Simulation Modeling for End-of-Aisle Automated Storage and Retrieval System

Behnam Bahrami^{1, a)} El-Houssaine Aghezzaf ^{2, b)} and Veronique Limere^{3, c)}

^{1,2} Department of Industrial Systems Engineering and product design, Faculty of Engineering and Architecture, Gent University, Gent, Belgium

³Department of Business Informatics and Operations Management, Gent University, Gent, Belgium

^{a)}Corresponding author: Behnam.Bahrami@ugent.be
^{b)} ElHoussaine.Aghezzaf@ugent.be
^{c)} Veronique.Limere@ugent.be

Abstract. This paper presents a simulation study of an End-of-Aisle automated storage and retrieval system. Various elements of AS/RS control policies are combined to compare and analyze the performance of an End-of-Aisle automated storage and retrieval system. The extensive simulation study shows the isolated effects of various policies by comparing several combinations of policies and rules. This comparison provides a base for selecting the most suitable policy in the evaluated system.

Keywords: Warehousing, Automated storage and retrieval systems, Simulation

INTRODUCTION AND LITERATURE

Automated storage and retrieval systems (AS/RS) consist of multiple aisles of storage racks, storage/retrieval machines and input/output stations and are typically implemented for transporting unit loads (e.g., fully loaded pallets) within the system; but, in many cases, only part of the unit-load may be needed to fulfill a customer's order. A common option to resolve this situation is when the AS/RS drops off the retrieved unit loads at a workstation at the end of the aisle. An operator at this workstation takes the required amount of products from the unit-load, and then the AS/RS moves the remainder of the load back into the storage rack. This system is often known as an End-of-Aisle (EOA) system. If the unit-loads are bins, then the system is generally named a miniload AS/RS (Roodbergen, 2009). In an End-of-Aisle miniload system with two pick positions there are two load stations, one at the end of each aisle, to perform order picking. The configuration of these systems are such that each aisle has a left and a right pick position. While the order picker is picking items from one unit-load in one pick position, the S/R machine picks up the unit-load in the other pick position, restores it in the rack, and returns to the next operation (Figure 1)

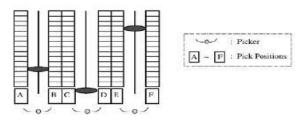


Figure 1: End-of-Aisle miniload system with two pick positions. (Hwang et al., 2002.)

Bozer and White (1990) have proposed a mathematical model to analyze the performance of an End-of-Aisle order picking system. In their study, they investigated on a system with high peaks in demand and they considered both uniform and exponential pick time distributions. Accordingly, they evaluated the performance of End-of Aisle order-picking systems with multiple pick positions per aisle and multiple aisles per picker (Bozer and White, 1996). Meller and Mungwattana (2005) applied simulation to evaluate the benefits of different dwell point policies in a unit load automated storage and retrieval system. The results indicate that the position of dwell point has an negligible effect on system respond time when the AS/RS has high utilization.

Vanderberg et al. (2000) have developed a simulation study and examined various aspects of unit load automated storage and retrieval system control policies: storage location assignment policies, request selection rules, open location selection rules and urgency rules. Considering randomized storage and class-based storage they concluded that using a FCFS sequence for the retrievals by implementing urgency rules results in better performance. Using simulation,. For the simulation models, most of researchers only developed some of the physical design aspects and the combination of control policies is very limited. Moreover, only a limited number of configurations and types of AS/RSs have been studied in combination with fixed values for various input factors.

In this study, we focus on an End-of-Aisle automated storage and retrieval system with two pick positions. We use simulation to evaluate the performance and to find the most suitable combination of several control policies to be set in the system. One aspect in such a system is the determination of the storage location for incoming products. For this problem two storage policies, namely random-based storage and class-based storage, are considered. In particular, based on the shape and the size of each class, four different configurations for class-based storage are tested. A second aspect to be considered in End-of-Aisle systems is the configuration of the rack. To provide a better basis for analyzing the system, in this study, five rack configurations are assumed. A third aspect is the choice of sequencing rules for storage and retrievals requests. In this study, the End-of-Aisle system is analyzed for two strategies, i.e., first-come-first-served and nearest-neighbour. The goal of this research is to examine various combinations of the control policies mentioned, to find the best configuration for such a system by comparing the performances of the different scenarios. The measures of performance are defined as the total travel time of the crane, the total number of storages and retrievals performed by the crane and the average idle time of the crane.

SIMULATION MODELING OF THE SYSTEM

This study is performed as part of a project in cooperation with a real distribution center. In the system analyzed, a crane serves a single aisle with storage racks placed on one side of the aisle. The aisle has a left and a right pick position at one end of the aisle. All storage locations are identical in size and each location can hold one unit-load. Each unit-load (e.g., pallet) contains a number of boxes of one item type. Although the pallet sizes are constant, the sizes of the boxes on the pallets differ for different item types. When the simulation starts, both pick positions are empty and the position of the crane is at one of the pick positions. On arrival of the first demand, the crane travels into the aisle and picks the requested pallet. Then, it returns to one of the pick positions and deposits the pallet. When the pallet is brought to the station, the picker consults a pick list and extracts the items from the unit-load. While the order picker is extracting the boxes from the pallet, the crane returns to the aisle to retrieve the requested load for the second pick position. Then, the crane waits at the pick position until the order picker finishes picking the pallet. Next, it returns the pallet to its storage location, and moves to the location of the next requested demand. In the model, the calculation for the crane's pick-up and deposit time is according to the size and number of boxes on the pallet; for pallets with a higher number of boxes and larger boxes, the time for pick-up and deposit is higher. Moreover, the time for unloading boxes from pallets by the operator is calculated according to the boxes' dimensions. The crane carries one pallet and it travels simultaneously in the horizontal and vertical direction. The actual time to travel between two locations in the rack is measured by the maximum of the isolated horizontal and vertical travel times (Chebyshev distance metric). Crane acceleration and deceleration are assumed instantaneous. There are two operation modes for a crane in a miniload End-of-Aisle AS/RS: single command (SC) and dual command (DC) which both are considered in this research.

Storage Assignment Policies

A storage location assignment policy imposes constraints on the selection of open locations for incoming unitloads. In this model, two storage policies are considered, i.e. random-based storage and class-based storage. In random-based storage, any cell within the rack is equally likely to be selected for storage. A class-based storage policy, however, classifies items into classes and assigns a specific area to each class. Pallets with higher demand frequencies are assigned to class I, while pallets with smaller demand frequencies are assigned to class II, and so on. The position of class I is the best location close to the pick positions. For class II, the position is the second best location near the pick position. According to the shape and the size of each class, class-based storage can have different configurations. In order to compare various configurations of class-based storage, this study evaluates four shapes(Figures 3-6). For each shape, two scenarios are developed. The first scenario is the one where the storage locations within each class are selected randomly. For the second scenario, the storage locations inside each class are selected by choosing the best available position first.

Figure 2: Class-based storage Type A

Figure 4: Class-based storage Type C

Figure 3: Class-based storage Type B

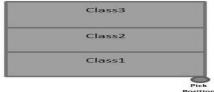


Figure 5: Class-based storage Type D

Configurations of Rack

Since cranes can move vertically and horizontally simultaneously, an effective balance between rack's height and length can help to reduce travel times. In this study, five configurations are assumed. The first configuration consists of 10 bays and 10 levels, the others include 20 bays and 10 levels, 15 bays and 5 levels, 10 bays and 5 levels, and the last one has 5 bays and 15 levels.

Sequencing of Storage and Retrieval Requests

The role of the sequencing rules typically is to create tours in order to minimize the total time to complete all requests. The effective use of sequencing rules can lead to improvements in the overall performance (Roodbergen et al., 2009). In this study, two sequencing policies are assumed, i.e. first-come-first-served and nearest-neighbour policy. The nearest-neighbour strategy pairs storages and retrievals that are in close proximity, to minimize the travel-between time required in the S/R machine's dual command cycle. This study compares the sequencing of storage and retrievals for both random-based storage and class-based storage policies including:

- The storage policy is random-based storage and retrievals are performed by first-come-first-served. (S1)
- The storage policy is random-based storage and retrievals are performed by nearest-neighbour. (S2)
- The storage policy is class-based with random locations within each class and retrievals are designed by first-come-first-served. (S3)
- The storage policy is class-based with random locations within each class and retrievals are designed by nearest-neighbour. (S4)
- The storage policy is class-based with a selection of best locations within each class and retrievals are designed by first-come-first-served. (S5)
- The storage policy is class-based with a selection of best locations within each class and retrievals are designed by nearest-neighbour. (S6)

Simulation Results

The simulation results are given in the following tables. The simulation results are based on 100 replications for each scenario, and the average results are reported. In order to examine the performance of the model more closely, we ran the model twice. First with one operator that works on both pick positions, and a second time with two operators , i.e. one for each pick position.

Table 1: Total crane's travel time (TT), total number of storages and retrievals (S/R), and the average idle time of the crane (AVE) for random-based storage.

Rack configuration	Sequencing Rule	Random-based storage									
	Ture		1 Operat	or	2 Operators						
		TT	S/R	AVE	TT	S/R	AVE				
5*15	S1	1425	148	4.21	1510	156	4.26				
5*15	S2	1337	150	4.1	1413	157	4.11				
10*10	S1	2406	130	6.4	2605	148	6.21				
10*10	S2	2390	137	5.4	2492	142	5.82				
10*20	S1	2112	135	6.9	2337	144	6.9				
10*20	S2	2429	137	6.81	2664	149	6.84				
15*5	S1	2347	130	7.56	2445	136	7,5				
15*5	S2	3008	136	7.18	3112	139	7.15				
20*10	S1	4035	114	11.23	4262	121	11.1				
20*10	S2	3740	118	10.27	3933	123	10.29				

Table 2: Total crane's travel time (TT), total number of storage and retrievals (S/R) and average idle time of the crane (AVE) for Class- based storage with 1 operator

Rack configuration	Sequencing Rule	Types of Class-based storage											
		Туре А			Type B			Type C			Type D		
		TT	S/R	AVE	TT	S/R	AVE	TT	S/R	AVE	TT	S/R	AVE
5*15	S3	1467	139	4	1516	139	4.3	1487	140	4.1	1545	140	4
5*15	S4	1395	141	4	1519	140	4.1	1401	141	3.76	1544	140	3.7
5*15	S5	1218	148	3	1378	147	3.4	1278	153	3.3	1390	152	3.1
5*15	S6	1165	156	3.4	1327	160	3.4	1240	153	3.2	1356	151	3
10*10	S3	2379	134	5.5	2467	134	6.2	2428	134	6.1	2556	135	6.1
10*10	\$4	2248	137	5.1	2305	134	6.1	2300	136	5.6	2417	137	5.5
10*10	S5	1417	144	3.5	1958	140	5	1690	141	3.68	1946	142	3.2
10*10	S6	1214	149	3.1	1923	146	4	1625	148	3.5	1947	147	2.8
10*20	S3	2355	132	6.9	2534	131	6.5	2445	131	7.3	2594	131	6.8
10*20	S4	2129	138	6.7	2257	134	6.8	2178	136	7	2297	134	6.5
10*20	S5	1395	146	4.8	1492	143	5.2	1448	143	3.53	1511	144	4.3
10*20	S6	1191	148	4.6	1520	147	4.9	1409	148	3.36	1568	147	4.2
15*5	S3	3208	128	7.7	3365	128	7.6	3324	128	8	3389	129	7.9
15*5	\$4	2964	129	6.7	3032	129	7.1	2970	129	7.10	3091	130	6.78
15*5	S5	2184	134	4.6	2542	133	6.1	2456	133	5.51	2599	133	4.7
15*5	S6	2086	138	4.3	2559	136	5.9	2166	138	4.9	2564	138	3.9
20*10	S3	3548	119	10	3778	119	10	3700	118	11.2	3895	117	11
20*10	S4	3433	120	9,8	3623	120	10	3567	121	10.1	3690	118	10
20*10	S5	3137	120	3.8	3337	120	7.4	3216	120	4.81	3347	120	3.6
20*10	S6	2906	125	4.3	3268	125	7.1	3201	125	4.98	3323	127	3.0

Table 3: Total crane's travel time (TT), total number of storage and retrievals (S/R) and average idle time of the crane (AVE) for Class- based storage with 2 operators

Rack configuration	Sequencing Rule	Types of Class-based storage											
		Type A			Type B			Type C			Type D		
		TT	S/R	AVE	TT	S/R	AVE	TT	S/R	AVE	TT	S/R	AVE
5*15	S3	1667	144	4.1	1746	144	4.3	1687	144	4.1	1777	144	4
5*15	S4	1595	146	4	1695	146	4.1	1601	146	3.8	1756	146	3.7
5*15	S5	1418	153	3.6	1542	152	3.4	1458	153	3.31	1599	152	3.2
5*15	S6	1385	159	3.5	1527	159	3.4	1440	159	3.19	1556	159	3
10*10	S3	2569	139	5.5	2663	138	6.2	2628	139	6.04	2756	139	6.1
10*10	S4	2438	142	5.1	2516	140	6	2470	141	5.68	2617	140	5.7
10*10	S5	1610	149	3.4	2026	147	5	1890	147	3.76	2146	147	3.3
10*10	S6	1434	153	3	2003	150	4.9	1835	151	3.51	2097	151	2.8
10*20	S3	2555	136	6.8	2734	135	6.9	2645	135	7.22	2794	135	6.8
10*20	S4	2329	143	6.7	2457	140	6.7	2378	141	7.09	2597	142	6.5
10*20	S5	1595	149	4.8	1702	147	5.1	1611	147	3.73	1741	147	4.4
10*20	S6	1371	153	4.6	1740	151	5	1697	153	3.42	1808	152	4.2
15*5	S3	3438	131	7.7	3585	130	7.6	3456	130	8.16	3639	131	8.1
15*5	S4	3134	131	6.7	3252	129	7.1	3120	129	7.17	3291	131	6.9
15*5	S5	2384	137	4.6	2712	136	5.9	2646	136	5.56	2799	136	4.7
15*5	S6	2221	141	4.7	2769	139	5.9	2566	141	4.92	2814	140	3.9
20*10	S3	3798	123	10,4	3908	121	10.8	3850	121	11.3	3995	121	11.6
20*10	S4	3634	125	9.7	3843	122	10.5	3743	123	10.19	3900	124	10.7
20*10	S5	3346	127	3.7	3545	123	7.2	3444	126	4.88	3547	124	3.6
20*10	S6	3101	130	3.1	3345	128	7	3277	130	5.01	3403	128	3.1

Conclusion

In this paper, a simulation study of an End-of-Aisle automated storage and retrieval system has been presented. The extensive simulation study shows the isolated effects of various policies, as well as compares several combinations of policies and rules. This comparison provides a base for selecting the most suitable policy in the evaluated system. We considered the following storage location assignment policies: randomized storage and class-based storage with four different layouts for the classes. The analysis demonstrates that the class-based storage type "A" outperformed the other policies. The results achieved by the simulation model, also reveal that the nearest-neighbour rule provides a superior results for selecting an open location within the storage area for randomized storage or within a class for class-based storage. The obtained results for different rack configurations indicate that with increasing the number of bays, the total travel time increases and the total number of storages and retrievals decreases. In conclusion, the combination of class-based storage type "A" with a selection of the locations nearest to the pick positions within each class, and nearest-neighbour policy for picking from storage locations when the system operates by two operators, one for each pick position, provides a superior performance.

References

Bozer, Y.A., and White, J.A., 1990. Design and performance models for end-of-aisle order picking systems. Management Science, 36(7),852–866.

Bozer, Y.A., White, J.A., 1996. A generalized design and performance analysis model for end-of-aisle order-picking systems. IIE Transactions 28 (4), 271–280.

Hwang H, Moon S, Gen M. An integrated model for the design of end—of—aisle order picking system and the determination of unit load sizes of AGVs. Computers & Industrial Engineering 2002; 42; 249—258.

Meller, R.D, Mungwattana. A., 2005. AS/RS dwell point strategy selection at high system utilization: A simulation study to investigate the magnitude of the benefit. International Journal of Production Research 43(24), 5217-5227.

Roodbergen, K. j., Iris F.A., 2009. A survey of literature on automated storage and retrieval systems. European Journal of Operational Research 194, 343–362.

Van den Berg, J.P., Gademann, A.J.R.M., 2000. Simulation study of an automated storage/retrieval system. International Journal of Production Research 38 (6), 1339–1356.