 

Figure 1: Main activity categories within ontology engineering process.  Adapted from (Gomez - Perez et al. 

2003) 

The Ontology management category constitutes three activities: Scheduling, Control, and 

Quality assurance.  The Scheduling activity prescribes the tasks to be performed, their order, 

and time and resources required to accomplish each task.  The Control activity is responsible 

for monitoring the scheduled tasks and ensuring that everything runs according to the 

predefined schedule.  The last activity, Quality assurance, ensures that the quality of the 

final product corresponds to quality standards. 

The activities within the Ontology development category are grouped into Pre – 

development, Development, and Post – development.  During Pre – development activities 

an environmental study is performed to capture information about the platform and the 

applications where the ontology will be integrated. The Development activities include 

documenting intended uses of the ontology and its end – users, structuring domain 

knowledge as meaningful models, formalizing those models, and implementing them into an 

ontology language. The  Post – development activities include ontology maintenance, update 

and use.    

The Ontology support category constitutes of activities related to Knowledge acquisition, 

Evaluation, Integration, Merging, Alignment, Documentation, and Configuration.  Those 

activities are performed in parallel with ontology development activities. 



pg. 18 

 

Various methods and methodologies put forward in the literature are not only concerned 

with ontology development from scratch, but also with utilization and reuse of what is 

available.  Ontology development is an effort intensive process, hence complete or partial 

reuse of existing products is absolutely necessary.  An example of such a methodology is the 

one proposed by (Gómez-Pérez & Rojas-Amaya 1999).  If the knowledge to be reused is 

presented in several ontologies, those ontologies can be either merged or aligned.  Noy and 

Musen  (Noy & Musen 1999) define ontology alignment as constructing mappings (or links) 

between two ontologies in a way that both ontologies are preserved.  Ontology merging is 

defined as a process of generating a new ontology from the original ones.   Ontology reuse 

started to capture the attention of scientists.  Recently, Katsumi and Gruninger published 

their work (Katsumi & Gruninger 2016) where they define the boundaries of ontology reuse 

and its possibilities.   

If an ontology engineer has decided to build an ontology from scratch, he can benefit from 

ontology learning techniques.  Ontology learning methods, such as (Kietz et al. 2000), are 

used to minimize efforts necessary for acquiring the knowledge for building ontologies.  

Ontology learning techniques partially automate knowledge acquisition process by means of 

natural language analyses or machine learning techniques.  Maedche and Staab (2000) 

distinguish four ontology learning approaches.  (1) Learning from text, which utilizes text 

corpora (2) learning from instances where concrete instances are used (3) learning from 

schemata such as relational database, XML schemas and data models (4) learning from 

interoperability where semantic mappings between elements of two ontologies are learnt.   

Following from the fact that an ontology should be shared by a community, the members of 

a community also play an important role in the development process. Collaborative ontology 

engineering includes methods and tools that are designed to support a decentralized group 

of stakeholders with varying level of skills, experience and responsibility, and divergent 

agendas, distributed over geographical locations to reach consensus in an incremental 

fashion. (Simperl & Luczak-Rösch 2014).  To guide the collaboration process during the 

ontology development and give it direction, some methodologies utilize the notion of a 

specialized process model which distributes the role and prescribes policies and tools to be 

used.  Such a process model is found in (Vrandecic et al. 2005) and (Holsapple & Joshi 2002).  

Collaborative ontology engineering is often an iterative process.  Furthermore, several 

community members at different locations might access the ontology concurrently.  This is 

managed through special versioning software such as  (Noy & Musen 2004) and (Luczak-

Rösch et al. 2010).  In order to structure community negotiation and interaction, 

methodology such as the Delphi technique (Gupta & Clarke 1996) and Nominal group 

(Dunnette et al. 1963) are incorporated in the process.  Those methodologies are mediated 

by communication channels such as elementary forums and chats (Tudorache et al. 2008).  A 

group of researchers also attempted to use wikis in collaborative ontology engineering 

settings.  IkeWiki, developed by Schaffert, is a wiki system which allows users to annotate 



pg. 19 

 

pages and links between them using semantic OWL and RDF thereby formalizing informal 

text into formal ontologies (Schaffert 2006).  Another example is the OntoWiki approach 

proposed by Hepp et al (2006) which allows community members to create a URI for a 

concept, describe and refine its definition, and link it to concepts already available on 

Wikipedia.   

The first comprehensive methodology for collaborative ontology engineering was proposed 

by Holsapple and Joshi (2002).  According to this methodology, an initial ontology was 

constructed by integrating existing ontologies in the domain.  Later the initial ontology was 

subject to community discussion and revision.  Nowadays various collaborative ontology 

engineering methodologies are available for different purposes.  Moor et al propose a 

methodology specialized in  interorganizational settings with many pre-existing ontologies, 

and ill-defined changing requirements.  Hereby, it supports construction of a sequence of 

increasingly complex versions of interrelated ontologies over time (Moor et al. 2006).  

Missikoff et al describe an iterative methodology to construct domain-specific ontologies to 

capture knowledge of a particular enterprise (Missikoff et al. 2015).  Some of the 

methodologies are very rigid and well detailed such as (Vrandecic et al. 2005) and (Kotis & 

Vouros 2006).  Others are more liberal and simple with the aim to involve domain experts, 

who are not experts in ontologies (Auer 2006).   

1.1.3			Conceptual	Modeling			

Conceptual models describe formal aspects of physical and social world, for the purpose of 

communication and understanding (Mylopoulos 1992).  Conceptual modeling is regarded as 

a related discipline to requirements engineering (Shanks & Darke 1997) and software 

engineering (Moody 2005) as conceptual models are used to capture user requirements and 

build information systems satisfying those requirements.  Currently, conceptual modeling 

goes beyond requirements engineering.  The purpose of the conceptual modeling task is to 

represent phenomena in a domain of choice.  It is able to represent both: static (such as 

concepts, properties and relations) and dynamic phenomena (such as processes and events) 

(Commentary et al. 2002).  Gemino and Wand describe the conceptual modeling task as “a 

process whereby individuals reason and communicate about a domain in order to improve 

their common understanding of it” (Gemino & Wand 2004).  Thus, different types of 

conceptual models (data models, requirements models, process models, etc) are used by 

enterprises for prescribing a certain reality in a company.  In (Mehmood et al. 2009) 

conceptual models are associated with the following objectives: 

 

• Meeting user requirements 

• Formally representing observed reality 

• Serving as basis for implementation and evaluation of information systems  

 



pg. 20 

 

In this PhD project two types of conceptual modeling languages will be used: business 

process modeling and goal modeling.   We have opted for business process modeling as the 

first  demonstration of our work as according to Davies and colleagues, process modeling 

was the primary reason to engage in conceptual modeling (Davies et al. 2006). Moreover 

modeling business processes has become a practice in many organizations (Rosemann 2006), 

(Pittke et al. 2013).  However, despite the importance and wide spread use of those 

conceptual models, the possibility to retrieve and reuse the captured knowledge is still 

limited (Lin et al. 2006).  

 

Where process models are used to describe the processes within a particular enterprise, 

goal modeling covers a completely different but yet very important aspect: it captures the 

motivation and strategy behind organizational practices (Yu et al. 2006).  Goal-oriented 

modeling became increasingly popular among requirements engineering techniques 

(Matulevičius et al. 2007).  It is primarily used to support early IS development stages as it 

models the rationale and scope of the IS and helps in resolving conflicts and making sure 

that all the stakeholders are heard by the development team (Matulevicius et al. 2015).  

Goal models are capable of representing functional and non-functional requirements (Santos 

et al. 2010), and shift from traditional modeling focus on what and how to innovative who 

and why (who are the actors, what they want to achieve and what is their motivation) 

(Moody et al. 2010).  Moreover, by utilizing goal modeling, organizations can express their 

choices behind multiple alternatives, and investigate other possibilities (Jonkers et al. 2004).   

Given such a great importance of both conceptual modeling languages, and their different 

points of focus, we believe that choosing those two options adds rigor to the demonstration 

of our approach.  If it works for such diverse modeling types, then we can claim its generality.  

Demonstrating it for all  (types of) conceptual modeling languages is obviously not possible 

within the scope of a doctoral thesis.      

1.1.3.1   Business process modeling 

A basic definition of business process is provided by Hammer, who defines it as ‘‘a collection 

of activities that takes one or more kinds of input and creates an output that is of value to 

the customer’’ (Hammer 1990).   Aguilar – Saven adds an “enterprise flavor” to the previous 

definition: “Business process is a partially ordered set of Enterprise Activities which can be 

executed to realize a given objective of an enterprise or a part of an enterprise to achieve 

some desired end-result” (Aguilar-Savén 2004).  By aggregating both definitions, business 

process model receives an input, and generates an output by applying a partially ordered set 

of activities to satisfy business needs of an enterprise.   (Lin et al. 2002) identified five 

essential elements in a business process: (1)  a business process has a customer, (2) it 

constitutes of activities, (3) those activities aim at creating value to the customer, (4) those 

activities are executed either by people or by agents  and (5) a business process often 

involves several units of the enterprise.  



pg. 21 

 

 

There are a plethora of research efforts concerning business processes modeling.  (Aguilar-

Savén 2004) perform a review of business process modeling literature.  The author 

concludes that business processes are modeled for three main purposes: 1) to learn about 

the process, 2) to make decisions about the process and  3) to develop business process 

software.  Based on which need is addressed, the type of process modeling technique is 

selected.  The same author classifies business processes into “core” and “supportive”.  “Core” 

is a primary business process which is initiated externally to the enterprise.  The “supportive” 

business process is secondary and it facilitates the execution of the core process.  The 

“supportive” business process can serve as management process which controls overall 

strategy and objectives of the enterprise.   

 

Many process modeling approaches are proposed in the literature. Kueng et al (1996) 

classify those process modeling approaches into four main categories:  

 

1. Activity-oriented approach: it primarily concentrates on activities (sometimes 

referred to as tasks).  Using this approach, a business process is presented as a set 

of ordered activities.  This representation is suitable for the high-level view on the 

process, but it might underestimate the true complexity of the work. It disregards 

the information flow and the involved enterprise units. 

 

2. Object-oriented approach: this presents encapsulation, specialization, composition, 

and other aspect of object – oriented methods (Booch 1994).  However, according 

to the author, this approach is not adequate for business process modeling. 

 

3. Role-oriented approach: this modeling approach rotates around “role” concept, 

which is defined as a position played in a process by an individual, team, or unit.  

This is a rather broad definition, as it can imply a complete job description, such as 

school teacher, or a part of the job, or it can be limited to a specific task.  The 

advantage of this modeling approach is the possibility to group activities and assign 

them to a particular actor.  However, this approach does not allow expressing an 

intricate sequencing logic. 

 

4.  Speech-act oriented approach: the main concept behind this approach is 

“ActionWorkflow Loop”: every communication process (actionWorkflow) 

incorporates customer and performer.  The communication process itself 

constitutes of four phases (loop): proposal, agreement, performance, satisfaction.  

Even though the idea itself is innovative, the approach is not practical in analyzing 

existing processes or in creating new ones. 

 



pg. 22 

 

More recently, a new paradigm of process modeling has emerged: declarative process 

modeling.  The difference between imperative (traditional) and declarative process modeling 

is rooted in computer programming (Pichler et al. 2011).  Imperative process modeling 

focuses on a “inside-to-outside” approach; it prescribes how exactly the work needs to be 

executed.  All the possible alternatives need to be specified in advance before the execution 

starts.  Declarative process modeling follows the “outside-to-inside” approach.  It only 

describes the essential characteristics, and does not prescribe the precise execution 

procedure.     

 

BPMN 

The Business Process Modeling Notation (Object Management Group (OMG) 2008) or 

Business Process Model And Notation (OMG 2011) (BPMN) was developed by the Business 

Process Management Initiative (BPMI) Notation Working Group after two years of effort.  

The main purpose was to develop a notation which is understandable by both business users 

and developers. BPMN allows various departments within an enterprise to understand their 

processes, and enables an enterprise as a whole to communicate its processes in a 

standardized manner.  BPMN is designed to cover various types of models and as a result, it 

enables the creation of end to end business process.  As described in (OMG 2006a), there 

are three basic types of sub models within BPMN 2.0:    

1. Processes, which include private non executable business process, private executable 

business process, and public process.  Private processes are internal to the 

organization, while public process represent interaction between the organization 

and external participants. 

2. Choreographies: while a regular process is contained in a pool (see Appendix A), 

choreography exists between pools and represents a definition of an expected 

behavior. 

3. Collaborations: represents interaction between two or more business entities by 

means of public processes 

To learn more about BPMN, the reader can refer to (Silver 2009).  BPMN is a relatively young 

notation dating to 2004.  Nevertheless, it underwent several updates.  The latest updates (at 

the time of submitting this thesis) can be found at (Allweyer 2016).   

 

BPMN is capable of conveying a wide variety of information to a broad audience.  White 

identifies two main types of business process diagrams: Collaborative (public) B2B process, 

and Internal (private) business process (White 2004).  The collaborative B2B process 

captures an interaction between two or more business entities in a neutral way.  This 

process does not take a point of view of any of the organizations.  It simply depicts the 

sequence of activities, and the communication among those organizations.  The second type, 



pg. 23 

 

Internal business process, acts from the perspective of a particular organization, and depicts 

its interactions with others (external organizations).   

 

For an overview of BPMN constructs the reader is referred to Appendix A. 

1.1.3.2			Goal	modeling	

Zave and Jackson define a goal as an objective the system under consideration should 

achieve (Zave & Jackson 1997).  Goals cover different types of objectives: functional and 

non-functional.  Functional are associated with the services to be provided, while non-

functional deal with the quality of service such as performance and accuracy (Van 

Lamsweerde 2001).   

There are many reasons why goals are important in requirements engineering.  Here are 

some of them: 

• Goals provide rationale for requirements, thereby making it easier to explain to 

stakeholders (Mostow 1985) 

• Goal refinement assists in structuring complex requirements documents thereby 

increasing readability (Van Lamsweerde 2001) 

• Modeling goals explicitly helps in detecting conflicts in requirements (van 

Lamsweerde et al. 1998) 

Goal models represent business objectives for stakeholders of an enterprise.  Goal modeling 

is a promising and important methodology for eliciting requirements (Matulevicius et al. 

2015; Shibaoka et al. 2007) 

There is an established connection in the literature between goal modeling and business 

process modeling.  Here are a few examples: Koliadis et al propose a framework which 

allows translating changes occurring in one model type (goal or process model) to the other 

model type (Koliadis et al. 2006).  Decreus and Poels automatically derive BPMN models 

from requirements models which incorporate goal models (Decreus & Poels 2011).  Finally, 

(Santos et al. 2010) proposes applying variability analyses on BPMN models using a goal 

oriented approach.  

I* (I-star) 

I* is an agent and goal-oriented modeling framework which analyzes intentional 

relationships among social actors (Yu et al. 2011).  It is one of the most widespread goal-

modeling approaches (Franch 2010)  Unlike traditional systems and modeling methods 

which abstract from the social aspect, i* modeling revolves around social actors.  Those 

actors are perceived as intentional; they have goals, beliefs, and commitments.  The i* 

framework raised interest in socially-aware approaches to systems modeling, and led to 

several extensions and adaptations (Yu 2009).  I* is mainly applied in requirements 



pg. 24 

 

engineering (especially for early requirements).  Additionally, it is used in enterprise 

architecture, business process redesign, information security and privacy, digital asset 

protection, and software development among others (Yu et al. 2013).  The main constructs 

of the i* notation are actor, goal, task, resource, and softgoal.  The relationships are 

modeled through Strategic Dependency (SD) and Strategic Rationale (SR) models. 

According to Franch, the i* framework reached a high level of maturity from an academic 

perspective, which resulted in a significant body of knowledge available through literature.  

Additionally, there are workshops, tutorial and scientific conferences for i*, and an i* wiki 

which offers explanation of the modeling language and supplies the reader with the initial 

literature.  Despite all the research efforts, i* adoption by practitioners is unfortunately very 

limited (Franch 2010). For a detailed description of the i* notation the reader is referred to 

(Yu et al. 2011). 

 

An overview of i* constructs is provided in Appendix B. 

1.2			Conceptual	Model	vs	Ontologies	

Within the conceptual modelling research community there is no clear agreement with 

respect to the distinction between ontology and conceptual model.   Some researcher 

consider ontologies as disguised conceptual models (Winter 2001). The literature presents 

several attempts to differentiate between ontologies and conceptual models which should 

help to set the boundaries for both.  The confusion in literature between conceptual models 

and ontologies also has its origin in the fact that ontologies can support the conceptual 

modeling process.  More details on how ontologies contribute to the semantic alignment of 

conceptual models are presented in Chapter 2. 

 

A distinction that has been regularly mentioned is based on whether the model or ontology 

is descriptive or prescriptive in nature. A conceptual model that is developed within an 

enterprise forms the template according to which a particular enterprise system is 

developed (Aßmann & Zschaler 2006). For instance, a business process model prescribes the 

business process that is implemented by a process-aware information system. In contrast, 

ontologies are descriptive models, and therefore follow an open-world assumption 

(Horrocks et al. 2003) (anything which is not stated explicitly is unknown), rather than a 

closed-world as conceptual models. Ontologies portrait reality but reality is not constructed 

from them. If an ontology is used in a prescriptive manner, then it is better referred to as 

specification model (Seidewitz 2003).  Most ontologies correspond to structural models 

whereas conceptual models can give a behavioral view in addition to the structural view.  

The second distinction proposed by the same author is related to sharedness (Aßmann & 

Zschaler 2006).  An ontology is shared between different enterprises or between various 



pg. 25 

 

units and projects within one enterprise. A conceptual model does not need to be shared 

and can be developed and used by a small set of people within a specific context or project.  

The notion of sharedness is relative and therefore less useful to make a clear distinction 

between ontologies and conceptual models.   

 

Within the context of this thesis we adopt the distinction between ontologies and 

conceptual models proposed by Fonseca and Martin (2007).  The concept of Ontology 

described in this thesis is equivalent to the concept of Computational ontology in (Fonseca & 

Martin 2007), which implies an ontology used to build information systems (IS) within the 

Ontology-Driven IS development approach described by (Guarino 1998).  The term 

Conceptual model appearing in this thesis, corresponds to Fonseca and Martin’s Conceptual 

schema.  Conceptual schema represents the results of the modeling process, merely a set of 

diagrams constructed in a particular modeling language to express data structures of an 

application to be developed.  In their definition, Fonseca and Martin focus on the data 

models, however, this thesis incorporates different kinds of models, namely process and 

goal models.  Hence, we borrow their definition and extend it with other kinds of models, 

not limited to data models. To avoid confusion, throughout this thesis we opt for using the 

term enterprise-specific ontology ESO (or simply, ontology), and conceptual modeling.   

 

(Fonseca & Martin 2007) differentiates between ontologies and conceptual models based on 

the objectives they aim to satisfy, and the objects they incorporate.  Those differences are 

summarized in Figure 2 below.  With respect to the objectives: 

 

• Ontology aims to offer explanation and information integration based on 

assumptions about invariant conditions defining the domain of interest.   Ontologies 

supply the users of the IS with common assumptions about the whole, within which 

the facts about IS arise.   Ontology aims to explain the domain by describing it as a 

coherent whole.   It might support the development of an IS, or be used by an IS, but 

it is not entirely coupled to a specific IS.   Ontology is able to serve a broad range of 

purposes and it supports the modeler during model creation and analyses.    An 

ontology offers a common reference to which various artefacts related to particular 

projects within the enterprise are connected.   

 

• The Conceptual model’s objective is to classify the observed facts, and provide 

measurement (the linking of general categories with particulars) for the objects along 

dimensions of possible variation, and within the context of assumptions supplied by 

the corresponding ontology.  Hence, models focus on linking general ontological 

categories with particular observations within the IS.  Conceptual models are usually 

constructed with a specific IS in mind.  Conceptual model aims to structure a set of 



pg. 26 

 

instances to facilitate querying the IS.  Models from different projects within an 

enterprise are linked to one enterprise-specific ontology. 

 

With respect to the incorporated objects:  

 

• Ontology lays focus on reality and the real world.  It represents the general and 

assumed categories defining the domain of interest.  Ontology captures a domain 

which is intended to be shared by multiple projects within the enterprise.  It 

encapsulates concepts and relationships which are meaningful within a context of a 

particular enterprise, but are not captured by the models.  An ontology has a broader 

scope as it incorporates more than a conceptual model is able to cover.  The ontology 

engineer is free to incorporate extra information to facilitate understanding of the 

concepts presented in the ontology. 

 

• Conceptual model aims to link the ontology with the “facts”.  It establishes the 

relationship between categories presented in the ontology and the range of possible 

variations of facts related to those ontological categories.  For example, if an 

ontology contains a category of “Automobile”, a conceptual model will provide a 

machinery to link the category of automobile to a specific auto, owned by a 

particular person.  The conceptual model represents a particular enterprise 

application, and the modeler is restricted by describing terms which are a part of the 

IS.  Within this research project, even though all models are linked to the ontology, 

they are not restricted by the terminology used within the ontology.  The modelers 

are free in selecting the terminology which suites the project for which the model is 

created.  

 



pg. 27 

 

 
Figure 2: Differences between ontology and conceptual model taken from (Fonseca & Martin 2007) 

1.3			Problem	Description	

Within an enterprise various types of conceptual models are created.  Every model captures 

a particular concern, such as representing processes, intentions and goals, data, etc.  All 

those models are represented in different modeling languages and created by different 

modelers.  This diversity has a negative impact on the semantic alignment of those models.  

If an enterprise dedicates effort for model creation, it is important that those models are 

usable within different aspects of the enterprise.  Models represented by different modeling 

languages are naturally lacking semantic alignment as every modeling language uses its own 

set of constructs, and mapping corresponding constructs manually can be a tedious task.  

Without additional effort for aligning those models, they will be hard to integrate and 

perform search.  Additionally, models lacking semantic alignment will result in 

implementation of non-interoperable software systems.  Models created by different people 

suffer label inconsistency and other signs of semantic heterogeneity as people tend to use 

different terminology to describe the same term.   Furthermore, they can use different 

modeling constructs within one modeling language to model the same semantic concept.  



pg. 28 

 

Consequently, enterprise’s knowledge base piles a big amount of semantically heterogynous 

models which are challenging to integrate and reuse.  

This research work aims to improve semantic alignment of conceptual models created within 

one enterprise.  This includes models of the same type created using the same modeling 

language, models of the same type created using different modeling languages, and models 

of different types.  Within the context of this thesis, Semantic Alignment of conceptual 

models implies that overlapping elements of those models are consistent on the model and 

the meta-model levels.  On the model level, model elements can be annotated with ESO 

concepts.  Overlapping model elements are annotated with the same ESO concept, which 

ensures consistency of model elements.    On the meta-model level, corresponding modeling 

elements are represented by equivalent modeling constructs in different modeling 

languages.  The meta-model level is only applicable to models created in different modeling 

languages. Models lacking semantic alignment cause problems in communication among 

stakeholders, result in creation of non-interoperable software systems, and in additional 

effort and money wasted by the enterprise on integrating its different models, or systems 

built based on those models.  

 

The following issues may arise when models are not aligned semantically:   

 

• Synonyms in labels of modeling elements carrying the same semantics.  Different 

people tend to use different words to depict the same concept as this depends on 

personal background and profession specific jargon.  Models within the enterprise 

are created by different stakeholders working within different occupations, which 

can result in using occupation specific jargon.  For example, a medical specialist may 

use “script” while a person without medical background will use the word 

“prescription” to depict the same meaning.  Similarly, one modeler can use a word 

“client”, and another will use the word “customer”.  Those words have the same 

meaning which is recognized by humans, but not by machines. 

 

• Abbreviations used in labelling modeling elements.  Humans tend to use 

abbreviations which are not recognised by machines even though they sound familiar 

to humans, such as using “dr” for “doctor”, “dept” for “department” and “h” for 

“hour”.  Some abbreviations are not even recognized by the majority of people.  For 

example, a stakeholder with a military background can use a label “NVS”, and other 

stakeholders without military background will not understand that it stands for 

“Night Vision System”.  Other type of abbreviations can make a particular term 

ambiguous, such as using “report” to depict “business proposal report”.  This is clear 

only in a very limited context.  On a broader view “report” can stand for “research 

report”, “technical report” or any other type of report.  Hence, using “report” is not 

precise and causes interoperability problems.      



pg. 29 

 

 

• Inability to reuse knowledge captured in existing models.   Various conceptual 

models capture different aspects of the enterprise.  Nevertheless, some models 

intersect and capture redundant information.  This is particularly prominent in 

models of the same type representing overlapping concerns in different modeling 

languages, such as creating business process models using BPMN and UML activity 

diagrams.  But this situation may also expand to models of different types; for 

example, process models may overlap with goal models while modeling a series of 

tasks to be executed to achieve a particular goal.    

 

• Inability to reuse general knowledge of the domain. For example, if a Customer 

acquired a Loan from a Bank, then this relationship between the Customer and the 

Bank might be useful within the context of an enterprise operating in a financial 

domain.  Some models might capture this relationship explicitly, while others will not. 

Independently, maintaining such a relationship as a common knowledge within the 

enterprise is important. It is best to define such a relationship at a higher level, not 

tight to a particular model.  As a result, information about the relationship can be 

access without the need to search for models capturing it.   

 

A possible solution for this model alignment problem is providing modelers with a shared 

vocabulary formalized in an ontology (Bera et al. 2011; Francescomarino & Tonella 2009).  

Enterprise-specific ontologies are  gaining importance in the context of  Data Governance  

and knowledge representation (Bera et al. 2011).  Supporting tools, such as IBM InfoSphere1 

or Collibra Enterprise Glossary 2  allow enterprises to specify their own enterprise 

glossary/ontology.  Such an enterprise-specific ontology, once available, can subsequently be 

deployed to help enterprise modelers in creating compatible, conceptual models, such as 

requirements, data or process models.  If an enterprise decides to formalise its knowledge 

for reuse, it will be faced with various challenges regarding updating, retrieving and querying 

of the formalised knowledge.  Therefore, developing effective practices in this regard is 

crucial.  Another challenge is actually using this knowledge in model creation.  How to select 

the right concepts? Where to look for them?  What to do if the right concept is not found? 

 

However, even if such an ontology is available, it might not be used by modelers during the 

modeling process.  There are many reasons for such an underutilization of enterprise 

knowledge.  For example, an interface to the ontology is too complex for a modeler without 

ontology training, and the absence of supporting tools which assist the modeler to navigate 

through the ontology.   

 

                                                           
1 http://www-01.ibm.com/software/data/infosphere/ 
2 http://www.collibra.com/ 



pg. 30 

 

Another challenge surrounding ESO is how to maintain such an ontology to remain relevant 

to the enterprise it was created for.  An enterprise is an evolving entity which occasionally 

undergoes changes.  Completely new and innovative concepts are emerging, other concepts 

are becoming obsolete.  It is essential that the ontology formalizing knowledge of an 

enterprise is also updated accordingly.  Knowledge which became  obsolete has to be 

removed, while new pieces of knowledge are added.  The ontology is created to be actively 

utilized within the enterprise, and if it is outdated, it cannot be of a great benefit anymore. 

 

To summarize, three research problems are highlighted to be addressed in this thesis: 

• Semantic alignment of different types of conceptual models created within an 

enterprise 

• Utilization of ESO during the modeling process 

• Keeping ESO up to date with the evolving nature of the enterprise      

1.4			Research	Goals	

The research work presented in this thesis is a part of a bigger research project with the 

overall goal  of establishing and demonstrating a symbiotic relationship between ontology 

engineering and conceptual modeling.  This PhD project addresses the issues related to the 

conceptual modeling part, while the community-based ontology engineering part will be 

explored as part of another project.  Hence, this PhD aims to establish requirements for a 

framework which guides modelers through creation of semantically aligned conceptual 

models, and  facilitates ESO maintenance and usage. This framework must operate 

independently of a particular conceptual modeling type or language to cover all the needs of 

an enterprise.  After establishing the general requirements and translating these 

requirements to a framework with different cycles and phases, we explore in detail the parts 

of the framework focusing on the conceptual modeling efforts.  Next, those parts (phases) 

are instantiated and thoroughly evaluated. This results in the following goals for this PhD 

project: 

1. GOAL1:  Setting overall requirements for establishing the symbiotic relationship 

between conceptual modeling and ontology engineering, and establishing a 

framework which will deliver those requirements.  

 

2. GOAL2:  Providing more detailed explanation regarding those phases of the 

framework which are related to conceptual modelling.   This includes pointing out 

what can be reused from the literature, and offering practical guidance regarding 

every phase. 

 



pg. 31 

 

3. GOAL3: Evaluating the phases responsible for the conceptual modeling side of the 

symbiosis by demonstrating the framework for BPMN process modeling language.  

This implies instantiating the relevant phases of the framework for BPMN, and 

implementing a tool in order to perform an experimental evaluation. This will 

represent the first step towards proving framework’s generalizability.  Next, the same 

phases will be instantiated for i* goal modeling. 

 

4. GOAL4:   Exploring the ability of the framework in aligning i* goal models with BPMN 

process models.  After instantiating the relevant phases of the framework for BPMN 

and i*, we want to investigate the possibility of creating BPMN models which are 

semantically aligned with previously created and stored i* models.  This will 

demonstrate the operation of the framework across modeling languages.  

1.5			Methodology	

This research contributes to solving a specific business problem, i.e. semantic alignment of 

conceptual model, and to create artefacts that can be directly used by enterprise workers. 

For this purpose the Design Science Research Methodology (DSRM) is perfectly suited 

(Hevner et al. 2004). The main goal of a design science project is to solve a practical problem. 

The problem at hand here is twofold: 1) improving semantic alignment of conceptual models, 

and (2) enriching, evolving and keeping the ESO up to date. Following (Wieringa & Heerkens 

2006), a DSRM project is divided into Engineering Cycles (EC) that provide the necessary 

steps to design and evaluate an artefact, and associated Research Cycles (RC), responsible 

for resolving research related issues, such as establishing the state of the art for a specific 

problem, finding and adapting related techniques, etc. The main problem is thus 

decomposed into nested problems represented by ECs supported by RC(s). 

 



pg. 32 

 

 
Figure 3: Regulative cycles of the PhD inspired by (Wieringa & Heerkens 2006) 

This research project in Figure 3 commences with Problem identification and requirements 

specification activity A1.  It focuses on analyzing the problem and defining requirements 

necessary for the solution. Based on the requirements obtained from A1 the main design 

science artefact, the Conceptual Modeling and Ontology Evolution framework (CMOE+), was 

developed in the subsequent engineering cycle EC2. Detailed description and ideas of EC2 

were supported by RC1.  This research cycle incorporated literature on various topics 

including semantic alignment of conceptual models, ontological analyses, community-based 

ontology engineering, and more.  The CMOE+ framework consists of two cycles: an Ontology 

Evolution cycle which is responsible for ontology maintenance and amelioration, and a 

Conceptual Modeling cycle which facilitates creation of different conceptual models based 

on the ontology.  The framework is explained in detail in Chapter 2.  After designing the 

framework, it was applied to the process modeling (EC3 and EC4) and requirements 

engineering fields (EC5).  EC1 was performed in iterations, and the first version was drafted 

in EC2 based on the requirements resulting from A1. 

 



pg. 33 

 

EC3 represents the first instantiation of the CMOE+ framework.  An ontology in the financial 

domain was selected as the starting point for the ontology engineering cycle of the 

framework.  Process modeling using the BPMN modeling language was chosen for the 

conceptual modeling cycle.  EC3 makes use of a broad knowledge base, therefore a thorough 

literature review was needed.  In RC2 we investigated the possibility of using various core 

ontologies, and how to map BPMN constructs to the selected core ontology.   RC3 is about 

finding the optimal combination of matching algorithms that will reduce to the minimum the 

effort required by the modeler to locate the right concept in the ontology.  Some matching 

algorithms were reused, some specifically designed.  Upon completion of EC3, the first 

modifications were made to the framework (A2).  All findings of RC2 and RC3 were 

implemented in a tool (EC4) that allowed us to execute experiments with students and 

evaluate this first instantiation of the framework (RC4).  Two experiments were conducted 

with the tool: one at the Vrije Universiteit Brussel, and one at Ghent University.  Based on 

the findings, CMOE+ was enhanced again in A3. 

 

To ensure that CMOE+ is suited for different modeling languages and is not biased to one 

type of conceptual models, the framework was tested in the goal modeling field using the i* 

modeling language.   This resulted in implementing CMOE+ i* tool in EC5.  The CMOE+ 

framework was updated accordingly in A4.  After presenting the performance of CMOE+ for 

individual modeling languages, it was necessary to demonstrate that the framework is able 

to operate across different modeling languages.  EC6 establishes the alignment between 

goal models in i* and process models in BPMN.  This is achieved with the help of RC7 which 

explores the possibilities of various alignment rules.   EC7 extends the CMOE+ BPMN, 

implemented within EC4, to offer evidence on the alignment.  After completing this last 

engineering cycle, CMOE+ framework was altered again (A5), which resulted in its final 

version. 

1.6			Publications	

This section presents the published and submitted papers written during the course of this 

PhD. the section gives a brief overview of the content of the paper, and the chapter(s) where 

it was used within this thesis. 

 

• F. Gailly, S. Casteleyn, and N. Alkhaldi. (2013). On the Symbiosis between Enterprise 

Modeling and Ontology Engineering.  Proceedings of 32nd International Conference 

on Conceptual Modeling. pp. 487 –494  

This paper is our first publication and it gives an overview of the initial version of 

CMOE+ framework.  This framework was modified and enhanced in iterations, with 

every instantiation and evaluation.  Hence, this first paper does not include all the 

details, and uses a slightly different terminology.  Some terminology was changed 



pg. 34 

 

with the advancement of this research; while presenting our achievements in 

conferences, we noticed the confusion caused by some terminology, and tried to 

adapt the terminology to achieve the common understanding with other researchers 

in the field.  This paper is incorporated in Chapter 2. 

 

• N. Alkhaldi, S. Casteleyn, and F. Gailly. (2014). Supporting Process Model 

Development with Enterprise-Specific Ontologies. Proceedings of the 16th 

International Conference on Enterprise Information Systems. pp. 236–248 

This publication presents an enhanced version of CMOE+, and its instantiation for 

process modeling using BPMN with a basic demonstration of the instantiation 

process.  This paper is not included in the thesis as it presents only the basic idea 

behind recommendation – based process modeling.  

 

• Alkhaldi, N., Casteleyn, S. and Gailly, F. (2015). Enterprise-specific Ontology-driven 

Process Modeling. In J. Cordeiro, S. Hammoudi, L. Maciaszek, O. Camp, & J. Filipe 

(Eds.), Lecture Notes in Business Information Processing. pp. 472-488 Springer  

This work provides a detailed overview of recommendation – based process 

modeling, which is the first instantiation of CMOE+ framework.  This paper is a part 

of Chapter 2. 

 

• F. Gailly, N. Alkhaldi, S. Casteleyn, and W. Verbeke. (2017). Recommendation-based 

Conceptual Modeling and Ontology Evolution Framework (CMOE+). Business & 

Information Systems Engineering 

It presents an evaluation of CMOE+ for process modeling.  It describes the developed 

process modeling tool, and the experiment conducted with university students to 

evaluate the feasibility of such a modeling tool.  This paper is presented in Chapter 3. 

1.7			Thesis	Structure	

This PhD thesis constitutes of five chapters.  Chapters’ division is inspired by the engineering 

cycles presented in Figure 3 (Section 1.5).  

 

CHAPTER 1: Introduction 

This Chapter defines relevant topics, methodologies, and concepts used within this 

thesis namely “ontology”, “ontology engineering” and “conceptual modeling” 

(Section 1.1).  Further, it clarifies the difference between ontology and conceptual 

models within the context of this thesis in Section 1.2.  Next, this chapter describes 

the problem to be addressed (Section 1.3) and states the goals to be accomplished 

(Section 1.4).  Section 1.5 highlights Design Science Research Methodology, the 



pg. 35 

 

methodology followed within the course of this PhD.  Section 1.6 lists the papers 

published and submitted during the years of PhD research.  The final section, Section 

1.7, presents the overview of this thesis. 

CHAPTER 2: Recommendation-Based Conceptual Modeling and Ontology Evolution 

Framework 

Chapter 2 starts with landscaping the existing research and classifies related 

literature in Section 2.1.  Section 2.2 identifies the requirements for CMOE+.  Next, 

Section 2.3 establishes the different phases of CMOE+, and provides a detailed 

explanation of conceptual modeling-related phases of the framework.  Finally, 

Section 2.4 highlights the correspondence between the requirements and the various 

phases of CMOE+. 

CHAPTER 3:   Recommendation-Based Process Modeling 

Chapter 3 applies CMOE+ to process modeling using BPMN.  It illustrates the 

instantiation of various phases of CMOE+ (Section 3.2).  Section 3.3 presents the tool 

which was developed to evaluate CMOE+.  Finally, Section 3.4 presents an 

experiment that was conducted with students to evaluate the CMOE+ on process 

modeling.  The focus of this experiment lays in evaluating user acceptance of the 

different modeling style. 

CHAPTER 4:  Aligning I* Models and BPMN Models Using the CMOE+ Framework  

This chapter presents the application of CMOE+ framework in aligning goal models in 

i* with process models in BPMN.  The first section offers an overview of existing 

research on the synergy between goal and process modeling.  The following section 

elaborates on CMOE+i* framework and tool development (Section 4.2).  Section 4.3 

explains the view of this thesis on the alignment between i* and BPMN models, and 

the features added to CMOE+ BPMN method to accommodate the alignment.  Next, 

Section 4.4 offers a demonstrative example featuring the alignment rules with a 

simplified emergency department case.  Section 4.5, contributes to developing a 

better understanding of the CMOE+ tools generally.  It presents a component 

diagram of the tool, highlighting the components which require adaptation while 

configuring a new modeling language with CMOE+.  

CHAPTER 5: Conclusions and Future Research 

This chapter iterates on the research results, summarizes the contributions, explains 

the limitations, and research efforts planned for the future.   

 

  



pg. 36 

 

	

2	
Recommendation-Based	Conceptual	Modeling	

and	Ontology	Evolution	Framework	

This chapter elaborates on the Recommendation-Based Conceptual Modeling and Ontology 

Evolution framework (CMOE+). The first section provides an overview of existing literature 

on conceptual model alignment.  Next, this chapter presents the requirements for the 

Recommendation-Based Conceptual Modeling and Ontology Evolution framework (CMOE+).  

Afterwards, an overview of different cycles and phases of CMOE+ is presented.  Phases 

concerning conceptual modeling activities are elaborated in detail.  Finally, this chapter 

summarizes the correspondence between the requirements of CMOE+ framework and its 

different phases.  

2.1			Semantic	Alignment	of	Conceptual	Models		

In modern day enterprise engineering, it is paramount that conceptual models are grounded 

in a well-defined, agreed-upon Enterprise Architecture that captures the essentials of the 

business, IT, and its evolution. Enterprise architectures typically contain different views (e.g. 

Business, Information, Process, Application, Technical) on the enterprise that are developed 

by distinct stakeholders with a different background and knowledge of the business. 

Consequently, the developed conceptual models that populate these views are hard to 

integrate.  This lack of semantic alignment deteriorates the quality of the modeling 

landscape and the analyses performed on it (Jorg Becker, Breuker, et al. 2009).   

 



pg. 37 

 

Researchers have attempted to tackle this alignment problem fully or partially.  Some 

researchers refer to this issue with a term of “consistency” (Mens et al. 2005), and others 

favour the term of “interoperability” (Lin & Strasunskas 2005).  Throughout this thesis the 

term “semantic Alignment” will be used following the definition supplied in Section 1.3.  

Existing research works featuring “interoperability” and “consistency” are consulted during 

the literature review, and some of their contributions are partially reused.     

 

One approach for solving integration and alignment issues between conceptual models is 

using Enterprise Architectures (Lankhorst 2005). Techniques like TOGAF (The Open Group 

n.d.), Zachman (Sowa, JA and Zachman 1992) and Archimate (The Open Group 2013) focus 

on describing different aspects of an enterprise in an integrated way. The actual level of 

integration realised between the perspectives of the enterprise architecture and the 

approach followed depends on the used framework. For instance, Archimate defines a new 

language for enterprise modeling which should be reused within the different perspectives.  

Zachman organizes and classifies the descriptive representation of the enterprise in a matrix 

where every cell is an artefact of the enterprise.  TOGAF focuses more on the process of 

creating the different conceptual models and aligning them. 

 

Another possible solution to the semantic alignment problem is using a shared terminology 

during the development of these different views (P. Bera et al. 2011). Such explicit formal 

representations, often materialized in the form of an ontology – in a business context called 

an enterprise-specific ontology - provide a myriad of advantages:  

 

1. It is generally accepted that ontologies can be used to assist in communication 

between human agents, to achieve interoperability, or to improve the software 

engineering process (Uschold & Jasper 1999).   

 

2. On an intra-organizational level, they ensure model re-usability, compatibility and 

interoperability, and form an excellent basis for supporting enterprise applications, 

such as Enterprise Resource Planning (ERP) systems, supply chain systems or business 

intelligence (BI) tools, for which they serve as common terminology.  

 

3. On an inter-organizational level, ontologies facilitate interoperability, cooperation 

and integration by allowing formal mappings between, and alignment of separately 

developed conceptual models. While a wide range of more generic enterprise 

ontologies with a various intended use are available (Geerts & Mccarthy 1999; 

Gordijn & J. M. Akkermans 2001; Uschold et al. 1998; Osterwalder & Pigneur 2002), 

they are often not immediately usable by a particular enterprise, as they lack 

enterprise-specific business concepts which enterprise-specific ontologies do provide, 

or do not offer a complete coverage of the business domain. 



pg. 38 

 

 

Existing ontology – based approaches for improving semantic alignment of conceptual 

models can be classified in two dimensions: First, approaches which enhance alignment by 

means of the modeling language vs approaches which affect the conceptual model itself.  

Second, approaches that improve model alignment after the model is created vs approaches 

enforcing semantic alignment while the model is being created by the modeler.  This 

approach to literature classification is represented in Table 1. 

 

Table 1: Existing approaches to enhancing semantic alignment of models using ontology 

Modeling language / after model creation Model / after model creation 

 

(Opdahl et al. 2012) 

(Uschold et al. 1998) 

(Osterwalder & Pigneur 2002) 

(Gordijn & H. Akkermans 2001) 

 

(Pittke et al. 2013) 

(Born et al. 2007) 

(Francescomarino & Tonella 2009) 

(Thomas & Fellmann M.A. 2009) 

(Si-Said Cherfi et al. 2013) 

(Di Martino et al. 2016) 

Modeling language / during model creation Model / during model creation 

 

(Jörg Becker et al. 2009) 

(Pfeiffer 2007) 

(Geerts & Mccarthy 1999) 

(Evermann & Wand 2005a) 

(Sonnenberg et al. 2011) 

(Rospocher et al. 2014) 

 

CMOE+ 

(Jorg Becker, Delfmann, et al. 2009) 

(Delfmann 2009) 

 

 

In Table 1, starting with the upper left corner, in (Opdahl et al. 2012) within the UEML 

(Unified Enterprise Modeling Language) project, the constructs of different conceptual 

modeling languages are mapped to an intermediate language, which has its origin in the 

Bunge Wand Weber ontology (Wand & Weber 1988).  Next, these ontological mappings are 

used to enforce alignment between models. The Enterprise ontologies mentioned in the 

introduction (Uschold et al. 1998; Geerts & Mccarthy 1999; Osterwalder & Pigneur 2002; 

Gordijn & H. Akkermans 2001) are mostly used to develop an enterprise modeling language 

which is immediately applied during the creation of the model. The work of Becker et al (Jorg 

Becker, Breuker, et al. 2009), which is based on the ideas of Pfeiffer (2007), uses a domain-

specific modeling language to constrain modeling choices, aiming to avoid model variations 

and promote semantic alignment.  Sonnenberg et al ( 2011) put forward a domain specific 

modeling language to support creation of more interoperable conceptual models specialized 

in economic events.  Evermann & Wand ( 2005a) extends object – oriented languages with 



pg. 39 

 

ontological mappings to make it more suitable for conceptual modeling, while (Rospocher et 

al. 2014) offers ontological description of BPMN modeling language. 

 

Approaches that focus directly on the model, as our approach does, use either ontology 

annotation or matching techniques. For instance, the approach proposed by Born et al. 

(2007), Di Francescomarino and Tonella (2009) and Si-Said et al ( 2013) considers the process 

model as given and includes an easy-to-use mechanism to annotate these models with 

elements of an ontology. Another example is the work of Pittke et al. (2013), which focuses 

on locating inconsistencies within model repositories by identifying synonyms and 

homonyms by means of matching techniques. As a third example, Becker et al. (2009b) and 

Delfmann (2009) force the modeler to use naming conventions while adding labels to the 

model. These naming conventions have their origin in a set of domain terms and phrase 

structures, and are validated with matching techniques. 

 

What is important to note is that in the process modeling domain, semantically enriched 

process models are not only used to align process models. They can also be used to 

automatically analyze business processes (Fill 2012; Fill 2011b; Becker et al. 2010) or as 

semantically enriched, machine-readable process specifications for a semantically enhanced 

process engine (Hepp & Roman 2007; Leutgeb et al. 2007). As a consequence, different 

authors have proposed languages or frameworks that support adding ontological 

annotations to process models (Fill 2011a; Thomas et al. 2009) or allow transforming a 

process model into a semantic business process (Martin Hepp et al. 2005; Cabral et al. 2009; 

Abramowicz et al. 2007b).  

 

All previously described approaches for solving alignment and integration issues between 

conceptual models differ from the approach proposed in this work. First, we focus on using 

an enterprise-specific ontology and not generic enterprise ontologies that are shared by 

different enterprise.  Second, we do not impose particular modeling language(s) but instead 

allow the use of generally accepted languages that captures different aspects of the business. 

Finally, the enterprise-specific ontology is used to provide suggestions to the modeler during 

model creation, and it evolves according to the specific needs of the enterprise.  The fact 

that the enterprise-specific ontology is used throughout this research, does not exclude the 

possibility of model alignment across multiple enterprises.  The goal of this particular thesis 

is to align models within one organization assuming its autonomy.  However, this is only the 

first step.  When all models within the enterprise are created in a semantically aligned 

manner, the enterprise can map its ESO to the ESO of its partner organizations.  This will be 

help significantly in aligning models of both enterprises, thereby proving useful on an inter-

organizational level.     



pg. 40 

 

2.2			Requirements	for	CMOE+	

As was mentioned in the previous chapter, it is a common practice in an enterprise that 

models are created by different stakeholders, with different backgrounds and using a 

different vocabulary set.  As a result, the models are not semantically aligned, difficult to 

reuse, and need human intervention to be integrated.  To resolve this issue, there is a need 

for a formal basis in which those different models can be grounded.  The CMOE+ framework 

proposes using an enterprise – specific ontology to bring uniformity to all the models 

created within one enterprise.   The main goal of CMOE+ is to produce models which are 

semantically aligned from the start, rather than increasing model alignment as an 

independent process.  As CMOE+ relies on Enterprise-Specific Ontology (ESO) for model 

unification, another important goal is to maintain this ESO and ameliorate it as the 

enterprise evolves.   

 

In order to understand the problem, specify the scope and the research questions, we 

cooperated with a contact person from Collibra3, and looked into the Flanders Research 

Information Space (FRIS) project.  Both the company and the case study were very relevant 

to the problem at hand.   The FRIS project (Debruyne et al. 2011) aims to collect and publish 

information on research entities such as researchers, research institutions and projects. This 

will reduce the administrative work of universities so that they do not need to report the 

same information in different formats. Currently FRIS offers some free services based on the 

mash-up of data on main entities and their relationships. The main entities in the FRIS 

ontology are Project Proposal, Project and Funding Program.  FRIS has a diverse community 

of actors including high class actors such as minister of innovation, and middle class actors 

such as researchers and program managers. They all are given an opportunity to create and 

modify the FRIS ontology.  To summarize, FRIS has one ontology which forms the basis for 

creation of different types of models and services (such as reporting) by different 

stakeholders.  Additionally, the stakeholders have the possibility to request modification of 

ontological concepts.  Those two aspects make this case very relevant  as a starting point of 

this research work.  It helps to understand the current state of affairs, and to specify 

requirements that we need for our solution. 

 

Due to the circumstances, our involvement in this case was limited.  A few meetings with the 

contact person from Collibra took place, and this helped in understanding community-based 

ontology evolution and its usage.  Additionally, we participated in a workshop on 

establishing the process to be followed by FRIS participants to request changes to the 

ontology (ontology evolution).  Being a part of the FRIS case allowed us to observe the 

ontology evolution methodology utilized within this case, and it enforced the importance of 

following an established methodology.  Another significant contribution of the case was 

                                                           
3 https://www.collibra.com/ 



pg. 41 

 

conducting an interview with the member of R&D department at the Vrije Universiteit 

Brussel, who was involved in the FRIS case.  This interviewee informed us that his 

department is using their own independent system for storing facts about scientific output 

which needed to be integrated with the FRIS ontology.  The R&D department had their 

information system and their established way of working. Despite the requirement to 

connect to the FRIS ontology, VUB had no desire to change the whole system accordingly, 

and would rather connect through an intermediary.  This interview had a significant input 

towards the Conceptual Modeling cycle of CMOE+ (Section 2.3.2) as it demonstrated how 

different stakeholders utilize their own established systems, and do not want to change the 

way they work.  They need a methodology to allow accessing the shared ontology without 

the need to adjust their working patterns.    

Reading about the case, and participating in the meetings allowed to observe in practice the 

importance of an ontology in solving alignment problems.  The FRIS case inspired us for most 

requirements related to the ontology evolution part.  Moreover, requirement 1 (below) is 

directly derived from the case.  The case included many different actors using the ontology 

for their particular purpose, which implies that the proposed solution is expected to be 

independent of a particular modeling language or paradigm to accommodate the variety of 

purposes the ontology is used for.     

While studying the research problem,  seven requirements were put forward for the solution:   

REQ1: CMOE+ is a general framework not bound to a modeling language or ontology.  

CMOE+ must function in combination with different conceptual modeling languages, as it is 

a general and universal solution which is not bound to specific applications.  This 

requirement is important as one enterprise typically utilizes several modeling languages and 

approaches. Binding the framework to only one modeling approach would significantly 

constraint its usage.   

Proposed solution: This requirement can be achieved by maintaining the flexibility of 

the framework and making all its phases reconfigurable, not hardwired to a particular 

modeling paradigm.  Providing guidelines on how to instantiate CMOE+ for different 

modeling languages also contributes to this requirement.   

REQ2: CMOE+ must support to the modeler during the ESO-based conceptual modeling task.  

As the modeler is expected to create the model based on ESO ontology, CMOE+ must 

facilitate accessing the ontology for the modeler, and allow browsing the ESO in a 

convenient way.  The ontology can be very extensive and performing a complete ontology 

lookup with every modeling element can be an overwhelming task.  Hence, it is important to 

present ESO concepts to the modeler in an organized pattern.   

Proposed solution: REQ2 can be achieved by incorporating mechanisms manipulating 

ESO concepts to bring the most relevant ones to the attention of the modeler.  The 



pg. 42 

 

simplest organization would be presenting the ESO concepts alphabetically, which 

already offers more support than an unstructured presentation.  However, CMOE+ 

goes beyond an alphabetical structure, and arranges ESO concepts based on relevance.  

REQ3: CMOE+ must ensure creation of models with an appropriate quality level.  Every 

organization employs its own quality standards, and if CMOE+ is to become organizational 

practice, it needs to ensure that those quality standards are satisfied.   

Proposed solution:  CMOE+ should incorporate a quality management framework 

which can be filled in according to the organizational standards.  If quality 

requirements are not satisfied, the created models need to be re-engineered, and 

cannot be used in further phases of CMOE+ in their current state.          

REQ4: CMOE+ must provide means to capture any update on the knowledge of the 

organization.  An enterprise is an evolving entity; it is constantly changing; new innovations 

appear, some aspects are becoming outdated.  This needs to be reflected in the ontology as 

the ontology formalizes the knowledge of the organization.   

Proposed solution:  CMOE+ aims to achieve this ontology update dynamically by 

means of conceptual models created within the enterprise.  Following a more static 

approach, such as examining all artifacts of the enterprise on annual bases searching 

for updates, would create a big overhead.  Therefore, capturing model feedback as 

potential content for ontology update forms a proactive approach for faster and easier 

ontology amelioration.  The feedback is stored automatically while the model is being 

developed.    

REQ5: CMOE+ must facilitate and guide community negotiation over the feedback from 

conceptual models. Not every feedback needs to be incorporated in the new ontology 

version.  There is a rigorous selection process where the stakeholders of the enterprise 

decide what is relevant and what is not.  If the feedback reflects only a localized change, 

then it is not broad enough to incorporate it in the ESO.   

Proposed solution:  In order to satisfy this requirement, CMOE+ incorporates a 

community guidance framework.  Hence, several community members are required to 

review a particular feedback and acknowledge its relevance for the enterprise.   

REQ6: CMOE+ must ensure that ESO remains up to date with the enterprise.  In order to 

achieve that, CMOE+ promotes ontology amelioration with the processed feedback.  The 

feedback selected by the community needs to be actually incorporated in the ontology.  

Otherwise the whole process is meaningless.   

Proposed solution:  CMOE+ framework needs to provide guidelines on how to 

incorporate those changes and how to manage all the related issues such as ontology 

versioning, and updating models already connected to the ontology. 



pg. 43 

 

REQ7: CMOE+ must maintain a semantic link between the modeling elements and the 

ontological concepts.  This link represents a connection between the model and the 

ontology which allows achieving semantic alignment even if different wording is used.  This 

type of semantic connection allows the modeler to exercise their freedom in labeling the 

modeling elements with labels different from the ones found in the ontology.  Even though it 

is a best practice to reuse ontology terminology, some parts of the enterprise might have 

their own specific “jargon” which is not easily eliminated.  Another important usage of this 

semantic connection is the ability to track affected models during ontology upgrade to a 

newer version.  When particular concepts in the ontology are altered or deleted, the 

semantic link refers to the models where those altered or deleted concepts were utilized, 

allowing the modelers to take the necessary action. 

Proposed solution:  to satisfy this requirement, the implementation of CMOE+ must 

establish a link between all modeling elements in different models, and the ESO 

concepts they refer to. 

2.3			Development	of	CMOE+	

The previous section, Section 2.2, has established the requirements for CMOE+ which 

satisfies GOAL1 described in Section 1.4.  This current section commences with presenting 

the two cycles and the phases constituting CMOE+ framework which is also a part of GOAL1.  

Next, phases concerning the conceptual modeling part of CMOE+ (Sections 2.3.1.1, 2.3.1.2, 

and all subsections of Section 2.3.2) are elaborated in detail to satisfy GOAL2.   

The CMOE+ framework was built in iterations.  First the high-level phases were developed 

based on the proposed requirements and inspired by the existing literature.  Every time the 

framework was tested with a different modeling language, the gained experience has 

contributed to a better definition of its phases, and allowed making more concrete choices 

and decisions.  Figure 4 below shows that CMOE+ consists of two cycles: an Ontology 

Evolution Cycle and a Conceptual Modeling Cycle.  Both cycles are divided into several stages 

and frequently interact and intervene with each other.  The flow of CMOE+ interchanges 

between phases of the two cycles, hence it is not possible to separate those cycles; they run 

in parallel. 

 

The Ontology Evolution Cycle is responsible for obtaining the initial version of the ontology, 

maintaining it, and adapting it according to the changes in the enterprise.  In the beginning 

of this cycle, the enterprise – specific and foundational ontologies are selected (or created).  

Those ontologies are formalized in an appropriate ontology representation format (RDF, 

OWL, XML, etc.), and stored for further use.  Optimal ontology storage is vital for the 

operation of CMOE+ as it facilitates (or hinders) the access and retrieval of the ontology.  

During the modeling process, stored ontologies are accessed by the recommendation 



pg. 44 

 

services.  Those services are specifically designed algorithms which search the ontology for 

suggestions for labels of modeling elements.  Additionally, this cycle is responsible for 

gathering and evaluating feedback on the ESO.  The evaluation is performed by a community 

of directly involved stakeholders.  Finally, the feedback which passed the evaluation is 

properly incorporated in the ESO creating a new version.  The ontology evolution cycle is 

responsible for maintaining various versions of the same ESO to ensure consistency among 

models created based on different versions. 

The Conceptual Modeling Cycle facilitates conceptual model creation based on the ESO, and 

monitors the quality of the created model.  Before the CMOE+ tool is at the modeler’s 

disposal, ontological analyses of the modeling language(s) used for model creation need to 

be performed. The purpose of this step is to align the different modeling languages and the 

ESO.  This alignment is utilized later by the recommendation services of the Ontology 

Evolution Cycle.  The Conceptual Modeling Cycle is responsible for assisting the modeler in 

the model creation task by accessing and presenting the ESO ontology in an optimal way.  

The optimal representation is achieved with the help of the recommendation services 

(presented in Section 2.3.1.2).  Finally, all created models are evaluated against quality 

standards of the enterprise.  Conceptual models with poor quality are not entitled for 

feedback collection, and will be redesigned.     

 

Figure 4: Different phases of CMOE+, and the interaction between them 



pg. 45 

 

As suggested by Hevner and colleagues in their Information Systems Research Framework 

(Hevner et al. 2004), every IS research is expected to utilize an existing research presented in 

the knowledge base.  The knowledge base incorporates existing foundations and 

methodologies established by prior research.  The knowledge base for our research is 

presented in Figure 5.  This knowledge base featuring existing established literature 

consulted while developing various phases of CMOE+, and while instantiating it for different 

modeling languages.   In the reminder of this section, we will describe each phase in more 

detail and point out how they are based on existing literature.  

 

 
Figure 5: IS research framework followed during the development of CMOE+ 

2.3.1			Ontology	Evolution	Cycle:	

This cycle constitutes of four phases: Ontology setup, Ontology storage, Community – based 

ontology feedback evaluation, and Ontology evolution  



pg. 46 

 

2.3.1.1			Ontology	setup	

During this phase the ontology engineer decides which foundational ontology, and (initial) 

ESO to use.  Both ontologies are very important and their choice will significantly impact the 

whole framework.  The selection of those ontologies, and the ontology representation 

format is free.  However, there are several factors to consider.  In the best case, an ESO is 

already available within the enterprise and can thus be used.  If not available, an ESO can be 

created from existing business resources (e.g., glossaries, vocabularies, informal sources 

such as excel files of use case descriptions), or alternatively, an available domain ontology 

(domain of the enterprise) can be used as a starting point.  The latter will subsequently 

evolve into the ESO as it is used within the iterations of CMOE+.  The selected ESO may or 

may not be already mapped to a foundational ontology.  Establishing those mappings is a 

very important task as the foundational ontology acts as a domain independent 

intermediary between the ESO and the selected modeling language (Section 2.3.2.1).  

Additionally, it facilitates operation of the recommendation services (Section 2.3.1.2).  

A foundational ontology is an ontology that describes universally agreed upon, high level 

concepts and relations, such as objects, events, agents, etc. (Doerr et al. 2003).  Hence, it 

adds well – founded semantics and forms the bases for information integration across 

different sources.  Examples of a foundational ontology are SUMO (Niles & Pease 2001), UFO 

(Guizzardi & Wagner 2010a) and Bunge – Wand – Weber (Rosemann & Green 2002).  

CMOE+ does not restrict the selection of the foundational ontology.  However, as it is the 

case for ESO, some choices can significantly reduce the required effort in this phase.  It is 

best to choose a well-established and properly published and explained foundational 

ontology, as this will help in developing a good understanding of the ontology.  In later 

phases of the framework, the same foundational ontology will be utilized to analyze the 

modeling language used for conceptual model creation.  Consequently, it is advised to select 

a foundational ontology  which has proven itself in ontological analyses of modeling 

languages.  Even better, if the ontological analyses of the target modeling language(s) are 

already available.  

In addition to ontology selection, the ontology setup phase is concerned with establishing 

the link (mapping) between the initial ESO (or domain ontology), and the foundational 

ontology.  In other words: performing ontological analysis of the ESO.  In literature, 

ontological analysis are mainly performed on modeling languages and the idea behind that is 

to add a sound foundation to the modeling concepts (Fettke & Loos 2003).  If the initial 

ontology is not yet mapped to the foundational ontology, this will be the major challenge for 

the ontology engineer during this phase.  A good mapping between the foundational 

ontology, the ESO, and the modeling language is a very important factor for the operation of 

recommendation services explained later in this chapter (Section 2.3.1.2).  To evaluate the 

accuracy of grounding the initial ESO in the foundational ontology, the ontology engineer 

can utilize tools such as OntoClean (Guarino & Welty 2002a).  OntoClean was developed to 



pg. 47 

 

assist in validating taxonomies and ontologies.  Additionally, it is used to compare and 

integrate ontologies, and to assist in ontology creation. This methodology is based on 

general, formal notions which can be used with any ontology independently of its domain.   

In order to accomplish this phase, there was a need to search for the optimal core ontology.  

After instantiating CMOE+ several times, for different modeling languages, we decided in 

this project to use the Unified Foundational Ontology (UFO) (Guizzardi 2012) as the 

foundational ontology in CMOE+ for three reasons: (1) the benefits of grounding domain 

ontologies in UFO are well motivated (Guizzardi & Wagner 2008), and several such UFO-

grounded domain ontologies are available, e.g., (Barcellos et al. 2010) (2) UFO is specifically 

developed for the ontological analysis of modeling languages, which plays an important role 

in the next phase of CMOE+.  (3) a variety of such analyses can be found in literature, e.g., 

analyzing BPMN using UFO core ontology (Guizzardi & Wagner 2011), analyzing UML 

(Guizzardi & Wagner 2010a).  Despite this advice, which came by experience, the choice of 

the ontologies is still open and CMOE+ still supports any ontology without restriction.   

Another practical part of this phase is analyzing the selected ESO using the foundational 

ontology.  During the instantiation of CMOE+ we have used as ESO an existing domain 

ontology which we slightly enriched to take it to the level of an enterprise-specific ontology.  

The mappings between the ESO and the UFO are presented in Appendix D.  It is advised to 

start with an enterprise-specific ontology if it can be obtained, as the results will be more 

precise.  However, if obtaining the ESO is very costly, CMOE+ is capable of working with a 

domain ontology.      

2.3.1.2			Ontological	storage	and	recommendation	services	

This phase implies formalizing the ESO and the foundational ontology selected in the 

previous phase, and storing them in a way that facilitates access during the modeling 

process including search, retrieval, and reasoning.  While going through further phases of 

CMOE+, there will be more ontologies that need to be formalized and stored.  The selected 

storage and formalization techniques will have a great impact on the performance of CMOE+, 

therefore they must be selected with a careful consideration.   

 

The first decision to be made is on how to formalize and represent the selected ontologies.  

Nowadays, various ontology representation languages are at the disposal of ontology 

engineers, such as OWL, RDF, XML, OIL, etc.  It might be tempting to opt for the 

representation approach in which the selected ESO is represented.  However, it is advised to 

examine various factors before making the decision, and it might be beneficial to rewrite the 

ESO in another representation language.  The following factors need to be considered while 

selecting the ontology representation approach: 

• It is best to opt for a generally accepted and widely used standard 



pg. 48 

 

• It is preferable if the selected ontology representation languages is compatible with 

several ontology engineering tool.  This allows an ontology engineer to try another 

tool if one tool is not satisfying the requirements 

• Ensure that the features required (such as reasoning, visualization, etc.) are 

supported by the selected representation language  

• Verify whether the ontology representation languages is compatible with the storage 

media to be used 

The second decision to be made during this phase is regarding the ontology storage medium.  

While selecting the appropriate storage media, factors such as performance and 

optimization need to be considered.  Approaches to ontology storage include storing the 

ontologies locally, utilizing a web server for ontology storage, and using specific ontology 

databases.   

Another important aspect to consider during this phase, is formalizing the rules to be used 

by the recommendation services (see next section) in the Rules Ontology (RulesO).  

After extensive experience with the CMOE+ we have selected the Web Ontology Language 

(OWL)4 as ontology representation language for the following reasons: (1) it is a generally 

accepted standard;  (2) Supported by most ontology engineering tools such as Protégé5;  (3) 

supports various reasoning and retrieval features (such as punning) which helped in 

successful instantiation of CMOE+;  (4) offers optimized storage media.  Another choice we 

made is using the Stardog6  ontology database as ontology storage medium.  While 

instantiating CMOE+, the authors have tried all the storage techniques mentioned above, 

and stardog database was proven to work the best.  It supports OWL and the Java 

programming language.  It offers excellent querying performance and allows handling big 

interconnected databases, which makes this technique appropriate for production.   

In order to practically demonstrate this phase, several options of ontology storage were 

examined.  Additionally, it was determined which types of different ontologies are required 

to be stored, and how to formalize them.  For more information on the different ontologies, 

the reader is referred to Section 3.2.3.   

Recommendation	services	

After the ontology is stored, it is accessed by the recommendation services while a 

conceptual model is being created.  Every time the modeler places a modeling element on 

the canvas, several recommendation services cooperate in order to rank the ESO concepts 

and display the most relevant of them on the top of the suggestions list. This list is presented 

to the attention of the modeler only as an advice.  There are no obligations for following the 

                                                           
4 https://www.w3.org/TR/owl2-overview/ 
5 http://protege.stanford.edu/ 
6 http://www.stardog.com 



pg. 49 

 

recommendations presented in the list.  However, considering the variety of cooperating 

recommendation services, those suggestions have a good potential.  Given the extensive 

amount of ESO concepts (which increases with time), relevance ranking of ESO concepts is a 

critical feature. Several approaches to narrowing down the set of available ontological 

concepts can be found in literature.   Most  researchers seem to heavily rely on linguistics 

and natural language processing of modeling elements’ labels to suggest ontological 

concepts (Di Francescomarino & Tonella 2010; Thomas & Fellmann M.A. 2009).  However, 

there are some research works which look beyond linguistics.  Born et al in addition to label-

based matching, consider the context of the modeling element, such as using the lifecycle of 

the domain object to suggest the next modeling activity (Born et al. 2007).  Vazquez et al 

(Vazquez, Martinez, et al. 2013) derive two sets of suggestions: (1) Specific semantic 

annotation suggestions, which are based on a language – independent ontology (2) General 

semantic annotation suggestions, based on a domain ontology.  Both sets of suggestions are 

derived based on the modeling construct instead of the label of the modeling element.  To 

the best of our knowledge, the recommendation services presented in this paper are the 

most comprehensive and they incorporate very diverse aspects of matching.  As it is 

mentioned in the beginning of this paragraph, some researchers focus exclusively on the 

natural language aspect (the label of the modeling element).  And none of the works above 

are using ontological analyses to derive recommendations.     

 

In CMOE+ three different recommendation services are used to rank ESO concepts. Those 

three services were selected because together they offer a comprehensive coverage as they 

exploit label similarity, and construct similarity of the modeling language.  Additionally, the 

Rule-based recommendation service is very flexible and allows configuring rules which were 

not foreseen in advance.  These mechanisms are partly inspired by ontology matching 

techniques (Euzenat & Shvaiko 2013), but are specifically focused to fit within CMOE+ 

framework, where the semantics of the modeling language can be exploited. 

Recommendation services are crucial for a successful adoption of CMOE+, and offer the 

following advantages: 

 

• The ESO can be very extensive, and looking through all its concepts for every 

modeling element can be exhausting.  Hence, displaying the most relevant concepts 

first can significantly reduce time and effort spent on browsing the ontology 

• The suggestions list presents concepts that the modeler might not have thought of 

while creating the model 

• It encourages the modeler from the start to utilize enterprise – specific terminology 

instead of his own jargon 

Recommendation services operate not only based on the model under creation, but also can 

consider the modeling history (previously created models) of the enterprise.   This feature 

was added to CMOE+ during the final iteration (Chapter 4)  



pg. 50 

 

 

Figure 6: Recommendation services 

Recommendation services operating within CMOE+ are illustrated in Figure 6.  Every 

modeling element created by the modeler, is examined by three recommendation services:  

Model language – based recommendation service is concerned with the construct type of 

the modeling element.  This recommendation service utilizes the Core (foundational) 

ontology (CoO) as an intermediary to connect the Model Language Ontology (MLO) to the 

ESO.  Label – based recommendation service operates with the label of the modeling 

element and applies string match and synonym search to find the matching ESO concepts.  

Finally, Rule – based recommendation service examines the location of the modeling 

element within the model.  Additionally, it can be configured to include other models within 

the model base of the enterprise formalized as Model Ontologies (MoO).  It utilizes the 

ontology with predefined rules (RulesO) to find the matching ESO concept.  The modeling 

process starts with initially predefined rules.  However, those rules are configurable, and can 

be modified at any point of time. 

Every recommendation service calculates a relevance score (between 0 and 1) for each ESO 

concept, with respect to the selecting modeling element. Subsequently, the overall 

relevance score is calculated using a weighted average of all individual scores. This 

corresponds to the formula below:  



pg. 51 

 

���������	�
�������
� = 	
���� + �������� + ���� + ������

�� +���� +�� +���

 

Where: 

����: the score and weight of string match 

��������: the score and weight of synonym match 

����: the score and weight of construct match 

������: the score and weight of neighborhood based match 

It is important to note that the optimal weight and combination of recommendation services 

depends on the domain of the enterprise. For some domains a particular recommendation 

service might be more relevant and therefore assigned a higher weight.  Within CMOE+ the 

final relevance score can be reconfigured to match preferences.  Additionally, more 

experiments are needed to find the optimal score. 

When the relevance score of every ESO concepts is calculated, the concepts are ranked and 

presented to the modeler.  There are several possibilities to visually represent the ranking.  

One option is to display the most relevant concepts on the top of the suggestions list.  In this 

case the modeler will see more relevant concepts from the beginning without the need to 

scroll throughout the whole ontology.  The drawback of this method is that the order of the 

ESO concepts will change for every modeling element thereby confusing the modeler.  An 

alternative of this display approach is to preserve the order of ESO concepts while changing 

the color, or otherwise highlighting the most relevant ESO concepts in the suggestions list.  

The benefit of this approach is that the order is fixed and will appear more familiar to the 

modeler.  The disadvantage is the need to scroll through the whole list to view all the 

relevant concepts.   

Offered recommendation services are very general and can operate with different 

ontologies and modeling languages.  This gives CMOE+ its flexibility and facilitates its 

adaptation.  Every recommendation service focuses on a different aspect of matching, 

thereby offering a comprehensive approach. Next, the different recommendation services 

will be described in more detail.  

1) Model Language Recommendation Service 

The key element of this recommendation service is ontological analyses of the conceptual 

modeling language used (described in Conceptual Modeling cycle).  The ontologies utilized 

here are the ESO, the foundational (core) ontology (CoO), and the model language ontology 

(MLO).  As presented in Figure 7, when the modeler selects a particular modeling element, 

this recommendation service operates by extracting ESO concepts which belong to the same 

type (of CoO) as the construct of the selected modeling element.  Model language 



pg. 52 

 

recommendation service assigns a relevance score of 1 to ESO concepts of the same type, 

and the score of 0 otherwise. The success of this recommendation service depends on the 

selected foundational ontology; whether it is well-suited for ontological analyses, and offers 

an accurate correspondence between the ESO and the modeling language.   Additionally, the 

success of this service largely depends on the ontology engineer performing the analyses, 

and their understanding of the selected foundational ontology.   

 

Figure 7: Model language-based recommendation service 

2) Label – Based Recommendation Service 

This recommendation service utilizes natural language processing techniques to analyze the 

label of the selected modeling element.  As depicted in Figure 8, the analyses include two 

parts: (1) finding synonyms and (2) calculating lexical distance.   First, the lexical distance is 

calculated between the label of the selected modeling element and every ESO concept.  

Considering Figure 8 below, the selected modeling element is labeled as “task”.  This label is 

compared against every concept within ESO, and the lexical distance is calculated using a 

selected edit distance algorithm.  Next, synonyms are extracted for every ESO concept, and 

the lexical distance is calculated for those synonyms.  Revisiting Figure X, synonyms of each 

ESO concept are extracted using a pre-configured dictionary.  The resulting synonyms are 

compared to the string “task” and the lexical distance is calculated.  This allows finding ESO 

concepts such as “assignment”, “work”, “duty”, “effort”, etc., which are lexically similar to 

“task”, but would not be discovered using lexical distance calculating algorithm.  Finally, for 

every ESO concept, the maximum lexical distance is used to determine the order of the 

concepts in the suggestions list.  The score assigned to every ESO concept by the lexical 

distance algorithm is between 0 and 1.  Among all the ontologies used within CMOE+, only 

the ESO is consulted at this stage.   

Approaches similar to Label – based recommendation service are found in the literature.  (Di 

Francescomarino & Tonella 2010) divides the label of the modeling element into verb and 



pg. 53 

 

object and looks for their match in the ontology.  (Born et al. 2007) utilizes a combination of 

text and name matching techniques in their Name – based matching algorithm.  (Niles & 

Pease 2013) offers a methodology to align WordNet (a linguistic database) to a foundational 

ontology. 

This recommendation service is very flexible and allows configuring different natural 

language processing algorithms.  After various instantiations of CMOE+, it was decided to 

use Jaro-Winkler distance (Winkler 1990), which is supported by the current version of 

CMOE+.  For synonym retrieval, it is advised to use WordNet (Miller 1995) as it is a generally 

accepted, domain independent lexical database.  However, it is possible to configure a 

domain-specific dictionary if required.  And it is possible to manually add customized 

synonyms.  The success of this recommendation service depends on the text matching 

algorithm used, and its suitability to the labeling style.  It is preferable to use domain-specific 

dictionary, or extend WordNet with domain-specific synonyms.  Otherwise, the desired 

results might not be achieved.   

 

Figure 8: Label-based recommendation service 

3) Rule – Based Recommendation Service 

The Rule – based recommendation service depends on the matching rules which are defined 

and formalized in the  Rules ontology (RulesO), and configured earlier during the Ontology 

storage phase.  The rules can utilize different type of information that can have its origin in 

the used modeling language, the position of the selected element in the complete model, 

and the relationship among previously created models.   Following are two examples of rules 

operating based on the location of the modeling element within the model, its relation to 

UFO, and annotation of other modeling elements in the same model.  BPMN modeling 

language is used, as those rules are mostly language specific: 

1. To create a BPMN message construct that results in transmitting a message between 

a task or event of a pool and another pool, the suggested ESO concepts (relevance 



pg. 54 

 

score 1) are corresponding to UFO relators mediating between ESO concepts 

selected to annotate the aforementioned BPMN pools.   

 

2. For creation of a BPMN task construct, the suggested ESO concepts are most likely to 

be related through UFO material relations to the pool where the task is located. The 

suggestions can be either UFO quality types of the concept annotating that pool or 

UFO relators relating the ESO concept used to annotate the aforementioned BPMN 

pool to any other ESO concept.   

 

As presented in Figure 9, after capturing a particular modeling element, the reasoner applies 

the rules and operates on different ontological files (including the ESO, RulesO formalizing 

the rules, Model Ontology (MoO) which represents the model under creation), and 

previously constructed models to create a repository with new annotations.  Those 

annotations are displayed as suggestions to the modeler.  A new rule can be added and 

configured at any time.   

The rule-based recommendation service can benefit greatly from the existing research on 

construct correspondence among different modeling languages.  Configuration of construct 

correspondence will allow the modeler to benefit from other models created within the 

enterprise.  It sounds very obvious to consider existing models of the same type.  For 

example, if a modeler is constructing a process model, he can benefit from the existing 

process models within the enterprise as they may contain tasks, or even complete sub 

processes of the process model under creation.  However, not only models of the same type 

are perceived useful.  Researchers are establishing connections between models of different 

types, in different modeling languages, representing various aspects of an enterprise.  A few 

examples are: Endert et al map process models represented in BPMN to Agents and their 

attributes (Endert et al. 2007).  Koliadis et al map BPMN constructs to i* (goal modeling 

language) constructs  (Koliadis et al. 2006).  Dijkman et al mapping BPMN models to Petri net 

(Dijkman et al. 2007).  Those construct mappings can be formalized in the RulesO ontology in 

the beginning of this phase, and utilized by the Rule – based recommendation service.  

As we opted for OWL as ontology representation language, we are using Semantic Web Rule 

Language (SWRL) to formalize the rules in RulesO file.  SWRL is the preferred rule language 

to be used in combination with OWL. 



pg. 55 

 

 

Figure 9: Rule-based recommendation service 

2.3.1.3			Community	–	based	ontology	feedback	evaluation	

As it was mentioned before, CMOE+ framework aims to create semantically aligned 

conceptual models based on ESO, while simultaneously enriching the ESO using feedback 

captured from those models.  In this thesis, only the direction concerning conceptual 

modeling task is addressed.  Capturing feedback and utilizing it for ESO amelioration is a 

future work.  This phase together with the Ontology evolution phase are only highlighted 

without diving into details.  Hence, this Section together with Section 2.3.1.4 aim to satisfy 

research GOAL1.     

This phase only starts if the resulted conceptual model satisfies the expected quality 

standards (when the Conceptual Modeling Cycle concludes), meaning that it correctly 

reflects the purpose it was designed for, and all the statements in the model are valid within 

its domain. This phase of the Ontology Evolution cycle, and the next phase (Ontology 

evolution) are based on the methodology of Zablith (2015).  When the model is complete, 

two files are created and stored in the system for the purpose of extracting feedback.  The 

first file represents the created model and the ESO concepts selected for the model 

annotation (annotation is explained in Section 2.3.2.2).  It is stored as model ontology (MoO) 

represented in the selected ontology representation language. This file is processed in order 

to extract any possible feedback which is potentially useful and can be incorporated into the 

ESO.  A possible feedback is a listing of the elements from the model that were not 

annotated by ESO concepts.  As they were not annotated, the reason might be that there is 

no equivalent for them in the ESO.  The second file is the log file which incorporates events 

occurred during model creation.  The log includes suggestions derived by the 

recommendation services for every modeling element, suggestions accepted by the modeler, 

and model annotations deleted by the modeler.  The log file helps to evaluate the work of 

the recommendation services, and gather feedback on deleted annotations.  If an 



pg. 56 

 

annotation was deleted, it implies that the modeler found the appropriate ontological 

concept, but was not content with the name assigned to this concept in the ESO.    

Both feedback files are first processed by the ontology engineer who extracts the candidate 

feedback which is potentially useful for updating the ESO.  This feedback is made available 

for a selected group of stakeholders (community), and is subject to discussion, until finally a 

consensus is reached whether or not the proposed change(s) should be included (such as 

new concepts added) in the new version of the ontology. The community will discuss the 

proposed concepts such as their usage, definition and usefulness within the enterprise.   

Within the ontology evolution cycle of (Zablith et al. 2015), the Community-based ontology 

feedback evaluation phase corresponds to the “Detecting the Need for Evolution” phase. In 

this activity, Zablith’s ontology evolution cycle makes a distinction between bottom up 

detection approaches which employ automated techniques to analyze data sources (e.g. text, 

databases) and ontology application usage documents, and top-down approaches where 

changes are dictated by domain experts. In CMOE+ both types are combined, as the model 

ontology can be considered as an external data source that contains new terms and relations 

relevant for ESO evolution, and the log as a usage document of the ESO indicating how the 

ESO interacts with the modeler. 

As community members are typically not co-located at the same physical location, and the 

aim is to progressively reach a consensus about what is needed by the community, the 

Delphi approach (Gupta & Clarke 1996) is used. This approach is perfectly suited to capture 

collective knowledge and experience of experts in a given field, independently of their 

location, and to reach a final conclusion by consensus. More specifically, consensus is 

reached by commenting on the feedback in 3 cycles.  Three cycles were chosen because 

studies show that most changes in responses occur in the first 2 rounds (Gupta & Clarke 

1996).  In every cycle comments are assigned a score, and when all three cycles are 

accomplished, a decision is taken whether to incorporate feedback or discard it.  Only in case 

the community is not able to reach a consensus, the final decision is made by community 

members with a high level of trust. A system for assigning trust credits to community 

members is foreseen.  If negotiation upon the feedback progresses slowly, the process may 

be terminated without accomplishing the predefined number of cycles.  In this case highly 

trusted, authorized community members are responsible to make a decision. Another useful 

approach is DOGMA-MESS, a collaborative ontology engineering method that contains a 

relevance scoring mechanism used to create consensus between different experts (de Moor 

et al. 2006). 

2.3.1.4			Ontology	evolution	

For this phase of CMOE+, only the general guidelines are established in this thesis.  More 

concrete instantiation is a future work. 

 



pg. 57 

 

After the feedback verification is performed, the ontology engineer incorporates the 

approved feedback into the enterprise ontology following Zablith’s ontology evolution cycle.  

This procedure is executed in four steps. First, the suggested ontology changes are 

translated into concrete ontology change operations. For instance, the ontology engineer 

needs to determine the place of a new concept in the ESO hierarchy, and the relations with 

existing concepts. Second, the ontology changes need to be validated by the ontology 

engineer at two different levels: 1) domain-based validation and 2) formal properties based 

evaluation. The domain-based validation by the ontology engineer complements similar 

analyses executed by the domain experts in the previous phase of the ontology engineering 

cycle of the CMOE+ framework. The formal properties based evaluation evaluates whether 

the proposed changes do not violate the imposed integrity constraints of the ESO. Third, the 

ontology engineer needs to evaluate how the performed ontological changes will impact 

external artefacts that are dependent on the ontology.  Additionally, costs and benefits of 

performing the changes can be analyzed.  Fourth, the ontology engineer needs to record the 

performed change in order to make it possible to restore a previous version of the ESO when 

needed and trace back the history of the ontological entities. For all these steps different 

techniques and tools have been proposed in the ontology evolution literature.  

 

It is worth mentioning that the ontology engineer does not interfere in feedback verification. 

Their mission is limited solely to incorporating the final results into the ontology in a 

syntactically correct manner.  Once a considerable amount of feedback is incorporated, a 

new ontology version is proposed. The new ontology incorporates new 

concept/relationships, updates lacking/incomplete ones, and/or removes irrelevant once, as 

the domain evolves or new insights are reached by the expanding community. 

2.3.2			Conceptual	Modeling	Cycle	

This cycle incorporates three phases: Ontological analyses of the modeling language, 

Conceptual model creation, and Conceptual model evaluation.  

2.3.2.1			Ontological	analyses	of	the	modeling	language	

This is the first phase of the Conceptual Modeling Cycle.  During this phase, the ontology 

engineer performs ontological analysis of the modeling language selected for model creation.  

The modeling language is analyzed using the same foundational ontology selected in the 

Ontology Evolution cycle.  

 

The idea of ontological analyses of conceptual modeling languages was introduced in the 

eighties and has since then frequently been used to evaluate and reengineer conceptual 

modeling languages. The pioneers in ontological analyses were Wand and Weber as they 

constructed and applied the Bunge Wand Weber (BWW) ontology (Wand & Weber 1988).  

Later, BWW was widely used to analyze modeling languages.  For example, it was utilized by 



pg. 58 

 

Opdahl and Henderson – Seller (Opdahl & Henderson-Sellers 2002) to analyze UML, and by 

zur Muehlen et al (zur Muehlen et al. 2007) to analyze Simple Rule Markup Language (SRML) 

and Semantics of Business Vocabulary and Business Rules (SBVR).  Prevalently, ontological 

analyses were used as a tool to identify flaws in the semantics of the modeling language.  

Santos et al (Santos et al. 2013) identify two main reasons for this based on the literature: (1) 

conceptual models are created with the aim to represent a part of reality according to a 

certain conceptualization, (2) foundational ontology classifies domain – independent 

categories which can be used to articulate those conceptualizations of reality.  Hence, 

conceptual modeling languages need to offer modeling elements reflecting conceptual 

categories defined in the foundational ontology.  In literature, ontological analyses of 

modeling languages are used for the following purposes: 

 

• To provide a rigorous definition of the construct of a modeling languages in terms of 

real-world semantics 

• To identify inappropriately defined constructs 

• To recommend language improvements which reduce lack of expressivity, ambiguity, 

and vagueness (Almeida & Guizzardi 2013) 

• To develop guidelines for the usage of modeling language constructs (Guizzardi & 

Wagner 2010b) 

• To facilitate automated reasoning (Kaneiwa et al. 2007) 

• To promote integration and interoperability of different modeling languages 

analyzed with the same foundational ontology (Harzallah et al. 2012) 

• To combine modeling languages to obtain an optimal representation for a given 

domain (Harzallah et al. 2012) 

 

According to Wand and Weber (Wand & Weber 2002), there needs to be a one-to-one 

correspondence between concepts of the foundational ontology, and constructs of the 

conceptual modeling language.  If this correspondence cannot be achieved, the modeling 

language is likely to contain the following semantic issues: 

 

1. Construct excess: occurs when a modeling language construct does not correspond to 

any concept of the foundational ontology 

2. Construct overload: if particular modeling construct corresponds to several 

ontological concepts 

3. Construct redundancy: when several modeling constructs can be represented by a 

single ontological concept 

4. Construct deficit: exists when there is an ontological concept which cannot be 

covered by any of the modeling constructs 

 



pg. 59 

 

In addition to the “conventional” usage of the foundational ontology in analyzing conceptual 

modeling languages, some foundational ontologies were specifically created to contribute 

directly to a particular domain instead of analyzing the modeling language used to model 

this domain.  For example, Perdinaci et al (Pedrinaci et al. 2008) have established a core 

ontology for enhancing Business Process Analyses domain.  Jureta et al (Jureta et al. 2009) 

created an ontology for Requirements Engineering.  Kaniewa et al (Kaneiwa et al. 2007) 

proposed a foundational (upper) ontology to capture events.  And Nardi et al developed a 

service ontology based on UFO core ontology (Nardi et al. 2013).   A weakness of ontological 

analyses is that it is largely an informal process, and different ontological analyses are not 

comparable together (Gehlert & Esswein 2007).   

 

As mentioned above, ontological analyses are typically used for analyzing the semantics of 

the modeling languages, identifying flaws, and proposing alternatives.  However, within the 

CMOE+ framework, ontological analyses of the modeling language are used for a different 

purpose.  CMOE+ does not aim at evaluating the semantics of modeling languages.  Selection 

of the conceptual modeling language is up to the modeler and CMOE+ does not intend to 

show the flaws of the modeling language.  Within this framework, the foundational ontology 

offers domain-independent semantics which bridges between the ESO and the modeling 

language, thereby enabling the operation of modeling-language based recommendation 

services.  

 

Within CMOE +, the task of executing an ontological analyses of the modeling language falls 

on the shoulders of the ontology engineer.  For some modeling languages the analyses are 

already available in literature can be reused.  Some examples are analyses of UML in (Opdahl 

& Henderson-Sellers 2002) , and of BPMN by Guizzardi and Wagner (Guizzardi & Wagner 

2011).  Otherwise, the ontology engineer performs this task based on their understanding of 

the semantics of foundational ontology concepts, and the semantics of constructs of the 

modeling language.  Performing ontological analyses is a difficult task.  Here are the main 

challenges faced (Harzallah et al. 2012): 

 

1. Foundational ontologies are high – level and complex artefacts, which makes them 

hard to understand 

2. There are several well established foundational ontologies, and the result of choosing 

one over the other cannot be objectively assessed 

3. Sometimes constructs of modeling languages do not have a formal and precise 

definition.  Hence, it can be challenging to comprehend the semantics behind it, and 

its possible usages.     

 

If the ontology engineer was not able to reuse existing ontological analyses, the literature 

can still be a source of support;  there are available frameworks which guide the ontology 



pg. 60 

 

engineer during the ontological analyses task.  An example is (Gehlert & Esswein 2007) 

which formalizes ontological analyses as a set of mathematical functions between 

ontological concepts and modeling constructs, and suggests formal requirements for 

ontological analyses to comply.  Another example is the UEML approach suggested by 

Harzallah et al (Harzallah et al. 2012) which offers rules and guidelines for the ontology 

engineer to follow.  Every modeling language needs to be analyzed only once.  Afterwards, 

the analyses are reused.    

 

CMOE+ supports any foundational ontology without restriction.  While experimenting with 

CMOE+, we found the Unified Foundational Ontology (UFO) to be the best fit.  A detailed 

description of this ontology is found in (Guizzardi 2005). UFO was chosen because it was 

already used to analyze many modeling languages and approaches, which increases the 

chances of reusing existing analyses instead of taking the burden of performing them from 

scratch.  For instance, UFO was used to analyze Business Process Modeling (BPMN) 

(Guizzardi & Wagner 2011), Unified Modeling Language (UML) (Guizzardi 2005), 

ARchitecture for integrated Information Systems (ARIS) (Santos et al. 2013), Recourse-Event-

Agent (REA) (Gailly et al. 2009), and goal modeling (Guizzardi et al. 2008).  Despite the 

previously mentioned advantages of UFO, it is still complex and hard to understand specially 

if you are not an experienced ontology engineer.  Ontological analyses of modeling 

languages no doubt has advantages.  However, its success depends on the selected core 

ontology and the correctness of the analyses. 

 

As CMOE+ is used for more modeling languages, the ontological analysis of those different 

modeling languages will be formalized as OWL ontologies, and stored in the system for reuse.  

One ontology is created for every modeling language and will be reused for all conceptual 

models created in this language.  Such an ontology contains the mappings between the 

constructs of the modeling language, and the concepts of the selected foundational ontology.   

 

More practical details regarding this phase are presented in Section 3.3.1. 

2.3.2.2			Conceptual	model	creation	

The conceptual model creation phase is responsible for creating conceptual models based 

on the ESO.  It utilizes the recommendation services described in the Ontology storage phase 

of the Ontology Evolution cycle, and is performed by the modeler.  It is important to keep in 

mind that the modeler may not be acquainted with the concept of “ontology”, and this 

should not influence the modeler’s ability of benefiting from CMOE+.  Hence, the utilization 

of the ESO needs to be encapsulated in a user-friendly interface which conceals any 

complications related to ontology usage.     

 

During this phase, the modeler proceeds with creating a conceptual model based on the ESO.  

With every modeling element placed on the canvas, the modeler receives an ordered list of 



pg. 61 

 

ESO concepts. The order in the list is determined based on the weighted average of the 

scores every ESO concept acquires from the recommendation services.  ESO concepts with a 

higher score are positioned on the top of the list (or otherwise distinguished from the rest).  

Those ESO concepts are considered suggestions for the selected modeling element.  The 

modeler is free to accept or discard the suggestions.   Additionally, the modeler has no 

obligation to select the suggested concepts.  He/she can opt for any other ESO concept with 

a low(er) relevance score.  The advantage of ordering concepts in the suggestions list is that 

the most potentially relevant concepts come first, thereby saving the time of the modeler 

from looking through the whole ontology.  The suggestions can also be perceived as a hint to 

the modeler to use a particular ESO concept as a label for the selected modeling element.  If 

the modeler choses one of the ESO concepts (a suggestion, or a concept with a low 

relevance score), the selected modeling element is automatically annotated with the 

corresponding ontological concept.  Annotation of modeling elements with ESO concepts is 

an important part of achieving semantic alignment among conceptual models created within 

an enterprise as it keeps a semantic link between models and ESO.   

 

When the modeler annotates a modeling element, its label is updated with the name of the 

selected ESO concept.  However, the modeler always has an option to rename - change the 

label of - the modeling element.   Even if the label is changed, the connection with the 

relevant ESO concept is maintained due to the annotation.  If none of the ESO concepts is 

suitable for a particular modeling element, the modeler assigns a label of his choice and 

skips the annotation.  

 

 A significant amount of work on semantic annotation of conceptual models is rooted into 

the Semantic Process Management field (Wetzstein et al. 2007; M Hepp et al. 2005) which 

aims to improve the level of automation in implementation, execution, and monitoring of 

business processes by enriching process models and other process artefacts with semantic 

annotation.  Even though this discipline is focused solely on process models, it offers some 

useful ideas which CMOE+ can reuse.  According to Thomas et al (Thomas & Fellmann M.A. 

2009), semantic  modeling offers several advantages: 

 

• It facilitates distributed modeling.  Annotating processes with concepts from a well-

established ontology leads to a unified interpretation of models by different people 

• It improves model management.  Model annotation systematized access and 

supports search and selection of models.  It makes models machine – readable and 

processible, and allows more complete results for model search queries  

• Contributes to IT – business alignment.  Semantic annotation improves and 

simplifies coordination between business and IT by using vocabulary which is 

accepted by both sides, therefore avoiding misunderstanding of requirements and 

other documents   



pg. 62 

 

 

In the literature, semantic annotations are found to be applied in two ways: through 

ontological formalization of the modeling language, such as ontological formalization of the 

BPMN modeling language presented in (Abramowicz et al. 2007a; Chow 2011; Rospocher et 

al. 2014).  The second approach to augmenting models with semantics is by applying the 

annotation to the model itself, either during model creation, or by annotating existing 

models (Di Martino et al. 2016; Vazquez, Martínez, et al. 2013).   Even though the ideas from 

literature were interesting, many were applied after the model has been created thereby 

requiring additional effort.  Additionally, ontological concepts are not always prioritized, 

which forces the modeler to browse through the complete ontology.   

 

Within CMOE+, the annotation is (automatically) applied to the model directly during the 

modeling process, by the modeler him/herself when they select the appropriate ESO 

concept.  Hence, normally, no additional effort is required after model creation.  However, it 

is still possible to annotate existing models within the enterprise which were created outside 

the CMOE+ framework.  An easy to use interface and a simplified approach to displaying the 

ontology allows the annotation to be performed by the modeler herself, without the need 

for the model analyst such as in (Vazquez, Martínez, et al. 2013).  The automated 

suggestions derived by the recommendation services in the Ontology Evolution cycle ease 

the burden of selecting the appropriate ontological concept for annotation.  Within CMOE+, 

we are only concerned with annotating the content of the model as it suffices the purpose of 

the annotation.   

 

It is very important to follow the Conceptual model creation phase as it is prescribed in 

CMOE+; by utilizing the ESO and by adding annotations.  The annotation has two main 

benefits: First, it improves consistency of labels used to label modeling elements created by 

different modelers.  Models within one enterprise are created by modelers with various 

backgrounds and mindsets.  Every person has their own jargon and modeling style.  

Depending on the ESO for label creation brings unity to all those modeling styles and 

patterns.  Second, due to the annotation, all models are connected through one central hub: 

the ESO.   

  

While this phase is operating, two feedback files are being created simultaneously, and are 

used later in the Community-based ontology feedback evaluation phase from the Ontology 

Evolution cycles.  The first file is the Model ontology (MoO) representing the model being 

created.  This file is also utilized by the Rule-based recommendation service (Ontology 

storage phase).  The second file is the log file which deals more with the suggestions derived 

by the recommendation services.  This file includes: 

 

• Suggestions (recommendations) generating for a particular modeling element 



pg. 63 

 

• Accepting a recommendation by annotating a modeling element 

• Deletion and replacement of model annotation: which can be an indication that this 

ESO concept is renamed or is outdated 

 

CMOE+ currently supports semantic annotations using OWL.  We have recommended using 

OWL as an ontology representation language in the Ontology Evolution cycle.  OWL proved 

to be very efficient in this phase as well because the reasoning and query services supported 

by OWL were able to derive useful suggestions.   However, this might be due to the nature of 

the ontologies used within this project.  OWL might not be absolute best for everything.  

Hence, one needs to take the advice of using OWL cautiously. 

 

In order to be able to demonstrate this phase in practice, a CMOE+BPMN tool was 

implemented to create BPMN models based on ESO (Section 3.3, Figure 8).  The tool 

incorporates an automatic annotation mechanism (Section 3.2.4).  Additionally, the tool 

creates and store both feedback files explained above in this section.   A prototype of 

CMOE+i* tool (Section 4.4) was implemented to allow creation of i* models. 

2.3.2.3			Conceptual	model	evaluation	

During the model quality evaluation phase, the quality of a created conceptual model is 

evaluated against the quality benchmark of the enterprise.  This phase is essential because:  

1. It ensures that the created conceptual model corresponds to quality standards and 

can be further utilized within the enterprise  

 

2. It verifies whether the feedback recorded during the model creation task, is useful 

and potentially worth incorporating into the ESO.  If the quality of the created model 

is poor, the feedback collected from this model will not be very accurate.  Hence, it is 

best to discard this feedback immediately without circulating it through the 

Community-based feedback verification phase.   

The conceptual model evaluation phase can be initiated by the modeler immediately after 

model creation, or by any other stakeholder on existing models.  This phase is accomplished 

by running various predefined quality checks on the model.   Some of those checks are 

performed automatically, some require human intervention.   CMOE+ does not prescribe any 

particular model quality evaluation framework; quality requirements depend on the type of 

the created models and their usage.  Hence, there is no universal framework, and every 

enterprise has the freedom to use their own quality requirements. 

Model quality is an important part of conceptual modeling research, and many frameworks 

and guidelines have been published.  Every framework has its own advantages, motivation, 

and focus.  Some frameworks are generic, and can be used with any type of conceptual 

model (Maes & Poels 2007; Nelson et al. 2011; Shanks & Darke 1997).  Other quality 



pg. 64 

 

frameworks are associated with a particular modeling domain, but independent of a 

particular notation such as (Ayad 2012; Becker et al. 2000; Sánchez-González et al. 2013) for 

the Business Process Modeling domain, and (Levitin & Redman 1995) for Data Modeling.  

The third set of quality frameworks is dedicated to a specific modeling notation.  For 

example, Kesh proposes a quality metrics for evaluating Entity Relationship ER models (Kesh 

1995), while Rolon et al evaluate Business Process Modeling Notation BPMN (Rolón et al. 

2006).  The frameworks mentioned above focus particularly on the final product of modeling 

(the conceptual model itself).  However, researchers such as Moody et al (Moody et al. 1998) 

argue that the process of model creation also has a considerable impact on the end result.  

Hence, one can find frameworks on monitoring the quality of the task of modeling.  One 

example is offered by Wand and Weber where they describe a process of conceptual 

modeling based on the Bunge’s ontology (Wand & Weber 1990).  Another framework for 

evaluating the quality of the modeling process is described in (Bommel & Hoppenbrouwers 

2007). 

 

It is important to note that CMOE+ framework imposes a degree of quality control on the 

process of modeling, as the modeler is guided by ESO during model creation.  However, we 

do not prescribe any particular frameworks for evaluating the process of modeling.  

Regarding the evaluation of the end product, the conceptual model itself, one possibility is 

adoption of a well-known scheme for classifying quality dimensions, the Lindland et al 

framework (Lindland et al. 1994) which makes a distinction between syntactic, semantic and 

pragmatic quality dimensions. Syntactic quality implies correspondence between the model 

and the modeling language.  Semantic quality measures how compliant the model is to the 

domain.  And pragmatic quality is the correspondence between the model and the user 

interpretation of it.   

 

Coming back to the two points emphasizing the importance of this phase (in the beginning of 

this section), the first importance can be satisfied by focusing on measures that fall within 

the syntactic and pragmatic dimension because for the model to be used within the 

enterprise it needs to be correct and understandable. The second point of significance can 

be achieved mostly by focusing on measures that fall within the semantic quality dimension.  

More specifically, the developed model has to correctly reflect the part of the enterprise it 

was designed for.  The fact that a model possesses high semantic quality implies that it 

faithfully represents its domain.  Therefore, the feedback gathered from such a model is 

useful for ontology improvement.  On the other hand, if a model scored low on semantic 

quality, it means that it does not completely satisfy its purpose and reflect its domain.  

Consequently, the feedback gathered from this model will not have a valuable contribution 

to ESO enrichment.  Pragmatic quality also has a role to play in this aspect; if the model is 

hard to understand, it consequently will be challenging to evaluate the feedback. 



pg. 65 

 

This phase has a rather limited scope within this thesis, as it is completely up to the 

enterprise which employs CMOE+ to determine which quality evaluation framework they 

desire to utilize. 

2.4			Correspondence	Between	CMOE+	Requirements	and	Phases	

Table 2 below iterates on the requirements presented in Section 2.2, summarizes the 

importance of every requirement and its added value to the whole framework. The third 

column explains design decisions we took to address every requirement while developing 

the CMOE+ framework.  The last column shows which phase(s) of CMOE+ are responsible for 

each requirement.    

Table 2: Requirements for the proposed framework 

Requirement 

ID* 

Importance Design Decision Responsible 

phase(s) of CMOE+ 

Progress 

REQ1 This requirement is 

important as it 

ensures covering all 

aspects of an 

enterprise, including 

various modeling 

languages and 

modeling approaches 

such as data modeling, 

goal, and process 

modeling  

The framework is 

kept very flexible and 

example 

instantiations are 

provided.  The 

recommendation 

services which derive 

ESO suggestions 

include mechanisms 

operating 

independently of the 

modeling language 

used.  Rule – based 

recommendation 

service allows 

configuration of new 

rules at any stage of 

CMOE+ 

All phases of the 

Conceptual 

Modeling Cycle 

Addressed 

within this 

PhD 

REQ2 Saving time and effort 

and facilitating 

ontology lookup 

Relevance on 

ontological concept is 

calculated using a set 

of configurable 

algorithms.  ESO 

concepts are 

presented to the 

modeler in an 

ordered list where 

concepts with higher 

• Ontology 

Storage 

• Conceptual 

Model Creation 

Addressed 

within this 

PhD 



pg. 66 

 

scores are on the top 

REQ3 Ensuring that 

organizational quality 

standards for 

conceptual modeling 

are maintained 

Incorporation of a 

model quality 

evaluation 

framework, and 

prohibiting low 

quality models to 

proceed through 

further phases of 

CMOE+ 

Conceptual Model 

Evaluation 

Quality 

frameworks 

are available 

in the 

literature, 

and this 

phase will 

not be 

elaborated 

any further 

REQ4 Ability to proactively 

capture any changes 

to the enterprise 

which are presented in 

the conceptual models 

being created.  For any 

change to be captured 

by CMOE+, it first 

needs to feature in 

one of the conceptual 

models created using 

CMOE+ 

Feedback from 

conceptual models is 

stored automatically 

while models are 

being developed.  

This feedback later 

will be used to search 

for relevant updates 

Conceptual Model 

Creation 

Future work 

REQ5 Ensuring that the 

selected feedback 

indeed reflects 

relevant changes 

within the enterprise, 

and not only 

presenting some 

localized, or 

temporary changes 

CMOE+ incorporates 

a community 

guidance framework 

which dictates how 

the feedback is to be 

reviewed 

Community – 

Based Ontology 

Feedback 

Evaluation 

Future work 

REQ6 The purpose of 

establishing the ESO at 

the first place, is for it 

to become a reference 

during model creation.  

Hence, it needs to 

faithfully represent 

the enterprise, and 

reflect the changes 

occurring within that 

enterprise 

The framework offers 

support to the 

ontology engineer 

during feedback 

incorporation and 

management of 

various versions of 

the ontology 

Ontology Evolution Future work 

REQ7 This requirement Semantic links are Conceptual Model Addressed 



pg. 67 

 

allows querying the 

models, and handling 

issues related to 

ontology versioning   

created by means of 

semantic annotation.  

Each element of a 

conceptual model is 

annotated with ESO 

concept selected by 

the modeler 

Creation within this 

PhD 

 

*Requirement IDs correspond to the IDs used in Section 2.2 

2.5			Conclusion	

This chapter presents an overview on how the literature tackles the problem of semantic 

alignment of conceptual models.  It puts forward the requirements for CMOE+ and describes 

the different phases of the framework.  The summary of the phases of CMOE+ and “how to 

proceed” is presented in Table 3 below. 
 
Table 3: Summary of different phases of CMOE+ 

CMOE+ Phase 

 

WHAT         

 is to be accomplished 

HOW 

to proceed 

Phase 1: 

Ontology setup 

• Selecting the ESO and the 

foundational ontology to be 

used throughout the method 

• Grounding ESO in the 

foundational ontology 

• In the ideal situation, the ESO is 

already available within the 

enterprise.  If this is not the 

case, the ontology engineer 

needs to look into available 

business artefacts such as 

glossaries, vocabulary, etc., or if 

there is an existing domain 

ontology which can be reused.  

If nothing of the above is 

present, ESO is constructed 

from scratch following existing 

ontology engineering practices 

• While selecting the 

foundational ontology, there 

are two criteria to consider: 

first, its usefulness for 

grounding ESO (or domain) 

ontologies.  Second, the 

availability of ontological 

analyses of the modeling 

languages used within the 

enterprise with this 

foundational ontology  

• The grounding is performed by 

an ontology engineer.  Existing 



pg. 68 

 

research can be used to verify 

the correctness of the mappings 

(optional)  

 

Phase 2: 

Ontological 

analyses of the 

modeling 

language 

Performing ontological analyses 

of the modeling language to be 

used for model creation with a 

foundation ontology selected in 

Phase 1 

• Look for literature including 

ontological analyses of the 

selected modeling language 

• If literature is not available, the 

ontology engineer can perform 

the analyses based on his 

understanding of the semantics 

of the modeling language 

constructs 

 

Phase 3: 

Ontology storage 

• Selecting the ontology 

representation language 

• Choosing ontology 

representation medium  

• Selecting the optimal 

combination of the 

recommendation services to 

identify the most relevant 

ESO concepts to be used for 

annotating a particular 

modeling element 

• Carefully examine all the 

relevant factors before opting 

for a particular ontology 

representation or storage 

medium 

• Review the algorithms for the 

recommendation services and 

make the necessary adjustment 

according to the chosen 

foundational ontology and 

conceptual modeling language, 

such as configuring a dictionary 

or a customized database for 

retrieving synonyms, and 

adding matching rules to be 

used by rules – based 

recommendation service   

 

Phase 4: 

Conceptual model 

creation  

Creating conceptual models 

based on the ESO 

• Carefully examine the ESO 

recommendations list to choose 

the appropriate ESO concept for 

every modeling element 

• Annotate modeling elements 

with ESO concepts  

 

Phase 5: 

Conceptual model 

evaluation 

Measuring quality of conceptual 

models against predefined 

quality standards 

• Run predefined quality checks 

against the created model 

• Update the model in case of 

reported insufficient quality 

 

Phase 6: 

Community – 

based ontology 

feedback 

evaluation 

Evaluating the feedback 

gathered during model creation.  

This feedback has a potential to 

be used to update the ESO if 

proved useful 

The ontology engineer extracts the 

feedback from the log file, and 

makes it available to the community 

members.  The community 

negotiates upon the feedback 

following a predefined protocol 



pg. 69 

 

 

Phase 7: 

Ontology 

evolution 

Updating the ESO using the 

feedback which deemed to be 

useful in the previous phase into 

the ontology, and creating a new 

ontology version 

o Execute all the necessary steps 

to correctly reflect the obtained 

feedback into the ESO.  Those 

steps can be adding / deleting a 

concept, adjusting a definition, 

adding a relationship, etc. 

o Manage the versioning of ESO 

and ensure compatibility of 

previously created models 

 

 

This chapter puts forward requirements for the framework responsible for establishing the 

symbiosis between conceptual modeling and ontology engineering.  Not all phases of this 

framework were explored within this PhD.  However, when CMOE+ is fully implemented, it is 

expected to deliver the following features:  

 

1. It is suited for different modeling languages, thereby allows creation of different 

types of (semantically annotated) models.  Hence CMOE+ promotes semantic 

alignment of different model types covering all organizational needs, not only a 

particular subset.   
 

2. The framework ensures proper maintenance and enrichment of the ontology 

according to the emerging needs of the enterprise.   
  

3. CMOE+ prescribes guidelines on how to evaluate the candidate feedback before 

ontology enrichment.  The feedback first needs to be processed by ontology engineer 

who extracts candidate feedback, then this candidate feedback is thoroughly 

assessed by enterprise community members.  The approved feedback is used for 

ontology amelioration, and the new version of ESO is evaluated for quality.   
 

4. Recommendation services incorporated within the framework assist the modeler 

during the modeling process in selecting the appropriate ESO concept for model 

annotation.  Recommended ESO concepts appear on the top of the ESO concept list, 

so that the modeler browses them first.  If the appropriate concept is not found, the 

modeler proceeds through the whole ontology.   The ESO can be very extensive and 

selecting a subset of the most relevant concepts can significantly save time and effort.   
 
Within the context of this work the focus was shifted towards the Conceptual Modeling cycle 

(Figure 3).  This research contributes by (1) Offering precise guidelines and description of 

phases related to the conceptual modeling process, and (2) Implementing the previously 

mentioned phases in a tool for BPMN (Chapter 3) and i* modeling languages (Chapter 4), 



pg. 70 

 

and offering an evaluation (Chapter 3).  Additionally, the following contributions are realized 

within this chapter:  

 

• Developing a comprehensive set of recommendation services covering different 

aspects including label similarity, the meta model of the modeling language, and 

more.   Recommendation services are essential in supporting the modeler and 

facilitating access to the ESO. 

 

• Offering a mechanism for an easy to use semantic annotation.  Linking modeling 

elements to ESO concepts is an important aspect of the successful operation of 

CMOE+.  This thesis proposes a mechanism using which the modeler can perform 

annotation without the need to be completely aware of what the semantic 

annotation represents.   Additionally, it does not require knowledge on ontologies. 

 

• Utilizing ontological analyses in practice.  Ontological analyses are widely used in 

theory, and this work allows practitioners to benefit from those analyses by setting 

the guidelines and offering demonstration. 

 

• Experimenting with different ontology storage and utilization mechanisms. 

 

As was mentioned throughout this chapter, CMOE+ relies on the literature,  and aims to 

utilize what is already available.  The framework reuses available foundational ontologies 

and established ontological analyses.  The target audience for CMOE+ are real life 

enterprises, and the purpose is to make it as easy to use as possible within the settings of 

the enterprise.  An enterprise might not possess a qualified ontology engineer as its staff 

member.  Hence, it is important to reuse as much as possible already established material 

from the literature.  Another aspect that was reused is the idea of utilizing the semantic 

annotation as means to link the conceptual models to the ESO.   Finally, several independent 

matching algorithms were reused within the recommendation services.  However, in 

addition to those reused algorithms, the recommendation services incorporate some novice 

algorithms which did not appear in the literature previously (to the best of our knowledge).   

 

CMOE+ offers detailed description and demonstration regarding the phases related to the 

Conceptual Modeling activity.  Phases concerned with the Ontology Evolution remain empty 

boxes which will be addressed in detail in another project.  

 



pg. 71 

 

	 	



pg. 72 

 

	

3	
Recommendation-Based	Process	Modeling 

3.1			Introduction		

Conceptual models are used by enterprises to describe formal aspects of the physical and 

social world for the purpose of communication and understanding (Mylopoulos 1992). As 

the various stakeholders of an enterprise have different backgrounds and knowledge, they 

each use different modeling languages in order to achieve their specific goals. This results in 

conceptual models (e.g. requirements, data, process models) that are not interoperable and 

are hard to integrate (Hahn 2005; Hofferer 2007; J Becker et al. 2009).  

 

To solve this model interoperability problem, researchers from different fields have 

proposed using ontologies, albeit in distinctive ways. One research line proposes enterprise 

ontologies (e.g. Uschold et al. 1998; Geerts & McCarthy 1999), which describes shared 

concepts and relations across enterprises – to promote model interoperability. Enterprise 

ontology facilitates the modeling process by suggesting a limited set of enterprise concepts 

and relationships. However, it also constrains the freedom of the modeler, who is obliged to 

use generic ontological enterprise elements instead of well-known, conventional terms 

within his/her enterprise. Another downside is that the specificities of the particular 

enterprise and its domain may not be reflected in the generic enterprise ontology. 

 

A second research line uses an ontology that is specifically developed for a particular 

enterprise, sector or application. This ontology is used to either suggest labels for the model 

elements (Delfmann 2009; J Becker et al. 2009), annotate the model elements (Thomas et al. 

2009; Born et al. 2007), or achieve a combination of both (Francescomarino et al. 2011). In 

this case, the ontologies describe the concepts, relations and axioms that are typical of and 



pg. 73 

 

shared within a particular enterprise; they should therefore be considered enterprise-specific 

ontologies (ESOs). The main benefits of this approach are that the ontology can be fine-

tuned to the specific enterprise-context and, as opposed to most enterprise ontology 

approaches, no custom modeling elements or language are imposed. The drawbacks are the 

lack of guidance during modeling and the additional effort required (as annotations are 

mostly added after model creation), as well as the fact that the ESO quickly becomes 

extensive and complex, and therefore difficult to manage, keep up-to-date and use. 

 

In this article, we present a novel, holistic approach to assist conceptual modelers within an 

enterprise in creating semantically annotated, better interoperable and integrable models by 

means of an ESO. At the same time, this ESO is maintained and developed in order to reflect 

the evolving enterprise. Essentially, we propose a generic framework called CMOE+ 

(Recommendation-based Conceptual Modeling and an Ontology Evolution Framework) that 

puts the enterprise’s knowledge encoded in the ESO to good use: we use it to recommend 

relevant concepts and relationships to the modeler which can be used as labels for a model 

element, and to automatically semantically annotate the models by means of the chosen 

ESO concepts/relationships. Furthermore, the ESO evolution process is steered by the 

feedback we collect on the use of modeling suggestions. CMOE+ thus establishes a symbiotic 

relationship between conceptual modeling, on the one hand, and ESO maintenance and 

evolution, on the other. With CMOE+, we manage to overcome the drawbacks of both 

above-mentioned research lines by combining their advantages. Firstly, we recognize that a 

well-developed, up-to-date ESO is beneficial for enterprises: apart from contributing to the 

resolution of interoperability issues, it also serves as a knowledge base incorporating 

concepts and relations that are used throughout the enterprise. Secondly, we acknowledge 

that enterprises already have a way of working and that certain workflows, preferred 

modeling languages and artefacts, or IT tools are already in use. Our framework therefore 

does not impose new working procedures or a rigid, generic ontology or custom modeling 

language, but instead is designed to support existing, well-known modeling approaches. 

Thirdly, we recognize that the ESO will contain a large number of concepts and that, as a 

consequence, a recommendation mechanism is needed to keep the effort involved under 

control. We therefore believe that the presented framework incorporates a tangible 

contribution to the state-of-the-art in the field. 

 

As mentioned, CMOE+ is a generic framework: it defines and implements our modeling 

method’s workflow, along with common functionalities (e.g. recommendation functions, 

semantic annotation mechanisms, feedback capturing), and it may be instantiated and 

further specialized to support different concrete modeling languages. In this article, we 

present one such concrete (partial) instantiation, CMOE+BPMN, which provides 

recommendation-based modeling support for business process modeling (BPMN). Finally, 

using an extensive explorative experiment, we evaluate the presented framework, and 



pg. 74 

 

discuss its impact on the semantic quality of the resulting models, the model interoperability, 

the time and effort required, their usefulness, and community acceptance. 

3.2			Recommendation-Based	Conceptual	Modeling	and	Ontology	

Evolution	(CMOE+)	Framework		

The CMOE+ framework was conceived through the Design Science Research Methodology 

(DSRM) (Hevner et al. 2004), a sound theoretical framework that guides design research and 

aims at constructing artefacts that solve real-world problems. CMOE+ is one of these 

artefacts, and is represented in Figure 10. The Java implementation of the CMOE+ 

framework is publicly available (Gailly 2016). It consists of two cycles, the Conceptual 

Modeling (CM) and Ontology Engineering (OE) cycle, and establishes a symbiotic relationship 

between these. This paper describes the development and evaluation of the ontology-

assisted modeling part of CMOE+; the ontology feedback and evolution part will be the 

subject of a forthcoming publication. The next subsections give a detailed description of the 

ontology setup, the ontological analysis of the modeling languages, the ontology storage, 

the recommendation services, and the model creation phases of the CMOE+. 

3.2.1			Ontology	Setup	

The OE cycle commences with the Ontology Setup phase, in which the enterprise decides 

which ESO it will take as a starting point. The ESO can be created by means of an existing 

ontology engineering method (for an overview, see Suárez-Figueroa et al. (2012)) and with 

available business resources (e.g. glossaries, vocabularies, informal sources such as excel 

files of use case descriptions) as input. Additionally, the enterprise may start from an existing 

domain ontology that covers the business domain (e.g. the Resource Event Agent Enterprise 

ontology by Geerts and McCarthy (1999) or the Enterprise Ontology by Uschold et al. (1998)) 

and that is gradually transformed into the ESO. Once developed, the ESO needs to be 

grounded in a core ontology according to good ontology engineering practice (Guarino 1998). 

A core ontology describes universally agreed upon, high-level concepts and relations, such as 

objects, events, or agents (Guarino 1998), and thus provides well-founded semantics, 

facilitates data integration across different (sub-) domains, and forms the basis for 

subsequent interoperable application building. CMOE+ does not prescribe a specific core 

ontology, yet we recommend and provide support for the Unified Foundational Ontology 

(UFO) (Guizzardi et al. 2015) since re-usable analyses of conceptual modeling languages are 

available in the literature. Different approaches and tools are available to ground the 

enterprise-specific ontology in a core ontology. For instance, core ontology patterns can be 

used to develop or analyze ontologies (Ruy et al. 2015; Blomqvist 2005). Other useful tools 

for ontology engineers are ONTOCLEAN (Guarino & Welty 2002b) and OntoUML (Guizzardi 



pg. 75 

 

et al. 2015), which can be used to evaluate the grounding of ontology concepts in the core 

ontology. 

 

Figure 10: Recommendation-based Conceptual Modeling and Ontology Evolution (CMOE+) Framework 

3.2.2			Ontological	Analysis	of	the	Conceptual	Modeling	Language	

The first phase of the conceptual modeling cycle is another initialization phase, in which an 

ontological analysis is performed for the target conceptual modeling language(s) used in the 

enterprise. Different authors have proposed methodologies and frameworks to achieve this 

(Guizzardi 2013; Harzallah et al. 2012; Evermann & Wand 2005b). The purpose of these 

methodologies and frameworks is (1) to provide a rigorous definition of the construct of a 

modeling languages in terms of real-world semantics, (2) to identify inappropriately defined 



pg. 76 

 

constructs, and (3) to recommend language improvements which reduce a lack of 

expressivity, ambiguity, and vagueness (Almeida & Guizzardi (2013). In CMOE+, the goal is 

not to improve the language itself, but to relate the constructs of the conceptual modeling 

language to the core ontology selected in the ontology setup phase. These connections can 

later on be exploited in the conceptual modeling recommendation service (see section 3.4). 

 

Over the years, different conceptual modeling languages have been analyzed with, for 

example, Bunge-Wand-Weber (e.g. UML class diagrams in Opdahl and Henderson-Sellers 

(2002)) and UFO (e.g. BPMN in Guizzardi and Wagner (2011)). Although the added value of 

these ontological analyses have generally been accepted, their translation into conceptual 

modeling practice has been limited. While CMOE+ does not prescribe any particular core 

ontology, it does currently support ontological analyses using UFO or BPMN (see section 4 

for more details) and i* (not reported here). 

3.2.3			Ontology	Storage	and	Recommendation	Services	

Efficient ontology storage is essential in order to easily query and update the ontology and 

ensure efficient recommendation services. Based on our extensive experience with 

implementing the framework for BPMN and i*, CMOE+ currently supports the Web Ontology 

Language (OWL)7 as ontology representation language for various reasons. First of all, it is a 

generally accepted (W3C) ontology language standard, supported by most ontology 

engineering tools (e.g. Protégé) and with APIs for various programming languages. In 

addition, OWL 2.0 supports punning, which is heavily used in our approach (see further in 

this subsection) (Grau et al. 2008). Finally, OWL offers highly optimized storage media, such 

as the Stardog semantic graph database8, which is used as storage medium in CMOE+. This 

database was selected for ontology storage in CMOE+ because of its support for OWL 2.0, 

excellent access and querying performance, and support for Java, which is also used by our 

Eclipse-based modeling tools. Another advantage of Stardog is that it makes CMOE+ ready 

for a future production-level implementation, as it is specifically optimized to handle huge, 

highly interconnected datasets. 

 

The Stardog Database consists of different interconnected OWL ontology files. Panel A of 

Figure 11 gives an overview of the different ontology files and their relationships, while 

Panel B further explains the different ontologies by means of some examples: 

 

• The Core Ontology (CoO) file contains the concepts and relations of the core 

ontology as OWL classes and OWL object properties, respectively. Currently, our 

framework only contains a CoO file for the Unified Foundational Ontology. An UFO 

ConceptType is an example of a CoO concept which can be included in the CoO file. 

                                                           
7 https://www.w3.org/TR/owl2-overview/ 
8 http://www.stardog.com 



pg. 77 

 

 

• The Modeling Language Ontology (MLO) file is a formalization in OWL of the meta-

model of the used conceptual modeling languages. It stores the constructs of the 

language as OWL classes and the properties of the constructs as OWL object 

properties. The OWL class Pool is an example of a BPMN construct that can be 

incorporated into the MLO file. 

 

• The CoO-MLO file captures the outcome of the ontological analysis of the modeling 

languages (see section 3.2), each in a separate OWL ontology file. The mappings 

between MLO elements and CoO elements are formalized by OWL equivalence 

relationships. For instance, an OWL equivalence relationship exists between the CoO 

ObjectType and the MLO Pool. 

 

• The Enterprise-Specific Ontology (ESO) file describes the concepts and relations of 

the enterprise-specific ontology as OWL classes and object properties, and the 

hierarchy relationships in the ESO that use OWL specializations relationships. For 

instance, the ESO contains a Customer OWL class and a Person OWL class, both of 

which are ESO concepts; furthermore, the Customer OWL class is an OWL (to be 

precise, RDFS) subclass of the OWL Person class. Additionally, the relationship 

between the concepts and relationships of the ESO and the CoO is incorporated by 

means of the OWL punning mechanism, which allows us to define an OWL element 

as both a class and an individual. Consequently, the concepts and relationships of the 

ESO are also defined as OWL individuals of the CoO classes and assertions of CoO 

object properties, respectively. As such, OWL punning allows us to capture the 

mappings between CoO and ESO by means of instance relationships, which is 

essential to be able to fully exploit OWL’s reasoning capabilities (see section 3.4). 

Panel B of Figure 11 illustrates this by indicating that the ESO Concept is both a class 

(circle with full line) and an individual (circle with dashed line). 

 

• The Model Ontology (MoO) file is created during the model creation phase (see 

section 3.5). For every modeling language construct that the modeler adds to his/her 

conceptual model, an OWL individual is created, whose type is the corresponding 

element of the MLO. In our example, the Pool Element with the label Customer is an 

instantiation of the Pool construct captured in the MLO file. In order to also support 

adding annotations, the MoO file imports the SemAnnO file, which defines the 

semantic annotation OWL object property that is used to add annotations to the 

OWL individuals of the MoO file. A similar approach for annotating model elements is 

applied by (Thomas et al. 2009). This annotation approach was chosen because the 

rule-based recommendation service requires that the annotations are taken into 

account during the reasoning process.  



pg. 78 

 

 

• The RulesO file contains Semantic Web Rule Language (SWRL) rules that are used by 

the Rule-based Recommendation Service to infer new knowledge based on the 

assertions that are available in the ESO and the MoO. More specifically, the rules may 

imply semantic annotations through the concepts and relations of the ESO, CoO and 

the MLO (see section 3.4). 

 

 
Figure 11: Ontologies within CMOE+ framework 

Recommendation	Services	

Based on the above-mentioned stored ontologies, the recommendation services determine 

what ESO concepts are suggested to the modeler.  For each ESO concept, each 

recommendation service calculates a recommendation score between 0 and 1, with respect 

to a modeling element added by the modeler. The final relevance score is a weighted 

average of all individual recommendation scores, creating a (weak) ranking for suggested 

ESO concepts (see section 3.5). Consequently, ESO concepts are ordered according to 

relevance, which is essential to help modelers find appropriate concepts quickly, as the ESO 

rapidly becomes large and complex. CMOE+ supports three recommendation services: 

 

1. The model language recommendation service deduces recommendations based on an 

ontological analysis of the conceptual modeling language: given a modeling language 

construct, its associated CoO concepts are derived using ontological analysis mapping 

and then compared with ESO groundings in CoO concepts. The pseudo code is given in 

Listing 1. First, a working ontology is considered, merging a selection of ontologies that 

are available in the framework (line 2). Next, the ontology reasoner is used to extend the 

ontology with assertions. This is accomplished with both the classification mechanism 



pg. 79 

 

and realization mechanism of the reasoner (line 3). Here, the added ontology assertions 

have their origin in the equivalence relations that are defined in the CoO-MLO file, and 

will result in classifying some of the ESO concepts as individuals of the MLO constructs. 

After this, the SPARQL query service of the reasoner is used to create a collection of ESO 

concepts that belong to the type of the modeling language construct that is given as 

input (line 4 and 5). The FOR EACH block starting in line 6 is a consequence of the 

punning mechanism. It uses the SPARQL query service of the reasoner to add the 

subclasses of the existing ESO concepts candidates (lines 7 – 9). Finally, the IF-ELSE block 

of Line 11 checks whether the ESO concept that is given as input of the algorithm is a 

member of the created ESO candidates set. If this is the case, the algorithm returns the 

(individual) recommendation score 1; if not, 0 is returned. 

 

 
 

Listing 1: Pseudo-code Model language recommendation service 
 

It is important to note that in Listing 1, for the sake of simplicity and clarity, we describe 

the recommendation service that calculates the relevance score for one particular ESO 

concept. In our implementation, such a relevance score is calculated for all ESO concepts, 

hereby caching static intermediary results (e.g. ESO candidates) for efficiency. 

 
2. The label-based recommendation service uses the ESO and natural language processing 

techniques (i.e. string and synonym matching) to give a relevance score to an ESO 

concept based on lexical distance of the concept name (and all its synonyms) and the 

label that is entered by the modeler. Listing 2 presents the pseudo code. In Line 3, the 

string matching score is calculated using Jaro-Winkler the label that is entered by the 

modeler and the label of the ESO concept. Line 4 of the algorithm creates a collection of 

synonyms for the label of the ESO concept using WordNet (Miller 1995). This collection is 



pg. 80 

 

used by the FOR EACH block (line 5), which calculates the string matching score between 

the entered label and every synonym from the collection. The FOR EACH block only 

remembers the highest matching score. Finally, line 8 returns this stored matching score, 

which is the  (individual) recommendation score. 

 

 
 

Listing 2: Pseudo-code label-based recommendation service 

 

3 The rule-based recommendation service uses the rules specified in RulesO to identify 

suggestions for labels of modeling element added by the modeler. Listing 3 presents the 

pseudo code. The algorithm starts with creating a new modeling element (see Line 2) 

which corresponds to the model element that is currently selected by the modeler and 

which is not yet annotated. To ensure that the recommendation service takes this 

element into account, the element is added to an updated version of MoO (i.e. MoO’). 

Next, similar to the model language recommendation service, the algorithm assembles a 

new working ontology, which is extended with assertions by the reasoner (see Line 4 and 

5). Compared to the model language recommendation service, the rule-based 

recommendation service also uses the RulesO and MoO’ as input, which are used by the 

rules reasoning service of the reasoner to add new suggestions (in the form of asserted 

semantic annotations) for the currently selected model element. After reasoning, the 

algorithm creates a collection which contains all ESO concepts for which the reasoner 

identified a potential semantic annotation for the new element. If the ESO concept that 

is given as input of the algorithm is an element of this collection, the algorithm returns 1 

as individual recommendation score; if not, 0 is returned. 

 



pg. 81 

 

 
 

Listing 3: Pseudo-code rule-based recommendation service 

3.2.4			The	Conceptual	Model	Creation	Phase	

In the Conceptual model creation phase (CM cycle), the modeler is presented with an 

ordered list of ESO recommendations, based on the selected modeling language construct 

and the label entered. The (weakly) ordered list is calculated through a (configurable) 

weighted average of individual recommendation service scores, which determines the order 

in which the ESO concepts are presented to the modeler. The modeler is free to accept or 

discard a recommendation. If s/he accepts a recommendation, the selected model element 

is automatically annotated with the corresponding ontology concept, and the label of the 

modeling construct that is added is updated with the name of the selected ESO 

recommendation. CMOE+ currently supports semantic annotations using OWL. In line with 

Thomas et al. (2009), the ontology annotation is stored in the MoO by adding an assertion of 

the semantic annotation object property between the MoO OWL individual and the ESO 

OWL individual.  

 

Additionally, during modeling and while the process of either adopting or discarding 

recommendations, feedback is gathered and stored in a log file. This log is stored in the 

mxml format which means that it can be processed by the ProM process mining tool9. The 

events that are stored in the log are (1) the generation of recommendations for the label 

entered, (2) acceptance of a recommendation by annotating the model, and (3) deletion of 

model annotation. 

                                                           
9 http://www.promtools.org, last accessed 5 August 2016 



pg. 82 

 

3.3			Recommendation-Based	Business	Process	Modeling	

(CMOE+BPMN)	

To demonstrate that the CMOE+ framework is a feasible, adequate and efficient solution for 

the presented problem, it was instantiated for process modeling by means of BPMN. 

Consequently, we will now move on to describe the CMOE+ recommendation-based 

business process modeling implementation (i.e. CMOE+BPMN) that uses, specializes and 

extends CMOE+’s generic functionality. The CMOE+BPMN implementation is an Eclipse 

plugin which can be downloaded from GitHub10 and is shown in Figure 12. By means of the 

Eclipse plug-in extension point mechanism, the CMOE+BPMN plug-in extends the Eclipse 

BPMN2 modeler11 with two views and a preference page. BPMN2 Modeler is a graphical 

modeling tool which is built using Eclipse Graphiti in combination with the BPMN 2.0 EMF 

meta-model. Graphiti is an Eclipse-based graphics framework that enables the rapid 

development of diagram editors starting from an EMF meta-model. The implementation of 

the ontology storage and the recommendation services are described in more detail below. 

 

                                                           
10 https://github.com/fgailly/CMOEplusBPMN, last accessed 5 August 2016 
11 http://www.eclipse.org/bpmn2-modeler/, last accessed 5 August 2016 



pg. 83 

 

 
 

Figure 12: BPMN tool 



pg. 84 

 

3.3.1			Ontology	Storage	

The ontologies used for CMOE+BPMN, along with some ontologies that will be applied in our 

case study (see section 5), are the following: 

 

• The Unified Foundational Ontology (UFO) was selected as a core ontology (i.e. CoO). 

UFO has different layers, of which only those elements are selected which are 

relevant in the context of process modeling for this instantiation of CMOE+. A short 

description of UFO can be found in Appendix C; for a full explanation, we refer to 

Guizzardi et al. (2015). The OWL formalization of UFO is available online12.  

 

• In the demonstration, an existing OWL ontology from the financial domain is selected 

as enterprise-specific ontology (i.e. ESO). The ESO concepts are formalized as both 

OWL classes and OWL individuals, as outlined in section 3.3. Throughout this paper, 

ESO concepts are denoted in italics. The mappings between ESO concepts and UFO 

are presented in Appendix D, and were obtained using the description of the ESO 

concepts and their intent. For example, ESO ProductRateApplication is defined as 

applied interest rate. This implies that ProductRateApplication is a quality of object 

type Product. An ESO Loan is intended to relate a Customer to the Branch s/he took a 

loan from. Therefore, Loan is an instance of the UFO Relator universal relating 

Customer and Branch. ESO LoanApplicationAccepted is an event representing the 

acceptance of loan application, thus instantiating an Event type in UFO. The OWL 

formalization of the bank ontology is available online13.  

 

• The used BPMN ontology (i.e. MLO) is an OWL translation of the meta-model shown 

in Figure 13, and is based on the original OMG BPMN standard (OMG 2006b). In this 

paper, we extend OMG meta-model based on the observation that different authors 

advise BPMN modelers to follow the pattern “verb noun” when they specify the 

name of a task (Delfmann 2009).  The OWL formalization of the BPMN meta-model is 

available online14. 

  

• The mappings between UFO and BPMN (i.e. CoO-MLO) are based on the ontological 

analysis provided by (Guizzardi & Wagner 2011). Table 4 represents the mappings 

between the constructs of the BPMN meta-model and UFO. Important to notice is 

that the BPMN Event and the Activity construct are both mapped to an UFO Event 

type.  Moreover data objects and Message flow objects are mapped to Relators (e.g. 

                                                           
12 http://www.mis.ugent.be/ontologies/ufo.owl, last accessed 5 August 2016 
13 http://www.mis.ugent.be/ontologies/bank.owl, last accessed 5 August 2016 
14 http://www.mis.ugent.be/ontologies/bpmn.owl, last accessed 5 August 2016 



pg. 85 

 

contracts, invoices), and Base types (e.g. database, technical documentation of 

software). The OWL formalization of the mappings is available online15. 

 

Figure 13: BPMN meta-model 

Table 4: Correspondence between BPMN and UFO 

BPMN 
construct 

UFO BPMN  
construct 

UFO 

Pool ObjectType Event  EventType 
Lane ObjectType MessageFlow RelatorUniversal or  

ObjectType or  
QualityUniversal 

Activity   EventType Association MaterialRelationshipType or 
FormalRelationship_Type 

Data object RelatorUniversal or 
ObjectType or 
QualityUniversal  

  

3.3.2			Recommendation	Services	

The recommendation services are used by the BPMN editor to arrange the ESO concepts in 

the ontology property view (see Figure 14), which is implemented following the Model-View-

Controller pattern. The controller of the ontology recommendation view updates the 

associated view every time the modeler selects a model element on the canvas. The 

CMOE+BPMN tool contains a second view, which is used to give more detailed information 

about the selected ontology recommendation. The controller of the ontology property view 

updates the associated view when the modeler selects an ontology recommendation.  

 

                                                           
15 http://www.mis.ugent.be/ontologies/bpmn_ufo.owl, last accessed 5 August 2016 



pg. 86 

 

CMOE+BPMN uses the OWL API16 to implement the different recommendation services, and 

the HermiT reasoner (Glimm et al. 2014), included in the OWL API, is used for querying and 

reasoning. The label-based recommendation service uses CMOE+’s support for the Jaro-

Winkler distance (Winkler 1990) to compare Strings and WordNet (Miller 1995) to determine 

synonyms (see Listing 2). In some cases (i.e. for BPMN tasks, sub-processes, events, and 

conditional gateways), the label is pre-processed. For this purpose, the Stanford Parser17 is 

applied to tokenize the labels. 

 

 

Figure 14: Ontology Recommendation view (Left) and Ontology Concept Properties view (Right) 

Using the rule-based recommendation mechanism, BPMN-specific recommendation rules 

(i.e. RulesO) were added in CMOE+BPMN. The rules that were used in the experiment (see 

section 5) are listed in Table 5; a full specification can be found online18. In future research, 

we plan to investigate in more detail which kind of rules may be useful to add to this 

recommendation service. 

3.4			Evaluation	of	CMOE+BPMN		

CMOE+BPMN aims to promote label consistency and facilitate model annotations, while 

ideally avoiding significant overhead in modeling time and perceived effort. Annotating 

modeling elements with ontology (ESO) concepts then results in more interoperable models, 

as previously shown in literature (Born et al. 2007; Di Francescomarino & Tonella 2009; 

Thomas et al. 2009). This section presents an explorative experiment to empirically validate 

CMOE+BPMN using Moody’s Method Evaluation Model (MEM) (Moody 2003). 

 

 

 

 

 

                                                           
16 http://owlapi.sourceforge.net, last accessed 5 August 2016 
17 http://nlp.stanford.edu/software/lex-parser.shtml, last accessed 5 August 2016 
18 http://www.mis.ugent.be/ontologies/cme_bpmn_rules.owl, last accessed 5 August 2016 



pg. 87 

 

Table 5: SWRL rules used by the rule-based recommendation service 

BPMN:Pool(?x) ^ BPMN:Pool(?y) ^ SemAnn(?x,?o) ^ UFO:mediates(?r,?o) ^ 

UFO:mediates (?r,?p) ^ � SemAnn(?y,?p)  

This rule indicates that when the modeler creates a pool construct, the UFO object types, which 

are related to UFO object types that have previously been used to semantically annotate another 

pool in the model, will be suggested by the rule recommendation service.  

BPMN:Pool(?x) ^ BPMN:Lane(?y) ^SemAnn(?x,?o) ^ UFO:mediates(?r,?o) ^ 

UFO:mediates (?r,?p) ^BPMN:hasLane(?x,?y) � SemAnn(?y,?p). 

This rule indicates that when the modeler creates a lane construct within a pool, the suggestions 

(relevance score 1) are UFO object types that are related by a material relationship with the 

ontology annotation of the pool. 

BPMN:MessageFlow(?x) ^ BPMN: Pool(?y) ^ BPMN:Activity(?z) 

BPMN:connects(?x, ?y) ^BPMN:connects(?x, ?z) ^ SemAnn(?x,?o) ^ SemAnn(?z,?p) 

UFO:Relator(?r) ^ UFO:mediates(?r,?o) ^ UFO:mediates (?r,?p) � SemAnn(?x,?r). 

When a message construct is created that results in the transmission of a message between a 

activity of a pool and another pool, the suggestions are UFO relators mediating material 

relations that connect objects that in turn annotate the noun of the task and the ontology 

annotation of the pool, respectively. 

3.4.1			Experimental	Design	

Using an identical case description (see Appendix E), modelers were asked to create a BPMN 

model. Three different treatments were applied: treatment 1 assists modelers with 

CMOE+BPMN as described in section 4.3; treatment 2 provides modelers an alphabetically 

ordered list of ESO concepts, without relevance ordering, so that the modeler needs to find 

relevant ESO concepts him/herself; treatment 3, as a baseline, does not provide any 

modeling support (i.e. regular BPMN modeling). Where relevant (treatment 1 and 2), the 

modeler was asked to annotate the modeling element with ESO concepts. The BPMN 

modeling tool described in Section 4 was used to conduct the experiments. An additional 

view was developed for treatment 2 to support only alphabetical ordering of ESO concepts 

(without recommendations), and for treatment 3 the recommendations view was disabled. 



pg. 88 

 

 

The participants of our experiment were 140 university students at the master level, who 

were acquainted with BPMN because they took a mandatory Business Process Management 

course. The subjects were distributed randomly across the three treatments: 47 for 

treatments 1 and 2, and 46 for treatment 3. Every group was given a tutorial explaining the 

tool and the required actions during the experiment. 

3.4.2			Experiment	Measures		

In Moody’s Method Evaluation Model (MEM), the impact of using the method on 

performance, user perception and intention of use is measured, thus assessing the 

acceptance of future practitioners. Applying MEM to CMOE+BPMN resulted in six variables 

to be observed during the experiment: semantic quality, interoperability, time, perceived 

ease of use, perceived usefulness, and intention of use. These dependent variables were 

operationalized in the Cheetah experimental platform (Pinggera et al. 2010), which makes it 

possible to collect answers for the pre- and post-survey (see Appendix F and G), collect the 

created models and record the time spent on each task.  

 

The first variable, semantic Quality (SQ), was measured by verifying validity (i.e. is every 

statement in the model correct with respect to the case description?) and completeness (i.e. 

does the set of all statements completely cover the case?) (Lindland et al. 1994). To measure 

validity and completeness, for every model, the number of invalid and missing statements 

were counted, respectively, in comparison with a reference model created by a team of 

three BPMN modeling experts (Appendix H). 

 

The second observed variable was interoperability (I). CMOE+BPMN was expected to 

enhance interoperability across models (1) by providing ESO-based recommendations and 

automatically annotating BPMN labels, which promotes the reuse of ESO concepts in model 

element labels, and (2) by consistently recommending the same ESO concept for similar 

labels, which promotes model consistency and thus interoperability. The degree of model 

interoperability was measured by counting the number of annotations in every model 

(treatment 1 and 2). In addition, to verify consistency, the variation in labelling of modeling 

elements with the same underlying meaning was assessed by examining the distribution of 

labels of such elements across different models of one treatment (all treatments). 

 

The third observed variable was time spent for creating the model (T). The aim was to 

determine if time overhead was incurred by turning to vocabulary support or not. In our 

experiment, time was measured by the Cheetah platform, starting when the participants 

began model creation, and stopping when the final model was uploaded.  

 



pg. 89 

 

All other variables were measured using a post-experiment survey (see appendix G). The 

perceived ease of use (PEOU) and perceived usefulness (PU) of the method were measured 

by adapting the generally accepted measurement scales of Davis (Davis 1989), with three 

different questions. Intention of use (IU) was measured by means of two questions in the 

post-experiment survey. All answers were provided on a Likert scale from one (strongly 

disagree) to five (strongly agree). 

3.4.3			Experimental	Results	

Before analyzing the results, we performed a pre-selection of models based on syntactic 

quality: models with more than two mistakes against the BPMN specification were discarded 

to eliminate qualitatively insufficient models19  and reflect a real-life setting in which 

syntactically incorrect models are improved before acceptance or discarded.  

 

For the retained models, we analyzed the results for the six variables prescribed by MEM. 

Statistical significance was tested using the Mann-Whitney test for SQ, PEOU, PU, IU as they 

are ordinal variables, and for T and I as they are not normally distributed continues variables. 

Normality of the distribution was tested with Kolmogorov-Smirnov and Shapiro-Wilk tests. 

Statistical significance of label distribution among models was evaluated using chi-square 

analysis to determine the likeliness of the observed label distribution occurring by chance, 

independently of the treatment. For all test, the results were considered statistically 

significant if the p-value was < 0.05. In all tables, only statistical significant results are 

explicitly denoted; all other differences were not statistically significant. 

 

Table 6 shows the results of the Semantic Quality (SQ) evaluation. We found no statistically 

significant difference between the treatments for validity, and thus conclude that ontology 

support does not decrease validity. For semantic completeness, we found no statistically 

significant difference between Treatment 1 and Treatment 2, yet both performed 

significantly worse than Treatment 3. Observation during the experiments indicated that 

participants from Treatment 1 faced some technical issues with the tool, which could have 

caused them to concentrate more on the functioning of the tool itself, rather than producing 

a complete model. Furthermore, the tutorial participants received was focused on 

vocabulary support, which may have caused them to perceive the experiment as a test in 

vocabulary usage, relaxing their focus on the modeling and model completeness. These 

possible influences should be eliminated in follow-up experiments. 

 

The results for Interoperability are shown in Table 6 (number of annotations) and Tables 7 

and 8 (naming variation). Considering average and median percentages of annotated 

modeling elements per treatment (Table 6), roughly 70% of BPMN elements were annotated 

                                                           
19 Note that the reference model corresponding to the case study only contains 14 BPMN constructs; more than 
two errors is thus high and indicates poor model quality. 



pg. 90 

 

with an ESO concept. Overall, CMOE+BPMN (Treatment 1) performs slightly better than the 

other two, but the observed differences were not statistically significant. The number of fully 

annotated models for Treatment 1, however, is more than twice the number for the other 

treatments. We can therefore conclude that, if given the possibility, modelers annotate a 

large portion of their modeling elements, thus increasing model interoperability. 

Furthermore, customized recommendations, as provided by CMOE+BPMN, increase the 

number of fully annotated models. 

 

Table 6: Results of semantic quality evaluation model annotation 

 T 1  T 2 T 3 Statistical 
analysis 

Total number of models 47 47 46  
Number of models evaluated 24 31 20  

S
em

an
tic

 Q
ua

lit
y 

Number of models  
without validity 
 issues 

18 (75 %) 24 
(77.42 %) 

18 (90 %)  

Number of models  
with 1 invalid  
statement 

4 (16.7 %) 7 
(22.58 %) 

1 (5 %)  

Number of models  
with 2 invalid statements 

2 (8.3 %) 0 1 (5 %)  

Number of complete  
models 

1 (4.2%) 11 (36%) 7 (35%) T1�T3: 
significant 
T2�T3: 
significant 

Number of models  
with 1 missing statement 

12 (50%) 10 (32%) 6 (30%) T1�T3: 
significant 
T2�T3: 
significant 

Number of models  
with 2 or more missing 
statements 

11 
(45.8%) 

10 (32%) 7 (35%) T1�T3: 
significant 
T2�T3: 
significant 

M
od

el
 

A
nn

ot
at

io
ns

 

Average number of 
annotations 

70.38% 66.98%   

Median of annotation 78.57% 71.43%   
Fully annotated models 5 models 

(20.83%) 
3 models 
(9,68%) 

  

Models with no annotation 2 models 
(8.33%) 

1 model 
(3.23%) 

  

 

Considering the consistency of labels, Table 7 presents the results of naming distribution 

across models for elements referring to a customer (i.e. a single BPMN pool), whereas Table 

8 shows the results for three different modeling elements featuring loan application (i.e. a 

start event (loan application received) and two different end events (loan application 

rejected; loan application accepted)). Multiple instances of the same event, or an event and 

a task with the same meaning were not counted. In the first column, we also denote the 



pg. 91 

 

theoretical maximum number of uses, not counting any models that lack an individual 

modeling element. We can observe that for “customer” (Table 7) and “loan application” 

(Table 8), Treatments 1 and 2 performed statistically significantly better compared to 

Treatment 3: the label corresponding to an ESO concept was used in around 85% of the 

cases, while results were more dispersed without vocabulary support. With vocabulary 

support (i.e. Treatments 1 and 2), modelers thus consistently opt for the correct underlying 

ESO concept, which more clearly corresponds with the underlying business domain and 

increases the consistent use of labels. Overall, we can conclude that vocabulary support 

improves interoperability. 

 

Table 7: Naming for BPMN elements with underlying meaning "customer". Columns are modeler-entered labels; 

rows are treatments; cells denote number of uses of the label / total number of occurrences of BPMN 

constructs with underlying meaning "customer" 

 Customer (ESO concept) Client Person Applicant 
T 1 14/18 (77.78%) 0 2/18 (11.11%) 2/18 (11.11%) 
T 2 23/27 (85.19%) 0/27 4/27 (14.81%) 0/27 
T 3 9/18 (50%) 9/18 (50%) 0/18 0/18 

 

Table 8: Naming for BPMN elements with underlying meaning "loan application". Columns are model-entered 

labels; rows are treatments; cells denote number of uses of the label / total number of occurrences of BPMN 

constructs with underlying meaning "loan application” 

 Loan application 
(ESO concept) 

Loan  Application  Request  

T 1 57/62 (91.95%) 1/62 
(1.61%) 

2/62 (3.22%) 2/62 (3.22%) 

T 2 75/85 (88.23%) 3 (3.53%) 3/85 (3.53%) 4/85 (4.71%) 
T 3 17/41 (41.46%) 1/41 

(2.44%) 
10/41 
(24.39%) 

13/41 
(31.71%) 

 

Considering Time, Table 9 shows the average and median time needed to create the model 

for every treatment. No statistically significant differences were found between the different 

treatments. Vocabulary support therefore does not incur time overhead during model 

creation, although the participants were not trained in using a vocabulary and had to deal 

with the overhead of searching through the ESO and selecting concepts as labels for 

modeling elements (rather than freely writing a label). 

 

Table 9: Time needed for model creation 

 T 1 T 2 T 3 
Average time needed 11.52 min 10.70 min 11.20 min 

Median time needed 11.20 min 10.25 min 9.60 min 

 
The results for Perceived ease of use (PEOU), Perceived usefulness (PU) and Intent of use 

(IU) are summarized in Table 10, presenting averages of the post-survey Likert scale scores 



pg. 92 

 

(1-5), in which a lower score is better for PEOU, and a higher score is better for PU and IU. 

The results show that for PEOU, Treatment 3 scores statistically significantly better – albeit 

only slightly – than Treatment 1. Regarding PU, Treatment 3 scores slightly better 

(statistically significant) than Treatment 1, and Treatment 2 scores slightly better than 

Treatment 1. For PEOU and PU, according to average and mode values, the differences are 

very small. Vocabulary support in itself was considered useful, as demonstrated by the 

higher PU score for Treatment 2 compared to Treatment 3. As hinted by informal user 

feedback, we see two explanations for the slightly worse user perception of Treatment 1. 

First, the previously mentioned technical problems were cited as the main cause of 

annoyance. Given the minimal differences, avoiding these would probably bring scores to a 

similar level as Treatment 3. Second, in Treatment 1, participants indicated that the re-

arranging of the list of suggestions for every modeling element according to relevance was 

annoying. Future work should test solutions that maintain the order of the suggestion list in 

Treatment 1, but indicate relevance in an alternative way (e.g. using colour coding). Given 

that the differences in PEOU and PU were minor, and taking into account the solvable 

technical difficulties with Treatment 1, we carefully conclude that there is no considerable 

additional frustration or errors accompanying the added vocabulary support to the modeling 

task. Finally, results for Intention of use (IU) (see Table 10) do not imply any statistical 

significant difference. 

 

Table 10: Post-survey results for Ease of Use (PEOU), Usefulness (PU), and Community Acceptance (IU); cell 

values denote a Likert scale value (1-5), with 1 being best and 5 worst for PEOU, and 5 best and 1 worst for PU 

and IU 

 T 1 T 2 T 3 Statistical analysis  
 mode Avg mode avg mode avg  
PEOU 2 3.09 2 3.2 2 2.93 T1�T3: significant 
PU 4 3.09 4 3.67 4 3.23 T1�T3: significant 

T2�T3: significant 
IU 4 2.98 3 2.90 4 3.11  

 

To summarize, supplying a modeler with ESO support has two main benefits: (1) it increases 

model interoperability by linking elements of the models with appropriate ESO concepts via 

annotations, and (2) it greatly enhances the consistency of labelling modeling elements, as 

the same label – and annotation with underlying ESO concept – is used for elements with 

intrinsically identical meaning. Furthermore, this experiment has demonstrated that the 

additional information and burden to find and select suitable ESO concepts during modeling 

does not require extra time, and does not impact on the modeler’s acceptance of the 

modeling setup, nor does it have a negative influence on the validity of the models. However, 

the models created with vocabulary support were not as complete as those created by 

means of Treatment 3. This can be attributed to the fact that participants concentrated on 

finding the appropriate vocabulary rather than on creating complete models. The user 

perception of our method was slightly worse compared to regular modeling. Feedback in the 



pg. 93 

 

post-survey indicates that this was probably caused by technical problems with the tool. For 

user perception, keeping a stable order in the suggestion list may have a positive influence 

for CMOE+BPMN. These issues will be tackled in follow-up studies. 

 

Finally, although vocabulary support has shown to be useful, the differences between 

CMOE+BPMN and (only) vocabulary support are mixed. Some positive effects of the 

alphabetically ordered vocabulary (Treatment 2) may be neutralized or reversed when a 

larger, more complex model and a more extensive ESO are used, as a greater variety of ESO 

concepts needs to be found in a larger amount of ESO concepts. The above-mentioned 

improvements to our method are expected to further tilt the scale in favor of CMOE+BPMN.  

3.5			Conclusions	and	Future	Work	

This article introduces the recommendation-based conceptual modeling and ontology 

evolution Framework (CMOE+), with two main objectives: (1) to solve the interoperability 

problem across models by facilitating the creation of different types of conceptual models 

based on concepts from the ESO, and (2) to stimulate ESO evolution based on conceptual 

modeling feedback. The ESO documents and disambiguates the terms used within the 

enterprise and the relations between those terms, and is thus perfectly suited as a semantic 

basis for model creation in order to improve model interoperability and enable automatic 

integration and querying across models. On the other hand, the framework exploits valuable 

information generated during model creation to maintain and allow the ESO to evolve, as to 

keep it in sync with newly emerging and evolving needs of the enterprise. As such, the 

framework establishes a symbiosis between conceptual modeling and ontology evolution 

within an enterprise. 

 

The framework is instantiated for the BPMN modeling language in a recommendation-based 

process modeling method (CMOE+BPMN). This instantiation focuses on the modeling aspect 

of our framework, and shows how the ESO can be used during BPMN model creation to 

generate recommendations and annotate BPMN models. CMOE+BPMN supports setting up 

the ESO, analysing the selected modeling language, developing recommendation-based 

services, and extracting feedback. It was implemented as a plug-in that extends the Eclipse 

BPMN2 modeler, and was validated in an extensive exploratory experiment including 140 

business students. The experiment showed some promising results: the use of an ESO 

vocabulary during modeling indeed results in more consistent labelling of modeling 

elements and does not incur any time overhead. What is more, users have the intention to 

use the method. Improvements can be made regarding user perception, which currently 

shows mixed signals, and model completeness, which could be improved as far as complete 

models are concerned. 

 



pg. 94 

 

Future research will aim at improving CMOE+BPMN and associated modeling tool to obtain 

better perceived usefulness and model completeness. If technical problems with the tool are 

overcome, order-invariant label suggestions are provided and more complex models and 

ESO are used, we expect the recommendation-based modeling method to be more 

advantageous than vocabulary-assisted modeling. On a broader scale, we have now finalized 

the instantiation of our method for requirements engineering using i* (Yu 1997), thus 

proving its wider applicability. Experiments to validate the i* instantiation are underway. 

Finally, we aim to exploit the modeling feedback, which has already been gathered and 

(manually) verified to be useful, in a more formal framework, through a community-based 

ontology evolution approach. 

  



pg. 95 

 

	 	



pg. 96 

 

	

4	
Aligning	I*	Models	and	BPMN	Models	Using	the	

CMOE+	Framework	

After demonstrating the performance of CMOE+ framework After instantiating and 

evaluating the CMOE+ framework for process models in BPMN notation (Chapter 3), the 

next step is to demonstrate how CMOE+ can contribute to the alignment of models created 

in different modeling languages.  More specifically, this chapter explains how CMOE+ can be 

used to align goal models in i* with process models in BPMN.  This chapter commences by 

presenting what is available in the literature on goal and process model alignment.  Next, the 

development of the CMOE+i* framework and tool is described.  In Section 4.3, our approach 

on the alignment between i* and BPMN models is presented, along with the extensions 

added to CMOE+BPMN (Chapter 3).  This elaboration is followed by a demonstrative 

example.  Finally, the structure of the CMOE+ tool is explained and visualized. 

4.1			Aligning	Goal	and	Process	Models	

The Business Process Management discipline describes methods, techniques and tools to 

discover, analyze, redesign, execute and monitor business processes. Business processes and 

their representation (i.e. business process models) play a crucial role in the different BPM 

life cycle activities or phases. Additionally, it is generally recognized (Rosemann et al. 2015) 

that the goals of a company influence the decisions that are made within the different 

phases of the BPM life cycle. For instance, during the process identification phase a process 

architecture is developed, which is afterwards used to prioritize the different business 

processes. This prioritization of business processes is of course very much influenced by the 

goals of the company. During the process analysis phase, process models can be analyzed by 



pg. 97 

 

looking at process performance dimensions: time, cost, quality and flexibility.  Again, the 

importance of every dimension will be determined by the goals of the company.  

This chapter aims to investigate the semantic alignment between goal and process models.  

We consider two models (a goal and a process model) to be semantically aligned when 

overlapping elements of those models are consistent on the model and the meta-model 

levels.  On the model level, model elements can be annotated with ESO concepts.  

Overlapping model elements are annotated with the same ESO concept, which ensures 

consistency of model elements.    On the meta-model level, corresponding modeling 

elements are represented by equivalent modeling constructs in different modeling 

languages.  Construct equivalency is determined by the ontological analyses of the modeling 

language using the core ontology (Section 2.3.2.1) which acts as an intermediate between 

both modeling languages (goal and process modeling). 

In the course of the last 15 years, different methods have been proposed which focus on 

aligning goal models and business process models (Nagel et al. 2013; Cardoso et al. 2011; 

Koliadis et al. 2006; Santos et al. 2010; Lapouchnian et al. 2007; Guizzardi & Reis 2015; 

Decreus & Poels 2011). There are three main directions pursued by researchers regarding 

the synergy between goal and process models. The first direction focuses on aligning and 

ensuring consistency among goal and process models already existing within an enterprise 

(Nagel et al. 2013; Cardoso et al. 2011; Guizzardi & Reis 2015).  In the same regard, 

researchers aim to maintain the synergy between goal and process models by developing an 

approach which allows transmitting changes occurring in one model to the other (Koliadis et 

al. 2006), or by using goal models to discover and reflect organizational changes to process 

models (Santos et al. 2010).  The second direction is deriving one model from the other.  For 

instance, Decreus and Poels (Decreus & Poels 2011) propose a method to automatically 

derive BPMN models from requirements models, and Lapouchnian et al (Lapouchnian et al. 

2007) allow semi – automatic derivation of process models from goal models.  Some 

research works are bi-directional and prescribe rules for deriving models in both direction 

(deriving process models from goal models and vice versa).  An example of this is provided in 

(Koliadis et al. 2006).  Within the third direction, researchers combine goal and process 

models to form a more comprehensive modeling language capable of addressing tactics, 

intentionality and operations of an enterprise (Sousa et al. 2014). 

As follows from the above, the alignment between goal and process models is very 

important for organizations, and triggered many research efforts.  Hence, goal and process 

models were selected among other types of conceptual models to evaluate CMOE+’s 

capability in improving alignment among models in different modeling languages.  BPMN 

(OMG 2011) was selected to formalize process models, as this notation is popular among 

business analysts (Santos et al. 2010).  I* goal modeling notation (Yu et al. 2011) was 

selected to portray the goal model.  Despite i*’s limited usage in practice, it stimulated an 

enormous amount of research (Moody et al. 2010), and proved to be a very useful and 



pg. 98 

 

effective techniques for modeling requirements within research projects held in cooperation 

with enterprises (Yu et al. 2011).    

In CMOE+, the overarching goal is to achieve alignment between the various conceptual 

models that are created within the enterprise.  Model alignment is supported by the CMOE+ 

framework by means of two mechanisms.  First, alignment is partly realized via the ESO, 

which contains concepts and relations that can be (re)used during the development of 

different conceptual models, whichever their type or conceptual modeling language used. 

The impact of this alignment mechanism largely depends on the quality of the ESO 

(completeness, level of detail, accuracy in reflecting the business and enterprise domain, up-

to-dateness) and the consistency and traceability of ESO versions as the ESO evolves over 

time. In this chapter, we focus on the second alignment mechanism, which exploits the 

versatility of the rule-based recommendation service, capable of incorporating various 

sources of knowledge into the recommendation rules. Concretely, we show how existing 

conceptual models, which were previously created using CMOE+ in the same enterprise 

context and are stored in the model repository, form the basis for recommendation rules 

promoting model alignment. 

CMOE+ is a generic framework that is capable of operating with a variety of modeling 

languages. Throughout this chapter, CMOE+ is instantiated with the purpose of establishing 

alignment between process and goal models by incorporating existing goal and process 

model alignment techniques found in literature in CMOE+BMPN.  BPMN (OMG 2011) was 

selected for process modeling, and the i* modeling language (Yu et al. 2011) for 

representing goal models.  The proposed alignment method has three main benefit: (1) It is 

based on existing literature, thereby facilitating reuse of existing work published in the 

domain.  (2) It is flexible and able to incorporate additional rules.  CMOE+ does not operate 

based on a restricted set of predefined rules hardwired into the framework, but can easily 

accommodate new rules, taken from literature or ad hoc created.  Hence, every enterprise 

can adapt CMOE+ based on its needs and modeling languages used.  (3) CMOE+ ensures 

alignment during model creation, in this chapter, during BPMN model creation. Hence, no 

extra effort is required to align process models after they are created.  Several 

recommendation services operating within CMOE+ are scanning the ontology (ESO) for the 

most relevant concepts to be suggested to the modeler during the modeling process.  In 

CMOE+BPMN, one particular recommendation service is accessing a model repository 

containing previously developed i* models.  Those models are queried for the most relevant 

concepts for the process model being created. Those recommendations guide the modeler 

through the modeling process.    



pg. 99 

 

4.2			CMOE+	I*	Tool			

Before proceeding with the alignment, it is important to develop the CMOE+i* framework 

and tool to be able to produce semantically annotated i* models.  To develop the CMOE+i* 

framework, the same steps were followed as in Chapter 3 for CMOE+BPMN. 

The same foundational ontology as for CMOE+BPMN, UFO, is used for CMOE+i*.  In a real 

life  enterprise, the same ESO is utilized for BPMN and i*, and any other modeling language.   

The ESO set up phase is required to be performed only once within the enterprise.  Hence, 

this phase does not require any additional effort.  However, within this PhD project it was 

beneficial to experiment with an ontology in a different domain, to show genericity of the 

framework. Therefore, an existing ontology in a medical emergency domain was selected 

and slightly adapted to serve as ESO.  

The first step requiring some effort is performing an ontological analysis of the i* modeling 

language using UFO (the foundational ontology recommended in combination with CMOE+).  

I* is frequently used by researchers, and there existing ontological analyses are available in 

literature. In this dissertation, the ontological analysis performed by Franch et al (Franch et 

al. 2011) is used.  Table 11 below presents mappings between i* and UFO.   

Table 11: Ontological analyses of i* 

I* construct UFO-U concept I* construct UFO-U concept 

Agent Physical agent  

type 

Contribution link Formal relationship type 

Role Role type Decomposition link Formal relationship type 

Position Role type Means ends link Formal relationship type 

Task Quality universal 

Relator universal 

Goal Relator universal 

Resource Object type    

 

The next step is setting up the recommendation services which are scanning the ESO to 

search for the most relevant ESO concepts for every modeling element created on the 

modeling canvas.  As was explained in Section 2.3.1.2, there are three types of 

recommendation services:  

1. Label-based recommendation service targets the label of the modeling element, and 

matches it to the ESO concept label.  This recommendation service includes string 

and synonym matches.  This service remains the same independently of the modeling 

language used as it only takes into account the string of the label independently of 

the modeling construct represented by this label.  Hence, the same Label-based 

algorithms can be re-used with both BPMN and i*, and any other modeling language.    

 



pg. 100 

 

2. Model language-based recommendation service targets the constructs of the 

modeling language.  This recommendation service is differently instantiated for every 

modeling language based on the ontological analyses of a particular modeling 

language.  The model language-based recommendation service for i* is based on 

Table 11 above.  

 

3. Rule-based recommendation service incorporates customized rules which are either 

based on the modeling language used, the location of the modeling element within 

the whole model, or on generic rules of the enterprise.  Most of the rules are 

modeling language-specific, and therefore need to be created separately for every 

modeling language.  If the enterprise offers some generic rules, then those rules can 

be reused across modeling languages.  One example of rules based on the location of 

the modeling element within an i* model is a dependency between two actors.  The 

notion of dependency implies that one actor depends on the other for performing a 

task, accomplishing a goal, or acquiring a resource.  In i* the dependency is 

represented by a link between the two actors.  This link incorporates a dependum 

(goal, task, or resource).  To clarify, consider the following scenario: a person 

depends on a bank for fulfilling his goal of obtaining a loan.  This scenario is depicted 

in Figure 15 by modeling two actors: “Person” and “Bank”, with a goal dependency 

between them labeled with “Loan” as dependum.  While drawing this dependum on 

the modeling canvas, the modeler will receive as suggestions all ESO concepts 

corresponding to UFO Relators relating the ESO concepts used to annotate the two i* 

actors in the same model.      

 

Figure 15: I* goal dependency 

In order to implement the CMOE+ i* tool, a large part of the CMOE+BPMN tool was reused. 

In particular, the overall architecture and workflow was maintained, and the semantic 

annotation service (detailed in Section 3.2.4) and components implementing the 

recommendation services were re-used (yet using the i* specific models, i.e., ontological 

analysis of i*, the i*-specific recommendation rules). Furthermore, the user interface and 

general look and feel of the tool is identical to CMOE+BPMN, Hence, if modelers become 

acquainted with one tool, they will not have issues using any other CMOE+ tool.  BPMN 

modeler was replaced with i* modeler.  In order to choose the appropriate i* modeling tool, 



pg. 101 

 

the i* wiki20 was consulted.  Unfortunately, no up to date free of charge i* modeler was 

found, and therefore, some additional effort was required to align an existing tool with our 

needs. The Design CASE Tool for Agent-Oriented Repositories, Techniques, Environments, 

and Systems (Descartes) was selected as basis for CMOE+ incorporation, as it is written in 

Java, acts as a plugin for the Eclipse IDE and supports SD and SR models, all of which are 

compatible with the existing CMOE+BPMN implementation. However, Descartes was 

designed to work with the Tropos methodology, which is an older dialect of i*. Hence, as a 

first update to Descartes, it was necessary to incorporate the missing i* constructs and add 

the general look and feel of i*. The resulting CMOE+i* tool was configured to be able to 

access the ontology storage in order to grant the modeler access to the ontologies.  

Additionally, the recommendation services, and the semantic annotation mechanism were 

configured within the tool.  Moreover, the tool converted the created i* models into OWL 

files and placed them into the model repository.  Those models will be used in two different 

ways:  First, for collecting feedback which can potentially result in ESO upgrade.  Second, for 

enabling alignment with BPMN models which will be created in the future.   

Figure 16 below presents a screenshot of the CMOE+i* tool.  Caption 1 presents the 

constructs of the i* modeling language which the modeler will drag-and-drop to compose 

the i* model.  Caption 2 highlights the ESO concepts presented to the modeler after he 

selects a modeling element from the i* model.  ESO concepts appear as an ordered list, 

arranged based on the relevance score they receive from the recommendation services.  The 

modeler selects any concept from the list (not necessarily from the top) and double-clicks it 

in order to annotate the selected modeling element with that ESO concept.  In case the 

modeler did not find the appropriate ESO concept to be used for annotation, he can assign 

the modeling element a label of his choice.  If no appropriate concept was found in the ESO, 

it is possibly an indication of the fact that this modeling element represents a missing 

concept in the ESO.  The modeler can specify this element’s label as candidate annotation 

(as presented in caption 3 of Figure 16).   Labels marked as candidate annotation represent a 

special type of feedback, and are used to update the ESO if they are approved by the 

community in Community-based ontology feedback evaluation phase of CMOE+. 

                                                           
20 http://istar.rwth-aachen.de/tiki-view_articles.php 



pg. 102 

 

 

Figure 16: Screenshot of CMOE+i* 

4.3			Extending	CMOE+BPMN	with	I*-specific	Recommendation	Rules	

In order to support the alignment between goal models and process models, previously 

described CMOE+ BPMN (Chapter 3) was extended with two features: 

1. Extending the Ontology storage and recommendation generation phase of the 

Ontology Evolution Cycle of CMOE+ with mechanisms allowing storage and access of 

models previously created within the enterprise.  The model repository (Section 4.2.1) 

is used to store all previously created models.  Those models will be subsequently 

accessed and used to promote the alignment. 

 

2. Extending the Rule-based recommendation service with rules specific to i* and BPMN 

modeling notations.  This recommendation service gains access to models in the 

model repository and extracts the modeling elements which are the most relevant to 

the modeling element being created by the modeler.  Those rules are explained in 

Section 4.2.2.   

The same aspects need to be considered in order to enable the alignment among other 

modeling languages (other than i* and BPMN).   

4.3.1			Model	Repository	

In the CMOE+ framework, when the modeler constructs a model using a particular modeling 

language, an OWL formalization of this model is created and stored in the model repository.  



pg. 103 

 

Figure 17 below presents an excerpt of a regular i* model created with the common i* 

syntax on the left, and the corresponding OWL representation.  The purpose of storing the 

model in OWL format is the possibility to utilize the OWL reasoner to apply rules over these 

models.  The recommendation services are formalized as SWRL rules which use the reasoner 

to query ontologies and models in OWL format. This OWL formalization contains all 

elements of the model and stores the ESO annotations.  Only models created as a part of the 

CMOE+ framework are contained in the model repository; in order to utilize those models to 

the full potential, they must be annotated with ESO concepts, as the alignment between 

models is established through the ESO.   

The model repository serves two purposes: first, models from the repository are used to 

extract information about possible changes in the knowledge of the enterprise.  Any 

discovered changes are considered as feedback to the Ontology Evolution cycle.  Second, 

models residing in the model repository are available for subsequent conceptual modeling 

cycles. In the context of the goal and process model alignment, previously created goal 

models are used by the recommendation services while creating process models.   

Any type of conceptual model can be stored in the model repository.  The tool is aware 

which type of models it is required to fetch, and thus the modeler is not expected to 

explicitly consult the model repository to find the potentially relevant models.  The 

recommendation services are accessing the model repository automatically through the 

OWL API, as the models are stored in OWL format.  

 

Figure 17: An excerpt of an i* model created by the CMOE+i* tool (on the left), and the corresponding OWL 

representation stored in the model repository (on the right) 

4.3.2			Rule-Based	Recommendation	Services	

The rule-based recommendation service of the CMOE+BPMN+ tool is extended to generate 

additional alignment recommendations for the modeler by merging all available ontologies 



pg. 104 

 

(ESO and OWL formalization of previously created i* models) and by taking into account a 

set of model alignment rules that were added to the CMOE+ framework. Next an ontology 

reasoner is used to generate a set of suggestions every time the model developer adds a 

specific element on the modeling canvas. The rule-based recommendation service is very 

flexible because different kinds of rules can be added. The rules can target the ESO, but can 

also focus on the meta model of the modeling language to allow alignment between 

constructs of different modeling languages. The rules that are added in this chapter all focus 

on the alignment between i* and BPMN models and have their origin in some of the 

previously mentioned alignment methods found in literature, and thus only operate on the 

i* and BPMN modeling notations.  However, rules concerning other modeling languages can 

be easily configured, based on existing model alignment literature, or custom designed 

based on the needs of the enterprise.  Next, the rules are formalized in SWRL (such as in 

Listing 4-7), and are added in the RuleO file (Section 3.2.3), which is an OWL file containing 

all the rules actively utilized by the Rule-based recommendation service. 

 

Rule 1: i* Actor �BPMN Pool  

 

This rule is inspired by (Koliadis et al. 2006).  Actors from the i* model are mapped to a pool 

in BPMN because this construct represents participants of the process.  When the modeler 

creates a BPMN pool, all actors within i* models from the model repository are offered as 

suggestions for annotating the BPMN element.  Listing 4 below shows the SWRL code for this 

rule.   

i*:Actor(?actor), bpmn:Pool(?pool),  
 
sa:AnnotedBy21(?actor, ?domain) -> sa:AnnotedBy(?pool, ?domain) 
 

Listing 4. Rule 1 
 
Rule 2: i* Goal/Task � BPMN Task 

 
This rule appears frequently in works on goal and process model alignment  (Decreus & 

Poels 2011; Guizzardi & Reis 2015; Santos et al. 2010; Koliadis et al. 2006).  It maps an i* goal 

and task to the task construct in BPMN.  This rule makes perfect sense as all those constructs 

mostly represent activities to be performed.  Even though i* goals denote the state of affairs 

to be achieved, it is often labeled as an activity in the form of verb, noun.  This rule implies 

that if a BPMN task is created, all i* tasks and goals from the model repository are derived as 

recommendation.  The recommendations derived using this rule are rather broad, and will 

                                                           
21 The complete name of the object property is 

“SemanticAnnotation:representationClassIsAnnotedByDomainClass”.  

 



pg. 105 

 

be further refined by other recommendation services.  For example, if the modeler has 

entered a label for the modeling element, the Label-based recommendation service will 

compare the entered label with the suggested concepts using string and synonym matching.  

The SWRL code of this rule is presented in Listing 5 and 6 below. 

bpmn:Task(?task), i*:Goal(?goal),  
 
sa:AnnotedBy(?goal, ?domain) -> sa:AnnotedBy(?task, ?domain) 
 

Listing 5. Rule 2 (for i* goals) 
 

bpmn:Task(?task1), i*:Task(?task2),  
 
sa:AnnotedBy(?task2, ?domain) -> sa:AnnotedBy(?task1, ?domain) 
 

Listing 6. Rule 2 (for i* tasks) 
 

Rule 3: i* OR Decomposition �BPMN Exclusive Gateway 

 

This rule is inspired by (Santos et al. 2010).  The exclusive gateway construct in BPMN 

represents a choice between alternative paths to be taken within the process.  Identically, 

OR decomposition in i* reveals alternative activities to be performed to achieve the same 

goal.   This rule is activated if the BPMN model contains an exclusive gateway, and there 

already exists one annotated task connected to this gateway.   This rule is formalized in 

SWRL in Listing 7, and graphically represented in Figure 18.  The recommendation service 

goes through the following steps to derive suggestions: 

1. Check if there are i* models in the model repository containing tasks annotated with 

the same ESO concept as the annotation of the BPMN task 

2. Inspect whether this annotated i* task is being a part of OR decomposition (means - 

ends) relationship 

3. Verify if there are other tasks serving as means to the same end (goal) as the 

annotated task 

4. Derive the tasks found in step 3 as suggestions 

 

 

 

 

 

 

 

 

 



pg. 106 

 

bpmn:Task(?btask1), bpmn:Task(?btask2), bpmn:Sequenceflow(?flow1), 
bpmn:Sequenceflow(?flow2), sa:AnnotedBy(?btask1, ?domain), bpmn:ExclusiveGateway(?gateway), 
bpmn:hasTarget(?flow1, ?btask1), bpmn:hasSource(?flow1, ?gateway), bpmn:hasTarget(?flow2, 
?btask2), bpmn:hasSource(?flow2, ?gateway), i*:ORrefinement(?or1), i*:ORrefinement(?or2), 
i*:GoalTaskElement(?goaltask1), i*:GoalTaskElement(?goaltask2), i*:GoalTaskElement(?goaltask3), 
i*:hasSourceRefinement(?or1, ?goaltask2), sa:AnnotedBy(?goaltask2, ?domain), 
i*:hasSourceRefinement(?or2, ?goaltask3), i*:hasTargetRefinement(?or1, ?goaltask1),  
 
i*:hasTargetRefinement(?or2, ?goaltask1), sa:AnnotedBy(?goaltask3, ?domain2) ->  
sa:AnnotedBy(?btask2, ?domain2) 
 

Listing 7. Rule 3 
 

 
 

Figure 18: Graphical representation of Rule 3 

 

Rule 4: i* AND Decomposition � BPMN Parallel Gateway 

 

This rule, as its predecessor (Rule 3), is derived from (Santos et al. 2010).  The BPMN Parallel 

Gateway construct shows activities that can be performed simultaneously.  Subsequently, 

the i* AND decomposition presents all sub-activities to be accomplished in order to 

complete a particular task.  This rule is activated if the BPMN model contains a parallel 

gateway, and if there is one annotated task connected to it.   This rule is presented below in 

Listing 8, and graphically represented in Figure 19.  The recommendation service goes 

through the following steps to derive suggestions: 

1. Check if there are i* models in the model repository containing tasks or goals 

annotated with the same ESO concept as the annotation of the BPMN task 

2. Verify whether this annotated i* task / goal is being a part of AND decomposition 

(task decomposition) relationship 

3. Examine whether the annotated task / goal is in the right position within the AND 

decomposition relationship 

4. Check if there are other tasks or goals participating in the same relationship at the 

same level as the annotated task / goal 

5. Derive the tasks and goals found in step 4 as suggestions 

 



pg. 107 

 

bpmn:Task(?bpmntask1), bpmn:Task(?bpmntask2), bpmn:Sequenceflow(?flow1), 
bpmn:Sequenceflow(?flow2), sa:AnnotedBy(?bpmntask1, ?domain), 
bpmn:ParaellelGateway(?gateway), bpmn:hasTarget(?flow1, ?bpmntask1), bpmn:hasSource(?flow1, 
?gateway), bpmn:hasTarget(?flow2, ?bpmntask2), bpmn:hasSource(?flow2, ?gateway), 
i*:ANDrefinement(?and1), i*:ANDrefinement(?and2), i*:Task(?task), 
i*:IntentionalElement(?element1), i*:IntentionalElement(?element2), i*:hasSourceRefinement(?and1, 
?element1), sa:AnnotedBy(?element1, ?domain), i*:hasSourceRefinement(?and2, ?element2), 
i*:hasTargetRefinement(?and1, ?task),  
 
i*:hasTargetRefinement(?and2, ?task), sa:AnnotedBy(?element2, ?domain2) -> 
sa:AnnotedBy(?bpmnTask2, ?domain2) 
 

Listing 8. Rule 4  
 

 
 

Figure 19: Graphical representation of Rule 4 

Rule 5: i* Dependency � BPMN Message Flow 

 

This rule is adapted from (Koliadis et al. 2006).  Message flow in BPMN represents 

communication between two process participants (two BPMN pools).  I* dependencies also 

signify interactions among different actors.  Hence, there is a considerable chance that 

message flow between two pools in a BPMN model is representing one of i*’s dependencies 

between actors annotated with the same ESO concepts as the two pools. Rule 5 applies if 

there are two annotated BPMN pools and the modeler adds a message flow between them.  

The message flow can originate either from a pool or from a task within that pool. The 

formalization of this rule is presented in Listing 9, and graphically represented in Figure 20. 

Below are the steps followed by the recommendation service to derive suggestions based on 

this rule: 

1. Verify whether there are models in the model repository containing actors annotated 

with the same ESO concepts as the two BPMN pools  

2. Look for any dependencies (task/goal/resource) present between the two actors 

from step 1 

3. Derive the dependencies as suggestions 



pg. 108 

 

bpmn:Pool(?pool1), bpmn:Pool(?pool2), bpmn:MessageFlow(?smsflow), sa:AnnotedBy(?pool1, 
?domain1), sa:AnnotedBy(?pool2, ?domain2), bpmn:Task(?bpmntask), 
bpmn:isLocatedWithin(?bpmntask, ?pool1), bpmn:hasSource(?smsflow, ?bpmnTask), 
bpmn:hasTarget(?smsFlow, ?pool2), i*:Dependency(?dep1), i*:Actor(?actor1), i*:Actor(?actor2), 
i*:IntentionalElement(?element), i*:dependee(?dep1, ?actor1), i*:depender(?dep1, ?actor2), 
i*:dependum(?dep1, ?element), sa:AnnotedBy(?actor1, ?domain1), sa:AnnotedBy(?actor2, ?domain2),  
 
sa:AnnotedBy(?element, ?domain3) -> sa:AnnotedBy(?smsFlow, ?domain3) 
 

Listing 9. Rule 5 
 
 

 
 

Figure 20: Graphical representation of Rule 5 

4.4			Demonstration	

In order to demonstrate the proposed method, a case about a hospital’s emergency 

department is used. The case is inspired by a real-life emergency department in a local 

hospital, but it is simplified to facilitate a comprehensive demonstration and explanation of 

the proposal CMOE+ based i*-BPMN alignment. For the purpose of this case, it is assumed 

that the i* models representing the actors within the emergency department, their goals 

and dependencies are already created and stored in the model repository accessible by 

CMOE+BPMN tool.  For this demonstration, an existing medical ontology was revised by an 

ontology engineer to more closely represent the ESO for an emergency department.  The 

feedback from i* models was also incorporated in the ESO following the Ontology Evolution 

phase of CMOE+.  The final ontology product was formalized in OWL and made accessible 

within the CMOE+BPMN tool.       

The process model to be created is presented in Figure 21. When a patient arrives to the 

emergency room, the triage nurse obtains the patient’s vital signs (blood pressure, 

temperature, and heartbeat) to estimate her condition.   Afterwards, the emergency 

physician attempts to determine the patient’s illness by viewing her present symptoms and 

past medical history obtained from patient’s primary care provider.  The patient needs to 

communicate all the experienced symptoms as detailed as possible. This helps the physician 



pg. 109 

 

to produce differential diagnoses.  The most likely diagnoses are then determined by 

physical examination.  When the patient is diagnosed, she receives the right treatment if it is 

possible in the emergency hospital.  If the diagnoses are determined, but the treatment is 

not offered by the emergency department, the patient is redirected to a more specialized 

medical facility. 

While adding elements to the modeling canvas, the modeler receives suggestions derived 

from the ESO and the model repository.  Those suggestions aim to facilitate the modelling 

process by showing potentially useful or forgotten concepts (that  are present in goal models 

previously created) and encouraging the usage of consistent vocabulary.  The modeler is free 

to adopt these suggestions, or disregard them and look further in the ESO for more suitable 

concepts, or in case none found, to introduce a custom label.  It is important to note that the 

suggestions are concepts with a higher probability to fit a particular BPMN construct.   

This section aims to demonstrate the type of suggestions derived based on the five rules 

described in Section 4.3.2 while creating the process model in Figure 21, and what are the 

potential benefits of those suggestions.  Figure 21 highlights in red the areas corresponding 

to each of the five rules.  Every highlighted area is numbered according to the rule it follows.  

 



pg. 110 

 

 

Figure 21: Simplified process model for the emergency department 

RULE 1: While placing a pool on the modeling canvas, all the ESO concepts corresponding to 

i* actors are derived as suggestions.  It is important to mention that this is only a handful of 

concepts compared to the full capacity of ESO.  This facilitates the ontology lookup process 

greatly, and allows the modeler to potentially find the relevant concept rapidly, and possibly 

to discover and add actors she did not think of.  The limited size of the set of actors also 

allows a fast and easy comparison between the pools in the process model, and the actors in 

i* models. 

RULE 2: the majority of concepts in the ESO used for this demonstration are nouns.  This rule 

brings forward the few ESO concepts with verb noun structure.  This rule promotes the 

usage of a correct form of labeling for a BPMN task (verb noun)  (Dumas et al. 2013).   

RULE 3: suggests the ESO concepts corresponding to i* tasks which are specified as 

alternative means to achieve the same goal.  This rule presents to the modeler all the 

alternative paths possible in a particular situation.  This might inspire the modeler to 

consider alternatives she has not thought of in the process model.  This rules limits the 

suggestion list significantly as it only suggests tasks used to achieve a particular goal.  



pg. 111 

 

Furthermore, Rule 3 facilitates detecting incompleteness in i* models; the number of the 

suggested concepts is very limited (typically two or three concepts in the described case) 

which does not require much effort from the modeler to spot any missing concepts. 

RULE 4: offers the same benefits as Rule 3 while operating based on i* Task Decomposition 

link rather than i* Means – Ends link.   

RULE5: proposes as suggestions all the possible interactions between the i* actors 

corresponding to the BPMN pools (Emergency Department and Patient in Figure 21).  Those 

interactions are represented in i* models by means of dependencies where one actor 

depends on the other for achieving a goal, performing a task, or acquiring a resource.  ESO 

concepts used to annotate those i* goals, tasks, and resources will be derived as suggestions.  

This rule is less specific than Rule 3 and 4.  However, it can inspire the modeler to add 

interactions which were disregarded in the process description.   

4.5			CMOE+X	Tool	Architecture	

CMOE+ is architected in a manner that it is easy to instantiate, and only a few components 

need to be changed for every instantiation.  The remaining components remain fixed.  Figure 

22 represents a component diagram of the CMOE+ tool. The User Interface Layer interacts 

with the user using three main components: the first component, the Recommendations 

view, is responsible for displaying the ordered list of ESO concepts.  The ESO properties view 

presents properties of different ESO concepts.  Those properties include the definition,  the 

individual relevance scores assigned by each recommendation service, and a weighted 

average of those scores.  The Model editor captures modeling elements selected by the 

modeler.    The communication between the modeler and the view is facilitated by the 

Adapters from the Business Logic Layer. The views and the model editor are acting as 

interface between the modeler and the code.  Only the Model editor component needs to 

be replaced when CMOE+ is configured with a different modeling language.    The Business 

Logic Layer features two main components:  the Recommendation services and the Adapters.  

The Recommendation services component is the Java implementation of all the active 

recommendation services.  It receives information on the modeling element selected by the 

modeler, consults the ontology storage and/or model repository via the ontology manager, 

calculates the relevance scores per every services, and the weighted average, and finally 

passes the resulting information to the views in User Interface Layer.  The Recommendation 

services component is altered for every modeling language because some of the 

recommendation services are specific to the modeling language, and hence cannot be 

reused across languages.  The Data Access Layer is responsible for transmitting information 

about the database to the Recommendation services.  It uses the OWL API to access the 

ontologies and models represented in OWL format.  The Ontology storage database is 

updated with every modeling language, as some ontologies residing within are dealing 



pg. 112 

 

directly with the modeling language at hand, such as the ontology of the meta-model of the 

modeling language, and ontological analyses of the modeling language.  The Model 

repository is constantly updated with new models.  However, such updates are independent 

of the modeling language, and the models are added to the repository automatically.    

 

Figure 22: Components of CMOE+ tool.  The components highlighted in red need to be altered for every 

modeling language 

4.6			Conclusion			

This chapter starts by introducing the literature on goal and process model alignment.  Next, 

it demonstrates how CMOE+ contributes to establishing the alignment between i* and 

BPMN models, and which extensions to CMOE+ were required to support this.  Additionally, 



pg. 113 

 

this chapter presents a new instantiation of CMOE+ with the i* modeling language.  This 

chapter also iterates on the steps to be performed to configure the CMOE+ tool with a new 

modeling language.   

With every new instantiation of CMOE+, the original framework is analyzed and updated.  

Those updates, even if minor, are still important to increase the quality of CMOE+.  The final 

version of the Conceptual Modeling and Ontology Evolution framework by the end of this 

dissertation, is presented in Figure 23 below.  By looking to Figure 23, the reader will notice 

that the model repository was added to the Ontology and model storage phase (the name of 

the phase has also been changed to accommodate the addition).  Moreover, the 

recommendation services were removed from within the phase, and placed between the 

two cycles.  This was motivated by the fact that the recommendation services are not a part 

of a particular phase, but are operating between phases (and even cycles).  It is important to 

mention that CMOE+ has not stopped evolving, and additional enhancements are foreseen 

based on ongoing research. 



pg. 114 

 

 

Figure 23: The final version of CMOE+ 



pg. 115 

 

	 	



pg. 116 

 

	

5	
Conclusions	and	Future	Work	

This chapter discusses the results of this work, elaborates on the contributions, highlights 

some limitations, and gives directions for future work.  

5.1		Research	Results	

The main purpose of this research work is to support the modeler in creating semantically 

aligned conceptual models based on an enterprise specific ontology.  In order to accomplish 

this, the Conceptual Modeling and Ontology Evolution framework (CMOE+) was developed, 

which consists of two cycles, the Conceptual Modeling and the Ontology Evolution cycle, and 

establishes a symbiotic relationship between them. In this thesis, the CMOE+ framework was 

outlined as a whole, but the focus lies on the conceptual modeling phase, which is described 

and evaluated in detail; the ontology evolution phase is not fully explored, and only 

described schematically. 

The conceptual modeling cycle of CMOE+ facilitates the creation of semantically aligned 

conceptual models. To do so, some preparatory work is required: preparing and setting up 

the various conceptual modeling languages used within the enterprise. Once set up, in the 

ontology engineering cycle, the modeler is guided and assisted to create semantically 

annotated models, based on an enterprise-specific ontology. As such, CMOE+ support the 

main goal of this thesis. Finally, to ensure high quality models, the conceptual modeling cycle 

prescribes a quality check on the resulted conceptual model.   

On the other hand, the Ontology Evolution cycle concerns the ontological support for the 

conceptual modeling cycle. It facilitates ontology storage, offers support to establish the 



pg. 117 

 

initial version of the ESO, and makes it accessible in a convenient way to various other 

processes operating within CMOE+, most importantly the recommendation services, which 

offer modeling recommendations during the conceptual modeling process (in the conceptual 

modeling phase).  Finally, this cycle is also responsible to process feedback form the 

conceptual modeling cycle, and utilize it to update and evolve the enterprise specific 

ontology, in order to better match the evolving needs of the enterprise.  

The CMOE+ framework offers guidelines for every stakeholder involved in the conceptual 

modeling or ontology engineering practices.  Simultaneously, the framework is flexible and 

easy to accommodate to the specific needs of enterprises.  This flexibility includes 

configuring new modeling languages, quality evaluation frameworks, adding 

recommendation services, and other changes.  Concerning the Ontology Evolution cycle, the 

Ontology setup phase needs to be performed only once to acquire the initial version of ESO.  

The CMOE+ framework offers several possibilities within this phase, and it is up to the 

ontology engineer to make a decision on how the initial ESO is established.  The second 

phase, Ontology storage and recommendation services, provides an opportunity to extend 

the recommendation services with new matching algorithms corresponding to the alignment 

rules used by the enterprise, or new matching algorithms to accommodate newly added 

modeling languages (as some recommendation services are language specific). Community-

based ontology feedback evolution allows incorporating any community-based interaction 

fora which an enterprise finds appropriate.  There are several approaches in the literature 

which do not require the community members to be present at the same location (as 

presented in Section 2.3.1.3), which is convenient for enterprises with physically distributed 

stakeholders.  The ontology evolution phase leaves the choice up to the ontology engineer 

on how often to update and evolve the ESO, and how to tackle versioning issues. 

The Conceptual Modeling cycle also keeps the possibility open for changes and updates.  It’s 

first phase, Ontological analyses of the modeling language, allows incorporating new 

modeling languages into CMOE+.  The Conceptual model creation phase offers an interface 

to the ESO during model creation, and is responsible for the semantic annotation.  This is the 

most rigid phase within CMOE+, and most of the actions performed here are predefined.  

However, it is still possible to adjust the way the ESO concepts are presented to the modeler, 

if there is a need for that.  The final phase, Conceptual model evaluation, allows 

incorporating quality frameworks to assess the quality of the created models.  Some of the 

quality criteria are enforced during model creation.  For example, syntactic quality can be 

enforced by the modeling tool, as nowadays many modeling tools incorporate a built-in 

quality check.  Semantic quality is also re-enforced to some degree by basing the models on 

the ESO (which represents the agreed upon knowledge of the enterprise).  Hence, this phase 

is mostly concerned with quality evaluation of the end product. 

In addition to establishing guidelines for CMOE+, within this work we have presented a 

concrete instantiation of the framework for BPMN, the CMOE+BPMN framework, and 



pg. 118 

 

implemented the CMOE+BPMN tool. CMOE+BPMN was described and evaluated in detail in 

Chapter 3. In Chapter 4, a second instantiation of CMOE+, for the i* modeling language, was 

briefly reported, and the ability of CMOE+ to contribute to the semantic alignment of 

different modeling languages (i* and BPMN) was presented in Chapter 4.  This 

demonstration provides evidence that CMOE+ is indeed capable of accommodating different 

modeling languages, and shows the overall flexibility of the framework. In the process of 

developing CMOE+, a set of recommendation services was put forward.  The 

recommendation services cooperate on scanning the ontology and calculating the relevance 

score for every ontological concept.  Those recommendation services can be reused 

independently of CMOE+.  

In the beginning of this dissertation, Section 1.4 highlighted three research goals to be 

achieved within this research.  To add structure to this section, and to connect it with the 

introduction, the obtained research results are now presented per research goal.   

GOAL1:  Setting overall requirements for establishing the symbiotic relationship between 

conceptual modeling and ontology engineering, and establishing a framework which will 

deliver those requirements.  

In order to accomplish this goal, we took part in the FRIS case and reviewed relevant 

literature.  As a result, seven requirements were put forward (Section 2.2).  Next, the 

structure of CMOE+ emerged in accordance with these requirements.  The framework was 

divided into two cycles and various phases per cycle.  The description of every phase was 

supplied in Section 2.3.  CMOE+ possesses the following characteristics: 

• CMOE+ is a general framework which is not bound to a particular modeling 

language or modeling paradigm. CMOE+ is flexible, and every phase is configurable. 

• It promotes semantic alignment during model creation 

• The framework establishes semantic alignment of models by means of semantic 

annotation which guarantees the modeler the freedom of choosing the terminology 

for labeling the modeling elements.  

GOAL2:  Providing more detailed explanation regarding those phases of the framework 

which are related to the conceptual modeling activity.    

After offering a brief description of every phase in relation to GOAL1, a detailed explanation 

of phases related to the conceptual modeling part was provided in Section 2.3.  This 

dissertation focuses on the conceptual modeling activity, hence some phases of the 

Ontology Evolution cycle are not elaborated and remain future work.  Figure 24 highlights 

the phases explored within this dissertation.    



pg. 119 

 

 

Figure 24: Phases of CMOE+ which are elaborated in detail within this dissertation 

After elaborating on the conceptual modeling phases of CMOE+, the resulting framework 

exhibits the following characteristics:  

1. Promoting semantic alignment of models using ESO.  Within CMOE+, creating 

conceptual models based on ESO is highly encouraged by displaying ESO concepts to 

the modeler during model creation.  The modeler annotates each modeling element 

with one ESO concept, thereby establishing a semantic connection between the ESO 

and the conceptual model.  The modelers maintain the freedom of choosing the 

appropriate label for the modeling elements, and is not restricted by the 

terminology presented by ESO concepts.   

 

2. Encapsulating the ESO and presenting it in a manner which does not require any 

specialized knowledge on ontologies from the modeler.   During the modeling 

process, the modeler accesses the ESO through an interface which conceals all the 

technical aspects of the ontology, and the modeler is only presented with an ordered 

list of ESO concepts.  The modeling task using our approach was tested with students 

who do not have knowledge on ontologies.  As the reader can see from Chapter 3, 

the lack of knowledge did not hinder the usability of our approach.  However, for 

ontology-related issues such as establishing the initial version of the ESO, and 

maintaining it up to date, the interference of the ontology engineer will be required. 



pg. 120 

 

 

3. The semantic alignment is promoted during model creation.  While creating the 

conceptual model, the modeler uses the annotation mechanism to link every 

modeling element (if possible) to the corresponding ESO concept.  This ensures that 

the model is based on the ESO already during the creation, and no further 

intervention is required on the final product.  

Ability to suggest the most relevant ESO concepts to the modeler.  CMOE+ incorporates 

several recommendation services which access the ESO and scan the ontological concepts 

extracting the most relevant ones to be suggested to the modeler for annotating the 

modeling elements.  The recommendation services constitute of rules and algorithms 

calculating the relevance score for each ESO concept and presenting an ordered list of ESO 

concepts to the modeler.  The recommendation services are very flexible, and can be 

extended to correspond better to the needs of the enterprise, and the modeling languages 

used. 

GOAL3: Evaluating the phases responsible for the conceptual modeling side of the symbiosis 

by demonstrating the framework for BPMN process modeling language, and i* goal 

modeling language.   

In order to accomplish this goal, different phases of CMOE+ were instantiated for BPMN.  

This required analyzing BPMN modeling language with UFO core ontology, and incorporating 

the relevant recommendation services.  Next, CMOE+BPMN prototype was implemented 

using Java in the Eclipse environment.  The tool was evaluated in an experiment with 

students.  In less detail, the elaboration of CMOE+ for i*, CMOE+i*, and the accompanying 

tool, were also described. 

GOAL4:   Exploring the ability of CMOE+ in aligning i* goal models with BPMN process 

models. 

The purpose of this PhD is to facilitate creation of more semantically aligned conceptual 

models.  Hence, it was important to test the proposed alignment method using two different 

modeling languages, as the underlying premise is that semantically annotating different 

conceptual models with the same ESO, will promote mutual semantic alignment.  Chapter 4 

presents the idea of the alignment and the modifications required for CMOE+ to 

accommodate new modeling languages. Additionally, Chapter 4 demonstrates a second way 

in which CMOE+ can be used to align conceptual models created in different modeling 

languages: incorporating recommendation rules which draw from already annotated, 

previously created models. This was illustrated using i* and BPMN. 



pg. 121 

 

5.2		Contributions	

This thesis combines reusing literature and proposing innovative ideas.  The work performed 

contributes both to the research field, and to practice.  While developing CMOE+, several 

iterations were made until the current version was established.  Those iterations resulted in 

ideas, guidelines, methods, and other artefacts which can be utilized in practice.  Some of 

those artefacts are bound to CMOE+, while others can be utilized independently.  This 

includes the following practical contributions: 

• Proposing the Conceptual Modeling and Ontology Evolution framework.  The CMOE+ 

framework itself is the major contribution of this thesis.  It combines aspects from 

various fields such as modeling, ontology engineering, ontology matching, semantic 

annotation, etc. to offer a comprehensive solution for the creation of semantically 

aligned models, and maintenance of the ESO.  CMOE+ is flexible enough to operate 

with different modeling languages, and to allow the accommodation of the 

enterprise’s needs.  This makes the framework easy to tailor to different enterprises.   

Next to introducing the overall CMOE+ framework and describing it, this research 

elaborates the phases of CMOE+ related to conceptual modeling, presents its 

architecture, and highlights what needs to be altered in order to accommodate new 

modeling languages. 

 

• Developing a set of recommendation services which can effectively perform 

ontology lookup and suggest to the modeler the ESO concepts which are the most 

relevant to the modeling elements being created.  Some of the presented services 

are modelling language specific, others are transversally usable.  The 

recommendation services can be reused outside the context of CMOE+ as new rules 

and algorithms are easily configured.   

 

• Establishing a method for semantic annotation of conceptual models.  In the process 

of creating conceptual models, the modeler can easily annotate elements of his 

models with ESO concepts.  This annotation plays an essential role in enforcing 

semantic alignment between models, while simultaneously allowing a free choice of 

terminology. The mechanisms presented to semantically annotate conceptual 

models are equally usable outside the context of CMOE+. 

 

• Implementing a prototype of the CMOE+BPMN tool.  This tool incorporates all the 

features of CMOE+ (which were addressed in this dissertation).  This tool 

exemplifies CMOE+ for process modeling using BPMN.  While explaining the tool, 

this thesis is offering guidelines on how to instantiate CMOE+ for other modeling 

languages. We also briefly elaborated the CMOE+i* tool, which supports the i* 

modelling language. 



pg. 122 

 

 

• Introducing a method for establishing alignment between models created using 

different modeling languages.  CMOE+ incorporates features allowing to align newly 

created models with models residing in the model repository.  This was 

demonstrated while aligning BPMN models (while they are being created) with i* 

goal models from the model repository. 

Contributions to the research field are summarized as following: 

• Applying ontological analysis of the modeling languages in practice.  A considerable 

amount of research is found on ontological analysis of modeling languages such as 

BPMN, i*, UML, etc.  However, to the best of our knowledge, those research efforts 

remain theoretical where the researchers stop at establishing those analyses.  

Within the context of CMOE+ framework,  ontological analysis from the literature 

can now be applied in practice.  Until this point, CMOE+ was tested with ontological 

analyses of i* and BPMN using UFO foundational ontology. 

 

• Utilizing the alignment rules in practice.  Similar to the contribution above, this 

research work applies previously established rules aligning i* and BPMN models.  

Moreover, there is a possibility to incorporate rules aligning models in other 

modeling languages.  Hence, CMOE+ offers a possibility to test a wide range of 

different alignment rules existing in literature. 

     

• Introducing the symbiotic relationship between conceptual modeling and ESO 

evolution.  Using the ESO to increase model alignment is not a new concept by itself.  

However, utilizing the created conceptual models as means to gather feedback 

about the enterprise and maintain the ESO, is more of an innovative idea.  This idea 

is not fully explored within the context of this research work, but sufficient 

guidelines are offered in order to comprehend the idea conveyed. 

5.3		Limitations	and	Future	Work	

Despite the effort that was invested in this thesis, this research is prone to a few limitations.  

First, it was only tested with two modeling languages.  This can be regarded as a limitation 

because it poses a threat to the generalizability of CMOE+.  However, the framework 

performed well on both modeling languages, and we identified the aspects that needs to be 

taken into consideration when a new modeling language is configured.  Additionally, it is 

demonstrated how alignment between models in both modeling languages can be achieved, 

which shows the usability of CMOE+ across modeling languages.  The second limitation is 

concerning the evaluation.  The exemplification of CMOE+ with BPMN was tested with 

students.  Even though the students are not the targeted population for CMOE+, students 



pg. 123 

 

with appropriate background and knowledge are often perceived as valid proxies for the 

practitioners.  Finally, this work is lacking a comprehensive evaluation of the proposed 

framework.  This unfortunately was not possible to achieve due to the fact that CMOE+ is 

not completed yet.  As the reader can see, there are a few limitations.  However, those 

limitations can be addressed in the future.   

This research project will continue, and we will gradually keep improving CMOE+.  The first 

part of the future work addresses the phases of CMOE+ which were completed within this 

dissertation:   

1. There is a possibility to look further into the Ontological analyses of the modeling 

language, and the Ontology storage and recommendation services phases.  Within 

the former phase, it is feasible to perform (or search for) ontological analyses of 

commonly utilized modeling languages using UFO.  UFO is recommended as a 

foundational ontology within CMOE+.  Hence, it would be beneficial to have such 

ontological analyses at our disposal.  For the Ontology storage phase, it is planned to 

look into the recommendation services to find an optimal combination of algorithms, 

or add new algorithms to improve the suggested ESO concepts received by the 

modeler for every modeling element.   

 

2. In addition to improving the individual phases, we are very curious to test CMOE+ 

with practitioners and hear their opinion on the framework.  Even though students 

are often participating in research experiments, it is important to evaluate the 

Conceptual Modeling cycle of CMOE+ with real practitioners.  They will be able to 

offer valuable insights on how to improve CMOE+ to suite organizational needs for 

modeling.  This is something the students are not capable of doing.  The feedback 

acquired from practitioners can also result in altering the Ontology Evolution cycle.    

 

3. Another important aspect to be investigated is establishing alignment among 

modeling languages other than i* and BPMN. 

The second part of the future work concerns the remaining phases of the Ontology Evolution 

cycle, which deal with gathering and validating the updated knowledge within the enterprise, 

and incorporating it into the ESO.  Within the context of this dissertation, only the general 

description was provided for the Community-based ontology feedback verification phase, 

and Ontology evolution phase.  Those phases constitute the biggest part of the future work.  

There is an intention in the research group to acquire a PhD student who will work on this 

topic.  The following objectives are already highlighted in that regard: 

1. Facilitating gathering the knowledge on what has evolved within the enterprise.  In 

order to be able to capture the updates within the enterprise, CMOE+ suggests 

analyzing conceptual models created within this enterprise.   All the models created 



pg. 124 

 

using CMOE+ are stored in the model repository.  Those files are used to search for 

feedback.  One way to search for feedback is to use an automated tool which looks 

for predefined patterns in model files.  However, this does not allow capturing 

changed instantly after their occurrence.   The changes need to be reflected in a 

conceptual model first.  

 

2. Validating the gathered knowledge (feedback).  After gathering the feedback, the 

next step is to validate whether this feedback is worth incorporating into the ESO.  

Even if some patterns were discovered in the previous step, they are not necessarily 

reflecting true changes to the enterprise.  They can be representing some very 

localized changes, or maybe just a mistake made by the modeler.  Therefore, the 

feedback is required to be carefully evaluated before it is used for ESO update.  This 

evaluation is done by the certified members of the enterprise’s community.  CMOE+ 

foresees an online community forum where community members can vote upon the 

presented feedback.   

 

3. Tackling issues regarding ontology update and ontology versioning, and the 

procedure of updating artefacts already connected to the previous versions of the 

ontology. 

After completing all the phases of CMOE+, we have the following plans for the framework: 

1. Investigating how CMOE+ can be utilized to improve Business/IT alignment within 

companies.  ESO plays an important role in Business/IT alignment, and in improving 

the communication across the enterprise generally.  Hence, after making progress on 

the Ontology Evolution cycle of CMOE+, it is worth investigating the impact of 

CMOE+ on the Business/IT alignment.  Additionally, it is planned to test CMOE+ with 

existing Business/IT alignment approaches such as Archimate (CMOE+Archimate). 

 

2. Identifying and implementing the non-functional requirements of CMOE+ is another 

important aspect.  Specially when the framework is intended for a practical usage.  

This thesis mainly focused on the functional requirements of CMOE+. 

 

3. When all the phases are completed, CMOE+ framework will be evaluated as a whole, 

including all the phases within the context of a real enterprise.  Annually, our 

research groups organizes a practice oriented workshop, inviting all the members of 

our Industrial Liaison Initiative. During the workshop all the projects of the research 

group are presented and for every project it is pointed out how this project can be 

useful in practice, and how practice can be involved in the next steps of the project.  

Of course, this type of evaluation requires a complete implementation of CMOE+ 



pg. 125 

 

including the non-functional requirements.  Observing its overall performance will be 

very interesting and satisfying for us.     

 

  

 

 



pg. 126 

 

Acronyms	

AI Artificial Intelligence  

API Application Programing Interface 

ARIS ARchitecture for integrated Information Systems 

BI Business Intelligence  

BPMN Business Process Modeling Notation 

CASE Computer Aided Software Engineering  

CMOE+ Conceptual Modeling and Ontology Evolution Framework 

CoO Core Ontology 

DOLCE Descriptive Ontology for Linguistic and Cognitive Engineering 

EC Engineering Cycle 

ER Entity Relationship 

ERP Enterprise Resource Planning  

ESO Enterprise-Specific Ontology 

FRIS Flanders Research Information Space 

IU Intention of Use 

MEM Method Evaluation Model 

MLO Modeling Language Ontology  

MoO Model Ontology 

OIL Ontology Inference Layer 

OWL Web Ontology Language 

PEOU Perceived Ease Of Use  

PU Perceived Usefulness  

RC Research Cycle 

REA Resourse-Event-Agent 

RDF Resource Description Framework 

RulesO Rules Ontology 

SBVR Semantics of Business Vocabulary and Business Rules 

SQ Semantic Quality 

SRML Simple Rule Markup Language  

SUMO Suggested Upper Merged Ontology 

SWRL Semantic Web Rule Language 

TOVE Toronto Virtual Enterprise Ontology 

UEML Unified Enterprise Modeling Language  

UFO Unified Foundational Ontology  

UML Unified Modeling Language  

XML Extensible Markup Language  

 

 

 

 

 

 

 

 



pg. 127 

 

	

	 	



pg. 128 

 

References	

 

 

 

Abramowicz, W. et al., 2007a. Semantically enhanced Business Process Modeling Notation. In 

Proceedings of the Workshop on Semantic Business Process and Product Lifecycle Management 

(SBPM 2007). 

Abramowicz, W. et al., 2007b. Semantically enhanced Business Process Modelling Notation. CEUR 

Workshop Proceedings, 251. 

Aguilar-Savén, R.S., 2004. Business process modelling: Review and framework. International Journal 

of Production Economics, 90(2), pp.129–149.  

Allweyer, T., 2016. BPMN 2.0: Introduction to the standard for business process modelling, BoD - 

Books on Demand. 

Almeida, J.P. & Guizzardi, G., 2013. An ontological analysis of the notion of community in the RM-

ODP enterprise language. Computer Standards & Interfaces, 35(3), pp.257–268. 

Aßmann, U. & Zschaler, S., 2006. Ontologies, meta-models, and model-driven paradigm. In C. Calero, 

F. Ruiz, & M. Piattini, eds. Ontologies for Software Engineering and Software Technology. 

Springer Berlin Heidelberg, pp. 249–273. 

Auer, S., 2006. RapidOWL - an Agile Knowledge Engineering Methodology. In I. Virbitskaite & A. 

Voronkov, eds. 6th International Andrei Ershov Memorial Conference on Perspectives of System 

Informatics. Springer Berlin Heidelberg, pp. 424–430. 

Ayad, S., 2012. A Quality Based Approach for the Analysis and Design of Business Process Models. In 

Research Challenges in Information Science (RCIS), 2012 Sixth International Conference on. 

Valencia: IEEE, pp. 1–5. 

Barcellos, M.P., Falbo, R.D.A. & Dal Moro, R., 2010. A well-founded software measurement ontology. 

Frontiers in Artificial Intelligence and Applications, pp.213–226. 

Bechhofer, S. et al., 2003. OWL web ontology language reference. 

Becker, J., Breuker, D., et al., 2009. Constructing comparable business process models with domain 

specific languages - an empirical evaluation. In SCIS 2009 proceedings. 

Becker, J. et al., 2009. Constructing comparable business process models with domain specific 

languages – an empirical evaluation. Proceedings of the 17th European Conference on 

Information Systems (ECIS), pp.1–13. 

Becker, J. et al., 2010. Semantic Business Process ManagementHandbook on Business Process 

Management 1. In J. vom Brocke & M. Rosemann, eds. Springer Berlin Heidelberg, pp. 187–211. 

Becker, J. et al., 2009. Towards increased comparability of conceptual models-enforcing naming 

conventions through domain thesauri and linguistic grammars. ECIS 2009 Proceedings, pp.1–13. 

Becker, J., Delfmann, P., et al., 2009. Towards increased comparability of conceptual models - 

enforcing naming conventions through domain thesauri and linguistig grammars. In ECIS 2009 

proceedings. 

Becker, J., Rosemann, M. & von Uthmann, C., 2000. Guidelines of Business Process Modeling. Lecture 

Notes in Computer Science, 1806, pp.30–49. 

Bera, P., Burton-Jones, A. & Wand, Y., 2011. GUIDELINES FOR DESIGNING VISUAL ONTOLOGIES TO 

SUPPORT KNOWLEDGE IDENTIFICATION. Mis Quarterly, 35(4), pp.883–908. 

Bera, Burton-Jones, A. & Wang, Y., 2011. Giudelines for designing visual ontologies to support 

knowledge identification. Management information systems quarterly, 35(4), pp.883–908. 

Blomqvist, E., 2005. Fully automatic construction of enterprise ontologies using design patterns: 

Initial method and first experiences. Lecture Notes in Computer Science, 3761(On the Move to 

Meaningful Internet Systems 2005: COOPIS, DOA, and ODBASE, Pt 2), pp.1314–1329. 



pg. 129 

 

Bommel, P. van & Hoppenbrouwers, S., 2007. QoMo: A modeling process quality framework based 

on SEQUAL. In Proceedings of EMMSAD.  

Booch, G., 1994. Object-oriented Analysis and Design with Applications.  

Born, M., Dörr, F. & Weber, I., 2007. User-friendly semantic annotation in business process modeling. 

In M. Weske, M. Hasid, & C. Godart, eds. Web Information Systems Engineering–WISE 2007 

Workshops. Nancy, France: Springer Berlin Heidelberg, pp. 260–271.  

Cabral, L., Norton, B. & Domingue, J., 2009. The Business Process Modelling Ontology. In Proceedings 

of the 4th International Workshop on Semantic Business Process Management. SBPM ’09. New 

York, NY, USA: ACM, pp. 9–16. 

Cardoso, E., Guizzardi, R.S.S. & Almeida, J.P.A., 2011. Aligning goal analysis and business process 

modelling: a case study in healthcare. International Journal of Business Process Integration and 

Management, 5(2), pp.1–15. 

Chen, P., 1976. The Entity-Relationship model - toward a unified view of data. , 1(1), pp.9–36. 

Chow, L., 2011. BPMN 2.0 Primitives and Semantic Technology - Proof of Concept. Talk presented on 

July 13, 2011, (July). 

Commentary, R. et al., 2002. Research Commentary: Information Systems and Conceptual 

Modeling— A Research Agenda. Information Systems, 13(4), pp.363–376. 

Davies, I. et al., 2006. How do practitioners use conceptual modeling in practice? Data and 

Knowledge Engineering, 58(3), pp.358–380. 

Davis, F.D., 1989. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information 

Technology. Mis Quarterly, 13(3), pp.319–340. 

Debruyne, C. et al., 2011. Publishing Open Data and Services for the Flemiish Research Information 

Space. In O. De Troyer et al., eds. Advances in Conceptual Modeling. Recent Developments and 

New Directions. Springer Berlin Heidelberg, pp. 389–394. 

Decreus, K. & Poels, G., 2011. A Goal-Oriented Requirements Engineering Method for Business 

Processes. In Information Systems Evolution. Springer Berlin Heidelberg, pp. 29–43. 

Delfmann, P., 2009. Unified Enterprise Knowledge Representation with Conceptual Models - 

Capturing Corporate Language in Naming Conventions. In ICIS 2009 Proceedings. pp. 1–16. 

Dijkman, R.M.R.M., Dumas, M. & Ouyang, C., 2007. Formal semantics and automated analysis of 

BPMN process models. Information and Software Technology, pp.1281–1294. 

Doerr, M., Hunter, J. & Lagoze, C., 2003. Towards a Core Ontology for Information Integration. 

Journal of Digital Information, 4(1). 

Dumas, M. et al., 2013. Fundamentals of Business Process Management, Springer Berlin / Heidelberg. 

Dunnette, M., Campbell, J. & Jaastad, K., 1963. The effect of group participation on brainstorming 

effectiveness for two industrial samples. Journal of Applied Psychology, 47(1), pp.30–37.  

Endert, H. et al., 2007. Mapping BPMN to Agents: An analysis. In M. Baldoni, C. Baroglio, & V. 

Mascardi, eds. International Workshop MALLOW-AWESOME’007. pp. 43–58. 

Euzenat, J. & Shvaiko, P., 2013. Ontology matching, Springer Berlin / Heidelberg.  

Evermann, J. & Wand, Y., 2005a. Ontology based object-oriented domain modelling: fundamental 

concepts. Requirements Engineering, 10(2), pp.146–160.  

Evermann, J. & Wand, Y., 2005b. Toward formalizing domain modeling semantics in language syntax. 

Ieee Transactions on Software Engineering, 31(1), pp.21–37. 

Fensel, D. et al., 2000. OIL in a Nutshell. In Knowledge engineering and knowledge management 

methods, models, and tools. Springer Berlin Heidelberg, pp. 1–16. 

Fernández-López, M., Gómez-Pérez, A. & Juristo, N., 1997. METHONTOLOGY: From Ontological Art 

Towards Ontological Engineering. In Spring Symposium on Ontological Engineering of AAAI. pp. 

33–40.  

Fettke, P. & Loos, P., 2003. Ontological Evaluation of Reference Models using the Bunge-Wand-

Weber Model. In Proceedings of the 9th Americas Conference on Information Systems.  

Fill, H.-G., 2012. An Approach for Analyzing the Effects of Risks on Business Processes Using Semantic 

Annotations. ECIS 2012 Proceedings. 



pg. 130 

 

Fill, H.-G., 2011a. On the Conceptualization of a Modeling Language for Semantic Model Annotations. 

In C. Salinesi & O. Pastor, eds. Advanced Information Systems Engineering Workshops. Lecture 

Notes in Business Information Processing. Springer Berlin Heidelberg, pp. 134–148. 

Fill, H.-G., 2011b. Using Semantically Annotated Models for Supporting Business Process 

Benchmarking. In J. Grabis & M. Kirikova, eds. Perspectives in Business Informatics Research. 

Lecture Notes in Business Information Processing. Springer Berlin Heidelberg, pp. 29–43. 

Fonseca, F. & Martin, J., 2007. Learning The Differences Between Ontologies and Conceptual 

Schemas Through Ontology-Driven Information Systems. Journal of the Association for 

Information Systems, 8(2), pp.129–142. 

Fox, M., 1992. The TOVE Project Towards a Common-Sense Model of the Enterprise. In F. Belli & F. 

Radermacher, eds. Industrial and Engineering Applications of Artificial Intelligence and Expert 

Systems. Springer Berlin Heidelberg, pp. 25–34. 

Francescomarino, C. Di et al., 2011. A framework for the collaborative specification of semantically 

annotated business processes. Journal of Software Maintainance and Evolution: Research and 

Practice, 23(4), pp.261–295. 

Francescomarino, C. Di & Tonella, P., 2009. Supporting Ontology-Based Semantic Annotation of 

Business Processes with Automated Suggestions. In Enterprise, Business Process, and 

Information Systems Modelling. pp. 211–223. 

Di Francescomarino, C. & Tonella, P., 2010. Supporting Ontology-Based Semantic Annotation of 

Business Processes with Automated Suggestions. International Journal of Information System 

Modeling and Design, 1(2), pp.59–84.  

Franch, X., 2010. Fostering the Adoption of i * by Practitioners : Some Challenges and Research 

Directions. In S. Nurcan et al., eds. Intentional Perspectives on Information Systems Engineering. 

Springer Berlin Heidelberg, pp. 177–193. 

Franch, X. et al., 2011. Ontological Analysis of Means-End Links. In CEUR Workshop Proceedings. 

Gailly, F., 2016. Recommendation-based Conceptual Modeling and Ontology Evolution (CMOE+) Java 

tool. 

Gailly, F., Geerts, G. & Poels, G., 2009. Ontological Reengineering of the REA-EO Using UFO. In 

International OOPSLA Workshop on Ontology-Driven Software Engineering. 

Gangemi, A. et al., 2002. Sweetening ontologies with DOLCE. Knowledge Engineering and Knowledge 

Management, Proceedings, 2473, pp.166–181. 

Geerts, G.L. & Mccarthy, W.E., 1999. An accounting object infrastructure for knowledge- based 

enterprise models. Intelligent Systems and their Applications, IEEE, 14(4), pp.89–94. 

Gehlert, A. & Esswein, W., 2007. Toward a formal research framework for ontological analyses. 

Advanced Engineering Informatics, 21(2), pp.119–131. 

Gemino, A. & Wand, Y., 2004. A framework for empirical evaluation of conceptual modeling 

techniques. Requirements Engineering, 9(4), pp.248–260.  

Glimm, B. et al., 2014. HermiT: An OWL 2 Reasoner. Journal of Automated Reasoning, 53(3), pp.245–

269. 

Gómez-Pérez,  a. & Rojas-Amaya, M., 1999. Ontological reengineering for reuse. In D. Fensel & R. 

Studer, eds. 11th European Workshor in Knowledge Acquisition, Modeling and Management. 

Dagstuhl Castle, Germany: Springer Verlag, pp. 139–156.  

Gomez - Perez, A., Fernandez - Lopez, M. & Corch, O., 2003. Ontological engineering X. Wu & L. Jain, 

eds., Springer. 

Gordijn, J. & Akkermans, H., 2001. Designing and Evaluating E-Business Models. IEEE Intelligent 

Systems, 16(4), pp.11–17. 

Gordijn, J. & Akkermans, J.M., 2001. E3-value: Design and Evaluation of e-Business Models. IEEE 

Intelligent Systems, 16(4), pp.11–17. 

Grau, B.C. et al., 2008. OWL 2: The next step for OWL. Web Semantics, 6(4), pp.309–322. 

Gruber, T.R., 1993. A Translation Approach to Portable Ontology Specifications. Knowledge Creation 

Diffusion Utilization, 5(April), pp.199–220.  



pg. 131 

 

Guarino, N., 1998. Formal Ontology and Information Systems. , (June), pp.3–15. 

Guarino, N. & Welty, C., 2002a. Evaluating ontological decisions with ONTOCLEAN. Communications 

of the ACM - Ontology: Different Ways of Representing the Same Concept, 45(2), pp.61–65. 

Guarino, N. & Welty, C., 2002b. Evaluating ontological decisions with ONTOCLEAN. , 45(2), pp.61–65. 

Guizzardi, G., 2012. Ontological Foundations for Conceptual Modeling with Applications. In J. Ralyté 

et al., eds. Advanced Information Systems Engineering. Lecture Notes in Computer Science. 

Springer Berlin Heidelberg, pp. 695–696. 

Guizzardi, G., 2005. Ontological foundations for structural conceptual models. 

Guizzardi, G., 2013. Ontology-Based Evaluation and Design of Visual Conceptual Modeling Languages 

I. Reinhartz-Berger et al., eds. Domain Engineering. Product Lines, Languages and Conceptual 

Models, (i), p.345. 

Guizzardi, G. et al., 2015. Towards ontological foundations for conceptual modeling: The unified 

foundational ontology (UFO) story. Applied Ontology, 10(3–4), pp.259–271. 

Guizzardi, G. & Wagner, G., 2011. Can BPMN Be Used for Making Simulation Models ? In J. Barjis, T. 

Eldabi, & A. Gupta, eds. Enterprise and Organizational Modeling and Simulation. Springer Berlin 

/ Heidelberg, pp. 100–115. 

Guizzardi, G. & Wagner, G., 2010a. Using the Unified Foundational Ontology ( UFO ) as a Foundation 

for General Conceptual Modeling Languages. In R. Poli et al., eds. Theory and Applications of 

Ontology. Springer Berlin, pp. 175–196. 

Guizzardi, G. & Wagner, G., 2010b. Using the Unified Foundational Ontology ( UFO ) as a Foundation 

for General Conceptual Modeling Languages. In R. Poli et al., eds. Theory and Applications of 

Ontology. Springer Berlin, pp. 175–196. 

Guizzardi, G. & Wagner, G., 2010c. Using the Unified Foundational Ontology (UFO) as a Foundation 

for General Conceptual Modeling Languages. In R. Poli et al., eds. Theory and Application of 

Ontologies. Berlin: Springer, pp. 175–196. 

Guizzardi, G. & Wagner, G., 2008. What ’ s in a Relationship : An Ontological Analysis. In Lecture 

Notes in Computer Science. pp. 83–97. 

Guizzardi, R. et al., 2008. Ontological Foundations for Agent-Oriented Organizational Modeling. In 3rd 

International IStar Workshop. pp. 37–41. 

Guizzardi, R. & Reis, A., 2015. A method to Align Goals and Business Processes. In International 

Conferance on Conceptual Modeling. pp. 79–93. 

Gupta, U.G. & Clarke, R.E., 1996. Theory and applications of the Delphi technique: A bibliography 

(1975–1994). Technological Forecasting and Social Change, 53(2), pp.185–211.  

Hahn, A., 2005. Integration verteilter Produktmodelle durch Semantic-Web-Technologien. 

Wirtschaftsinformatik, 47(4), pp.278–284. 

Hammer, M., 1990. Reengineering work: Dont’t automate, obligate. Harvard Business Review, 68(4), 

pp.104–112. 

Harzallah, M., Berio, G. & Opdahl, A.L., 2012. New perspectives in ontological analysis: Guidelines 

and rules for incorporating modelling languages into UEML. Information Systems, 37(5), 

pp.484–507.  

van Heijst, G., Schreiber, A. & Wielinga, B., 1997. Using explicit ontologies in KBS development. 

International Journal of Human-Computer Studies, 45, pp.183–292. 

Hepp, M. et al., 2005. Semantic business process management: a vision towards using semantic Web 

services for business process management. In IEEE International Conferance on Business Process 

Engineering. IEEE Computer Sociaty, pp. 535–540. 

Hepp, M. et al., 2005. Semantic Business Process Management: A Vision Towards Using Semantic 

Web Services for Business Process Management. In e-Business Engineering, 2005. ICEBE 2005. 

IEEE International Conference on. Beijing, CHINA: IEEE, pp. 535–540. 

Hepp, M., Bachlechner, D. & Siorpaes, K., 2006. OntoWiki: Community-driven Ontology Engineering 

and Ontology Usage Based on Wikis. In Proceedings of the 2006 international symposium on 

Wikis. pp. 143–144.  



pg. 132 

 

Hepp, M. & Roman, D., 2007. An Ontology Framework for Semantic Business Process Management. 

Wirtschaftsinformatik, pp.1–18. 

Hevner, A.R. et al., 2004. Design Science in Information Systems Research. MIS Quarterly, 28(1), 

pp.75–105. 

Hofferer, P., 2007. Achieving Business Process Model Interoperability Using Metamodels and 

Ontologies. In European Conference on Information Systems. pp. 1620–1631. 

Holsapple, C.W. & Joshi, K.D., 2002. A collaborative approach to ontology design. Communications of 

the ACM, 45(2), pp.42–47.  

Horrocks, I., Patel - Schneider, P. & van Harmelen, F., 2003. From SHIQ and RDF to OWL: The making 

of a web ontology language. Journal of Web Semantics, 1(1), pp.7–26. 

IEEE, 1997. IEEE Standard for Developing Software Life Cycle Processes, New York: IEEE. 

IEEE Standard Upper Ontology Working Group, Suggested Upper Merged Ontology, 2006 

Jonkers, H. et al., 2004. Concepts for modelling Enterprise Architectures. International Journal of 

Cooperative Information Systems, 13(Nadler 1992), pp.257–287.  

Jureta, I., Mylopoulos, J. & Faulkner, S., 2009. A core ontology for requirements. Applied Ontology, 

4(3), pp.169–244.  

Kaneiwa, K., Iwazume, M. & Fukuda, K., 2007. An Upper Ontology for Event Classifications and 

Relations. In 20th Australian Joint Conference on Advances in Artificial Intelligance. pp. 394–403. 

Katsumi, M. & Gruninger, M., 2016. What is ontology reuse? In R. Ferrario & W. Kuhn, eds. Formal 

Ontology in Information Systems. IOS Press, pp. 9–22. 

Kesh, S., 1995. Evaluating the quality of entity relationship models. Information and Software 

Technology, 37(12), pp.681–689.  

Kietz, J.-U., Meadche, A. & Volz, R., 2000. A Method for Semi-Automatic Ontology Acquisition from a 

Corporate Intranet. In N. Aussenac-Gilles, B. Biebow, & S. Szulman, eds. Workshop on 

Ontologies and Texts EKAW’00. Juan-les-Pins, France: CEUR Workshop Proceedings, p. 51:4.1-

4.14.  

Koliadis, G. et al., 2006. Combining i* and BPMN for Business Process Model Lifecycle Management. 

In BPM 2006 Workshops. pp. 416–427. 

Kotis, K. & Vouros, G.A., 2006. Human-centered ontology engineering: The HCOME methodology. 

Knowledge and Information Systems, 10(1), pp.109–131. 

Kueng, P., Bichler, P. & Kawalek, P., 1996. How to Compose an Object-oriented Business Process 

Model? Method Engineering: Principles of method construction and tool support, pp.94–110.  

Van Lamsweerde, A., 2001. Goal-oriented requirements engineering: a guided tour. Proceedings Fifth 

IEEE International Symposium on Requirements Engineering, pp.249–262.  

van Lamsweerde, A., Darimont, R. & Letier, E., 1998. Managing Conflicts in Goal-Driven Requirements 

Engineering. IEEE Transactions on Software Engineering, 24(11), pp.908–925. 

Lankhorst, M., 2005. Enterprise architecture at work : modelling, communication, and analysis, Berlin ; 

New York: Springer. 

Lapouchnian, A., Yu, Y. & Mylopoulos, J., 2007. Requirements-Driven Design and Configuration 

Management of Business Processes. Business Process Management, pp.246–261.  

Leutgeb, A. et al., 2007. Adaptive Processes in E-Government - A Field Report about Semantic-Based 

Approaches from the EU-Project FIT. ICEIS 2007 - Proceedings of the Ninth International 

Conference on Enterprise Information Systems, Volume EIS, Funchal, Madeira, Portugal, June 

12-16, 2007, pp.264–269. 

Levitin, A. & Redman, T., 1995. QUALITY DIMENSIONS OF A CONCEPTUAL VIEW. Science, 31(1), 

pp.81–88. 

Lin, F.-R., Yang, M.-C. & Yu-Hua, P., 2002. A generic structure for business process modeling. Business 

Process Management Journal, 8(1), pp.19–41. 

Lin, Y. et al., 2006. Semantic annotation framework to manage semantic heterogeneity of process 

models. In E. Dubois & K. Pohl, eds. 18th International Conference on Advanced Information 

Systems Engineering. Luxembourg: Springer-Verlag, pp. 433–446.  



pg. 133 

 

Lin, Y. & Strasunskas, D., 2005. Ontology-based semantic annotation of process templates for reuse. 

In CEUR Workshop Proceedings. pp. 207–218. 

Lindland, O.I., Sindre, G. & Solvberg, A., 1994. Understanding quality in conceptual modeling. IEEE 

Software, 11(2), pp.42–49. 

Luczak-Rösch, M. et al., 2010. SVoNt-Version Control of OWL Ontologies on the Concept Level. In 

Proceedings of the 5th International Workshop on Applications of Semantic Technologies. pp. 

79–84. 

Maedche, A. & Staab, S., 2000. Semi - automatic engineering of ontologies from text. In S. Chang & W. 

Obozinski, eds. 12th International Conference on Software Engineering and Knowledge 

Engineering SEKE’00. Chicago. 

Maes, A. & Poels, G., 2007. Evaluating quality of conceptual modelling scripts based on user 

perceptions. Data & Knowledge Engineering, 63(3), pp.701–724.  

Di Martino, B. et al., 2016. A methodology and implementating tool for semantic business process 

annotation. In International Workshop on Business Process Modelling, Development and 

Support. Springer International Publishing, pp. 80–94.  

Matulevičius, R., Heymans, P. & Opdahl, A.L., 2007. Ontological analysis of KAOS using separation of 

reference. In K. Siau, ed. Contemporary Issues in Data Base Design and Information Systems 

Development. pp. 37–54. 

Matulevicius, R., Heymans, P. & Sindre, G., 2015. Comparing Goal-Modelling Tools With the Re-Tool 

Evaluation Approach. Information Technology and Control, 35(3), pp.276–286. 

Mehmood, K., Si-Said Cherfi, S. & Comyn-Wattiau, I., 2009. Data Quality Through Conceptual Model 

Quality - Reconciling Researchers and Practitioners Through a Customizable Quality Model. In In 

International Conference on Information Quality (ICIQ). pp. 61–74. 

Mens, T., Van Der Straeten, R. & Simmonds, J., 2005. A Framework for Managing Consistency of 

Evolving UML Models. In Software Evolution with UML and XML. pp. 1–30.  

Miller, G. a., 1995. WordNet: a lexical database for English. Communications of the ACM, 38(11), 

pp.39–41.  

Missikoff, M., Smith, F. & Taglino, F., 2015. Ontology building and maintenance in collaborative 

virtual environment. Concurrency Computation Practice and Experience, 27(11), pp.2796–2817. 

Moody, D., 2003. The Method Evaluation Model: A Theoretical Model for Validating Information 

Systems Design Methods. In 11th European Conference on Information Systems, ECIS 2003. 

Naples, Italie, pp. 1327–1326. 

Moody, D., Shanks, G. & Darke, P., 1998. Improving the Quality of Entity Relationship Models — 

Experience in Research and Practice. Quality, pp.255–276.  

Moody, D.L., 2005. Theoretical and practical issues in evaluating the quality of conceptual models : 

current state and future directions. Data & Knowledge Engineering, 55(3), pp.243–276. 

Moody, D.L., Heymans, P. & Matulevičius, R., 2010. Visual syntax does matter: improving the 

cognitive effectiveness of the i* visual notation. Requirements Engineering, 15(2), pp.141–175.  

de Moor, A., De Leenheer, P. & Meersman, R., 2006. DOGMA-MESS: A Meaning Evolution Support 

System for Interorganizational Ontology Engineering. In H. Schärfe, P. Hitzler, & P. Øhrstrøm, 

eds. Conceptual Structures: Inspiration and Application SE  - 14. Lecture Notes in Computer 

Science. Springer Berlin Heidelberg, pp. 189–202. 

Moor, A. De, Leenheer, P. De & Meersman, R., 2006. DOGMA-MESS : A Meaning Evolution Support 

System for Interorganizational Ontology Engineering. In H. Scharfe, P. Hitzler, & P. Ohrstrom, 

eds. Conceptual Structure: Inspiration and Application. Springer, pp. 189–202.  

Mostow, J., 1985. Toward Better Models Of The Design Process. AI Magazine, 6(1), pp.44–57.  

zur Muehlen, M., Indulska, M. & Kamp, G., 2007. Business Process and Business Rule Modeling : A 

Representational Analysis. In In EDOC Conference Workshop. pp. 189–196. 

Mylopoulos, J., 1992. Conceptual Modelling and Telos. In P. Loucopoulos & R. Zicari, eds. Conceptual 

modeling, databases, and CASE: an integrated view on information system development. John 

Wiley & Sons, pp. 49–68. 



pg. 134 

 

Nagel, B. et al., 2013. Ensuring consistency among business goals and business process models. 

Proceedings - IEEE International Enterprise Distributed Object Computing Workshop, EDOC, 

pp.17–26. 

Nardi, J.C. et al., 2013. Towards a commitment-based reference ontology for services. In Enterprise 

Distributed Object Computing Conference. IEEE, pp. 175–184. 

Neches, R. et al., 1991. Enabling Technology for Knowledge Sharing. , 12(3). 

Nelson, H.J. et al., 2011. A conceptual modeling quality framework. Software Quality Journal, 20(1), 

pp.201–228.  

Niles, I. & Pease, A., 2013. Linking Lexicons and Ontologies : Mapping WordNet to the Suggested 

Upper Merged Ontology. In International Conferance on Information and Knowledge 

Engineering. pp. 412–416. 

Niles, I. & Pease, A., 2001. Towards a Standard Upper Ontology. In The 2nd International Conference 

on Formal Ontology in Information Systems (FOIS-2001). pp. 2–9.  

Noy, N. & Musen, M., 2004. Ontology versioning in an ontology management framework. IEEE 

Intelligent Systems, 19(4), pp.6–13. 

Noy, N.F. & Musen, M. a, 1999. SMART : Automated Support for Ontology Merging and Alignment. In 

B. Gaines, B. Kremer, & M. Musen, eds. 12th Banff Workshop on Knowledge Acquisition, 

Modelling and Management. Banff, Canada, pp. 4-7-20. 

Object Management Group (OMG), 2008. Business Process Model and Notation , V1.1, Available at: 

http://www.omg.org/spec/BPMN/1.1/PDF. 

OMG, 2011. Business Process Model and Notation (BPMN) Version 2.0, Available at: 

http://books.google.com/books?id=GjmLqXNYFS4C&pgis=1. 

OMG, 2006a. Business Process Modeling Notation Specification. , (February), p.308. Available at: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.4777&amp;rep=rep1&amp;typ

e=pdf. 

OMG, 2006b. Business Process Modeling Notation Specification (dtc/06-01-01). , (dtc/06-01-01). 

OMG, 2007. OMG Unified Modeling Language (OMG UML), superstructure, V2.1.2. , (November). 

Available at: http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF. 

Opdahl, A.L. et al., 2012. An ontology for enterprise and information systems modelling. Applied 

Ontology, 7(1), pp.49–92. 

Opdahl, A.L. & Henderson-Sellers, B., 2002. Ontological Evaluation of the UML Using the Bunge–

Wand–Weber Model. Software and Systems Modeling, 1(1), pp.43–67. 

Osterwalder, A. & Pigneur, Y., 2002. An e-Business Model Ontology for Modeling e-Business. In 15th 

Electronic Commerce Conference e-reality: Constructing the e-Economy. Bled, Slovenia. 

Pedrinaci, C., Domingue, J. & de Medeiros, A.K., 2008. A core ontology for business process analyses. 

In S. Bechhofer et al., eds. ESWC’08 Proceedings of the 5th European semantic web conference 

on The semantic web: research and applications. Springer Berlin, Heidelberg, pp. 49–64. 

Pfeiffer, D., 2007. Constructing comparable conceptual models with domain specific languages. 

Proceedings of the 15th European Conference on Information Systems, ECIS 2007, pp.876–888. 

Pichler, P. et al., 2011. Imperative versus declarative process modeling languages: An empirical 

investigation. In International Conferance on Business Process Management. Springer Berlin 

Heidelberg, pp. 383–394. 

Pinggera, J., Zugal, S. & Weber, B., 2010. Investigating the process of process modeling with cheetah 

experimental platform- Tool paper. In CEUR Workshop Proceedings. pp. 13–18. 

Pittke, F., Leopold, H. & Mendling, J., 2013. Spotting Terminology Deficiencies in Process Model 

Repositories. In S. Nurcan et al., eds. Enterprise, Busienss Process and Information Systems 

Modelling. Valencia, pp. 292–307. 

Rolón, E. et al., 2006. Applying Software Metrics to evaluate Business Process Models. CLEI-Electronic 

Journal, 9(1), Paper 5. 

Rosemann, M., 2006. Potential pitfalls of process modeling: part A. Business Process Management 

Journal, 12(2), pp.249–254. 



pg. 135 

 

Rosemann, M. et al., 2015. The Six Core Elements of Business Process Management. In J. vom Brocke 

& M. Rosemann, eds. Handbook on Business Process Management 1: Introduction, Methods, 

and Information Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 105–122. 

Rosemann, M. & Green, P., 2002. Developing a meta model for the Bunge–Wand–Weber ontological 

constructs. Information Systems, 27(2), pp.75–91.  

Rospocher, M., Ghidini, C. & Serafini, L., 2014. An ontology for the business process modelling 

notation. In Frontiers in Artificial Intelligence and Applications. pp. 133–146. 

Ruy, F.B. et al., 2015. Ontology Engineering by Combining Ontology Patterns. In pp. 173–186. 

Sánchez-González, L. et al., 2013. Toward a Quality Framework for Business Process Models. 

International Journal of Cooperative Information Systems, 22(1).  

Santos, E. et al., 2010. A Goal-Oriented Approach for Variability in BPMN. In Workshop em 

Engenharia de Requisitos. pp. 17–28. 

Santos, P., Almeida, J. & Guizzardi, G., 2013. An ontology-based analysis and semantics for 

organizational structure modeling in the ARIS method. Information Systems, 38(5), pp.690–708.  

Schaffert, S., 2006. IkeWiki: A Semantic Wiki for Collaborative Knowledge Management. In 15th IEEE 

International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises 

(WETICE’06). IEEE, pp. 388–396. 

Seidewitz, E., 2003. What models mean. In IEEE Software. pp. 26–32. 

Shanks, G. & Darke, P., 1997. Quality in conceptual modelling: linking theory and practice. In PACIS 

1997 Proceedings. p. 76. 

Shibaoka, M., Kaiya, H. & Saeki, M., 2007. GOORE : Goal-Oriented and Ontology Driven Requirements 

Elicitation Method. Advances in Conceptual Modeling – Foundations and Applications, 4802, 

pp.225–234.  

Si-Said Cherfi, S., Ayad, S. & Comyn-Wattiau, I., 2013. Improving Business Process Model Quality 

Using Domain Ontologies. Journal on Data Semantics, 2(2–3), pp.75–87.  

Silver, B., 2009. BPMN Method and Style, Cody - Cassidy Press. 

Simperl, E. & Luczak-Rösch, M., 2014. Collaborative ontology engineering: a survey. Knowledge 

Engineering Review, 29(1), pp.101–131.  

Simperl, E.P.B. & Tempich, C., 2006. Ontology engineering: a reality check. In OTM confederated 

International Conferences “On the move to meaningful Internet systems.” Springer Berlin 

Heidelberg, pp. 836–854.  

Sonnenberg, C. et al., 2011. The REA-DSL : A Domain Specific Modeling Language for Business Models. 

In H. Mouratidis & C. Rolland, eds. International Conferance on Advanced Information Systems 

Engineering. London: Springer Berlin Heidelberg, pp. 252–266. 

Sousa, H.P. et al., 2014. Modeling Organizational Alignment. In E. Yu et al., eds. Conceptual Modeling: 

33rd International Conference, ER 2014, Atlanta, GA, USA, October 27-29, 2014. Proceedings. 

Cham: Springer International Publishing, pp. 407–414. 

Sowa, JA and Zachman, J.A., 1992. the framework for information systems architecture. IBM Systems 

Journal, 31(3), pp.590–616. 

Studer, R., Benjamins, V.R. & Fensel, D., 1998. Knowledge Engineering : Principles and Methods. Data 

and Knowledge Engineering, 25(1), pp.161–197. 

Suárez-Figueroa, M.C. et al., 2012. Ontology Engineering in an Networked World, Springer Berlin / 

Heidelberg. 

The Open Group, 2013. ArchiMate. 

https://www2.opengroup.org/ogsys/jsp/publications/PublicationDetails.jsp?publicationid=1248

0. 

The Open Group, The Open Group Architecture Framework (TOGAF). 

https://www2.opengroup.org/ogsys/catalog/g116. 

Thomas, O. & Fellmann M.A., M., 2009. Semantic Process Modeling – Design and Implementation of 

an Ontology-based Representation of Business Processes. Business & Information Systems 

Engineering, 1, pp.438–451. 



pg. 136 

 

Thomas, O., Fellmann M.A., M. & Fellmann M.A, M., 2009. Semantic Process Modeling – Design and 

Implementation of an Ontology-based Representation of Business Processes. Business & 

Information Systems Engineering, 1(6), pp.438–451. 

Tudorache, T. et al., 2008. Supporting Collaborative Ontology Development in Protege. In A. Sneth et 

al., eds. Proceedings of the 7th International Conference on the Semantic Web. Springer, pp. 17–

32. 

Uschold, M. et al., 1996. The Enterprise Ontology. The Knowledge Engineering Review, 13(1), pp.31–

89. 

Uschold, M. et al., 1998. The Enterprise Ontology. The Knowledge Engineering Review: Special Issue 

on Putting Ontologies to Use, 13(1), pp.31–89. 

Uschold, M. & Jasper, R., 1999. A Framework for Understanding and Classifying Ontology 

Applications. In IJCAI Workshop on Ontologies and Problem-Solving Methods. 

Vazquez, B., Martinez, A., et al., 2013. Enriching Organizational Models through Semantic Annotation. 

Journal of Materials Processing Tech., 7, pp.297–304.  

Vazquez, B., Martínez, A., et al., 2013. Towards supporting business services discovery through the 

integration of organizational models with ontologies. CIbSE 2013, pp.215–227. 

Vrandecic, D. et al., 2005. The DILIGENT knowledge processes. Journal of Knowledge Management, 

9(5), pp.85–96. 

Wand, Y. & Weber, R., 1988. An ontological analyses of some fundimantal information systems 

concepts. In Proceedings on the 9th International Conference on Information Systems. pp. 213–

225. 

Wand, Y. & Weber, R., 1990. An ontological model of an information system. IEEE Transactions on 

Software Engineering, 16(11), pp.1282–1292.  

Wand, Y. & Weber, R., 2002. Research Commentary : Information Systems and Conceptual Modeling 

— A Research Agenda. Information Systems Research, (4), pp.363–376. 

Wetzstein, B. et al., 2007. Semantic business process management: a lifecycle based requirements 

analysis. In Proceedings of the Workshop on Semantic Business Process and Product Lifecycle 

Management. pp. 1–11.  

White, S.A., 2004. Introduction to BPMN, 

Wieringa, R.J. & Heerkens, J.M.G., 2006. The methodological soundness of requirements engineering 

papers: a conceptual framework and two case studies. Requirements Engineering, 11(4), 

pp.295–307.  

Winkler, W., 1990. String comparator metrics and enhanced decision rules in the Fellegi-Sunter 

model of record linkage. 

Winter, S., 2001. Ontology: Buzzword or Paradigm Shift in GI Science? International Journal of 

Geographical Information Science, 7(15), pp.587–590. 

Yu, E. et al., 2013. Practical applications of i* in industry: The state of the art. In IEEE International 

Requirements Engineering Conference, RE 2013 - Proceedings. pp. 366–367. 

Yu, E. et al., 2011. Social Modelling for Requirements Engineering, Cambridge: MIT Press. 

Yu, E., Strohmaier, M. & Deng, X., 2006. Exploring Intentional Modeling and Analysis for Enterprise 

Architecture. In 10th IEEE International Enterprise Distributed Object Computing Conferenace 

Workshops. IEEE, p. 32. 

Yu, E.S., 2009. Social Modeling and i *. In Conceptual Modelling: Foundations and Applications. pp. 

99–121. 

Yu, E.S.K., 1997. Towards modelling and reasoning support for early-phase requirements engineering. 

In Proceedings of ISRE ’97: 3rd IEEE International Symposium on Requirements Engineering. IEEE 

Comput. Soc. Press, pp. 226–235. 

Zablith, F. et al., 2015. Ontology evolution: a process-centric survey. The Knowledge Engineering 

Review, 30(1), pp.45–75.  

Zave, P. & Jackson, M., 1997. Four dark corners of requirements engineering. ACM Transactions on 

Software Engineering and Methodology, 6(1), pp.1–30. 



pg. 137 

 

 

 

	 	



pg. 138 

 

	

A 

BPMN	Constructs	

 

A BPMN diagram constitutes of four categories of modeling elements: Flow objects, 

Connecting objects, Swimlanes, and Artifacts.  

 

Flow objects 

 

This group includes the core elements to BPMN diagrams.  Every element and its description 

is presented in Table 1 below. 

 
Table 1: BPMN flow objects 

 

Event 

Event is something which happens 

during the process.  It typically has a 

trigger or an impact.  An event can be 

start, intermediate, and end event 

based on its location in the process 

(either beginning, middle, or end 

respectively).  

 

 

Activity 

Activity is a generic term applicable to 

the work being performed within an 

organization.  An atomic activities is 

named “task”, while a compound 

activity which can be further 

decomposed is called “sub – process”. 

 

 



pg. 139 

 

Gateway 

Gateway is used to control the flow of 

the process.  One gateway can have 

multiple inputs and / or multiple 

outputs.  The main gateway types are:  

• Exclusive gateway which allows 

alternative paths, and can be 

compared to a divergence point 

on the road 

• Inclusive gateway can create 

allows parallel flow in addition 

to alternative paths 

• Parallel gateway is used to 

synchronize parallel flow 

• Event – based gateway where a 

path followed after the gateway 

is determined by occurrence of 

a predefined event 

 

    

 

Connecting objects 

 

The previously described flow objects are connected together by connecting objects.  

Connecting objects are divided into three categories (Table 2) based on objects they are 

connecting. 
 
Table 2: BPMN connecting objects 

 

Sequence flow 

Sequence flow indicates the order in 

which activities and events are occurring. 

 
 

Message flow 

Message flow represents the exchange of 

messages among two participants of the 

same process.  A participant can be a 

business entity, a person, artificial agent, 

etc. 

 

 

Association 

Association is solely used to associate 

data objects (such as documents) with 

corresponding flow objects . 

 

 

 

 

Swimlanes 

 

Swimlanes (displayed in Table 3) are used to group flow objects into visual categories.  Very 

often swimlanes represent different participants in the process. 
 

 

 

 



pg. 140 

 

Table 3: Swimlanes 

 

Pool 

Pool represents process 

participant, for example, 

business entity 

 
 

Lane 

Lane is a sub – partition of the 

pool.  It is used to represent 

different roles and divisions 

within a business entity, or to 

create sub – group of activities 

within a process. 

 
 

 

 

Artifacts 

 

Artifacts were included as a part of BPMN to allow the modeler more flexibility.  It is possible 

to add as many artifacts as needed to the process diagram.  Artifacts allowed within BPMN 

notation are presented in Table 4 below. 
 
Table 4: BPMN artifacts 

 

Data object 

This artifact allows the 

modeler to represent all the 

data (such as reports) 

consumed and generated 

during the course of the 

process. 

 

 

Data store 

Using a data store he modeler 

can express which activities 

access or update stored 

information. 

  

Group 

Grouping is used for 

documentation and analyses 

purpose. 

 
 

Annotation 

Annotation is used to allow 

the modeler to supply 

additional text for the reader. 

  

  

 

  



pg. 141 

 

	

B	
 

I*	Constructs	

 

Table 5 presents only the basic set of i* constructs which is sufficient to follow this doctoral 

thesis. 
 
Table 5: I* basic constructs 

 

Actor 

Actor is an entity which carries 

out actions to achieve goals.  

Actor is a generic term which 

can represent a human, an 

artificial agent, or an 

organization. 

 

 

Goal 

Describes the state of affairs as 

desired by a particular actor.  

The goal itself does not 

prescribe a specific path for 

achieving it. 

 

 

Task 

A task to be accomplished by a 

particular actor. 

 

 

Resource 

A provision of some entity 

physical or informational, 

which is required for achieving 

a goal or executing a task. 

 
 

Softgoal 

Softgoal is similar to a Goal 

construct.  However, the 

satisfaction of a softgoal is not 

a clear – cut.  It is evaluated  



pg. 142 

 

from actor’s point of view. 

 

SD model 

 

In this type of i* model one actor (a depender), depends on another actor (a dependee) to 

aquire a dependum which can be goal, task, resource, or softgoal.  An overview of possible 

dependencies can be found in Table 6. 
 
Table 6: Dependencies represented in SD 

 

Goal dependency 

In this type of 

dependency the 

depender dependes on 

the dependee to 

achieve a particular 

state of affairs. 

 
 

Task dependency 

Here the dependency is 

required to carry out an 

activity. 

 

Resource dependency 

In resource dependency 

one actor depends on 

the other for 

acquisition of an entity.  

 
 

Softgoal dependency 

In this dependency the 

dependee is expected 

to perform a task that 

meets a softgoal put 

forward by the 

depender. 

 
 

 

  SR model    

Strategic rationale model offers a look “inside” actors, thereby enabling the modeler to 

model internal intentional relationships.  This model allows representing tasks that need to 

be completed in order to achieve a particular goal.  It enables the modeler to show 

alternative ways for achieving a goal, and finally, it depicts how various elements within the 

model contribute to a particular softgoals.  This contribution can be positive or negative. The 

notation is presented in Table 7 below.  

 

 



pg. 143 

 

Table 7: SR model 

Actor boundary 

A boundary surrounding all the 

elements explicitly desired by 

that particular actor. 

  

 

Decomposition link 

This link allows decomposition 

of a task into sub – tasks, sub – 

goals, resources, or softgoals.  

One task can be decomposed 

into one or more element. 

 

 

Means - ends link 

This link indicates alternative 

paths which can be 

undertaken to achieve a goal.  

An end is a goal, and a mean is 

usually a task.  

 

 

Contribution link 

Contribution link specifies an 

extent to which other i* 

elements are contributing to 

the fulfillment of a softgoal.  

This contribution can be 

positive (such as “some” and 

“make” links), or it can be 

negative as it is the case in 

“hurt” and “break” link.  

 

 

 

 
 

 

 

  



pg. 144 

 

	

C	
 

Unified	Foundational	Ontology	(UFO)	

 

To exemplify the recommendation-based business process modeling, a subset of UFO 

(Figure 1) was used. The top-level element is a Universal. It represents a classifier that 

classifies a set of real world individuals and can be of four kinds: Event Type, Object type, 

Quality Universal and Relator Universal:   

 

• An Object type is existentially independent universal which can be further specialized 

in a Mixin type and a Sortal type. A Sortal type supplies a principle of identity to its 

instances, while instances of Mixin type do not carry identifiers, as for example, 

Colored object. Sortal type can be Rigid (base type) or Anti-rigid (role and phase 

types). Rigid sortal implies that every instance of this type is necessarily its instance in 

all occasions; if Lana is an instance of Person, she will always be an instance of Person, 

hence Person is a rigid sortal. At one point, Lana is an instance of Teenager, and as 

she grows, she will not fit under Teenager anymore and this will not change her 

identity. So, Teenager is an anti-rigid sortal. Teenager constitutes a stage of 

individual’s life cycle, hence it belongs to Phase type. The last subtype of sortal is Role 

type. Role type stands for a role played by an individual, for instance secretary, 

doctor, etc.  

 

• A Quality universal is instantiated by qualities possessed by Object types, such as 

color and temperature.  

 

• A Relator universal classifies mediators that mediate two individuals, as for example, 

medical treatment mediates a hospital and a person. A such a Relator universal is an 

objectification of a Material relationship between two or more Universals. 



pg. 145 

 

 

• Finally, an Event type is instantiated by an event. Events, in contrast to objects, 

qualities and relators are individuals composed of temporal parts, they happen in 

time, in the sense that they extend in time and accumulate temporal parts.  

 

For a full explanation of UFO we refer to (Guizzardi et al. 2015). 

 

Figure 1: Fragment UFO 

 

  



pg. 146 

 

	

D	
 

Correspondence	between	ESO	and	UFO	

 

ESO concept UFO ESO concept  UFO 
AddedValue Quality_Universal Loan RelatorUniversal 
Administrative Role_Type LoanApplication RelatorUniversal 
Asset Mixin_Type LoanApplication 

Accepted 
EventType 

Branch Base_Type LoanApplication 
Received 

EventType  

BuyCostProperty Quality_Universal LoanApplication 
Rejected 

EventType  

Capital Base_Type LoanApplication 
Verified 

EventType 

Channel RelatorUniversal LoanCommitment RelatorUniversal 
Collection QualityUniversal Login  QualityUniversal  
Commercial RoleType MortgageLoan  RelatorUniversal 
Company BaseType MortgageTaxation QualityUniversal  
Corporative BaseType Name QualityUniversal  
CreditHistory RelatorUniversal Payment  Relator Universal 
Currency BaseType Person  BaseType  
CurrentMortgage 
Loan 

RelatorUniversal Product MixinType 

Customer MixinType ProductRate 
Application 

RelatorUniversal 

DelayInterestRate QualityUniversal ProductRate 
ApplicationFixed 

MixinType 

Department BaseType ProductRate 
ApplicationMixed 

MixinType 

Document BaseType ProductRate 
Application 
Variable 

MixinType 

Employee RoleType ProofOfIncome BaseType 
EndingDate QualityUniversal PropertyAppraisal BaseType 



pg. 147 

 

Report 
ExpirationDate QualityUniversal Quota QualityUniversal 
FutureMortgage 
Loan 

RelatorUniversal QuotaAfterRevision QualityUniversal 

HandlingCapital QualityUniversal RepaymentAbility RelatorUniversal 
HomeInsurance QualityUniversal RevisionTermNextService QualityUniversal 

MixinType 
Individuals BaseType SavingsAccount BaseType 

InitialPeriod QualityUniversal Service MixinType 
InitialQuota QualityUniversal ServiceContract 

ByCustomer in Chanel 
MixinType 

InterestDelay QualityUniversal SignalDateContract QualityUniversal 
InterestRateValue QualityUniversal SME BaseType 
InvestmentAccount RelatorUniversal SOHO BaseType 
InvestmentFund RelatorUniversal Staff RoleType 
Invoice RelatorUniversal StartingDate QualityUniversal 
Liability  RelatorUniversal Term QualityUniversal 
LifeInsurance RelatorUniversal User MixnType 
  vBanking BaseType 
 
  



pg. 148 

 

	

E	
 

Loan	Application	Case	Description	

A person deciding to get a mortgage loan sends a loan application to the chosen branch of 

his/her bank. When the administrative employee working at that branch receives the loan 

application from the bank’s customer, he starts making the decision on whether to grant the 

loan or not. The employee assesses the client’s ability to repay the mortgage. If this analysis 

shows the applicant is not likely to repay the mortgage loan, his/her request is rejected. If 

the customer is found to be capable of repaying, the bank representative evaluates his/her 

assets (such as house and other properties). The employee then verifies whether the bank 

customer requested a home insurance or not. If the insurance was not requested, a loan 

acceptance notification is sent to the applicant. If the insurance is requested, the notification 

is sent together with a home insurance quota.  

  



pg. 149 

 

	

F	
 

Pre-survey	

 

Q1: What is your gender? 

Q2: Which study program are you following? 

Q3: Did you have any BPMN training prior to attending the BPMN course? (yes/no) 

Q4: Overall, I am familiar with Business Process Model and Notation (BPMN). 
 
Q5: I feel competent in using BPMN for business process model creation. 

The answers for the last two questions are on a likert scale from 1 (not familiar / competent) 
to 5 (very familiar / competent). 

  



pg. 150 

 

	

G	
 

Post-survey	

 

Questions of the post-survey classified according to the dependent variables to be measured: 

PEOU1: I often made errors while modeling BPMN diagrams 

PEOU2: I found it frustrating to model BPMN diagrams 

PEOU3: I found it require a lot of mental effort to model BPMN diagrams 

PU1: I was able to create BPMN models quickly 

PU2: I was able to label BPMN elements easily 

PU3: It was hard for me to find relevant domain concepts to use as a label for BPMN 

elements 

IU1: Overall, I found the given setup useful for BPMN model creation 

IU2: I would definitely use the given setup for model creation 

  



pg. 151 

 

	

H	
 

Reference	Model	

 

 

 


