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Introduction

A decade ago, the Human Genome Project completed the ambitious ef-
fort to read the 3 billion DNA letters of genetic information found in
most human cells. It provided the blueprint for human life, an incredible
human achievement comparable to the landing on the moon.
We should recognize that even after 10 years, we are only at the early
stages of interpreting that sequence. Decades from now we will still be
interpreting, and reinterpreting, it.
What we did already find however, is that when we compared the hu-
man genome to other mammals, some regions were very conserved. In
other words: across tens of millions of years of evolutionary time, the se-
quences did not change that much at all. Highly evolutionary conserved
sequences almost certainly point to important functional sequences, since
these are things that life doesn’t want to change because they have some
vital fundamental function. Scientists thought the majority of those most
conserved regions were going to be in the protein-coding genes, the parts
of the genome that are the recipe for our functional proteins. It turns
out, the majority of the most highly conserved regions are not in protein
coding regions; they are located outside of these regions...

So what is going on here? We found out that a lot of these conserved
regions are basically circuit switches, like dimmer switches for a light,
that determine where, when and how much a gene gets turned on. If a
protein coding gene is turned on, it is transcribed into RNA molecules
and those in turn get translated into working functional proteins.
This regulation of genes is much more complicated in humans than it is
in lower organisms like yeasts or worms. Our biological complexity is not
so much in our gene number, it is in the complex framework of switches,
dimmers, amplifiers and silencers, that regulate where, when, and how
much genes get turned on.
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It is this process that we call Epigenetics, and it has added a daz-
zling complexity to modern biology. Trying to make sense of these huge
amounts of biological data, the field is rapidly acquiring the character
of a data science. Trillions of data points on genes, proteins and other
molecules are stored in large files and systematically studied using data-
analytical approaches. Diet, lifestyle, stress factors and environmental
exposures are able to alter your epigenetic switches and dimmers, effec-
tively regulating interactions between genes and environment.
Interestingly, it was found that disruption of these epigenetic processes
can lead to abnormal cellular behaviour due to altered gene functions.
The initiation and progression of cancer, traditionally seen as a genetic
disease, is now realized to involve epigenetic abnormalities along with
genetic alterations.

During my PhD, I focused on the analysis, interpretation and visual-
ization of epigenetic data, being both a witness and participator in this
fast growing branch of biology.
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Nederlandse
Samenvatting

Nederlandse Titel: Epigenetisch Profileren in Kanker.

In het kader van dit doctoraat werd onderzoek verricht naar de epi-
genetische veranderingen in cellen en hun invloed op ziekten zoals kanker.
In het eerste deel van dit onderzoek werd op genoomwijde schaal gezocht
naar epigenetische biomerkers die specifiek aanwezig zijn in bepaalde
kankers. In een tweede deel van dit onderzoek werd nagegaan of deze
epigenetische biomerkers konden worden gebruikt in een klinische setting
om een vroege diagnose of prognose te kunnen stellen.

In hoofdstuk 1 wordt een overzicht gegeven van de epigenetische
mechanismen. Er wordt verder ingegaan op de rol van epigenetica in
kanker en hoe deze kan gebruikt worden voor diagnose en behandeling
van kanker. In de laatste sectie wordt een uitgebreid overzicht gegeven
van de huidige epigenetische opsporingstechnieken, waarvan sommigen
uitvoerig in dit doctoraat zijn gebruikt zijn om nieuwe biomerkers op te
sporen.

Hoofdstuk 2 omvat de epigenetische onderzoeksmethoden die in het
kader van dit doctoraat gebruikt en ontwikkeld zijn om DNA methylatie te
bepalen in het menselijke genoom. In een eerste fase hebben we genome-
wide naar epigenetische merkers gezocht door de gemethyleerde regio’s
eerst aan te rijken met een methylatie specifiek bindend domein en ver-
volgens te sequeneren. Dit laat toe om op een kost-efficiënte manier een
volledig methylatie profiel te genereren van een staal. De gëıdentificeerde
regio’s worden dan in een volgende fase gevalideerd door bisulfiet behan-
deling van het DNA gevolgd door amplificatie van de doelwit sequentie
via PCR.
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Hoofdstuk 3 is een selectie van de papers die uit dit onderzoek zijn
voortgekomen. Meer specifiek is nagegaan of promotor methylatie van
het WRN gen en het DCR1 gen predictief is voor de behandeling van
colorectale kanker patiënten met irinotecan chemotherapie. Een ander
onderzoek had als doel om de predictieve waarde van MGMT promotor
methylatie te verhogen voor glioblastoma patiënten die een temozolomide
chemotherapy krijgen. Hierbij werd de promotor regio gesequeneerd om
zo een hoger resolutie profiel van de DNA methylatie te bekomen in
vergelijking met de huidige methylatie specifieke PCR (MSP) standaard.
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Part I

EPIGENETICS
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1

Nature-Nurture: Genetics and
Epigenetics

1.1 Situation

1.1.1 Genetics

Genetics is the study of genes, heredity, and genetic variation in living
organisms. It seeks to understand the process of trait inheritance from
parents to offspring.

The founder of the modern science of genetics is Gregor Mendel,
a late 19th-century Czech scientist. Mendel studied ’trait inheritance,’
patterns in the way traits were handed down from parents to offspring,
through experiments in his garden. He observed that organisms (pea
plants) inherit traits by way of discrete ”units of inheritance”. This term,
still used today, is a somewhat ambiguous definition of what is referred
to as a gene.

Trait inheritance and molecular inheritance mechanisms of genes are
still a primary principle of genetics in the 21st century, but modern ge-
netics has expanded beyond inheritance to studying the function and be-
haviour of genes. Gene structure and function, variation, and distribution
are studied within the context of the cell, the organism (e.g. dominance)
and within the context of a population. Genetics has given rise to a
number of sub-fields including epigenetics and population genetics.

1.1.2 Epigenetics

Epigenetics is the study of cellular and physiological modifications that
are heritable by daughter cells. These alterations are not coded in the cells

8



DNA but are stable, long-term alterations in the transcriptional potential
of a cell. These alterations may or may not be heritable to the offspring,
although the use of the term epigenetic to describe processes that are
not heritable is controversial.

Unlike simple genetics based on changes to the DNA sequence (the
genotype), epigenetic studies the changes in gene expression or cellular
phenotype that have other causes dan the genotype.

The term Epigenetics was first used in 1942 by Conrad H. Wadding-
ton, a British developmental biologist, paleontologist, geneticist, embry-
ologist and philosopher who laid the foundations for systems biology. He
used the term as a portmanteau of the words epigenesis and genetics. The
Waddingtonian equation holds that epigenesis + genetics = epigenetics,
and refers in retrospect to the debate on epigenesis versus preforma-
tionism in neoclassical embryology. Whereas Waddington actualised this
debate by linking epigenesis to developmental biology and preformation
to genetics, thereby stressing the importance of genetic action in causal
embryology. Todays epigenetics increasingly broadens biological reason-
ing in terms of genes only, as it expands the gene-centric view in biology
by introducing a flexible and pragmatically oriented hierarchy of crucial
genomic contexts. [1]

1.2 Genetics

1.2.1 Classical Genetics

Discrete inheritance and Mendel’s laws

Discrete inheritance in organisms occurs by passing discrete heritable
units, called genes, from parents to progeny. The first evidence came
from Gregor Mendel, who studied the segregation of heritable traits in
pea plants. [2] While studying the trait for flower color, Mendel observed
that the flowers of each pea plant were either purple or white, but nothing
in between. These discrete variations of the same gene are called alleles.

In the case of diploid species like pea plants, each individual has
two copies of each gene, one copy inherited from each parent. Multiple
species, including humans, have this pattern of inheritance. An organism
with two copies of the same allele of a given gene is called homozygous
at that gene locus, while an organism with two different alleles of a given
gene is called heterozygous. The underlying particular set of alleles for a

9



gene in one organism is called a genotype, while the observable trait is
called a phenotype. In a heterozygous genotype there is often one allele
that is observable in the phenotype, this is called the dominant allele,
while the other allele is called recessive as its properties are not observed in
the presence of the dominant allele. Some alleles dont have (a complete)
dominance over the other, resulting in an intermediate phenotype. A
situation were both alleles are expressed is called co-dominance.

After sexual reproduction the offspring receives randomly one out of
the two alleles from each parent. The rules of discrete inheritance and
the segregation of alleles are collectively known as Mendel’s first law or
the Law of Segregation

Multiple Genes interactions or Epistasis

Epistasis describes how the interactions between genes can affect pheno-
types. Today, scientists know that Mendel’s predictions about inheritance
depended on the genes he chose to study. Specifically, Mendel care-
fully selected seven unlinked genes that affected seven different traits.
However, unlike the phenotypes that Mendel considered, the majority of
phenotypes are affected by more than one gene. Most of the characteris-
tics of organisms are (much) more complex than the characteristics that
Mendel studied, and epistasis is one source of this complexity. Epistasis
can occur in a variety of different ways and result in a variety of different
phenotypic ratios. Beyond epistasis, gene-environment interactions like
epigenetics further increase the variety of phenotypes we see around us
each day.

Epistasis is currently a topic of interest in molecular and quantitative
genetics: The search for loci linked to complex diseases such as diabetes,
asthma, hypertension and multiple sclerosis has, to date, been less suc-
cessful than for simple Mendelian disorders. Complicating factors such as
an increased number of contributing loci and susceptibility alleles, incom-
plete penetrance, and contributing environmental effects are probably the
reason why these loci are not found yet.

Epistasis is a particular cause for concern for complex traits: If the
effect of one locus is altered or masked by another locus, the power to
detect the first locus is likely to be reduced and the discovery of the
effects at the two loci will be hindered by their interaction. Logically,
further complications can be expected for traits where more than two
loci are involved. [3]
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FIGURE 1.1: THE STRUCTURE OF DNA AND RNA.
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Figure 1.1: The structure of DNA and RNA.

1.2.2 Molecular Genetics

Early experiments by geneticists Hershey and Chase discovered that the
transmission of traits was due to a substance called Deoxyribonucleic Acid
(DNA). It was determined in 1953 by the famous discovery of Watson and
Crick that the method by which DNA carry’s and transmits information
about the organism was through its sequence of nitrogenous bases:

The structure of DNA is a double helix where Adenine is the comple-
ment to Thymine and Guanine is complement to Cytosine (Figure 1.1).
The sequence of these bases along a strand of DNA determines the func-
tion of the DNA at that location or locus. One of the primary purposes
of DNA, therefore, is to provide the genetic blueprint for proteins to be
made. This flow of genetic information within a biological system is also
called the central dogma (Figure 1.2). The first step in this process is
the transcription where a DNA Polymerase protein that binds to the DNA
and transcribes a copy of the template DNA to RNA called mRNA. The
sequence of the mRNA strand gets interpreted to form proteins, biological
compounds that act as the building blocks of most cellular function. This
process is called Translation, and occurs at ribosomal proteins. Proteins
are made up of structures called Amino Acids bonded together in a se-
quence specified by the mRNA strand. Every 3 nucleotides (nitrogenous
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The structure of DNA is a double helix where Adenine is the complement to Thymine and Guanine 
is complement to Cytosine (figure 1.1). The sequence of these bases along a strand of DNA 
determines the function of the DNA at that location or locus. The primary purpose of DNA, 
therefore, is to provide the genetic blueprint for proteins to be made. This is also called the central 
dogma (Figure 1.2). The first step in this process is the transcription where a DNA Polymerase 
protein that binds to the DNA and transcribes a copy of the template DNA to RNA called mRNA.
The sequence of the mRNA strand gets interpreted to form proteins, biological compounds that act 
as the building blocks of most cellular function. This process is called Translation, and occurs at 
ribosomal proteins. Proteins are made up of structures called Amino Acids bonded together in a 
sequence specified by the mRNA strand. Every 3 nucleotides (nitrogenous base + backbone), the 
ribosome will add a specific Amino Acid to the protein being synthesised. These proteins ultimately 
mediate most cellular functions and determine most of the features that are expressed in 
organisms. This is the central dogma of molecular biology, stating that DNA provides the sequence 
that determines the proteins, and ultimately, the traits expressed by the organism.

FIGURE 1.2: THE CENTRAL DOGMA OF MOLECULAR BIOLOGY: DNA IS TRANSCRIBED TO RNA 
AND RNA IS SUBSEQUENTLY TRANSLATED INTO (FUNCTIONAL) PROTEINS.

Cells divide, grow and differentiate, which is the basis behind multicellular development of 
organisms. The blueprint of every cell, the organism's genome with contain all the DNA 
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Figure 1.2: The central dogma of molecular biology deals with the
detailed residue-by-residue transfer of sequential information. It states
that such information cannot be transferred back from protein to either
protein or nucleic acid. - Francis Crick [4]

base + backbone), the ribosome will add a specific Amino Acid to the
protein being synthesized. These proteins ultimately mediate most cellu-
lar functions and determine the features that are expressed in organisms.

Cells divide, grow and differentiate, which is the basis behind multi-
cellular development of organisms. The blueprint of every cell, the or-
ganism’s genome that contains all the DNA information, must replicate
every time the cell divides, so that all newly formed cells have a functional
copy to operate the cell with. In most cells, the process of cell division
includes a process of genome duplication and division called Mitosis.0
During this process, proteins unwind the double stranded DNA into two
complementary single stranded DNA molecules, and add complementary
nucleotides to each strand. This results in the synthesis of two identi-
cal strands of DNA from the original strand of DNA. After synthesis, the
DNA condenses into chromosomes, each composed of two identical sister
chromatids, from which after cell division one ends up into the daughter
cell. The result is a daughter cell with a copy of the original genome. The
protein responsible for most of the DNA replication activity (DNA Poly-
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merase II) has very important implications in the field of genetics for use
in PCR and DNA sequencing. Most organisms of the same species have
an almost identical genetic code. In between two non-related humans,
more then 99% of their DNA is identical. The basis for the less then 1%
difference is the process of genetic mutation in germ line cells, which are
passed on from one generation to the next. Mutations include point mu-
tations of nucleotides, insertions, deletions or chromosomal disjunction.
Point mutations that are passed on from generation to generation are
called Single Nucleotide Polymorphisms. Mutations (SNPs) that aren’t
fatal and can be passed on from generation to generation often gets dis-
persed in the population. Accumulation of different random mutations
that are passed on to future generations in forms such as SNPs account
for part of the variation in physical appearance, biological physiology,
and health between different people. These SNPs give genetic research
its purpose, as many of these SNPs often result in different metabolism
and susceptibility to diseases such as alzheimer or colon cancer. Labora-
tory techniques have been developed, and in combination with the use of
computers, have allowed geneticists to undertake large-scale projects to
find the genetic basis of many human diseases. [5]

1.3 Epigenetics

1.3.1 Introduction

Historically, the term “epigenetics” was used to describe a collection of
diverse phenomena that could not be explained by the standard genetic
principles. Over the years, numerous biological phenomena, some con-
sidered bizarre and inexplicable, have been lumped into the category of
epigenetics.

Epigenetics, in a broad sense, is a bridge between the genotype and
phenotype. It changes the final outcome of a genetic locus without chang-
ing the underlying DNA sequence.

For example, Monozygotic (MZ) or identical twins occur when a single
egg is fertilised to form one zygote (hence, “monozygotic”) which then
divides into two separate embryos. Even though these two individuals
contain almost identical genomes and thus share an identical genotypes,
their phenotypes can differ considerably due to their environments. More
specifically, epigenetics may be defined as the study of potentially stable
and, ideally, heritable changes in gene expression or cellular phenotype
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1.3 Epigenetics

1.3.1 Introduction 
Historically, the term “epigenetics” was used to describe a collection of diverse phenomena that 
could not be explained by the standard genetic principles. Over the years, numerous biological 
phenomena, some considered bizarre and inexplicable, have been lumped into the category of 
epigenetics. 
Epigenetics, in a broad sense, is a bridge between the genotype and phenotype. It changes the 
final outcome of a genetic locus without changing the underlying DNA sequence. 
For example, Monozygotic (MZ) or identical twins occur when a single egg is fertilised to form one 
zygote (hence, "monozygotic") which then divides into two separate embryos. Even though these 
two individuals contain almost identical genomes and thus share an identical genotypes, their 
phenotypes can differ considerably due to their environments. More specifically, epigenetics may 
be defined as the study of potentially stable and, ideally, heritable changes in gene expression or 
cellular phenotype that occurs without changes in Watson- Crick base-pairing of DNA. {Holliday:
2006vo}

1.3.2 Epigenetic Mechanisms 

Much of today’s epigenetic research is performed within the study of covalent and non-covalent 
modifications of DNA and the proteins that bind and condense the DNA (histones), especially on 
the mechanisms by which such modifications influence overall chromatin structure. Chromatin is 
the complex of DNA and its closely associated proteins. It provides an attractive candidate for 
shaping the features of a cell’s epigenetic landscape like the one Conrad Waddington first 
proposed in 1957 (Figure 1.3)
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Figure 1.3: Waddingtons’s classical epigenetic landscape

that occurs without inducing changes in the DNA code. [6]

1.3.2 Epigenetic Mechanisms

Much of todays epigenetic research is performed within the study of co-
valent and non-covalent modifications of DNA and the proteins that bind
and condense the DNA (histones), especially on the mechanisms by which
such modifications influence overall chromatin structure. Chromatin is
the complex of DNA and its closely associated proteins. It provides an
attractive candidate for shaping the features of a cells epigenetic land-
scape like the one Conrad Waddington first proposed in 1957 (Figure
1.3).

DNA (Hydroxy-)Methylation

DNA methylation was the first epigenetic mark to be discovered. It pro-
vides a stable, heritable, and critical component of epigenetic regulation.
It is also the best characterised chemical modification of chromatin: In
5-methylcytosine, a methyl group, is attached to the 5th atom in the
6-atom ring (counting counterclockwise from the NH nitrogen at the six
o’clock position, not the 2 o’clock). This methyl group distinguishes
5-methylcytosine from cytosine. 5-Methylcytosine is an epigenetic modi-
fication formed by the action of DNA methyltransferase proteins (Figure
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FIGURE 1.3: WADDINGTON’S CLASSICAL EPIGENETIC LANDSCAPE

1.3.2.1 DNA METHYLATION

DNA methylation was the first epigenetic mark to be discovered. It provides a stable, heritable, and 
critical component of epigenetic regulation. It is also the best characterised chemical modification 
of chromatin: In 5-methylcytosine, a methyl group, is attached to the 5th atom in the 6-atom ring 
(counting counterclockwise from the NH nitrogen at the six o'clock position, not the 2 o'clock). This 
methyl group distinguishes 5-methylcytosine from cytosine. 5-Methylcytosine is an epigenetic 
modification formed by the action of DNA methyltransferase proteins (Figure 1.4). 
While spontaneous deamination of cytosine forms uracil, which is recognized and removed by DNA 
repair enzymes, deamination of 5-methylcytosine forms thymine. This conversion of a DNA base 
from cytosine (C) to thymine (T) can result in a transition mutation.

DNA hydroxymethylation, caused by oxidation of 5-methylcytosine through the TET family of 
enzymes, was further discovered to be involved in switching genes on and off. DNA methylation 
plays an important role in normal human development and is associated with the regulation of 
gene expression, tumorigenesis, and other genetic and epigenetic diseases.{Goldberg:2007bq}

FIGURE 1.4: DNA METHYLTRANSFERASES ARE ENZYMES THAT CATALYZE THE TRANSFER OF A 
METHYL GROUP TO DNA. THE KNOWN DNA METHYLTRANSFERASES USE S-ADENOSYL 
METHIONINE (SAM) AS THE METHYL DONOR.

Maintenance methyltransferases add methyl groups to hemi-methylated DNA during DNA 
replication, whereas de novo DNA methyltransferases add methyl groups after DNA replication. 
The formation of dense heterochromatin is mediated in part by DNA methylation in combination 
with RNA and histone modifications resulting in silent chromatin. DNA methylation plays a crucial 
role in many cellular processes including gene regulations, cell differentiation, silencing of 
repetitive and centromeric sequences, X chromosome inactivation in female mammals and 
mammalian imprinting.

1.3.2.2 HISTONE MODIFICATIONS

Histones are highly alkaline proteins found in the nucleus of eukaryotic cells. Their function is to 
package and order the DNA into structural units called nucleosomes. They are the major protein 
components of chromatin, acting as spools around which DNA winds. Histones contain 
modifications that play a role in gene regulation. They can condense the DNA by winding it up 
around them. It condenses the DNA enough that it fits into the nucleus. Each human cell has about 
1.8 meters of DNA, wounded up on the histones it has about 90 micrometers (0.09 mm) of 
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Figure 1.4: DNA Methyltransferases are enzymes that catalyze
the transfer of a methyl group to DNA. the known DNA-
methyltranfgerases use S-Adenosyl Methionine (SAM) as the methyl
donor.

1.4). While spontaneous deamination of cytosine forms uracil, which
is recognized and removed by DNA repair enzymes, deamination of 5-
methylcytosine forms thymine. This conversion of a DNA base from
cytosine (C) to thymine (T) can result in a transition mutation.

DNA hydroxymethylation, caused by oxidation of 5-methylcytosine
through the TET family of enzymes, was further discovered to be involved
in switching genes on and off. DNA methylation plays an important role in
normal human development and is associated with the regulation of gene
expression, tumorigenesis, and other genetic and epigenetic diseases. [7]

Maintenance methyltransferases add methyl groups to hemi-methylated
DNA during DNA replication, whereas de novo DNA methyltransferases
add methyl groups after DNA replication. The formation of dense het-
erochromatin is mediated in part by DNA methylation in combination
with RNA and histone modifications resulting in silent chromatin. DNA
methylation plays a crucial role in many cellular processes including gene
regulations, cell differentiation, silencing of repetitive and centromeric se-
quences, X chromosome inactivation in female mammals and mammalian
imprinting.

Other DNA Modifications

Next to 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC),
new research is continuing to reveal numerous gene-regulatory effects
of covalent DNA modifications. An increasing number of studies demon-
strate the importance of other cytosine modifications, such as 5-formylcytosine
(5fC), and 5-carboxylcytosine (5caC). More recently, three analogous
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typically associated with transcriptional silencing. Gene
body methylation is deemed to be important as well in
both kingdoms, but specific functions have only been
clearly demonstrated in animals [Maunakea et al., 2010;
Jones, 2012; Takuno and Gaut, 2013].

In animals, DNA hydroxymethylcytosine has been
identified as a (putative) novel epigenetic mark. The
observation that hydroxymethylcytosine is critical for
brain development—where it specifically localizes to
gene bodies of genes involved in neuronal differentia-
tion—is only one example suggesting important functions
[Pfeifer et al., 2013].

HistoneModifications and Nucleosome Positioning

Nucleosomes consist of !147-bp-long DNA stretches
wrapped around an octamer of histone proteins, and are
connected through “linker DNA.” The histone proteins
contain extensions (histone tails), which are the target of

many posttranslational modifications that shape the higher
order chromatin structure/assembly. This has led to the
concept of the “histone code,” postulating that a specific
combination of modifications is required to obtain a par-
ticular effect on gene expression [Strahl and Allis, 2000;
Suganuma and Workman, 2011]. Transcriptionally active
loci are, for example, featured by histone lysine acetyla-
tion [Struhl, 1998].

Next to histone modifications, nucleosome positioning
(or phasing) is also involved in the epigenetic regulation
of gene expression by chromatin remodeling. The exact
positioning of nucleosomes depends on (among others)
the underlying DNA sequence, ATP-dependent nucleo-
some remodelers, DNA-binding proteins, the RNA poly-
merase II transcription machinery, and their interactions.
As a result, the core enhancer, promoter, and terminator
regions of genes are typically depleted of nucleosomes,
whereas most of the genomic DNA is occupied [Struhl
and Segal, 2013].

Fig.1. Overview of epigenetic features. Each chromosome (panel c) con-

sists of both condensed and open chromatin regions (panel b), with differ-
ent histone modifications present. Loose regions are, for example,

characterized by histone lysine acetylation and the possibility of gene
expression. Nucleosome (re)positioning results in nucleosome free
regions, for example, at the transcription start site (TSS) (panel b), which

is required for gene transcription (panel a). The resulting transcriptome

not only consists of coding mRNAs, but also of noncoding RNAs
(ncRNA). Promoter regions of transcriptionally silenced genes are typi-

cally densely packed without nucleosome free regions, lack histone lysine
acetylation (panel b), and are often featured by DNA methylation (panel
a).

Environmental and Molecular Mutagenesis. DOI 10.1002/em

Next-Generation Technologies for Epigenomics 157

Figure 1.5: Overview of epigenetic features. Each chromosome (panel
c) consists of both condensed and open chromatin regions (panel b),
with different histone modifications present. Loose regions are, for
example, characterized by histone lysine acetylation and the possi-
bility of gene expression. Nucleosome (re)positioning results in nu-
cleosome free regions, for example, at the transcription start site
(TSS) (panel b), which typically associated with transcriptional si-
lencing. Nucleosomes consist of 147-bp-long DNA stretches wrapped
around an octamer of histone proteins, and are connected through
linker DNA.. Promoter regions of transcriptionally silenced genes are
typically densely packed without nucleosome free regions, lack histone
lysine acetylation (panel b), and are often featured by DNA methyla-
tion (panel a).
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modifications of thymine were found to occur in mammals and can now
largely be sequenced. N6-methyladenine, better known as a RNA mod-
ification, has now been found in the DNA of multiple eukaryotes. [8]
Future research needs to address the potential functions of these recently
discovered DNA modifications, as they could play an important role in
epigenetic regulation [9] . This diversity of DNA modifications and their
potential for combinatorial interactions indicates that the epigenetic DNA
code is substantially more complex than recently thought.

Histone Modifications

Histones are highly alkaline proteins found in the nucleus of eukaryotic
cells. Their function is to package and order the DNA into structural
units called nucleosomes. They are the major protein components of
chromatin, acting as spools around which DNA winds. Histones contain
modifications that play a role in gene regulation. They can condense the
DNA by winding it up around them. It condenses the DNA enough that
it fits into the nucleus. Each human cell has about 1.8 meters of DNA,
wounded up on the histones it has about 90 micrometers (0.09 mm) of
chromatin, which, when duplicated and condensed during mitosis, result
in about 120 micrometers of chromosomes.

Each nucleosomal unit is formed by wrapping approximately 146 base
pairs of DNA around a histone octamer core particle containing one H3-
H4 tetramer and two H2A-H2B dimers. The C-terminal histone-fold do-
mains of core histones have similar conformations that are critical for the
assembly of nucleosomes by mediating histone-histone and histone-DNA
interactions. In contrast, the N-terminal tails of core histones are less
structured and are not essential for maintaining the integrity of nucleo-
somes since removal of these tails by trypsin treatment does not diminish
nucleosome stability. Instead, histone tails are thought to make secondary
and more flexible contacts with DNA and adjacent nucleosomes that al-
low for dynamic changes in the accessibility of the underlying genome.
These tails are subjected to a diverse set of post-translational modifica-
tions, such as methylation, acetylation and phosphorylation, which may
modulate the contacts between histones and DNA.

Because histone modifications are reversible, they can act as flexible
”on/off” switches that regulate gene expression and other DNA-related
processes. Moreover, since the histone tail domains are highly accessible
to the nuclear environment, they provide attractive targets for signal-
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activated enzymes, and may function as molecular links between signal
transduction and gene expression. [10]

Telomeres

Telomeres are repeated DNA patterns that form protective caps at the
ends of eukaryotic chromosomes. These DNA structures are involved
in the replication and stability of DNA molecules. They are made up
of a repeating DNA sequence of six nucleotide bases (TTAGGG). Small
numbers of these terminal TTAGGG sequences are lost from the tips of
the chromosomes with cell division. Most of this loss is compensated
by the addition of TTAGGG repeats by the telomerase enzyme but over-
all, the telomeres get shorter with time. Shortening telomeres lead to
senescence, apoptosis, or oncogenic transformation of somatic cells, af-
fecting the health and lifespan of an individual. Shorter telomeres have
been associated with increased incidence of diseases and poor survival.
The rate of telomere shortening can be either increased or decreased by
(epi)genetic and specific lifestyle/environmental factors. Telomere length
is influenced by genetic [11] and epigenetic factors [12]. Better choice
of diet and activities has great potential to reduce the rate of telom-
ere shortening or at least prevent excessive telomere attrition, leading to
delayed onset of age-associated diseases and increased lifespan.

RNA Transcripts and their Encoded Proteins

Some genes can transcribe a product that regulates the activity of that
gene. RNA can recruit chromatin modifying complexes and DNA methyl-
transferases to specific loci during differentiation and development. Dif-
ferent splice forms of RNA, or formation of double-stranded RNA (RNAi)
can also induce epigenetic changes which can be passed on to descendants
of the cell. [13] . A large amount of the RNA in the zygote originates
from the mother during oogenesis or via nurse cells, resulting in maternal
effect phenotypes. A smaller quantity of sperm RNA is transmitted from
the father, but there is still evidence in male mice of alterations induced
by RNA [14].

MicroRNAs

Non-coding RNAs (ncRNAs) compromise the transcribed RNA fraction
that lack significant protein-coding capacity . MicroRNAs (miRNAs) are
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15-22 nucleotide, short, non-coding RNAs that have emerged as criti-
cal regulators of gene expression. They affect a multitude of biological
processes including cell proliferation, differentiation, survival and motility.

They are a class of evolutionally conserved, single-stranded, small
(approximately 19 - 23 nucleotides), endogenously expressed, and non-
protein-coding RNAs that act as posttranscriptional regulators of gene
expression. The biogenesis of miRNAs is a multi-step process [15]: miR-
NAs are initially transcribed in the cell nucleus by RNA polymerase II to
form primary miRNAs with lengths ranging from 1 to 3 kb. These primary
miRNAs are cleaved in the nucleus by the RNase III enzyme Drosha and a
doublestranded RNA-binding protein Pasha into pre-miRNAs of approxi-
mately 70 - 100 nucleotide-long stem-loop structures. These pre-miRNAs
are then transported from the nucleus to the cytoplasm by Exportin where
they are further cleaved into mature double-stranded miRNA:miRNA
oligonucleotides of 15 to 22 bases by the RNase-III enzyme Dicer.

After strand separation, one of the double strands becomes a ma-
ture miRNA molecule incorporated into RNA-induced silencing complex
(RISC). The RISC complex functions by perfectly or imperfectly matching
with its complementary target mRNA, and induces target mRNA degra-
dation, translational inhibition or sequestration of mRNA from the trans-
lational machinery. The translational inhibition can act as both oncogenes
and tumor suppressors, highlighting their importance in human cancer.
Therefore, miRNA expression profiles can be used as biomarkers for the
onset of disease states and it is possible to use miRNAs in gene therapy
for genetic disorders as well as potential drug targets [16].

Long non-coding RNA

Long non-coding RNAs (lncRNAs) compromise a wide range of the ncR-
NAs that are larger then 200 nucleotides. This somewhat arbitrary limit,
based on technical aspects of RNA isolation methods, distinguishes lncR-
NAs from small ncRNAs such as miRNAs. lncRNAs are thought to en-
compass nearly 30,000 different transcripts in humans, representing a
major part of the non-coding transcriptome. Many lncRNAs are lowly
expressed [17] and they do not tend to contain conserved motifs, requir-
ing sensitive technologies and explaining why lncRNAs had been thought
to be mostly transcriptional noise until recently. lncRNAs can regulate
gene expression at both the transcriptional and the post-transcriptional
level in diverse cellular contexts and biological processes [18, 19]. lncR-
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NAs are subdivided into classes based on their positional relationship to
protein-coding genes and different mechanisms of processing [20].
In cancer, lncRNAs can work through several mechanisms such as chro-
matin remodeling, chromatin interactions, as competing endogenous RNAs
and natural antisense transcripts [21]. At this writing, few lncRNAs have
been characterized in detail. However, it is becoming clear that lncRNAs
are important regulators in cellular, developmental and disease linked
processes, adding yet another layer of complexity to our understanding of
genomic regulation.

Prions

The word prion, first used in 1982 by Stanley B. Prusiner, is the result
of a merger between the words protein and infection, in reference to it’s
ability for self-propagation by transmitting its conformation to other pri-
ons. A protein fold into a specific, three-dimensional architecture that
is largely determined by their sequences of amino acids. Some proteins
show a degree of structural flexibility that enables them to adapt their
shape to perform multiple functions. When a protein misfolds and evades
normal clearance pathways, a pathogenic process can ensue in which the
protein aggregates progressively into intracellular and/or extracellular de-
posits. The consequence is a diverse group of disorders such as mad cow
disease in cattle and Creutzfeldt-Jakob disease (CJD) seen in humans.
Each of these diseases entails the aggregation of particular proteins in
characteristic patterns and locations [22].
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2

Cancer Epigenetics

2.1 Introduction

Cancer epigenetics is the study of epigenetic modifications in cancer cells.
Epigenetic mechanisms are essential for normal development and cell
maintenance. Disruption of epigenetic processes or epi-mutations can
lead to altered gene functions and malignant cellular transformations.
The initiation and progression of cancer, traditionally seen as a genetic
disease, is actually a combination of epigenetic abnormalities along with
genetic alterations. Tumour growth is positively correlated with tumour
suppressor genes that become epigenetically silenced and activation of
oncogenes. The epigenetic mechanisms involved include DNA methy-
lation, histone modifications, nucleosome positioning and non-coding
RNAs, specifically microRNA expression. Understanding these mecha-
nisms holds great promise for advanced cancer treatments, early detection
and prevention.

2.2 Reprogramming of the Epigenome in
Cancer

The well defined global epigenetic patterns present in normal cells undergo
extensive distortion in cancer. These epimutations, along with widespread
genetic alterations, play an important role in cancer initiation and pro-
gression [23]. The cancer epigenome is characterized by global changes
in DNA methylation and histone modification patterns as well as altered
expression profiles of chromatin-modifying enzymes. These epigenetic
changes result in global dysregulation of gene expression profiles leading
to the development and progression of disease states. Epimutations can
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lead to silencing of tumor suppressor genes independently and also in con-
junction with genetic mutations or deletions; thus, serving as the second
hit required for cancer initiation according to the two-hit model proposed
by Alfred Knudson [24]. In addition to inactivating tumor suppressor
genes, these epimutations can also promote tumorigenesis by activating
oncogenes. The events that lead to initiation of these epigenetic ab-
normalities are still not fully understood. These epigenetic alterations
are, like genetic mutations, mitotically heritable, which makes them ideal
targets for selection in a rapidly growing cancer cell population.

2.3 The Cancer Stem Cell Model

(Epi-)genetic changes in cancer may involve the dysregulation of hun-
dreds of genes during tumorigenesis. The mechanism by which a tumor
cell accumulates such widespread (epi)genetic abnormalities during can-
cer development is still not fully understood. The selective advantage of
these (epi)mutations during tumor progression is possible, but it is un-
likely that the multitude of epigenetic alterations that reside in a cancer
epigenome occur in a random fashion and then accumulate inside the tu-
mor due to clonal selection. A more plausible explanation would be that
the accumulation of such global epigenomic abnormalities arises from ini-
tial alterations in the central epigenetic control machinery, which occur
at a very early stage of neoplastic evolution. Such initiating events can
predispose tumor cells to gain further epimutations during tumor progres-
sion in a fashion similar to accumulation of the genetic alterations that
occurs following defects in DNA repair machinery in cancer. The cancer
stem cell model suggests that the epigenetic changes, which occur in
normal stem or progenitor cells, are the earliest events in cancer initia-
tion. The idea that these initial events occur in stem cell populations is
supported by the common finding that epigenetic aberrations are some
of the earliest events that occur in various types of cancer and also by
the discovery that normal tissues have altered progenitor cells in cancer
patients. [25]. It should be noted that stem cells also acquire genetic
mutations during life, which can also contribute to abnormal stem cell
behaviour and subsequent cancer development [26] .

22



2.4 Clinical Epigenetics: Diagnosis and
Therapy

2.4.1 Epigenetics as a Diagnostic Tool in the De-

tection and Treatment of Diseases

Clinical epigenetics is the application of molecular biology techniques that
can detect alterations in DNA methylation or histone modification to di-
agnose or study cancer epigenetics and conceptive epigenetics, cardiovas-
cular epigenetics, allergy, immunology, development, aging, degenerative
brain disorders, pathogen interaction and metabolic illness. [27] . It is
a rapidly developing field, developing epigenetic assays as powerful early
diagnostic, prognostic and predictive tools.
DNA methylation techniques account for the largest share of tests com-
pared to other epigenetic mechanisms.

DNA methylation studies of cancerous tissues aim, apart from their
contribution to a better understanding of the molecular mechanisms of
cancer development and progression, mostly at the determination of
markers suitable for diagnosis, prognosis and therapy response (phar-
maco(epi)genomics) prediction or disease follow-up. Although a tumor
itself is the major source of tumor DNA, acquiring DNA through a biopsy
is invasive, risky and often not possible. Fortunately, scientists have dis-
covered that dying tumor cells release small pieces of their DNA into
the bloodstream. These pieces are called cell-free circulating tumor DNA
(ctDNA). This provides an opportunity to test for epigenetic biomarkers
in a non- or minimally invasive manner. [28].Transrenal cfDNA can end
up in urine via the bloodstream or through direct secretion from malig-
nant tissue in the renal system and can be enriched by centrifugation of
urine samples, yielding urine sediment samples [29]

Another important source of cfDNA is stool. Normal colon epithelium
renews itself every 24 hours, and this process is coupled with a continuous
exfoliation of cells in the intestinal lumen. A number of studies have
shown that cellular exfoliation is more pronounced in colorectal cancer
patients than in healthy individuals. Although colon cancers typically
account for less then 1% of the total colon surface area, tumor cell DNA
actually makes up between 14% and 24% of the total DNA recovered in
feces. The overall 5-year survival for colorectal cancer patients is around
64%, rising to almost 90% if tumours are diagnosed early. [30]

A promising strategy for lung cancer diagnosis involves detection of
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epigenetic biomarkers from sputum or bronchial lavages of patients. Here,
aberrant methylation of the CDKN2A/p16 and/or MGMT promoters
could be detected in DNA from sputum in 100% of patients with squa-
mous cell lung carcinoma up to 3 years before clinical diagnosis [31].

Rapid development of next-generation sequencing technologies has
enabled new genome-wide epigenetic analysis techniques. These tech-
niques drive studies that provide novel epigenetic biomarkers for a wide
range of cancers. Several DNA methylation-based biomarkers have shown
promise in cancer diagnosis and prognosis, but only a few have proven
their clinical usability until now. Therefore, a major challenge will be
to validate candidate markers in well defined patient groups. Sufficient
numbers of samples of good quality are essential for marker validation.
Furthermore, the lack of standardised assays and platforms are key issues
regarding inter-laboratory variation and can produce contradictory data.
Currently, mainly qPCR-based MSP assays relying on bisulfite conversion
of DNA as well as MSRE-based qPCR amplification are used to investi-
gate candidate markers, which are sensitive and suitable to quantitatively
address DNA methylation levels in a large number of samples. How-
ever, the field will need to develop guidelines for sample collection and
standards for quality control of bisulfite conversion and MSRE digestion
efficiency or DNA integrity, in order to translate their findings into clinical
routine.

Epigenetic Biomarkers in Prostate Cancer

Prostate cancer (PCa) is the most commonly diagnosed cancer in men,
with an estimated 250.000 new cases in the United States diagnosed each
year. PCa ranks second in cancer-related mortality in men after Lung
Cancer. The clinical risk factors for PCa include aging, race, and family
history of PCa [32]. Currently, most patients are diagnosed after detec-
tion of elevated serum prostate-specific antigen (PSA) levels or abnor-
mal digital rectal examination, which involves diagnostic prostate biopsy.
Clinically localized PCa, which is potentially curable, is usually treated
with radical prostatectomy or radiation. Patients with locally advanced
or metastatic disease are initially treated with androgen-deprivation ther-
apy (ADT). However, almost all advanced PCa cases, after a period of
ADT, progress to castration-resistant PCa, an incurable stage of prostate
cancer, in which approx. 90% of patients develop metastases. [33]
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Current classification and prognosis of PCa relies in histological grad-
ing, staging, and baseline serum PSA levels. PCa histological grading is
based on the Gleason grading system, which combines 5 simple grades
(from grade 1 (most differentiated) to 5 (least differentiated)) into 9
combined grades, the so-called Gleason score (GS) or sum (ranging from
2 (1+1) to 10 (5+5)), a feature that incorporates information from the
frequent morphological heterogeneity of PCa. [34]

The best characterized epigenetic alteration in PCa is promoter hy-
permethylation. This epigenetic modification is associated with silencing
of classic tumor- suppressor genes as well as genes involved in different
cellular pathways such as cell cycle, hormone response, DNA repair, sig-
nal transduction, tumor invasion and apoptosis [35]. Hypermethylation
of those genes promoter methylation in PCa may correlate with patho-
logical grade, clinical stage, and castration resistance.

Epigenetic markers that can detect cancer are well described. GSTP1
is the best characterized epigenetic biomarker for PCa. DNA methyla-
tion of GSTP1 is nearly universally present in almost all PCa cells and
is absent or low in normal cells [36]. Studies indicate that more than
90% of PCa cases show aberrant promoter methylation of GSTP1 [37].
DNA methylation of GSTP1 is mostly detected using MSP in prostate
tissue samples and bodily fluids, mainly blood and urine. Testing for
GSTP1 is used for screening and stratification for the need of prostate
biopsy [36]. GSTP1 methylation performance displays high specificity
(86.8 - 100%) but low sensitivity, both in urine (18.8 - 38.9%) and
serum/plasma (13.0 - 75.5%) [38–40]. This might be overcome by a
multigene promoter methylation testing, and several different gene panels
have been proposed, including GSTP1/ARF/CDNK2A/MGMT [38] and
GSTP1/APC/RARB2/RASSF1A [39] and GSTP1/APC/RASSF1A [41].

Epigenetic Biomarkers in Breast Cancer

Breast cancer represents a complex and heterogeneous disease at the
histopathological, molecular, and genetic levels with a distinct clinical out-
come.It is the second most common type of cancer after lung cancer, 12%
of the total (http://www.who.int/mediacentre/ factsheets/fs297/en/).
In Europe, there were an estimated 71 cases of breast cancer per 100.000
adults, whereas in the United States, there were an estimated 92 cases
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of breast cancer per 100.000 adults. Overall, it is the most commonly
diagnosed cancer, and it’s incidence has been increasing over the last
years, showing a higher incidence in developed countries. [42]

It has been shown that DNA methylation is an important mecha-
nism in the development of breast cancer. There are a large number of
genes that have been found inactivated in breast cancer due to promoter
methylation.

These genes are mainly tumor suppressor and other cancer- related
genes. They have been found hypo- or hypermethylated in primary tu-
mors, and some of them have been described previously as mutated
in the germ lines of patients with inheritable cancers (such as CDH1,
p16INK4A/ CDKN2A, RB, BRCA1). [43–46].

Epigenetic Biomarkers in Colon Cancer

Colorectal cancer (CRC) annually affects more than one million men and
women worldwide and causes more than half a million deaths [47]. CRC
was the third most common malignant cancer for both men and women
with 250000 cases of colorectal cancer diagnosed on an annual basis in
Europe only [48]. Five-year survival was 54 percent among adult Euro-
peans diagnosed with CRC between 1995 and 1999 [49].

CRC arises as a consequence of the accumulation of genetic and epi-
genetic alterations in colonic epithelial cells during neoplastic transforma-
tion. In addition to genetic mutations, DNA promoter hypermethylation
of tumour suppressor genes has been widely investigated. Epigenetic
markers and their combinations , have been described in CRC patients
with 70%-96% sensitivity and 72%-96% specificity [50–52]. There are
attempts to personalise chemotherapy based on presence or absence of
specific biomarkers. Combinations of genetic and epigenetic markers have
also been studied, but until now, their use in clinical practice has been
limited. [53]

It is known that aberrant methylation in MLH1, MGMT, or the HIC1
promoter can lead to cancer progression [54, 55]. Cancer specific DNA
methylation leads to transcriptional silencing of various genes such as tu-
mor suppressor genes and genes involved in DNA repair and apoptosis,
such as CDKN2A/p16, CDKN2A/p14, and HLTF [56]. DNA hyperme-
thylation of MLH1 occurs in >80% of sporadic microsatellite instability
(MSI) CRC, and the restoration of MLH1 expression and function by
demethylating the MLH1 promoter in MSI CRC cell lines suggests that
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Table 2.1: Commercially-available DNA methylation test kits for can-
cer.

Gene Biomarker Type Cancer Type Test Kit

NDRG4/
BMP3

Diagnostic Colorectal Cologuard
(Exact Sciences)

VIM Diagnostic Colorectal ColoSure
(Labcorp)

SEPT9 Diagnostic Colorectal Epi proColon
(Epigenomics),
ColoVantage
(Quest Diagnostics),
RealTime mS9
(Abbott)

SHOX2/
PTGER4

Diagnostic Lung Epi prolung
(Epigenomics)

GSTP1/
APC/
RASSF1A

Diagnostic Prostate ConfirmMDx
(MDxHealth)

MGMT Predictive Glioblastoma PredictMDx
(MDxHealth),
Mismatch Repair genes
(MRC-Holland),
PyroMark MGMT Kit
(Qiagen)

TWIST1/
OTX1/
ONECUT2

Diagnostic Bladder AssureMDx
(MDxHealth)
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such aberrant methylation is a cause rather than a consequence of col-
orectal carcinogenesis [57]. Detection of tumor-derived DNA alterations
in stool has high potential for the noninvasive detection of CRC. Studies
have identified an increasing number of genes that are methylated in both
tissue and fecal DNA of CRC patients, and NDRG4 and BMP3 are of
particular interest. [58, 59]

Biomarkers in Glioblastoma

Biomarkers play an important role in the diagnostics of Glioblastoma mul-
tiforme (GBM) and are very important for histopathological diagnosis and
their molecular classification. Patients with GBM have a poor progno-
sis and only 35% of them survive for more than 5 years. The current
GBM treatment standards include maximal resection followed by radio-
therapy with concomitant and adjuvant therapies. Despite these aggres-
sive therapeutic regimens, the majority of patients suffer recurrence due
to molecular heterogeneity of GBM. Consequently, a number of potential
diagnostic, prognostic, and predictive biomarkers have been investigated.
Some of them, such as IDH mutations, 1p19q deletion, MGMT promoter
methylation, and EGFRvIII amplification are frequently tested in routine
clinical practice. With the development of sequencing technology, de-
tailed characterization of GBM molecular signatures has facilitated a more
personalized therapeutic approach and contributed to the development of
a new generation of anti-GBM therapies such as molecular inhibitors tar-
geting growth factor receptors, vaccines, antibody-based drug conjugates,
and more recently inhibitors blocking the immune checkpoints. [60] The
hypermethylation in the promoter region of MGMT gene is not only an
important prognostic factor for glioblastoma patients but also a predictor
for the outcome of the treatment to alkylating agents [61]. MGMT en-
codes O6-methylguanine-DNA methyltransferase , a DNA repair enzyme
which protects cells against alkylating agents like Temozolomide (TMZ)
through preventing G:C to A:T gene mutations. Disorders of MGMT
promoter methylation are associated with transcriptional silencing of the
MGMT gene and loss of MGMT expression that results in decreased DNA
repair and retention of alkyl groups, thereby allowing alkylating agents
to be more effictive in patients with MGMT promoter hypermethylation.
A number of clinical trials have shown that MGMT methylation corre-
sponds to greater PFS and OS in patients who are treated with alkylating
agents [62, 63]. MGMT promoter methylation status represents the best
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studied and most relevant prognostic factor in GBM and has been con-
sidered as a potent predictor of response to alkylating agents.
Several studies have demonstrated that patients with tumors with methy-
lated MGMT promoter had a survival benefit when treated with TMZ
and radiotherapy, compared with those who received RT only, whereas
patients with unmethylated MGMT promoter in their tumors had no sur-
vival benefit from chemotherapy, regardless of whether it was given at
diagnosis together with RT or as a salvage treatment [64, 65]. Conse-
quently, it has been suggested that elderly GBM patients eligible for either
RT or TMZ should undergo MGMT promoter methylation testing prior
to the clinical decision being made.

2.4.2 Epigenetic Therapy

A relatively recent development in the field of epigenetics is epigenetic
therapy. Unlike genetic events, epigenetic changes can in theory be re-
versed by pharmacologic intervention to block enzymes that add or re-
move modifications from histones (writers and erasers), inhibit DNA-
methyl transferases, prevent critical proteinprotein interactions among
transcription factors, or block protein domains (readers) from recognis-
ing specific histone modification states.

Currently the only epigenetically directed therapies in clinical prac-
tice are inhibitors of DNA methyltransferases and histone deacetylases
(HDAC). Although these drugs yield global changes in DNA methyla-
tion and histone acetylation, respectively, it remains uncertain whether
the efficacy of these agents is linked to specific changes in gene expres-
sion. HDAC inhibitors have pleiotropic actions and can affect cytoplasmic
as well as nuclear processes. Furthermore, both classes of agents elicit
DNA damage responses and may be acting as low-intensity cytotoxic
agents. [66]

Despite initial promise, there are still many questions to be answered
before we can use epigenetic markers in the clinical arena on a broader
scale. An important issue is that of selectivity: How can we selectively
target genes and pathways with ubiquitously expressed epigenetic regu-
lators? The answer could lie in more selective epigenetic compounds like
miRNAs. A miRNA may target tens to hundreds of transcripts to control
key biological processes. The biochemical reactions underpinning miRNA
biogenesis and activity are relatively well defined [67]. It is however dif-
ficult to pinpoint the underlying regulation of the miRNA pathways in
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vivo. miRNAs are strongly linked to key cancer-related processes, af-
fecting nodal points in cell cycle regulation, genome integrity and stress
responses, apoptosis and metastasis. In addition, genetic models have
evidenced that several miRNAs act as bone fide oncogenes and that tu-
mours may develop addiction to oncogenic miRNA overexpression, which
holds a promise for the therapeutic use of miRNA inhibitors. [68]
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3

Methodologies, Analytical
Approaches and Visualization

3.1 Introduction

Although epigenetic features are not encoded in the DNA sequence itself,
they are directly or indirectly involved in the regulation of transcription on
specific loci throughout the genome. To generate a global picture of them
requires high-throughput, high resolution and cost-efficient techniques.
During the course of this PhD thesis, there was a spectacular evolution in
Next Generation Sequencing Techniques (NGS). And this has contributed
greatly to the field of epigenetics. In this chapter, I will sketch an overview
of the current High Throughput methodologies and analytical approaches
used in epigenetics.

3.2 Methodologies and Analytic Approaches

Based on article:
Next-generation technologies and data analytical approaches for
epigenomics
Klaas Mensaert K, Simon Denil, Geert Trooskens, Wim Van Criekinge,
Olivier Thas and Tim De Meyer ; Environmental and molecular mutage-
nesis, 2014 [69]
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3.2.1 Bisulfite-based methods to study

DNA methylation and hydroxymethylation

Bisulfite Conversion

Treatment of DNA with sodium bisulfite results in the deamination of
unmethylated cytosine residues to uracil, whereas 5-methylcytosine re-
mains intact [70]. The introduced sequence differences can subsequently
be exploited to assess the methylation status of each cytosine, using, for
example, microarrays or nextgeneration sequencing applications (Figure
3.1). Unfortunately, standard bisulfite conversion does not discriminate
between methylcytosine and hydroxymethylcytosine as both are nonre-
active to the chemical conversion reagent. One solution is the initial
oxidation of hydroxymethylcytosine to formylcytosine, which is sensitive
to conversion to uracil under bisulfite conditions, upon which both the
degrees of methylation and hydroxymethylation can be determined by
comparison of the oxidative and the normal bisulfite sequencing results
for each locus [71]. Hydroxymethylation can also be directly assessed
by the TET-assisted bisulfite sequencing methodology (TAB-seq). Enzy-
matic glycosylation of hydroxymethylcytosine protects the latter residues
against carboxylation by a recombinant TET enzyme, whereas methyl-
cytosine (that cannot be glysosylated) is converted to carboxylcytosine.
Both carboxylcytosine and basic cytosine residues, but not the glycosy-
lated hydroxymethylcytosine, are converted to uracil upon bisulfite treat-
ment [72]. Although these modified protocols are in principle compatible
with the different bisulfite-based methods described below, it should be
noted that the impact of hydroxymethylation is currently still largely ig-
nored. Main reasons are the uncertainty about presence and nature of
function, but also the fact that hydroxymethylation are typically sub-
stantially lower than methylation levels [73]. In the remainder of this
subchapter, we predominantly refer to DNA methylation for simplicity,
but it is clear that without adapted protocolhydroxymethylation will be
assessed simultaneously.

Whole Genome, Reduced Representation, and Targeted Bisul-
fite Sequencing

Induced sequence differences are exploited by whole genome bisulfite se-
quencing (WGBS), enabling a straightforward quantification of the (hy-
droxy)methylation status of each individual cytosine in the genome. The
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Me Me

A CT C TG A TC C AG C AG

Me Me

A UT C TG A TU C AG U AG

A TT C TG A TT C AG T AG

Bisulphite conversion

PCR Amplification & detection 

Figure 3.1: Bisulfite treatment of DNA results in the deamination
of unmethylated cytosine residues to uracil, whereas 5-methylcytosine
remains intact. Subsequent amplification produces T/A nucleotides on
unmethylated positions and C/G nucleotides on methylated positions.

high resolution of this currently gold standard method is an advantage,
as several studies have demonstrated that the methylation status of a
single CpG may already be highly predictive [74,75]. On the other hand,
WGBS is expensive, particularly when taking into account the fact that
the bisulfite treatment complicates the sequencing procedure [76]. For
example, incomplete bisulfite conversion will yield biased methylation esti-
mates and bisulfite treatment might result in DNA degradation, although
these effects have been largely attenuated by methodological improve-
ments. Even though current innovation toward longer reads is tempering
this problem as well, the fact that a major part of the cytosine frac-
tion is converted to (upon sequencing) thymine substantially complicates
subsequent sequence alignment [76]. Finally, the sequence-dependent ef-
ficiency of PCR [77], which is indispensable for current second-generation
sequencing, can also cause biased methylation estimates.

In addition to the difficulties outlined above, WGBS is generally deemed
to be inefficient, as a very large part of the sequenced fragments yields
no relevant information [78]. Several methods are therefore used to re-
duce the amount of genome to be sequenced by prior enrichment for
sequences of interest. In Reduced Representation Bisulfite Sequencing
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(RRBS) [79], a CpG restriction endonuclease that is DNA methylation
insensitive (e.g., 30 -CCGG-50 targeting MspI) is used to generate frag-
ments with CpG-enrichment at the ends. By ligating sequence adapters
containing 5-methylcytosine before bisulfite conversion, this methodology
is compatible with second-generation sequencing. Appropriate gel-based
size selection of fragments before sequencing permits to generate a re-
producible but reduced representation ( 1%) of the DNA methylome [79].

The major disadvantage of RRBS is the assays limitation to CpGs in
the vicinity of the recognition site of the applied endonuclease, which is
less appropriate if there are particular loci of interest [80]. Multiplex PCR
of bisulfite-treated DNA before sequencing enables targeting specific loci
of interest, but is profoundly complicated at a genome-scale because a
large amount of multiplex-proof primers with no/few CpGs need to be
designed for a template with reduced complexity.

Targeting specific loci by probes can solve this problem, for example
by capture of bisulfite-treated DNA using long probes [80]. Alterna-
tively, the solution hybrid selection methodology developed for exome
sequencing can be used to capture DNA before bisulfite treatment. The
latter option is deemed to perform better due to the more complex and
methylation independent sequence of the targeted loci (which both sub-
stantially facilitate probe design), but requires a relatively high amount
of DNA [81]. Whereas, from an experimental point of view, RRBS and
WGBS do not require prior knowledge of the species genome, targeted
bisulfite sequencing requires knowledge of a closely related genome for
primer (PCR-based targeting) or probe (hybridization-based targeting)
design.

Bisulfite Sequencing Data Analysis

Analysis of bisulfite sequencing data starts with sequence alignment fol-
lowed by the identification of significantly methylated loci. Several map-
ping algorithms have been developed that take into account the re-
duced complexity and potential methylation-dependent variation of bisul-
fite sequencing-generated reads. The challenges associated with bisulfite
sequencing alignment also imply that the presence of a reference genome
is required for RRBS and WGBS.

Upon alignment and quality control (QC) (e.g., removing low-quality
reads and low coverage CpGs), several methodologies for the identifi-
cation of significantly (differentially) methylated regions have been pro-
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posed [80,82]. Although, in general, both CpG and non-CpG methylation
can be analyzed with the same tools, the term CpG will be used for consis-
tency. For individual samples, it can be assessed whether a certain CpG
is significantly methylated by comparing the observed coverage of un-
converted cytosines with the (sequencing1bisulfite conversion) error rate
(e.g., [83]). Experiments performed without biological replicates can only
yield information about the specific samples under study and are therefore
not recommended, unless biological variability is irrelevant for the research
setting. In the latter case, differentially methylated CpGs between two
samples can be identified using the Fisher exact test (or Chi-square test)
for each CpG dinucleotide, for example [83]. To avoid multiple testing-
associated problems [84], the amount of CpG variables can be reduced
by imposing filters (e.g., coverage), or by combining multiple CpGs into a
single variable representing a region in the genome. Several methods ca-
pable of dealing with biological/technical replicates have been developed
as well. For a group of samples, several statistical distributions have been
used to model methylation ratios with subsequent statistical testing, for
example, beta distribution [78,85] or logistic regression models [86]. Also
here, the information of different neighboring CpGs is often merged to
obtain a smaller amount of less dependent variables [78, 85, 87].

Bisulfite Conversion-Dependent Arrays

Instead of sequencing, Illuminas Infinium HumanMethylation BeadChip
methodology relies on the assessment of bisulfite conversion-induced single-
nucleotide polymorphisms (SNPs). The most recent version, Human
Methylation EPIC, assesses approximately 850,000 cytosines (predomi-
nantly in CpGs), although the effective amount of targeted cytosines is
substantially lower due to aspecific probes and SNPs within the targeted
regions [88, 89]. It is composed of two assay types (i.e., types I and II),
whereas the previous version, HumanMethylation27 was solely based on
the former type. This type I assay uses two probes per CpG locus (i.e., a
methylated and an unmethylated query probe). After hybridization, but
only upon perfect matching of a methylated cytosine or thymine (i.e.,
bisulfite converted unmethylated cytosine) at the 30 probe end, labeled
nucleotides can be incorporated. As methylated and unmethylated query
probes are located on different beads, methylated (m) and unmethylated
(u) light signals can be detected using the same color channel, but on dif-
ferent locations (beads) [90]. Type II assays, on the other hand, employ
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single beads coated with degenerate probes and uses two colors/channels
to discriminate methylated (m) from unmethylated (u) light intensities.
This is possible because differentially labeled adenine or guanine residues
can be incorporated at the 30 probe end, respectively, basepairing with
thymines (bisulfite converted unmethylated cytosine) or methylated (and
therefore nonreactive) cytosines [90, 91]. Type II assays therefore differ
from type I assays by the use of two different colors and the fact that de-
generate probes rather than two different probes are used. This explains
the observation that the data distributions of the resulting methylation
degree estimates differ between both assay types on the HumanMethyla-
tion450 BeadChip. In addition, type II assays have been reported to per-
form somewhat inferior regarding reproducibility, accuracy and dynamic
range [91].

Infinium Bead-Arrays: Data Analysis

Infinium data preprocessing consists of QC and subsequent filtering, data
summarization and normalization. QC includes the removal of probe sig-
nals that cannot bedistinguished from the background by comparing them
with control probes, but also X and Y chromosome probes, SNP contain-
ing probes, and less specific probes (implying possible cross-hybridization)
can be omitted [84]. Two summary methods are routinely used and can
be applied for both assay types. The b value is an intuitive statistic that
is used as a proxy for the proportion of methylation (0 to 100%), whereas
the M value expresses the log ratio of the methylated and unmethylated
intensities.

The M value lends itself to be conveniently used in combination with
existing array analysis methods, which can in part be attributed to a higher
homoscedasticity of the data after log transformation [92]. Another ded-
icated variance-stabilizing normalization method has been implemented
in the lumi package, which also includes several basic normalization al-
gorithms [93]. Data normalization is typically performed to eliminate
technical variation between samples caused by, for example, background
signal and dye, GC, and CpG-bias, but also between type I and type II
data [91]. After data preprocessing, standard microarray data analysis
methodologies can be used, for example, LIMMA and SAM [94]. These
methods employ moderated variance estimates for each locus, by sharing
information over all genes, to counteract problems associated with low
numbers of replicates. If larger samples are available, standard statisti-
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cal methods (e.g., Wilcoxon rank-sum test, t-test, linear models) can be
applied as well and these have been conveniently bundled in the Illumina
Methylation Analyzer (IMA) package, with associated multiple testing
correction [95]. Instead of using continuous β or M values, data may also
be categorized, for example, using mixture models to define a samples
qualitative methylation status for a certain probe/locus, for example [93].
Despite these complex data analysis strategies, often associated with the
inherent limitations of probe-based arrays, basic Infinium data analysis is
rather straightforward as it can readily yield methylation degree estimates
as β values. The combination of low cost and high performance has made
Infinium BeadArrays a very widely used methodology. The most impor-
tant limitation, however, remains the fact that this methodology is only
available for the human genome, for which it even only queries a fixed
and limited portion of the DNA methylome [84].

3.2.2 Restriction Based Methodologies for Genome-

Scale DNA Methylation Assessment

Whereas single-molecule sequencing allows to obtain the DNA (hydroxy)-
methylome in parallel with the genome, other DNA methylation assess-
ment methodologies mentioned higher are either limited to the human
genome or require sufficient knowledge of the underlying genome se-
quence. When no (closely related) genome is available, fingerprinting
methods can be used, for example, in ecological epigenetics studies.
For these purposes, the methylation-specific amplified polymorphisms
(MSAP) methoda modification of the amplified fragment length poly-
morphisms (AFLP) methodis widely applied. This technique makes use of
the differential affinity to cytosine methylation of a pair of isoschizomers
(restriction enzymes specific to the same recognition sequence). More
specifically, after digestion by both restriction endonucleases separately,
amplification and electrophoresis, DNA methylation is identified through
the presence of isoschizomer-dependent fragment differences [96]. Differ-
ent interpretation and scoring approaches, typically modifications of stan-
dard AFLP procedures, are available for the obtained banding patterns,
both for multilocus (cf. population studies) and single-locus analysis [97].

Despite a low resolution and limited genome-wide character, the cost-
efficiency of this methodology has resulted in a wide application, even for
species with sequenced genomes [98]. Fragments indicating differential
methylation between groups can subsequently be isolated and sequenced,
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upon which the specific locus involved can be identified, for example
[98]. Other methods making use of the (differential) affinity of restriction
endonucleases and isoschizomers regarding DNA methylation [99], will
not be further discussed here as their frequency of application is generally
decreasing due to the advent of novel, cost-efficient, more genome-wide
alternatives.

3.2.3 Enrichment-Based Epigenomics

While reduced representation and targeted bisulfite sequencing decrease
costs by sequencing a limited part of the DNA methylome, an alternative
strategy is to enrich for those DNA fragments that are putatively methy-
lated. Enrichment approaches include isolation by DNA methylation-
specific methyl binding domains (MBDs), antibodies or other purification
strategies. This methodology is also the principal approach to obtain
genome-wide information regarding histone modifications and nucleosome
positioning.

Affinity Purification to Study DNA (Hydroxy)methylation

MBD, typically recombinant versions of the MBD found in, for exam-
ple, the MBD2 and MCEP2 proteins, can be used to capture methylated
CpGs [100]. When followed by sequencing, this methodology is known by
several names: MethylCap-seq [101], MBD-seq [102], and MBDisolated
genomic sequencing (MIGS) [103]. Capturing can also be followed by mi-
croarray or PCRbased analysis, and then the term methylated-CpG island
recovery assay is typically used for the affinity purification step [104,105].
Although most studies have reported that these MBD domains typi-
cally do not target hydroxymethylation, for example [106], results about
MCEP2 and its MBD-domain are less consistent [107, 108] indicating
potential capture of hydroxymethylcytosine by MCEP2. Also for MBD3
weak affinity toward hydroxymethylcytosine has been reported [108,109].

As an alternative to MBDs, antibodies can be used to enrich for
methylcytosines (methylated DNA immunoprecipitation, MeDIP, mDIP,
or mCIPmethylcytosine immunoprecipitation) before microarray [110,111]
or sequencing (MeDIP-seq) [112]-based analysis. More recently, antibod-
ies targeting hydroxymethylcytosine have been used in a hMeDIP ap-
proach [113]. Although MethylCap-seq is believed to capture biologically
more relevant DNA methylation due to the use of protein derived, CpG-
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application is generally decreasing due to the advent of
novel, cost-efficient, more genome-wide alternatives.

ENRICHMENT-BASED EPIGENOMICS

While reduced representation and targeted bisulfite
sequencing decrease costs by sequencing a limited part of
the DNA methylome, an alternative strategy is to enrich
for those DNA fragments that are putatively methylated
(Fig. 2). Enrichment approaches include isolation by
DNA methylation-specific methyl binding domains
(MBDs), antibodies or other purification strategies. This
methodology is also the principal approach to obtain
genome-wide information regarding histone modifications
and nucleosome positioning.

Upon chromatin immunoprecipitation (ChIP) or other
affinity purification-based method, captured DNA can be
quantified by sequencing (ChIP-seq, Fig. 2) or microar-
rays (ChIP-chip). Unlike gene expression studies, where
one can exploit the high degree of exonic conservation in
order to use the same microarray for less related species,
cf. [Drnevich et al., 2012], probe and thus microarray
development for epigenomic studies, for example, pro-
moter targeting but also tiling arrays, requires knowledge
of a very closely related genome at least. The de novo
approach of sequencing-based methods allows for some
more flexibility, although also here lower conservation

degrees will result in mapping problems and a suboptimal
use of the sequencing capacity. Generally featured by a
higher resolution, lower amounts of required DNA and a
far higher genome-wide character, sequencing-based
approaches are being increasingly used instead of micro-
arrays [Park, 2009]. The following paragraphs will there-
fore particularly focus on the former, but a generic
discussion of the still widely used tiling arrays can be
found further in this review.

Affinity Purification to Study DNA (Hydroxy)methylation

MBD, typically recombinant versions of the MBD
found in, for example, the MBD2 and MCEP2 proteins,
can be used to capture methylated CpGs [Ballestar et al.,
2003]. When followed by sequencing, this methodology
is known by several names: MethylCap-seq [Brinkman
et al., 2010], MBD-seq [Li et al., 2010], and MBD-
isolated genomic sequencing (MIGS) [Serre et al., 2010].
Capturing can also be followed by microarray or PCR-
based analysis, and then the term methylated-CpG island
recovery assay is typically used for the affinity purifica-
tion step [Rauch and Pfeifer, 2005; Rauch et al., 2006].
Although most studies have reported that these MBD
domains typically do not target hydroxymethylation, for
example [Jin et al., 2010], results about MCEP2 and its
MBD-domain are less consistent [Valinluck et al., 2004;
Mellen et al., 2012] indicating potential capture of

Fig. 2. Enrichment-based sequencing. After DNA fragmentation (a, b), DNA fragments bearing the specific epigenetic
modification of interest are captured using antibodies or specific protein domains (c). Unbound fragments can be washed

away, whereas an elution step is required to obtain the DNA fragments of interest (d). After adaptor ligation and
sequencing, sequence reads are aligned to a reference genome to identify the epigenetically modified loci (e, f).

Environmental and Molecular Mutagenesis. DOI 10.1002/em

Next-Generation Technologies for Epigenomics 161

Figure 3.2: Enrichment-based sequencing. After DNA fragmentation
(a, b), DNA fragments bearing the specific epigenetic modification of
interest are captured using antibodies or specific protein domains (c).
Unbound fragments can be washed away, whereas an elution step is
required to obtain the DNA fragments of interest (d). After adap-
tor ligation and sequencing, sequence reads are aligned to a reference
genome to identify the epigenetically modified loci (e, f).
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targeting MBD, MeDIP-seq has the advantage that its affinity depends
less on the CpG content of the methylated fragment, as even non-CpG
methylation can be picked up [114]. However, a genuine comparison of
methylCap-seq and MeDIP-seq is difficult due to the complexity of the
affinity purification protocol, where for both methodologies sensitivity,
specificity and overall yield may differ to a large extent between different
kits, batches of antibodies/MBDs, elution step salt concentrations and
sample qualities and quantities. [114–116]

Although affinity purification-based methods reduce overall cost by
limiting the amount of DNA to be sequenced while maintaining a genome-
wide approach, there are several drawbacks as well. First, MBD-seq and
MeDIP cannot attain the base pair resolution of bisulfite sequencing.
Second, target fragment CpG-density and GC-content are major biases,
affecting, respectively, the efficiency of affinity purification (particularly
for MethylCap-seq) [84,117] and subsequent sequencing [117,118]. As a
consequence, several methylated regions are virtually impossible to cap-
ture and sequence by MBD-seq and/or MeDIP-seq, implying that the
genome-wide character of both methods is limited.

Next-Generation Methods to Study Histone Modifications
and Nucleosome Positioning

Antibodies can also be used to study histone modifications and position-
ing of nucleosome subsets, nowadays typically in combination with se-
quencing, that is, ChIPseq, although also tiling arrays are often used (see
below). These experiments start with the purification of nuclei, followed
by sample fragmentation, either by sonication or by micrococcal nuclease
(MNase) digestion, which preferably targets linker DNA. Formaldehyde-
based crosslinking reduces the chance of chromatin rearrangement during
processing, but is less commonly applied to study histones as it is fea-
tured by several important side effects [119]. Upon immunoprecipitation
and purification of the captured DNA, the latter is sequenced directly, or
after additional preprocessing [115].

Indeed, for nucleosome positioning studies, mononucleosomal DNA
fragments are selected before sequencing by the isolation of 146-bp-long
DNA fragments after electrophoresis [120]. As current nucleosome posi-
tioning studies require consistent phasing across cells, it should be noted
that most experiments have been performed on yeast, cell lines, or very
homogeneous tissues (e.g., T-cell subtypes) [121].
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While antibodies targeting specific histones, histone variants or mod-
ifications enable studying specific nucleosome subtypes [120], the ap-
plication of MNase without subsequent immunoprecipitation yields pro-
files for the total set of nucleosomes after sequencing, that is, MNase-
seq [122, 123]. Although not an enrichment-based method, an alterna-
tive strategy called nucleosome occupancy and methylome sequencing
(NOMe-seq) is based on the principle that nucleosome bound DNA is
protected from methylation by GpC methyltransferases (i.e., not CpG),
upon which bisulfite sequencing can be used to identify nonmethylated
(i.e., nucleosome bound) regions. A major advantage of NOMe-seq is
that the original (typically CpG dependent) DNA methylation profile can
be measured simultaneously [124].

ChIP-seq Experimental Quality Control

For the different ChIP-seq experiments, the antibody used regulates the
particular epigenetic feature targeted. As the antibodys sensitivity and
specificity are the main determinants of outcome quality, rigorous test-
ing, preferably for each batch, is required. The specificity of ChIPseq
is additionally compromised by several biases, caused by both immuno-
precipitation (preferred enrichment for open chromatin) and sequencing.
It is therefore recommended to include control samples, that is, total
input control or generated by applying a control antibody targeting an
irrelevant, non-nuclear antigen [125, 126]. As MNase preferably targets
specific sequences [127], an appropriate control for MNase-seq is the use
of input DNA free of nucleosomes [121].

Data Analysis for Enrichment-Based Sequencing Methods

Essential data analytical steps for the different enrichment-based sequenc-
ing applications include the mapping of reads, QC, data summary (peak
detection), data normalization, and identification of significant (differen-
tial) enrichment. In general, standard ChIP-seq analytical tools are used
for histone modifications, whereas more specific algorithms have been
developed for nucleosome positioning and DNA methylation studies. In-
dependent of the type of experiment however, the analysis starts with
the alignment of the typically short sequence reads. Virtually all recent
tools can cope with both single and paired-end read data, for example
Bowtie2 [128], SHRiMP [129] and SOAP2 [130]. Paired-end fragments,
entailing that both ends of a fragment have been sequenced, can be
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more accurately mapped to a unique position. Selection of the best
suited sequence read aligner for a specific task depends on general align-
ment quality as well as computational performance and possible memory
restrictions [131].

Generic sequencing QC tools are freely available, with read positional
quality scores, fraction of duplicate reads and GC-content bias as common
criteria (e.g., FastQC). Lower quality sequences can be filtered, as well
as duplicate fragments. The latter are different fragments of which the
sequenced reads map at exactly the same locus, and are therefore likely to
be PCR generated artifacts (particularly for paired-end sequencing). For
single-end sequencing, loci with an unbalanced amount of reads mapped
to both DNA strands (Watson and Crick) can be filtered out as well
[132]. Specifically for enrichment-based methods, saturation analysis can
be interesting in order to check the adequacy of the sequencing depth.
Specific tools have also been developed for MethylCap-seq and MeDIP-
seq, which examine, for example, the CpG coverage, CpG occurrence in
reads and CpG enrichment [133, 134]. For this type of data, particularly
the fragment CpG content appears to be predictive of overall quality [116].

After mapping, nucleotide level coverage data are typically trans-
formed to count data for DNA regions, that is, data summarization.
These regions can be predefined, for example, summarization per gene
/promoter / equally sized bin / . . . , or extracted from the data us-
ing peak detection algorithms. For single-end sequencing data, still often
used for ChIP-seq, additional preprocessing is required before peak de-
tection to account for the typically double peaks of mapped reads (one
on each strand) surrounding the enriched regions. Both peak shift ad-
justment and read extension are common solutions [135]. Peak calling
strategies will be discussed first, followed by algorithms to test for differ-
ential enrichment between samples.’

For ChIP-seq data, a signal profile is typically constructed by count-
ing the number of reads in a sliding window or by kernel density estima-
tion [136–138]. Enrichment by ChIP is often nonspecific; about 60 up to
99% of reads can be off-target, thereby composing the background [132].
As an approximation, the background profile can be modeled, using either
data from the ChIPped samples or a control sample [125,139]. Statistical
comparison of the putative peak with the background distribution, ei-
ther by simulation (nonparametric) or by a statistical modeling approach,
yields P values with associated FDRs to identify significant enrichment
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(i.e., peak calling). For DNA methylation enrichment studies, background
assessment and peak detection can be performed by applying the same
or similar methods, for example [140,141], or using predefined regions of
interest such as gene promoters, sets of likely differentially methylated
regions [78], and so forth. There exist methods that also correct for copy
number variations [142]. Although several tools have been developed for
the comparison of two samples, for example, for the identification of dif-
ferential histone modification sites using Hidden Markov models [143],
it should be noted that typically more independent samples need to be
included to take biological variability into account. Importantly, this also
requires normalization between these different samples, for example, by
library size normalization or other algorithms assuming overall equal lev-
els of the epigenetic mark, although the validity of this assumption is
often questionable, for example [Ehrlich, 2009]. Alternatively, the princi-
ple of using noise regions to normalize ChIP samples versus total input
controls, for example [125], can also be applied for normalizing multiple
ChIP samples. For DNA methylation, normalization can also be based
on methods for the estimation of absolute methylation degrees from the
sequencing count data. These algorithms have been developed starting
from the observation that the measured MethylCap-seq/MeDIP-seq in-
tensities are a function of both absolute methylation degree and sequence
CpGcontent [114, 133, 134, 144].

To evaluate differential enrichment between groups of samples, basic
statistical tests such as Wilcoxon rank sum, KruskalWallis, and t-tests,
can be used, for example [145, 146]. However, as datasets generated by
enrichment sequencing experiments are similar to RNA-seq derived data,
which are often modeled as negative binomial distributions, the use of
methods designed for RNA-seq data analysis may be more reliable and
powerful. These are ideally moderated methods that allow analyzing data
from experiments with low numbers of replicates. Moderated methods are
able to stabilize the variance estimation by sharing information between
different loci [147]. For example, recent versions of EdgeR [148] and
DESeq [149] provide feature variance estimates derived from both the full
dataset (variance modeled as a function of the mean) and the specific
locus under study. These tools are very flexible by the implementation
of generalized linear models, suitable for complex, multifactorial designs.
EdgeR can also be called through the Repitools package for enrichment-
based epigenomics data analysis [134].

MNase-seq and ChIP-seq for nucleosome positioning aim at selec-
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tively sequencing nucleosome bound fragments. After mapping, paired-
end fragments are typically trimmed to obtain higher resolution profiles,
and additional adjustment for sequence biases (of MNase, sequencing it-
self . . .) may be performed, for example, using a control sample [150].
Whereas specific loci are depleted from nucleosomes (e.g., core TSS of
active genes), others are featured by either well-defined (in phase across
cells) or more fuzzy positioning (heterogeneous across cells) of nucleo-
somes. Although broad-spectrum ChIP-seq methods can be applied for
nucleosome positioning data, for example [151], several algorithms have
been specifically developed for recognizing the presence of nucleosome
positioning. The first step typically consists of noise removal [150, 152],
upon which peak detection algorithms can be applied [150] to identify
nucleosome positions. Also model-based approaches that directly incor-
porate the presence of noise have been developed, for example [153,154]

3.2.4 Sequencing and PCR-based Assessment of

Noncoding RNA

During a standard mRNA-seq protocol, oligo-dT-based capture is used
to filter poly-A tailed RNA molecules from the total pool of RNA, which
overwhelmingly consists of noninformative (nonpolyadenylated) rRNA molecules.
In contrast to mRNA, ncRNA species are typically not polyadenylated,
and therefore an alternative rRNA depletion strategy is required before
sequencing [155]. Two commonly implemented approaches are the sub-
tractive hybridization of rRNA molecules, based on the high degree of
rRNA sequence conservation, and the removal of highly abundant RNA
species through cDNA normalization (after reverse transcription). The
latter procedure involves denaturation and reannealing of double stranded
cDNA at an elevated temperature. As highly abundant cDNA molecules
reanneal at a higher frequency, removal of double-stranded cDNA at a
well-selected time-point results in relative depletion of highly abundant
(r)RNA sequences [155]. Alternatively, dedicated sequencing protocols
(e.g., Illuminas small RNA sequencing protocol) have been developed to
specifically sequence small and therefore predominantly noncoding RNA
molecules through a prior size selection, thereby implicitly eliminating
most mRNA but also longer ribosomal and other overabundant RNA
molecules, for example [156]. Adapted protocols are available to prefer-
able target miRNAs, for example [157].

Depending on the sequencing procedure, either the total RNA frac-
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tion (including mRNA, but rRNA depleted) will be sequenced, or solely
the small RNA fraction. Total RNA-seq and standard mRNA-seq data
analysis are very similar. However, after mapping with splicing-sensitive
sequence aligners such as TopHat2 [158] and STAR [159] and subsequent
QC using, for example, RNA-SeQC [160], total RNAseq data summary
should not only consider coding regions but also collections of predicted
or de novo detected ncRNAs, for example [161–163]. Subsequently, stan-
dard RNA-seq procedures for normalization, for example [164], and sta-
tistical analysis (see above), can be applied to the data. Although the
loci under consideration will be far more limited than for total RNA-seq,
a very similar approach can be used for small RNA-seq data analysis, for
example [165].

3.2.5 Locus Specific and Validation Methods

The next-generation technologies discussed have the major advantage
of being capable of assessing the epigenetic features of interest on a
genome-scale. One important issue associated with genome-scale ex-
periments though is the multiple testing problem. Although more ad-
vanced FDR control methods are being developed that particularly take
into account the dependencies between variables, for example [85, 166] ,
experimental verification on independent samples remains the gold stan-
dard for the accurate validation of true positive results. Locus specific,
low-throughput (typically PCR based) methods predating the advent of
next-generation technologies are still very appropriate for validation pur-
poses. For example, for histone modification and nucleosome positioning
studies, quantitative PCR can be performed on the enriched DNA of
independent samples and controls. Also for ncRNA, upon reverse tran-
scription, quantitative PCR will yield insight into presence and differential
expression of the ncRNA species of interest.

To assess/validate (differential) DNA methylation of individual loci,
independent DNA samples are typically bisulfite treated first. Adapted
bisulfite protocols can be used to discriminate methylcytosine from hy-
droxymethylcytosine (see above). Subsequently, PCR primers can be de-
veloped specifically assessing the cytosines of interest in a method called
methylation-specific PCR (MSP) [167], targeting either methylated or
unmethylated alleles. This very sensitive methodology cannot discrimi-
nate between very low or very high levels of methylation, for example, for
heterogeneous samples where small amounts of background methylation
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are often present. Therefore, real-time quantitative MSP has been devel-
oped, indicating the methylation degree for the locus under study [168].
Accurate primer design is essential for MSP to discriminate methylated
from unmethylated alleles, and specialized tools have been developed,
for example [169]. An alternative option is to design primers for the un-
methylated (typically CpG-free) regions surrounding the locus of interest,
and sequence the fragments obtained after PCR [70]. The often lower
complexity of primer design, the easily verifiable specificity, the base-pair
resolution and particularly the improvements (cost, labor intensity) in se-
quencing technology, have made the locus-specific bisulfite sequencing
option very popular.

3.3 (Epi-) Genomic Data Visualization

Data visualisation is pivotal in analysing and understanding vast amounts
of genomic data for different types of users ranging from researchers in-
volved in high-throughput genome research to clinicians and a growing
number of people having access to significant parts of their own genetic
data. This will become even more important as sequencing prices plum-
met and the age of personal genomics becomes a reality.

3.3.1 Linear Genome Browsers

Linear Genome browsers are applications that provide a graphical interface
to search, browse, import, export and visually analyze genomic sequence
data. They use the chromosomes of a species and the genomic positions
as a coordinate system for annotations generated from heterogeneous
genomic data. Each distinct data set is called a track. They provide
a unique, efficient and convenient analysis platform for genomics. The
graphical interface helps users extract and summarise data intuitively from
vast amounts of raw genomic data. They are particularly useful to zoom
in and examine particular loci (e.g. a gene or gene cluster).

Resources such as genome browsers are still some of Molecular Bi-
ologists best tools. A good browser can distinguish good from poor
quality genomic data sets and can show trends and patterns in the data
without the need for statistical measures. These visual observations can
spur questions that require more sophisticated analysis. Several browsers
are available, including Entrez Genome, Ensembl and the UCSC Genome
Browser. Although the amount of data available on the UCSC browser
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makes it very valuable, it can be slow when attempting to browse through
several data sets at various locations. Next Generation browsers, such
as Anno-J, which was used for visualizing the Arabidopsis thaliana and
human methylomes at nucleotide resolution [83, 170] are much more dy-
namic. Scrolling through the genome is very rapid and tracks can be
zoomed, scaled, re-ordered and removed almost instantly. [171]

3.3.2 Circular Genome Representation

Circular Genome Representation (CGR) is used for the analysis of similar-
ities and differences in the comparisons of genomes. CGR is an effective
way to display variations in chromosome structure and, more general, any
other kind of chromosomal/positional relationships between genomic loci.
This data is routinely produced by sequence alignments, hybridization ar-
rays, Next Generation sequence alignments and genotyping studies. CGR
uses a circular ideogram layout to facilitate the display of relationships
between pairs of positions by the use of ribbons, which encode the posi-
tion, size, and orientation of related genomic elements. Circular Genome
Representation software like Circos [172] is capable of displaying data as
scatter, line and histogram plots, heat maps, tiles, connectors and text.

3.4 Survival analysis

Survival analysis is generally defined as a set of statistical methods for
analyzing input and output variables where the outcome parameter is the
time until the occurrence of an event. The event can Relapse, Progres-
sion, Death in clinical studies. The methods can also be used in other
fields where the event can be marriage, divorce, the length of time peo-
ple remain unemployed after a job loss or even how long it takes for the
machine to break down. The time to event of interest or survival time
can be measured in defined time intervals like days, weeks, or years. in
the scope of this thesis, we focus on the overall survival time (OS) and
progression free survival time (PFS). OS equals the time until death and
PFS measures the length of time during and after the treatment of a
disease, such as cancer, that a patient lives with the disease but it does
not get worse.
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GeneWall: A mobile genomics visualisations  platform
Geert Trooskens*,1 and Wim Van Criekinge1
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Abstract 
Summary: Data visualisation is pivotal in 
analysing and understanding vast amounts 
of genomic data for different types of users 
ranging from researchers involved in high-
throughput genome research to clinicians 
and a growing number of people having 
access to significant parts of their own 
genetic data. This will become even more 
important as sequencing prices plummet 
and the age of personal genomics becomes 
a reality. We present a mobile  genome 
browser with advanced capabilities, that 
can handle most genomic data formats with 
focus on graphical representation and 
ease-of-use. The data is stored on the 
device, enhancing security and eliminating 
the need for high-bandwidth connections. 
GeneWall enables the user to import his/her 
own data, create personal gene lists, create 
custom data visualisations, browse pathways 
and explore gene ontologies. 
Availability: GeneWall is freely available on the 
iTunes App Store (https://itunes.apple.com/be/
app/genewall-genome-browser/id593516562?mt=8)
Contact: Geert.Trooskens@wobblebase.com

1. Introduction 

Genome browsers are applications that provide a graphical interface to search, browse, import, 
export and analyse genomic sequence data. They use the chromosomes of a species and the 
genomic positions as a coordinate system for annotations generated from heterogeneous 
genomic data. Each distinct data set is called a track. They provide a unique, efficient and 
convenient analysis platform for genomics. The graphical interface helps users extract and 
summarise data intuitively from vast amounts of raw genomic data. While desktop based and 
web-based genome browsers are well established software packages [4], mobile genome 
browsers are a relatively new development. The huge success of portable devices like tablets 
and smartphones are changing the way we interact with data in general. Portable genome 

�  of �1 5

Figure 1: A circular genome view. Chromosome ideograms 
are plotted on the external ring. Three data tracks rings are 
plotted onto this polar coordinate system. Search results 
and gene lists can be plotted on the outer ring, highlighting 
the selected genes

Figure 3.3: A circular genome view. Chromosome ideograms are plot-
ted on the external ring. Three data tracks rings are plotted onto this
polar coordinate system. Search results and gene lists can be plotted
on the outer ring, highlighting the selected genes
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3.4.1 Kaplan-Meier estimator

The Kaplan-Meier survival curve is defined as the probability of surviving
in a given length of time while considering time in many small inter-
vals. Three assumptions need to be met to perform this analysis. Firstly,
we assume that at any time patients who are censored have the same
survival prospects as those who continue to be followed. Secondly, we
assume that the survival probabilities are the same for subjects recruited
early and late in the study. Thirdly, we assume that the event happens
at the time specified.
The Kaplan-Meier estimate is also called as ’product limit estimate’. It
involves computing of probabilities of occurrence of event at a certain
point of time. We multiply these successive probabilities by any earlier
computed probabilities to get the final estimate. The survival probability
at any particular time is calculated by the formula given below:

St = NumberOfSubjectsLivingAtTheStart−NumberOfSubjectsDied
NumberOfSubjectsLivingAtTheStart

Subjects who have died, dropped out, or move out are not counted
as ’at risk’ i.e., subjects who are lost are considered ’censored’ and are
not counted in the denominator. Total probability of survival till that
time interval is calculated by multiplying all the probabilities of survival
at all time intervals preceding that time. For example, the probability of a
patient surviving two days after a tumour removal surgery can be consid-
ered to be probability of surviving the one day multiplied by the probability
surviving the second day given that patient survived the first day. This
second probability is called as a conditional probability. Although the
probability calculated at any given interval is not very accurate because
of the small number of events, the overall probability of surviving to each
point is more accurate.
The graph plotted between estimated survival probabilities (on Y axis)
and time past after entry into the study (on X axis) is called a survival
curve. The survival curve is drawn as a step function: the proportion
surviving remains unchanged between the events, even if there are some
intermediate censored observations. Survival curves are very useful when
comparing curves from two different groups of subject. (e.g. a cohort
of patients that receive the same treatment can be divided in multiple
groups based on the outcome of a biomarker) [173] (Figure 3.4)
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Figure 3.4: Plots of Kaplan-Meier product limit estimates of overall
survival for two groups of patients receiving chemotherapy partitioned
by the outcome of the promoter methylation status of the BNIP3 gene,
crosses indicate censored events
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3.4.2 Log-rank test

The logrank test is used to test the null hypothesis that there is no dif-
ference between the populations in the probability of an event (here a
death) at any time point. The analysis is based on the times of events
(here deaths). For each such time we calculate the observed number of
deaths in each group (O1 and O2) and the number expected E1 and E2
if there were in reality no difference between the groups. If a survival
time is censored, that individual is considered to be at risk of dying in the
week of the censoring but not in subsequent weeks. The logrank test is
based on the same assumptions as the Kaplan Meier survival curve. The
test statistic is:

Log-rank statistic: = (O1−E1)2

E1
+ (O2−E2)2

E2

The significance of the log-rank statistic can be drawn by comparing
the calculated value with the critical value (using chi-square table) for a
degree of freedom equal to one. [174]

3.4.3 Cox Proportion Hazard Model

Cox proportion hazard model enables us to test the effect of multiple
independent variables on survival times of different groups of patients, just
like the multiple regression model. Hazard is defined as the probability
of dying at a given time assuming that the patients have survived up to
that given time. Hazard ratio is also an important term and defined as
the ratio of the risk of hazard occurring at any given time in one group
compared with another group at that very time. Both log-rank test and
Cox proportion hazard test assume that the hazard ratio is constant over
time. [175]

3.5 Conclusion and Perspectives

Over the last decade, next-generation technologies have yielded substan-
tial insight into the epigenetic principles regulating gene expression and
the epimutations associated with disease. Based on the same principles
as locus-specific epigenetic analysis, which are currently still used for val-
idation purposes, these technologies excel by their high-throughput and
genome wide character.
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Although currently more expensive than microarrays, it is clear that
massive parallel sequencing approaches are taking the lead. Indeed, much
is expected from the next generation(s) of sequencers, which envisage sin-
gle molecule sequencing at an even lower cost and higher speed, and the
direct measurement of, for example, DNA (hydroxy)methylation without
the disadvantages of chemical conversion reactions [176, 177]. For non-
model species, genomes and DNA (hydroxy)methylomes can be obtained
within the same experiment. Additionally, as, in contrast to second gen-
eration sequencers, no PCR steps are required, sequence dependent (e.g.,
GC-content) biases will be dramatically reduced [178]. This will allow for
a far more reliable quantification of epigenomic modifications, thereby
also facilitating comparison of these features between different loci in the
genome.

With future generations of sequencing comes the prospect of longer
sequence reads [178], allowing for an easier and cost-efficient assembly
of novel genomes to be used as background for subsequent epigenomic
studies in non-model species. Virtually all epigenomic experiments are
currently performed on populations of cells, thereby determining the av-
erage of the epigenetic feature under investigation. Longer reads also im-
ply the possibility to evaluate the linkage of DNA (hydroxy)methylation
across longer genomic distances, for example, to identify subgroups of
alleles in tumors or other heterogeneous samples. In addition, progress
is being made in single cell analysis by recent advances in cell selection
procedures and measurement sensitivity [179], with bisulfite treatment of
an individual oocyte [180] and restriction-enzyme based single-cell DNA
methylation analysis [181] as typical examples, and here too long-read
single-molecule sequencing might imply a major improvement. Current
methods are already capable of obtaining the 147-nt-long stretches of
DNA associated with nucleosomes and histone variants/modifications
using ChIP-seq/MNase-seq procedures. However, methods like NOMe-
seq [124] will benefit from far longer single molecule reads, as this will
enable the exact mapping of a large amount of nucleosomes on an indi-
vidual DNA molecule without even the need for bisulfite conversion. For
ncRNAs, there will be the possibility to avoid conversion to cDNA [178],
implying a decrease in time and handling required, as well as a less biased
quantification (by avoiding both conversion and sequencing-associated
PCR).

In conclusion, while micro-arrays and second-generation sequencing
have already revolutionized the field, future generations of sequencing
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hold the promise of eliminating the majority of remaining problems re-
garding cost, resolution, biases, and research on non-model species. How-
ever, as always, new challenges will arise, particularly with regard to data
management and high-throughput (statistical) analysis of the petabyte
scale data coming our way.
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Part II

EPIGENETIC TOOLS
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Epigenome-wide Profiling

From article:
A Map Of The Human Methylome
Geert Trooskens , Tim De Meyer , Veeck Jurgen, Simon Denil, Jean-
Pierre Renard, Pierre Dehan, Joachim De Schrijver, Gerben Menschaert
and Wim Van Criekinge

Changes in DNA methylation play a crucial role in gene regulation
and disease progression. Genome wide techniques to quantify and qualify
methylation are rapidly evolving, increasing the need for a straightfor-
ward comparative methylome analysis. Particularly methyl-CpG binding
domain capturing based sequencing (MethylCap-Seq) is a low-cost, high-
resolution technology to uncover DNA methylation in a truly genome-
wide manner and is becoming increasingly popular. We applied this tech-
nique to 345 human samples from different origins and constructed a map
of the human methylome by identifying the methylation-prone regions,
which we attribute the name Methylation Cores (MCs). The map en-
ables researchers to reduce the comparison problem to a discrete amount
of variables. Based on this methodology, we identified 3,618,706 MCs
comprising 39,6% of the genome and 53.4% of approximately 28 million
human CpGs dinucleotides. We observed high enrichment of MCs in CGIs
and exons, but less variability in DNA methylation compared to promoter,
intronic and intergenic regions. In contrast to CpG islands (CGIs) and
exon methylation that appears to be high and stable (Figure 1.1), we
found clear indications that highly differential regulatory information is
contained within the promoter region, but also in introns, where methy-
lation could be involved in the regulation of gene splicing. Validation by
targeted bisulfite sequencing data indicates that the map of the human
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methylome encloses more then 90% of CpGs exhibiting a minimum of
10% methylation.

[Supplemental material is available for this article. The map of the
human methylome is browsable in our methylome browser and download-
able at http://h2g2.ugent.be/mhm];

1.1 Introduction

DNA methylation of cytosine at the carbon-5 position is a well-studied
epigenetic mark and is in humans predominantly found in a CpG-dinucleotide
sequence context. When located at gene promoters, DNA methylation
is generally accepted as a repressive mark [56]. By its transcriptional
control function, DNA methylation plays a crucial part in tissue differ-
entiation and aging [182], and its deregulation is often associated with
disease [183]. For example, epigenetic abnormalities such as hypermethy-
lation of tumor suppressor genes and hypomethylation of oncogenes are
thought to be integral to the development of cancer [23]. Furthermore,
epigenetic modifications can predict the outcome of certain treatments
such as chemotherapy [62], detect cancer at early stages [184] or may be
useful in patient risk stratification [185]

Since the discovery of altered DNA methylation patterns in human
cancer [186], many methods have been used to assess DNA methylation.
Until recently, technologies like methylation specific PCR [167] and locus-
specific bisulfite sequencing [70] targeted specific sites of the genome.
Typical targets include gene promoter regions or CGIs. One of the main
drawbacks of these techniques is the limited applicability in genome wide
experimental set-ups. Array based DNA methylation techniques [187]
provide researchers with a reasonably good genomic coverage (genome-
scale), but next to the inherently lower quality of hybridization methods,
this methodology depends on the arbitrary choice of probes, and therefore
lacks the resolution of truly genome-wide sequencing approaches.

Next-generation sequencing platforms offer several orders of magni-
tude higher throughput - i.e. gigabases of DNA in a single run - at
reasonable costs, creating new opportunities for researchers to assess
DNA methylation on a genome-wide scale. The characterization of whole
genome DNA methylation patterns using bisulfite sequencing requires
hunderds of Gbases of sequencing data to obtain sufficient coverage, im-
plying practical limitations by todays standards to study and compare
multiple samples. Targeted bisulfite sequencing by hybrid selection [81]
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offers bisulphite sequencing of preselected regions but the loss of genome
wide character is an inherent trade-off. Reduced representation bisul-
phite sequencng (RRBS), reduces the portion of the genome analyzed
through MspI digestion and fragment size selection [188]. Alternative
methods, not based on bisulphite conversion,filter out the non-methylated
regions of the genome, retaining the methylated fractions, which are sub-
sequently sequenced. A first method, anti-5-methyl cytosine antibody
immunoprecipitation (MeDip) retains single stranded DNA with at least
one methylated cytosine residue [110]. Marginally methylated regions
can compromise a large section of the retained DNA portion, generat-
ing high background levels thus complicating the analysis. On the other
hand, combining the native human methyl-CpG binding domain protein
(MBD) for precipitation of multi-methylated genomic DNA fragments,
with paired-end deep sequencing renders a high-resolution, whole genome
methylation profile (MethylCap-Seq). A comparison study of both meth-
ods revealed that MBD sequencing can distinguish twice as many dif-
ferentially methylated regions than MeDip [84]. While there have been
attempts to render a map of the human methylome, this study is one of
the first to render it on a genome wide level for MethylCap-Seq. Although
it is virtually impossible to cover all possible methylation sites (this would
require performing MethylCap-Seq on each different human tissue type
and pathological variant thereof), even an incomplete map can identify
those loci which are nearly always methylated or - more importantly - for
which the methylation status is highly variable in the human genome.

The effects of DNA methylation depend mostly on longer stretches
of CpG methylated DNA [189], implying that the lower resolution (read
length) of MethylCap-Seq compared to bisulfite sequencing is a minor lim-
itation in biological terms. This also entails that regions of CpG methyla-
tion or MCs, are an adequate unit for a methylome map. The collection
of these MCs then composes the methylome. From a conceptual point of
view, MCs are similar to CGIs except that for the former methylation has
actually been observed while the latter are an aid to identify methylated
regions. Similar to CGIs, several MCs may be present in a single gene or
even a single promoter region. Also from a data-analytical point of view,
a map of the human methylome will improve future analyses, since the
use of the methylation status of the MCs (typically maximum tag count)
ultimately reduces the epigenomic data to a set of scores for a fixed set
of variables, thereby facilitating multi-sample comparisons. Furthermore,
in contrast to base-pair level data-analysis, the MC methodology allows
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reasonable differences in the positions corresponding to maximal CpG
methylation.

The methodology outlined below uses raw MethylCap-Seq data of
different samples to create the map of the human methylome, including
different healthy tissues, cell lines and tumor samples (Table 1.1). Since
no normalisation procedures are applied, artifacts are avoided. A Poisson
background model is used to identify significantly methylated regions.
However, MCs can overlap within a single methylated region due to both
technical and biological reasons. The main technical issue is the fact
that the resolution of the methodology is limited by the length of the
sequenced fragments, which implies peak broadening and potential over-
lap. Biologically there are also clear indications that DNA methylation
spreads to neighbouring loci [190], although this does not imply that the
biological effects are the same for these loci.

Therefore, a conservative set of rules was derived that identifies adja-
cent MCs in a single ”significantly methylated“ region. First, two control
sets of putative adjacent MCs were identified, i.e. a clearly positive con-
trol set for which the regions correspond with 2 MCs, and a negative
control set for which this was clearly not the case. The former featured
a clear decrease in CpG density between the cores, while for the latter
the opposite was the case. Subsequently, decision trees using the char-
acteristics (but not the CpG density) of the putative adjacent MCs as
input data were constructed to predict the status of the control sets. As
a consequence, the rules constructed by the optimal decision trees do
not directly depend on the underlying CpG density and can be used to
identify adjacent MCs in a genome wide manner.

After identification of the methylation prone regions, we calculated the
sensitivity of our map in comparison with RRBS data from the ENCODE
project [191]. We report the variation for each genomic region type and
pinpoint the genomic regions that can differentiate between tissues and
disease types.

Other initiatives to chart a map of the human methylome [191] [192]
provide a rich resource for integrated analysis of DNA methylation. These
undertakings were based on massive RRBS and Array based techniques se-
quencing. We provide a similar resource for the complementary Methylcap-
seq technique for a large amount of samples (345) of different origins.
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Table 1.1: Properties of the samples used to build the MethylCap-Seq
MCs.

Tissue origin Disease Type Samples
Basal cell carcinoma cancer primary sample 9
Bladder cancer cell line 6
Blood plasma cancer other 1
Blood plasma normal primary sample 1
Brain cancer primary sample 74
Brain normal primary sample 1
Breast cancer cell line 6
Breast normal primary sample 21
Cervix cancer cell line 13
Cervix cancer primary sample 52
Colon cancer primary sample 23
Colon normal primary sample 5
Head & neck cancer primary sample 20
Induced pluripotent stem cell cancer primary cell line 1
Induced pluripotent stem cell normal primary cell line 1
Kidney cancer primary sample 21
Kidney normal primary sample 1
Lung cancer primary sample 10
Melanocytes normal primary sample 1
Melanoma cancer cell line 6
Monocytes normal primary sample 1
Nose polyps normal primary sample 3
Ovaries cancer primary sample 20
Prostate cancer cell line 3
Stem cell normal primary sample 1
Thyroid normal cell line 1
White blood cells cancer cell line 2
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MCs Intragenic CpGislands
1
2
3
4
5
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7
8
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11
12
13
14
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16
17
18
19
20
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22
X
Y
Tot

40.61% 57.28% 0.93%
36.81% 55.51% 0.66%
34.57% 59.82% 0.54%
29.06% 50.32% 0.52%
33.38% 52.29% 0.61%
35.32% 48.68% 0.64%
39.61% 58.02% 0.81%
37.08% 56.11% 0.67%
37.87% 47.79% 0.90%
41.96% 54.27% 0.81%
38.97% 57.86% 0.87%
39.41% 59.91% 0.75%
32.76% 39.36% 0.54%
38.48% 58.96% 0.79%
42.75% 68.85% 0.91%
53.59% 59.87% 1.50%
57.08% 58.82% 1.78%
36.81% 38.52% 0.65%
67.19% 54.47% 3.26%
53.30% 53.39% 1.17%
42.74% 60.66% 0.81%
64.86% 66.12% 1.80%
48.50% 37.10% 0.56%
6.15% 27.07% 0.20%
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Figure 1.1: Composition of the genome. The portion of each chro-
mosome covered by the MCs , CGIs, promoters and exons. The Data
was generated on the human genome version GRCh37/hg19 with an-
notation from Ensembl release 56.

1.2 Results

1.2.1 Putative MC identification

First, significantly methylated regions in the summed profile are identi-
fied by imposing a minimal total coverage cut-off. To set this cut-off, the
summed profile was split in different crude chromosomal regions without
overlapping mapped fragments, i.e. regions separated by a region with at
least one nucleotide and coverage equal to zero. 108954 of these chromo-
somal regions could be identified. Subsequently, those crude regions for
which the corresponding DNA-sequence did not contain any CpGs were
identified, 14237 in total, and the maximal coverages in those putative
noise regions were listed. It was clear that the large majority of these
regions were featured by very low amounts of mapped reads, with a me-
dian [IQR] of 2 [1-3]. However, as several of those putative noise regions
clearly exhibited higher coverages, the 99.9th quantile of noise regions
maximal coverages was used as cut-off for significant methylation. For
the autosomes this yielded a cut-off of 46, for the X-and Y-chromosome
this was determined individually to take into account their different fre-
quencies, resulting in cut-offs of respectively 21 and 13.

60



% of total genome% of total genome O/E CpG's O/E Cores Average %MethylatedAverage %Methylated Average Entropy (bits)Average Entropy (bits)
Intragenic Intergenic Promotor Exon Intron CpGIslands Total Intragenic Intergenic Promotor Exon Intron CpGIslands Total Intragenic Intergenic Promotor Exon Intron CpGIslands Total Intragenic Intergenic Promotor Exon Intron CpGIslands Total Intragenic Intergenic Promotor Exon Intron CpGIslands Total Methylation CoresCpGIslands Promotor Exon Intron

1 0.569097757 0.430902243 0.025937895 0.047945078 0.521152678 0.009331033 1 1 0.244032133 0.216994805 0.443219423 0.375765942 0.22716971 0.789344461 0.232774312 1 1.2555223846 0.8746849917 1.581759159 2.3267728137 1.1569693352 3.2778705211 1.0914186976 1 0.568356729 0.518073025 0.556826816 0.652909249 0.548665145 0.630063694 0.549001848 1 0.8178417805 0.8539038466 0.8140955933 0.7215098426 0.8402766943 0.6878549501 0.8320444311 1 0.1272897725 0.0093310334 0.025937895 0.047945078 0.521152678
2 0.556783931 0.443216069 0.018556101 0.035402905 0.521381026 0.006638518 1 2 0.235880968 0.209680896 0.447188026 0.389323336 0.221709219 0.803832427 0.224407285 2 0.9989300969 0.7587774462 1.538006682 1.9862430963 0.9318893975 3.5408311725 0.8924905832 2 0.54607738 0.508014937 0.555100271 0.621310464 0.532714042 0.621859075 0.530578796 2 0.8316170396 0.8514495117 0.8129556881 0.751957894 0.8457665599 0.7086373772 0.8401105793 2 0.1040892222 0.0066385181 0.018556101 0.035402905 0.521381026
3 0.59590879 0.40409121 0.016915552 0.033962799 0.561945991 0.005394966 1 3 0.220038118 0.198346515 0.437020022 0.372156786 0.207234201 0.795937998 0.211598743 3 0.8331639917 0.5971341804 1.3653849479 1.9409810542 0.7662099264 3.2139492171 0.7377864196 3 0.538299712 0.512397292 0.550609486 0.62212251 0.523226445 0.610596609 0.528487518 3 0.8415010412 0.8599052622 0.8139005536 0.7524566649 0.8575132689 0.714423573 0.8490013424 3 0.0860464144 0.0053949664 0.016915552 0.033962799 0.561945991
4 0.353636014 0.646363986 0.009254276 0.016169071 0.337466942 0.005209066 1 4 0.237256627 0.20169525 0.53681172 0.438811129 0.224374539 0.794780017 0.214756511 4 0.8517538322 0.5140195745 1.2327224972 1.7536773237 0.808539925 3.5600302232 0.6334545711 4 0.549631675 0.507040889 0.531451996 0.62073468 0.540290738 0.624968632 0.525888088 4 0.8301532914 0.8615106447 0.8196501527 0.7347190732 0.8426906663 0.6970212152 0.8477885254 4 0.0738784194 0.0052090657 0.009254276 0.016169071 0.337466942
5 0.36368427 0.63631573 0.010691613 0.020379525 0.343304745 0.006136652 1 5 0.240748692 0.202388962 0.521415347 0.430253213 0.225756259 0.799694318 0.217164034 5 0.9932216566 0.5735555165 1.5171009984 2.088940376 0.9281767443 4.0179745353 0.7261814905 5 0.55405281 0.502773511 0.546243376 0.632651228 0.540935178 0.654851158 0.525832459 5 0.8273684634 0.864189911 0.8107394238 0.7322638294 0.843240889 0.6745332771 0.8482440538 5 0.0846929569 0.0061366522 0.010691613 0.020379525 0.343304745
6 0.470368792 0.529631208 0.019218273 0.03004907 0.440319722 0.006413528 1 6 0.239216834 0.211204072 0.453191995 0.38931636 0.224603654 0.803303452 0.224722857 6 0.9605281092 0.680836037 1.3162825606 1.9787279337 0.8910423336 3.3608043275 0.8123944592 6 0.539266828 0.513418197 0.541018735 0.611188731 0.526284728 0.6282 0.526451932 6 0.8441197497 0.8579509671 0.8112937724 0.7651949952 0.8583658832 0.6960155701 0.8512409228 6 0.0947477867 0.0064135283 0.019218273 0.03004907 0.440319722
7 0.588291665 0.411708335 0.020804099 0.036605419 0.551686245 0.008078735 1 7 0.255145483 0.225402556 0.445354745 0.41977548 0.239387581 0.79170574 0.243212567 7 1.2277219705 0.8722812069 1.7205803125 2.5791519101 1.1380520535 3.9439790768 1.0813840453 7 0.571191379 0.526246542 0.573488627 0.668422235 0.553322413 0.659422283 0.554064572 7 0.8030924465 0.8454437485 0.7933219376 0.692512557 0.8234146819 0.6442767177 0.8196555631 7 0.126119453 0.0080787345 0.020804099 0.036605419 0.551686245
8 0.36989743 0.63010257 0.011116348 0.018637302 0.351260128 0.006737513 1 8 0.253671077 0.210513636 0.524131856 0.458737646 0.238321443 0.78935785 0.227048833 8 1.1604729153 0.7044230987 1.4639682901 2.4551613839 1.0917788104 3.834129633 0.8731147537 8 0.565343344 0.512984609 0.550607798 0.663558153 0.550851438 0.6598922 0.536426952 8 0.808072624 0.8483563447 0.7992235356 0.6889243763 0.8256533251 0.6543211885 0.8306335241 8 0.1018294616 0.0067375132 0.011116348 0.018637302 0.351260128
9 0.479688673 0.520311327 0.022115316 0.037252041 0.442436632 0.009012145 1 9 0.256215327 0.221811675 0.458742448 0.401983084 0.238730011 0.791377099 0.239269291 9 1.3682397031 0.770981681 1.6448590795 2.6157901853 1.2631991207 3.4010628197 1.0574795891 9 0.588838063 0.533336883 0.576049039 0.692073003 0.56499491 0.64006527 0.565332483 9 0.7962047622 0.8435748591 0.7938325078 0.6697795777 0.8254039363 0.6751795197 0.8165190193 9 0.1233315286 0.0090121448 0.022115316 0.037252041 0.442436632

10 0.543759742 0.456240258 0.019405803 0.032686194 0.511073548 0.008119789 1 10 0.249588378 0.223871392 0.463592799 0.402500385 0.236744633 0.79646434 0.238026109 10 1.2573795358 0.9167313341 1.6437004759 2.1931752953 1.1975298295 3.7723544219 1.1019621122 10 0.559059395 0.511023031 0.548297424 0.633181853 0.547327433 0.608602983 0.539058394 10 0.8265696239 0.8567837788 0.8226278214 0.745533666 0.8393958412 0.7165549412 0.8395440281 10 0.1285194279 0.0081197893 0.019405803 0.032686194 0.511073548
11 0.432319753 0.567680247 0.018368778 0.031260887 0.401058866 0.008677009 1 11 0.248876773 0.209420957 0.488437124 0.414650562 0.229536722 0.784522811 0.227759159 11 1.3770515764 0.7367158076 1.5086744065 2.9790540756 1.2521820783 3.5390516457 1.0135456092 11 0.583876543 0.514877903 0.534331697 0.694288491 0.555593147 0.612957235 0.552216363 11 0.7962553168 0.8532128852 0.8137962086 0.6613923603 0.8308021436 0.6828861941 0.8225933986 11 0.1182076048 0.0086770091 0.018368778 0.031260887 0.401058866
12 0.430600178 0.569399822 0.015268583 0.028924913 0.401675264 0.007532185 1 12 0.25759701 0.216591476 0.509968359 0.404196094 0.242841736 0.786045782 0.235072093 12 1.3236530955 0.772217338 1.4988447313 2.4284577681 1.2440953472 3.3664977723 1.0096656731 12 0.578856986 0.519365943 0.555949008 0.659395501 0.562397047 0.63115499 0.550517974 12 0.812560721 0.8542184964 0.8115533534 0.7140700158 0.8326896115 0.6966504638 0.8326015237 12 0.1177550963 0.0075321851 0.015268583 0.028924913 0.401675264
13 0.392025984 0.607974016 0.01413159 0.02044683 0.371579154 0.005361896 1 13 0.248783305 0.211019601 0.455566537 0.42673272 0.235791737 0.813402476 0.226582481 13 0.935752916 0.5735368161 1.3131726717 1.8714436783 0.8842648013 3.861700944 0.7155349391 13 0.544590871 0.503809745 0.56362069 0.61934561 0.533919236 0.649196731 0.522744855 13 0.8362106387 0.8634019638 0.8211738915 0.7608489858 0.8469689143 0.6794526517 0.8511537517 13 0.0834512729 0.0053618962 0.01413159 0.02044683 0.371579154
14 0.414613067 0.585386933 0.018777796 0.026828569 0.387784499 0.007918537 1 14 0.253334711 0.217411946 0.467513281 0.430383275 0.235702889 0.801454176 0.233004605 14 1.2673955486 0.7736385795 1.4849401806 2.5871751985 1.1760876204 3.7129632215 0.978356671 14 0.573322144 0.5207276 0.557991071 0.664154644 0.555203337 0.607830148 0.547458587 14 0.8188348865 0.852174625 0.8140896261 0.7065045876 0.8412419654 0.7014635547 0.835532567 14 0.114103596 0.0079185371 0.018777796 0.026828569 0.387784499
15 0.485903552 0.514096448 0.017872038 0.032601526 0.453302027 0.00907052 1 15 0.249780648 0.230768272 0.470531532 0.40501109 0.234383428 0.809565427 0.240141051 15 1.2637336149 0.893378023 1.5490361069 2.3386706222 1.1864240415 3.206768025 1.0733351207 15 0.551755547 0.513069215 0.535069135 0.639108487 0.53525333 0.597439479 0.533659955 15 0.8408504771 0.8621700065 0.8331388854 0.7485080989 0.8582952701 0.7353794051 0.8511001917 15 0.1251807246 0.0090705199 0.017872038 0.032601526 0.453302027
16 0.469306356 0.530693644 0.020196197 0.038230189 0.431076168 0.014972538 1 16 0.298965597 0.255006291 0.546393868 0.475973884 0.27598948 0.785231806 0.277479857 16 2.2479103907 1.2495714503 2.2998720663 4.0795715467 2.0854686761 3.7586146412 1.7180982608 16 0.617867395 0.537924699 0.591535874 0.745377465 0.586098891 0.714090431 0.583322158 16 0.764594405 0.8359640005 0.7702900379 0.6024946911 0.8049807476 0.5828331337 0.7959363815 16 0.2003780376 0.0149725385 0.020196197 0.038230189 0.431076168
17 0.571312894 0.428687106 0.02926247 0.056188666 0.515124228 0.017795158 1 17 0.298580981 0.268779506 0.523771165 0.429351038 0.278867552 0.78991197 0.286497021 17 2.3940539281 1.5981688764 2.1814541881 3.6232357326 2.2599773659 3.5301540993 2.0528682686 17 0.623971701 0.554794778 0.579792257 0.711607856 0.600665649 0.628858168 0.597762615 17 0.774528797 0.8361264251 0.7941666617 0.6556263223 0.806149848 0.6822682243 0.7982663316 17 0.2394215304 0.0177951575 0.02926247 0.056188666 0.515124228
18 0.360637601 0.639362399 0.008462396 0.017289136 0.343348465 0.006510274 1 18 0.251349296 0.215896891 0.574821718 0.451135365 0.238706798 0.818117747 0.229232555 18 1.0816805696 0.6589429145 1.439192192 1.9753631565 1.0366796404 4.0032873104 0.8113980084 18 0.54375654 0.497809626 0.53925737 0.612086957 0.535639891 0.652044664 0.518789804 18 0.8401979102 0.8643298939 0.8028473606 0.7593867145 0.8497970917 0.6712153596 0.8534537021 18 0.0946315728 0.0065102738 0.008462396 0.017289136 0.343348465
19 0.564049107 0.435950893 0.040236372 0.075788534 0.488260573 0.032592746 1 19 0.339125528 0.300260347 0.523922816 0.497435327 0.307790892 0.759220604 0.324046797 19 3.3789664636 1.9827334826 2.532878842 4.4169753197 3.2178451816 4.2159493532 2.7702774481 19 0.667675857 0.562686949 0.589589521 0.760584049 0.634770501 0.72505926 0.62869646 19 0.7156392569 0.8304264804 0.7800402341 0.5722169074 0.7664352463 0.5575291291 0.7589627006 19 0.3230913919 0.0325927459 0.040236372 0.075788534 0.488260573
20 0.542300815 0.457699185 0.024822621 0.041560144 0.500740671 0.011667506 1 20 0.26412806 0.227114165 0.462330751 0.423210321 0.245551614 0.795301961 0.247785818 20 1.779051707 1.2049558825 2.1781928083 3.3452758142 1.6490592703 4.3282363606 1.5162885161 20 0.588737796 0.527955536 0.572468354 0.690756649 0.565803256 0.650719697 0.563863415 20 0.791893547 0.8448473127 0.793805734 0.6687825561 0.8195697446 0.6447926989 0.8137633908 20 0.176841409 0.0116675058 0.024822621 0.041560144 0.500740671
21 0.541526131 0.458473869 0.023358999 0.038932376 0.502593754 0.008149569 1 21 0.273319183 0.241637607 0.448546406 0.418490896 0.257279723 0.812350436 0.259985502 21 1.5170385381 0.9699419662 2.01149429 3.1817292452 1.3880867462 4.0651309281 1.2662090558 21 0.594913439 0.561978022 0.599964888 0.721571347 0.565556836 0.698051331 0.581537276 21 0.7799538207 0.8088676818 0.7613852585 0.6376529206 0.8129361361 0.5814949661 0.7921957119 21 0.1476751892 0.008149569 0.023358999 0.038932376 0.502593754
22 0.694588108 0.305411892 0.039205182 0.073709028 0.62087908 0.017933777 1 22 0.293278904 0.274608904 0.439280144 0.409490325 0.274409031 0.801888904 0.287764127 22 2.6636394715 2.1284082762 2.246360237 3.8728947959 2.520080061 3.8156935954 2.5001734996 22 0.628395939 0.57158958 0.59246563 0.719593366 0.605926444 0.708000997 0.610441577 22 0.7687409991 0.8249803326 0.7850099925 0.652503737 0.7973798841 0.5993493512 0.7870619806 22 0.2915897599 0.0179337773 0.039205182 0.073709028 0.62087908
X 0.375834193 0.624165807 0.017619207 0.026711675 0.349122518 0.005606776 1 X 0.236649421 0.195142357 0.416408512 0.386261286 0.220238717 0.765425745 0.211513668 X 0.6319142756 0.3280421545 1.3738129905 1.7795168126 0.5441101839 4.6910111023 0.4422476879 X 0.494552822 0.455965012 0.477787575 0.5597126 0.476660127 0.506760753 0.475101408 X 0.875420938 0.8944327844 0.8497999771 0.8015933406 0.8956937917 0.8173416749 0.8854265532 X 0.0515783793 0.005606776 0.017619207 0.026711675 0.349122518

Xm 0.375834193 0.624165807 0.017619207 0.026711675 0.349122518 0.005606776 1 Xm 0.236649421 0.195142357 0.416408512 0.386261286 0.220238717 0.765425745 0.211513668 Xm 0.6319142756 0.3280421545 1.3738129905 1.7795168126 0.5441101839 4.6910111023 0.4422476879 Xm 0.471479251 0.459009117 0.386885677 0.502725895 0.46289901 0.33597263 0.463620048 Xm 0.8234579256 0.8615374193 0.6491472034 0.6862866666 0.8611247733 0.4947915553 0.8432269993 Y 0.009032467 0.0019929057 0.025365192 0.022914022 0.30752303
Xf 0.375834193 0.624165807 0.017619207 0.026711675 0.349122518 0.005606776 1 Xf 0.236649421 0.195142357 0.416408512 0.386261286 0.220238717 0.765425745 0.211513668 Xf 0.6319142756 0.3280421545 1.3738129905 1.7795168126 0.5441101839 4.6910111023 0.4422476879 Xf 0.510753414 0.453827662 0.541612311 0.599724542 0.486322188 0.626675818 0.483162788 Xf 0.8750406363 0.8920863555 0.8657458759 0.801332351 0.8952807273 0.8169455021 0.8841392977 Tot 0.11662781 0.0082855925 0.0185279125 0.032671103 0.445297182
Y 0.330437052 0.669562948 0.025365192 0.022914022 0.30752303 0.001992906 1 Y 0.203275578 0.177029771 0.319721984 0.276248344 0.196025708 0.705430522 0.185773366 Y 0.0741785878 0.0790599097 0.394118202 0.2749896254 0.0592158434 3.6183232643 0.0774469401 Y 0.658938377 0.632323232 0.716121212 0.736903923 0.627310844 0.817414653 0.643945733 Y 0.8072647113 0.814442969 0.7090956414 0.7051592753 0.848684841 0.5686862549 0.814730999
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Figure 1.2: Overview of core properties per chromosome. (A) CpG
density in O/E ratio. (B) The MCs O/E ratio. This is the observed
MC coverage in base pairs divided by the expected MC coverage in base
pairs, the expected coverage is calculated based on the total genome
wide MC coverage. (C) The average methylation is the average methy-
lation in the cores throughout the samples, where we considered a min-
imum of one mapped paired-end read as methylated for that sample.
(D) Average information entropy is defined as the average MC binary
entropy in bits. The boundaries for the promoter region were defined
from -1000 to 200 relative to the TSS. CGIs were defined according to
the Jones definition (Jones and Baylin 2002). Human genome ver-
sion GRCh37/hg19 was used for this analysis. (Xm is the data from
male samples and Xf the data from female samples).
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This cut-off was imposed to the summed profile, and regions without
CpGs were removed, yielding a total of 2458602 chromosomal regions.
The latter regions were selected to create the MHM. Significant regions
without CpG dinucleotides were typically very narrow (median 3 nt), with
CpGs in the non-significant adjacent sequences (data not shown). Within
the selected regions, a total of 6965691 putative Methylation Cores were
identified (i.e. number of relative maxima in all significant regions).

Control set creation, decision tree based rule inference and applica-
tion For each putative set of MCs and for each sliding window size w
(see Materials and Methods), the minimum difference in CpG density of
each of the two putative MCs (CpG position with maximal coverage) and
the border in between was determined. As it is to be expected that the
CpG density at the border between different true MCs is locally lower,
cores with a difference in density above a certain threshold t were consid-
ered true positives, and cores with a difference in density below a certain
threshold -t as true negatives. For each window w and threshold t, the
ratio true positives/true negatives was determined. We expect the opti-
mal control set to have the largest ratio, since this implies minimal noise
impact (using threshold t), and an optimal matching between the win-
dow size w of the CpG density estimation and the underlying methylation
degree. Using this methodology, the optimal control set had a true pos-
itive/true negative ratio of 1.24, for an optimal window of 170 nt and a
threshold of 3.

With the defined setting, the number of true positives was 132149
and there were 106753 true negatives. A decision tree was created which
yielded a single rule: putative MCs can be considered as such if the
difference in distance between the locations of maximum coverage of
the cores and the border in between is at least 64 nt. The accuracy
of the model was 95.6%, with a sensitivity of 96.4% and a specificity
of 94.6%. Application of this criterion on the complete dataset yields a
total of 3618706 MCs in the human genome, i.e. 51.9% of the candidates.
The cores are annotated as a genomic region, including the locus (CpG)
associated with maximal coverage, which we define here as the MC center.
The median [IQR] MC size was 281 [118;464] nt.

1.2.2 Distribution of the MCs

The MCs were annotated by their position relative to the genes in their
genomic surroundings (see Materials and Methods section). The total ge-
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nomic coverage of the MCs is 1,133M bp (39,63% of the genome), 660M
bp intragenic (expected 609M), 472M bp intergenic (expected 524M),
29M bp in promoter regions (expected 24 M) and 65M bp overlapped
with exons (expected 44M) (Figure 2). The distribution of MCs is en-
riched in CGI s (O/E 1.35) and exons (O/E 1.47), and to a lesser extend
in promoters (O/E 1.21). The relative MC coverage differed significantly
in between chromosomes. While chromosome Y consists of less than
6.15% MCs, more than 67.19% of chromosome 19 is made up out of
MCs. These values are positively correlated with the amount of CpG-
islands and Genes on each chromosome (Figure 1.1). The different ge-
nomic regions (intergenic, intragenic, promoter, intron,exon, CGI) have
very similar CpG densitys in between chromosomes, while the relative
coverage of the methylation cores shows some variability (Figure 1.2) .
The O/E ratio of methylation cores is s(Figure 1.1) for CGIs, while the
variability of MC coverage in between chromosomes can be attributed
to the non-CGI regions. We found significant correlations between MC
coverage and CGIs, promoter and exon coverage (spearman correlation
of 0.952, 0.691 and 0.856 respectively) in between chromosomes.

1.2.3 Average Methylation and Variability of the

MCs

To asses the variability of the MCs we calculated the binary entropy func-
tion of every MC in the 345 samples. We considered a sample methy-
lated for a MC if we mapped back at least one MethylCap enriched read
within the core boundaries. If we look at the average entropy for the
MCs, we observe promoter (0.80bit), intronic (0.83bit) and intergenic
regions (0.85bit) as having the lowest methylation conservation (variabil-
ity). CGIs (0.67bit) and exonic regions show higher methylation conserva-
tion (0.69bit) and high average methylation levels ( 63,95% and 66,73%
respectively). Chromosome comparison revealed that cores in CGI on the
X chromosome are almost twice as likely to be methylated in females
(62,7%) compared to males (33,6%) (Figure 1.2).

1.2.4 DNA methylation properties around the TSS

The MC coverage varies around the TSS. It shows high and constant
in the intergenic region, lower in the promoter region from -500 to 0 ,
very high enrichment at the beginning of exon 1 and low coverage in

63



the intronic region. The average methylation of the MCs shows a mini-
mum overlapping with the TSS while the entropy is higher intergenically
compared to the intragenic regions, with a small peak on the TSS and
500 bases downstream. There is a clear difference in DNA methlya-
tion properties between the intergenic, promoter and intragenic regions.
Interestingly, the promoter is distinguishable from the intergenic region
at around -750/-500 bp upstream by lower MC coverage, lower average
methylation and lower entropy.The beginning of the first exon clearly has
high enrichment in MC coverage,low average methylation and is located
around the top of a small peak in entropy (Figure 1.4)

1.2.5 Validation with reduced representation bisul-

phite sequencing

We validated the map of the human methylome by comparing it with
RRBS data from 174 cell lines profiled in the ENCODE project (The
Encode Project Consortium. 2012). DNA Methylation in these cell lines
was measured by a technique of hybrid selection and bisulphite treatment
followed by massively parallel sequencing. The sensitivity of our map was
measured by the amount of methylated CpGs found in the bisulphite data
from the cell lines that overlap with the MCs. We used different cutoffs
to consider a CpG methylated in the cell lines as seen in figure X. This
sensitivity is a measure for the sensitivity of the technique (MethylCap-
seq) and the completeness of the map of the human methylome. Of the
CpGs showing at least 5% methylation, 85% fell within the boundaries
of the methylation cores. CpGs showing at least 10% methylation gave
91.7% sensitivity and above 20% methylated we measured a sensitivity
of 95.8%. Because we try to predict the methylation prone regions, only
the sensitivity is a relevant measure when validating the MCs.

1.2.6 Discussion

Over the course of the last two decades, epigenetics has developed into
a mature scientific field of research. Ultimately a genome-wide tissue-
specific epigenetic characterization would facilitate the understanding of
gene expression and differentiation regulation , and related aberrations in
disease. Establishing a map of the human DNA methylome allows further
epigenetic research to pinpoint the regions of interest by acting as a
guide to spot the methylation prone locations. Furthermore, it allows the

64



gigabases of high-throughput sequencing data to be reduced to a list of
discrete variables. These variables can then be analyzed and compared in
similar ways as probe data or RNA-seq data. Therefore, the identification
of the MCs allows us to compare methylation with other genome-wide
characteristics, e.g. gene expression, SNPs and histone modifications,
but also with phenotypic properties such as differentiation and disease
progression.

MethylCap-Seq is one of the most sensitive high-throughput sequenc-
ing techniques to profile genome-wide methylation, providing high sensi-
tivity while allowing analysis of multiple samples on a single run. Com-
parison with high-throughput bisulphite data (The Encode Project Con-
sortium. 2012) showed that more then 90% of the CpGs that were at
least 10% methylated fell within the MCs. The 15% methylated CpGs
outside the MCs is partly due to the incompleteness of the map of the
human methylome, but might also be partially attributed to the intrin-
sic capture bias of the MethylCap-Seq method. Additionally, the simple
Poisson background model used to impose a threshold for ”significant”
methylation might be overly conservative for this kind of data. However,
as no less than 39.6 % of the human genome consists of MCs, a further
increase of sensitivity/completeness of the Map of the Human Methylome
at a cost of decreased specificity might be not appropriate.

Our data exhibit major differences in the relative amount of methy-
lation prone regions between chromosomes. The XY sex chromosomes
have the lowest MC coverage (1% for Y and 5% for X). The MC coverage
for the autosomal chromosomes varies between 7% for chomosome 13 to
32% for chromosome 19. Most of these differences can be attributed to
a strong positive correlation between MC coverage and the number of
CpG islands/genes. However, the low amount of MC coverage on the sex
chromosomes could have additional causes.

Chromosome comparison revealed that cores in CGIs on the X chro-
mosome are almost twice as likely to be methylated in females (62,7%)
compared to males (33,6%), while the non-CGI regions remained equally
methylated. The difference could be attributed to the X-chromosome in-
activation, a dosage compensation mechanism that silences the majority
of genes on one X chromosome in each female cell, This finding is in
concordance with earlier studies [193] and [194].

Our study reveals that DNA methylation is most variable when lo-
cated in gene promoters, introns and intergenic regions, while the highest
and most s(Figure 1.1) methylation levels are located in the CGIs and ex-
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onic regions . This indicates more qualitative effects of promoter, intron
and intergenic methylation, whereas exon and CGI methylation should
be more considered as quantitative features. Qualitative effects of pro-
moter methylation on gene expression are well known, but there are also
indications that the high differential intronic DNA methylation levels con-
trol the binding sites of CTCF (40-45% are located intragenically) that
regulate alternative splicing [195].

Interestingly, regulation by DNA-methylation in the promoter region
seems to occur from -750bp upstream into the first exon as the methy-
lation properties start to deviate from the average intergenic properties
(Figure 1.4). The lowest MC density and variability occurs between -
250bp upstream and the TSS while the highest MC coverage between
the TSS and 250bp downstream corresponds with an entropy peak.

It should be noted that the determination of the methylation degree
and variability will be affected by the lack of normalization of the individ-
ual samples. Normalization of MethylCap-Seq data is not trivial due to
the (often large) differences in global methylation degree, and we opted
to avoid the introduction of noise at a cost of lower sensitivity. However,
as it is expected that all loci would suffer at a similar level from this lim-
itation, and taking into account the large amount of different samples,
the relative difference between the different functional regions of a gene
(or intergenic) should not be affected by the lack of normalization.

The principal advantages of MethylCap-Seq over Bisulfite sequencing
comprise the experimental cost and required resources per sample. Bock
et al. [84] estimated one billion reads per sample to be a viable compro-
mise between breadth and depth of sequencing for bisulfite sequencing,
while MethylCap-seq would reach sufficient coverage with 20-30 million
single end 35bp reads. Thus, a genome wide DNA methylation profile
requires 50 to 100 times less resources with MethylCap compared to BS-
seq. Although we attained a sensitivity of 85% when compared to bisulfite
sequencing, there are some disadvantages of MethylCap-Seq compared
to Bisulfite sequencing. One of the pitfalls of MethylCap-Seq (and the
other enrichment techniques) is that the signal is not linearly related to
the actual methylation level. Several Methods were developed to correct
for this bias [196]. As with most enrichment methods it is important to
implement a correction step associated with CpG density. In this case,
CpG dense regions will be interpreted as having a higher CpG methyla-
tion ratio as equally methylated lower CpG dense regions [102]. The MC
approach does not make assumptions about this inherently linked bias
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to enrichment techniques, as we only want to chart the methylome. We
strongly recommend taking this bias into consideration when comparing
different MCs. A second disadvantage of MethylCap-Seq, as compared
to Bisulfite sequencing, is that the resolution is not on CpG base-pair
level, but rather depends on the size of the sonicated DNA-fragments.
Fragments determined by MethylCap-Seq to be methylated can still con-
tain individual CpG sites which are not methylated. When using MBD
sequencing, it is important to note that MBD is not able to pick up
non-CpG methylation, although the latter only appears to be relevant in
embryonic stem cells. It will depend on the as-yet mostly unknown im-
portance of non-CpG methylation to assess whether this is a significant
shortcoming of this technique. Although non-CpG methylation is a ubiq-
uitous feature of human embryonic stem cell DNA, MBD is an integral
part of the human DNA methylation regulation mechanism. One could
assume a bigger role for CpG methylation versus non-CpG methylation,
especially in tissue differentiation, disease progression and aging.

The accuracy of the MHM will increase with the amount of samples
from different tissues and diseases. In addition, as the number of samples
for certain tissues increases, a logical step is to profile the unique epige-
netic fingerprints of distinct sample groups. Comparing the MHM with
expression and other data such as histone marks will enable us to function-
ally annotate the MCs, helping us to understand the mechanisms involved
in epigenetic regulation. This approach is a flexible methodology that
can be ported to other enrichment based genome wide high-throughput
methods and future third generation sequencing technologies.

1.3 Methods

1.3.1 Human Samples

A total of 345 samples were used to build the map of the human methy-
lome (Table 1.1). gDNA was extracted from samples with the Easy DNA
kit (Invitrogen K1800-01), using respectively the appropriate protocols
number 4 (cancer cell lines) and number 3 (fresh frozen samples). Paraf-
fin embedded tissue samples were pretreated with xylene followed by a
classic chloroform/phenol extraction. DNA concentration was measured
on a Nanodrop ND-1000 (Thermo Scientific, Wilmington, North Carolina,
USA).
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1.3.2 Fragmentation and MBD-capture

Fragmentation was performed on Covaris S2 with following settings: duty
cycle 10%, intensity 5, 200 cycles per burst during 190 sec, to obtain frag-
ments with an average length of 200bp. The power mode was frequency
sweeping, temperature 6-8C, water level 12. Maximum 3g was loaded
in 130 l TE in a microtube with AFA intensifier (Covaris, Woburn, Mas-
sachusetts, USA). For samples with less input DNA (down to 500 ng),
we diluted the DNA in 1:5 diluted TE. DNA with an input of 3g was
then analyzed on the Agilent 2100 (Agilent Technologies, Santa Clara,
California, USA). DNA with an input lower than 3 g was concentrated
in a rotary evaporator to 25 l and the fragment distribution was checked
on a high sensitivity DNA chip. Methylated DNA was captured using the
MethylCap kit (Diagenode AF-100-0048, Belgium). According to the
manufacturers protocol, starting concentration was 200 ng. The yield
was typically between 0.5 and 8 ng total captured DNA and sometimes
too low to measure. Fragments were subsequently sequenced using the
Illumina Genome Analyzer II. The concentrations of the fragmented and
captured DNA was determined on a Fluostar Optima plate reader (BMG
Labtech, Offenburg, Germany with the Quant-iT Picogreen dsDNA assay
kit (Invitrogen P7589, Merelbeke, Belgium) on 480/520nm.

1.3.3 Library preparation, Amplification and Se-

quencing

This is a modification of the multiplexed paired end ChIP protocol (Il-
lumina, San Diego, California, USA). We used the DNA Sample Prep
Master Mix Set 1 (NEB E6040) in combination with the Multiplexing
Sample Preparation Oligo Kit (96 samples, Illumina PE-400-1001). We
used the total amount of fragmented DNA and followed the NEB proto-
cols (New England BioLabs (NEB) E6040, Ipswich, Massachusetts, USA):
NEBNext End Repair Module Protocol, purified on a Qiaquick PCR Pu-
rification Kit (Qiagen 28104) and eluted in 37 l EB (Elution Buffer).
After applying NEBNext dA-tailing Module Protocol, we purified it with
a Minelute PCR Purification Kit (Qiagen 28004) and eluted in 25l EB.
NEBNext Quick Ligation Module Protocol, purify on a Minelute PCR
Purification Kit (Qiagen 28004) and eluted in 30 l EB. Here we used
the multiplexing sequencing adapters provided in the Multiplexing Sam-
ple Preparation Oligo Kit. Size selection of the library was done on a
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2% agarose gel (Low Range Ultra agarose Biorad 161-3107). We used
a 1Kb Plus ladder (Invitrogen 10787-018) and ran the gel at 120V for
2 hrs. A fragment of 300 bp +/- 50bp was excised and eluted on a
Qiagen Gel Extraction Kit column (Qiagen 28704), then eluted it in 23
l EB. We followed the Illumina library amplification index protocol with
the following alterations: Use 22 l DNA and perform 21 cycles. Purify
on a Qiaquick PCR Purification column (Qiagen 28101) and elute in 50
l EB 1:5 diluted. Concentrate in a rotary evaporator to 10 l and put 1
l on an Agilent 2100 HS DNA chip. Determine the concentration with
smear analysis on the Agilent 2100. Dilute the samples to 15 nM. Per-
form qPCR on the samples (1:500 diluted) and use a dilution of PhiX
index3 as standard.

Calculate the exact concentration: Dilute to 10nM (endconc. 0,1 N)
and pool 4 patients per lane (in total 7 lanes and 1 control lane with
the PhiX index 3 control). If concentration is lower than 10 nM dilute
to the lowest concentration. After denaturation with NaOH (endconc.
0,1 N), we diluted the samples to 12 pM. The paired end (PE) flow
cell was prepared according to the Cluster Station User Guide (Manual).
Sequencing was performed according to the GAIIx user guide performing
a Multiplexed PE Run with 2 x 45 cycles.

1.3.4 Mapping

For all samples together, the paired end sequence reads are mapped using
bowtie (v0.12.7) software [128]. The bowtie parameters were set to 0
mismatches in the seed (first 28 nucleotides). Only unique paired reads
were retained and both fragments must be located within 400bp of each
other on the human reference genome (GRCh37/hg19). The mapped PE
reads allow us to give every nucleotide in the genome a coverage value.
Multiple paired reads with the exact same location in one sample are
discarded, as these are most likely amplified from the same sequence.

1.3.5 Background estimation

The background signal in the composite epigenomic profile arises from
the non-specific capturing of unmethylated DNA-fragments. We modeled
the background of this profile as a Poisson distribution, with parameter
lambda estimated as the total length of mapped sequenced reads di-
vided by the total sequenced length of the used build (3.17 billion bp,
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GRCh37/hg19). Using this model, for each locus (nucleotide level) the
probability under the null-hypothesis (pure background signal) can be es-
timated and actual signal can be defined by the minimal coverage value
(intensity) for which the null- hypothesis is rejected with a certain sig-
nificance level alpha (here, we used alpha = 0.05). For background
estimation and MC identification, we used R version 2.11.1.

1.3.6 Methylation-core identification

Method. After filtering out the intensities designated as background, we
aimed to develop a set of rules that can identify separate MCs within
each significantly methylated region. Since validation data is not avail-
able, we used the underlying CpG-density as validation criterion to gen-
erate a control dataset. Subsequently, we applied decision trees on this
control dataset, with putative core shape properties as input parameters,
to infer the set of rules. Since CpG-density is only used to generate a
control dataset, and not incorporated in the rules, the latter are CpG-
density independent and therefore more broadly applicable. Importantly,
we wanted to avoid an implosion of MCs, which would dramatically in-
crease the number of variables, by selecting the most stringent set of
rules (vide infra).

Filtering. In a first step of the procedure, the data -after background
elimination- was further reduced by retaining only those intensity values
corresponding with CpG dinucleotides and considering only those isolated
genomic regions with at least two significant Cs (both strands). Subse-
quently, within each of the isolated genomic regions, all relative coverage
value (intensities) minima and maxima were determined. Regions without
local minima were instantly included in the final set of MCs since these
are clearly distinct methylation sites.

Training set selection. A subset of the other regions was used to
identify the set of rules based on the underlying CpG-density. The ba-
sic assumption for selecting this subset was that actual neighboring MCs
are featured by a clear decrease in CpG density, whereas in a region that
should certainly be considered as a single MC the opposite would be true.
This training subset was determined as follows: In a first step, for each
CpG dinucleotide within each chromosome, the number of nearby CpGs
(CpG-density) in a sliding window with width w was determined ([i+/-
round(w/2)] of the CpG at locus i), for w ranging from 5 to 1000 nt (per
5 nt). Subsequently, for each relative coverage minimum within each re-
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maining significantly methylated region and value of w, the CpG-density
at the relative coverage minimum was compared with the CpG-densities
at the two neighboring coverage intensity maxima and the minimum dif-
ference was retained. Negative differences indicate that the CpG-density
is higher at the border between two putative MCs than in (at least one of
the) putative MCs, while positive differences demonstrate that the cov-
erage value minimum also has a lower CpG-density than the neighboring
putative MCs. Based on these differences a control set was selected
(see results section) including both clearly distinct MCs (large positive
difference) and their counterparts (large negative difference).

1.3.7 MC identification

Subsequently, decision trees were built with the package rpart (version
3.1-46) in R, using the Gini index, equal priors, and 10 fold cross-validation,
to predict the status of the control set. For clarity, we use the term bor-
der for the CpG in between two putative MCs, border cove rage for the
coverage value at this locus, and the term MC coverage for the maxi-
mum coverage value (at a CpG) in a specific putative MC. Input features
included in the analysis were then: minimum and average MC coverage;
minimum and average absolute difference between MC coverage and bor-
der coverage; minimum and average relative differences (i.e. divided by
border coverage); mean and minimum relative border coverage (i.e. bor-
der coverage divided by respectively mean and minimum of both MC
coverages); and finally minimum and average distances (in nt) between
the border and the location of the MC coverage maxima. The rules de-
rived from the optimal decision tree were then imposed on the original
relative minima to obtain the final variables, the MCs.

1.3.8 Analysis of the genomic distribution and

properties of the MCs

The MCs were annotated by their relative position to the genes in their
genomic surroundings using the gene annotations from Ensembl (release
56) on the human genome assembly version GRCh37/hg19. Gene si-
lencing through DNA methylation is mostly linked to promoter regions .
Therefore we categorized the MCs by location in promoter, exonic and
intronic gene regions. Gene p romoters were defined as the -1000bp to
200bp region relative to the transcription start site (TSS). The calcula-
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tions were done on chromosomes 1 through 22, X and Y. We used only
the ungapped sequences. Ungapped sequence lengths are calculated by
summing the length of the sequenced bases only. No ’Ns’ are included
in the count. CpG Observed/Expected ratios are calculated according
to Takai et Al. [197]. MC Observed/Expected ratios were calculated by
taking the coverage of the MCs for a certain region and dividing it by the
expected amount based on the average MHM coverage of the genome.
The entropy for a region was calculated as the average binary entropy
function (in bits) [198] of every MCs contained within these genomic
regions. The binary entropy function out of the information theory has
been succesfully used to quantify the sequence conservation in nucleotide
and protein sequences [199]. We used the measure to describe the con-
servation of methylation throughout the samples, with the most variable
methylation loci having the highest entropy.

In addition to categorizing the methylation cores in functional genomic
regions, we plotted CGI coverage, MC coverage, average MC methylation
and average binary entropy from -2000 to +2000 relative to the TSS
(Figure 1.4). The plot is the average of 49506 TSS regions. We took
the first exon of each gene anotated in ensembl version 56 to determine
the TSS.

1.3.9 Data Access

Current and former methylome builds are available online at
http://h2g2.ugent.be/mhm as download or browsable as separate tracks
in our genome browser. The genome browser allows visual comparison
with the BS-SEQ data of the cell lines from Lee EJ et al [81], CGIs,
mammalian conservation and genomic variation for every genomic region.
We foresee to update The Map of The Human Methylome frequently,
pinning down new MCs and refining the boundaries of the known cores
as more samples from different tissues and diseases are sequenced.
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CpGs MC_coverage Entropy MethylationLeve
l

-1995.5
-1985.5
-1975.5
-1965.5
-1955.5
-1945.5
-1935.5
-1925.5
-1915.5
-1905.5
-1895.5
-1885.5
-1875.5
-1865.5
-1855.5
-1845.5
-1835.5
-1825.5
-1815.5
-1805.5
-1795.5
-1785.5
-1775.5
-1765.5
-1755.5
-1745.5
-1735.5
-1725.5
-1715.5
-1705.5
-1695.5
-1685.5
-1675.5
-1665.5
-1655.5
-1645.5
-1635.5
-1625.5
-1615.5
-1605.5
-1595.5
-1585.5
-1575.5
-1565.5
-1555.5
-1545.5
-1535.5
-1525.5
-1515.5
-1505.5
-1495.5
-1485.5
-1475.5
-1465.5
-1455.5
-1445.5
-1435.5
-1425.5
-1415.5
-1405.5
-1395.5
-1385.5
-1375.5
-1365.5
-1355.5
-1345.5
-1335.5
-1325.5
-1315.5
-1305.5
-1295.5
-1285.5
-1275.5
-1265.5
-1255.5
-1245.5
-1235.5
-1225.5
-1215.5
-1205.5
-1195.5
-1185.5
-1175.5
-1165.5
-1155.5
-1145.5
-1135.5
-1125.5
-1115.5
-1105.5
-1095.5
-1085.5
-1075.5
-1065.5
-1055.5
-1045.5
-1035.5
-1025.5
-1015.5
-1005.5
-995.5
-985.5
-975.5
-965.5
-955.5
-945.5
-935.5
-925.5
-915.5
-905.5
-895.5
-885.5
-875.5
-865.5
-855.5
-845.5
-835.5
-825.5
-815.5
-805.5
-795.5
-785.5
-775.5
-765.5
-755.5
-745.5
-735.5
-725.5
-715.5
-705.5
-695.5
-685.5
-675.5
-665.5
-655.5
-645.5
-635.5
-625.5
-615.5
-605.5
-595.5
-585.5
-575.5
-565.5
-555.5
-545.5
-535.5
-525.5
-515.5
-505.5
-495.5
-485.5
-475.5
-465.5
-455.5
-445.5
-435.5
-425.5
-415.5
-405.5
-395.5
-385.5
-375.5
-365.5
-355.5
-345.5
-335.5
-325.5
-315.5
-305.5
-295.5
-285.5
-275.5
-265.5
-255.5
-245.5
-235.5
-225.5
-215.5
-205.5
-195.5
-185.5
-175.5
-165.5
-155.5
-145.5
-135.5
-125.5
-115.5
-105.5
-95.5
-85.5
-75.5
-65.5
-55.5
-45.5
-35.5
-25.5
-15.5
-5.5
4.5
14.5
24.5
34.5
44.5
54.5
64.5
74.5
84.5
94.5
104.5
114.5
124.5
134.5
144.5
154.5
164.5
174.5
184.5
194.5
204.5
214.5
224.5
234.5
244.5
254.5
264.5
274.5
284.5
294.5
304.5
314.5
324.5
334.5
344.5
354.5
364.5
374.5
384.5
394.5
404.5
414.5
424.5
434.5
444.5
454.5
464.5
474.5
484.5
494.5
504.5
514.5
524.5
534.5
544.5
554.5
564.5
574.5
584.5
594.5
604.5
614.5
624.5
634.5
644.5
654.5
664.5
674.5
684.5
694.5
704.5
714.5
724.5
734.5
744.5
754.5
764.5
774.5
784.5
794.5
804.5
814.5
824.5
834.5
844.5
854.5
864.5
874.5
884.5
894.5
904.5
914.5
924.5
934.5
944.5
954.5
964.5
974.5
984.5
994.5
1004.5
1014.5
1024.5
1034.5
1044.5
1054.5
1064.5
1074.5
1084.5
1094.5
1104.5
1114.5
1124.5
1134.5
1144.5
1154.5
1164.5
1174.5
1184.5
1194.5
1204.5
1214.5
1224.5
1234.5
1244.5
1254.5
1264.5
1274.5
1284.5
1294.5
1304.5
1314.5
1324.5
1334.5
1344.5
1354.5
1364.5
1374.5
1384.5
1394.5
1404.5
1414.5
1424.5
1434.5
1444.5
1454.5
1464.5
1474.5
1484.5
1494.5
1504.5
1514.5
1524.5
1534.5
1544.5
1554.5
1564.5
1574.5
1584.5
1594.5
1604.5
1614.5
1624.5
1634.5
1644.5
1654.5
1664.5
1674.5
1684.5
1694.5
1704.5
1714.5
1724.5
1734.5
1744.5
1754.5
1764.5
1774.5
1784.5
1794.5
1804.5
1814.5
1824.5
1834.5
1844.5
1854.5
1864.5
1874.5
1884.5
1894.5
1904.5
1914.5
1924.5
1934.5
1944.5
1954.5
1964.5
1974.5
1984.5
1994.5

981.2 -1995.5 35.07125879 -1995.5 0.809912387 -1995.5 0.579771962
983.9 -1985.5 34.68987287 -1985.5 0.810352895 -1985.5 0.584738935
990.7 -1975.5 33.96531679 -1975.5 0.808973441 -1975.5 0.591240889
988.3 -1965.5 34.78300661 -1965.5 0.809083195 -1965.5 0.581956549
988.2 -1955.5 35.09123603 -1955.5 0.811419854 -1955.5 0.581606445
988.7 -1945.5 35.53806499 -1945.5 0.810803955 -1945.5 0.576825619
985 -1935.5 35.32032161 -1935.5 0.810766891 -1935.5 0.578736233

987.6 -1925.5 35.88930288 -1925.5 0.811555678 -1925.5 0.573270165
986.9 -1915.5 35.62426871 -1915.5 0.811687577 -1915.5 0.576545385
991 -1905.5 34.90632261 -1905.5 0.811847645 -1905.5 0.583969766

991.3 -1895.5 34.84858167 -1895.5 0.811950556 -1895.5 0.58481087
992.6 -1885.5 35.05625105 -1885.5 0.812146681 -1885.5 0.583474457
993.1 -1875.5 35.57450988 -1875.5 0.81124582 -1875.5 0.579173528
995.8 -1865.5 35.78839621 -1865.5 0.810144762 -1865.5 0.577535116
999.6 -1855.5 35.73045293 -1855.5 0.81034908 -1855.5 0.578818246
998.8 -1845.5 35.61615823 -1845.5 0.811237667 -1845.5 0.580275854
995.4 -1835.5 36.61193317 -1835.5 0.809999518 -1835.5 0.570769133
989.4 -1825.5 35.52479897 -1825.5 0.812171709 -1825.5 0.581916123
986 -1815.5 36.6972073 -1815.5 0.811108121 -1815.5 0.571608122

990.3 -1805.5 36.15351313 -1805.5 0.809128732 -1805.5 0.576055663
995.4 -1795.5 35.82098706 -1795.5 0.810149683 -1795.5 0.5798922

1000.1 -1785.5 35.69641892 -1785.5 0.810771517 -1785.5 0.580826817
1010.5 -1775.5 34.76909001 -1775.5 0.811384793 -1775.5 0.588229229
1016 -1765.5 35.61252269 -1765.5 0.808350198 -1765.5 0.578553089

1018.7 -1755.5 34.79999162 -1755.5 0.809341314 -1755.5 0.584468446
1022.3 -1745.5 34.89324862 -1745.5 0.810197022 -1745.5 0.583866472
1024.8 -1735.5 35.08814104 -1735.5 0.809573351 -1735.5 0.582886802
1025.6 -1725.5 35.29195422 -1725.5 0.809552545 -1725.5 0.581795042
1025.4 -1715.5 36.03973421 -1715.5 0.811367564 -1715.5 0.576753246
1032.2 -1705.5 35.03653737 -1705.5 0.812333981 -1705.5 0.585316004
1035.4 -1695.5 35.27052701 -1695.5 0.809561419 -1695.5 0.581645136
1039.3 -1685.5 35.60038725 -1685.5 0.809820217 -1685.5 0.579497194
1041.2 -1675.5 35.73980852 -1675.5 0.811574415 -1675.5 0.579890799
1044.4 -1665.5 36.58307778 -1665.5 0.808112528 -1665.5 0.571032185
1048.2 -1655.5 35.47439416 -1655.5 0.81176845 -1655.5 0.581856806
1052 -1645.5 35.67350495 -1645.5 0.812237594 -1645.5 0.579408386

1063.3 -1635.5 35.08032602 -1635.5 0.812935845 -1635.5 0.586301633
1076.1 -1625.5 36.04197284 -1625.5 0.811321832 -1625.5 0.576771904
1078 -1615.5 35.86519411 -1615.5 0.813126645 -1615.5 0.578413124

1082.2 -1605.5 35.44965847 -1605.5 0.811177232 -1605.5 0.582729045
1094.1 -1595.5 34.89835233 -1595.5 0.814320286 -1595.5 0.58942688
1111.1 -1585.5 35.9711467 -1585.5 0.813530306 -1585.5 0.579090994
1124.3 -1575.5 36.00419579 -1575.5 0.812846892 -1575.5 0.578069783
1135.5 -1565.5 36.00012157 -1565.5 0.812451708 -1565.5 0.578424114
1138.5 -1555.5 36.1288084 -1555.5 0.812746107 -1555.5 0.577693668
1144 -1545.5 35.66685253 -1545.5 0.813708332 -1545.5 0.582476796

1148.1 -1535.5 36.12607744 -1535.5 0.812387749 -1535.5 0.577076469
1148.2 -1525.5 36.64434985 -1525.5 0.81132678 -1525.5 0.572514484
1161.1 -1515.5 35.38473813 -1515.5 0.812870593 -1515.5 0.584303813
1175.9 -1505.5 35.37670535 -1505.5 0.812868403 -1505.5 0.584109126
1187.4 -1495.5 36.50385633 -1495.5 0.81270797 -1495.5 0.573467086
1196.1 -1485.5 36.08239287 -1485.5 0.812256023 -1485.5 0.576226799
1200.8 -1475.5 35.81121986 -1475.5 0.812906168 -1475.5 0.57756827
1204.6 -1465.5 36.55534077 -1465.5 0.809698067 -1465.5 0.569022172
1204.8 -1455.5 34.9295733 -1455.5 0.810921545 -1455.5 0.584800648
1211.3 -1445.5 36.19836122 -1445.5 0.809131608 -1445.5 0.57298635
1220.9 -1435.5 34.8226056 -1435.5 0.808537973 -1435.5 0.586631639
1228.3 -1425.5 35.20640908 -1425.5 0.810873081 -1425.5 0.585641461
1233 -1415.5 35.90876772 -1415.5 0.809924739 -1415.5 0.580050386

1245.2 -1405.5 35.36936984 -1405.5 0.812239118 -1405.5 0.587494592
1255.1 -1395.5 35.92101163 -1395.5 0.811812858 -1395.5 0.584222761
1264.1 -1385.5 36.38551286 -1385.5 0.812824747 -1385.5 0.581485581
1276.8 -1375.5 36.87383259 -1375.5 0.813670301 -1375.5 0.578647886
1279.9 -1365.5 36.93211243 -1365.5 0.811103959 -1365.5 0.578221997
1290.3 -1355.5 36.36216734 -1355.5 0.811554105 -1355.5 0.583089586
1303.8 -1345.5 36.68945388 -1345.5 0.811257181 -1345.5 0.580748577
1313.3 -1335.5 36.49143294 -1335.5 0.813475687 -1335.5 0.583112964
1322.5 -1325.5 37.52589066 -1325.5 0.810990963 -1325.5 0.574268365
1338.1 -1315.5 37.06548973 -1315.5 0.812610635 -1315.5 0.578968235
1353.4 -1305.5 37.12671678 -1305.5 0.813203451 -1305.5 0.579164844
1369.7 -1295.5 37.29319148 -1295.5 0.812870695 -1295.5 0.578459665
1378.8 -1285.5 36.72865751 -1285.5 0.813607362 -1285.5 0.583313946
1387.5 -1275.5 37.47494395 -1275.5 0.813358872 -1275.5 0.578149429
1392 -1265.5 36.2972929 -1265.5 0.812014047 -1265.5 0.587756096

1404.4 -1255.5 36.01776455 -1255.5 0.812871782 -1255.5 0.5902147
1420.8 -1245.5 35.87133818 -1245.5 0.813880689 -1245.5 0.59196772
1431.9 -1235.5 36.55273083 -1235.5 0.813446929 -1235.5 0.585341837
1445.3 -1225.5 37.06328125 -1225.5 0.812666483 -1225.5 0.579604045
1462.3 -1215.5 36.3092949 -1215.5 0.814709481 -1215.5 0.587341729
1485.3 -1205.5 37.05551914 -1205.5 0.810569503 -1205.5 0.577619416
1499 -1195.5 36.50248324 -1195.5 0.811951819 -1195.5 0.582147101

1513.8 -1185.5 36.73660013 -1185.5 0.814117914 -1185.5 0.581291891
1526.4 -1175.5 36.86120273 -1175.5 0.813699054 -1175.5 0.579503855
1541.4 -1165.5 37.18310379 -1165.5 0.812653743 -1165.5 0.576201458
1563.3 -1155.5 36.92673594 -1155.5 0.8099645 -1155.5 0.576593581
1579.5 -1145.5 36.44808814 -1145.5 0.809503502 -1145.5 0.580144244
1603.4 -1135.5 36.21789866 -1135.5 0.811309361 -1135.5 0.583538465
1622.3 -1125.5 35.87984206 -1125.5 0.811029856 -1125.5 0.587207837
1635.6 -1115.5 36.54396104 -1115.5 0.813664388 -1115.5 0.582454796
1653.7 -1105.5 36.90484868 -1105.5 0.812465859 -1105.5 0.57707704
1673.4 -1095.5 36.14771885 -1095.5 0.813100212 -1095.5 0.583828199
1696.6 -1085.5 36.23113581 -1085.5 0.812904338 -1085.5 0.581438402
1724.9 -1075.5 35.94390867 -1075.5 0.813639452 -1075.5 0.582993803
1747.6 -1065.5 36.26284473 -1065.5 0.813483357 -1065.5 0.579862262
1763.7 -1055.5 36.36475496 -1055.5 0.814382082 -1055.5 0.578298214
1784.4 -1045.5 36.69533357 -1045.5 0.815213372 -1045.5 0.576355325
1804.7 -1035.5 36.13261438 -1035.5 0.815854936 -1035.5 0.581600604
1821.4 -1025.5 36.53480263 -1025.5 0.815294149 -1025.5 0.576041441
1845.9 -1015.5 36.69970531 -1015.5 0.815707412 -1015.5 0.573032964
1872.2 -1005.5 36.57743132 -1005.5 0.815300756 -1005.5 0.573457054
1893.9 -995.5 37.02186527 -995.5 0.814635255 -995.5 0.570011604
1917.1 -985.5 36.49070235 -985.5 0.816436735 -985.5 0.576462027
1938.4 -975.5 36.88016981 -975.5 0.81519759 -975.5 0.572129787
1962.6 -965.5 35.25565491 -965.5 0.815113118 -965.5 0.585752517
1991.8 -955.5 35.88907555 -955.5 0.813577811 -955.5 0.578387871
2022.5 -945.5 36.78805834 -945.5 0.813857117 -945.5 0.569882276
2059.5 -935.5 36.51294748 -935.5 0.815597941 -935.5 0.57259257
2095.8 -925.5 36.751422 -925.5 0.815106656 -925.5 0.570779776
2126.7 -915.5 36.50899431 -915.5 0.815266708 -915.5 0.572807043
2164.6 -905.5 36.17453194 -905.5 0.813309198 -905.5 0.574612306
2199.8 -895.5 36.17575922 -895.5 0.813198559 -895.5 0.574085121
2235.4 -885.5 36.67363265 -885.5 0.81248628 -885.5 0.568706
2268.9 -875.5 36.00262534 -875.5 0.814540281 -875.5 0.574848981
2310.4 -865.5 36.57714483 -865.5 0.813415651 -865.5 0.569523072
2356 -855.5 35.93996478 -855.5 0.814937339 -855.5 0.574382885

2399.1 -845.5 37.34191522 -845.5 0.815886863 -845.5 0.562285311
2441.3 -835.5 36.86048696 -835.5 0.81351174 -835.5 0.563693944
2490.8 -825.5 35.30356265 -825.5 0.816486622 -825.5 0.578709266
2527.6 -815.5 36.13735546 -815.5 0.814937555 -815.5 0.570632528
2559.6 -805.5 36.08307257 -805.5 0.816303332 -805.5 0.571111761
2603.5 -795.5 37.16359298 -795.5 0.813957188 -795.5 0.559294742
2649.5 -785.5 37.29486501 -785.5 0.812957796 -785.5 0.556773875
2703.1 -775.5 37.58097704 -775.5 0.81549407 -775.5 0.554673375
2760.7 -765.5 36.6954061 -765.5 0.816759522 -765.5 0.560594175
2823.9 -755.5 36.29008351 -755.5 0.818589865 -755.5 0.563966912
2872.1 -745.5 36.12702815 -745.5 0.818377854 -745.5 0.564702144
2920.5 -735.5 37.66285155 -735.5 0.813679487 -735.5 0.549621969
2985.5 -725.5 36.69670247 -725.5 0.814462521 -725.5 0.558185665
3038.6 -715.5 34.95322759 -715.5 0.817553311 -715.5 0.574239813
3091.2 -705.5 35.7963741 -705.5 0.816356095 -705.5 0.565065858
3140.6 -695.5 36.42743115 -695.5 0.816327385 -695.5 0.559732363
3199 -685.5 37.60467418 -685.5 0.814167194 -685.5 0.549105095

3278.2 -675.5 36.77491233 -675.5 0.816484415 -675.5 0.556925232
3357.9 -665.5 36.36700066 -665.5 0.816345301 -665.5 0.560061309
3427.4 -655.5 36.48282732 -655.5 0.818944422 -655.5 0.559699039
3485.3 -645.5 37.17902271 -645.5 0.815445009 -645.5 0.552330681
3550.5 -635.5 37.96444109 -635.5 0.816173714 -635.5 0.544932662
3628.1 -625.5 36.35120333 -625.5 0.818131528 -625.5 0.556663916
3703.8 -615.5 35.96869607 -615.5 0.817832687 -615.5 0.558206313
3780.6 -605.5 35.57016102 -605.5 0.816057014 -605.5 0.559093942
3868.7 -595.5 35.10601736 -595.5 0.817934208 -595.5 0.561196622
3954.7 -585.5 35.90388948 -585.5 0.816733754 -585.5 0.552541409
4033.6 -575.5 35.86322992 -575.5 0.81699606 -575.5 0.551610279
4127.2 -565.5 35.06045612 -565.5 0.820193921 -565.5 0.559725273
4204.9 -555.5 35.32708858 -555.5 0.819134607 -555.5 0.555855411
4293.9 -545.5 34.74148265 -545.5 0.819946517 -545.5 0.560075561
4417.9 -535.5 34.88017789 -535.5 0.816617351 -535.5 0.555460793
4513 -525.5 33.93781732 -525.5 0.819097539 -525.5 0.563646823

4633.7 -515.5 34.69849486 -515.5 0.81711412 -515.5 0.554939709
4739.9 -505.5 34.71170988 -505.5 0.817450767 -505.5 0.554024275
4841.6 -495.5 34.60937081 -495.5 0.817654612 -495.5 0.553462657
4953.5 -485.5 34.42598069 -485.5 0.817808834 -485.5 0.553000958
5062.4 -475.5 34.22208112 -475.5 0.818341045 -475.5 0.551721112
5169.7 -465.5 34.38170301 -465.5 0.816310038 -465.5 0.547415127
5282.9 -455.5 34.75181147 -455.5 0.815489222 -455.5 0.541860324
5397.7 -445.5 33.7625287 -445.5 0.819346799 -445.5 0.549951085
5514.4 -435.5 34.99955883 -435.5 0.814969135 -435.5 0.536309661
5635.5 -425.5 34.30544348 -425.5 0.815962637 -425.5 0.54132964
5772 -415.5 33.57389539 -415.5 0.816905942 -415.5 0.547546775

5894.6 -405.5 33.1632307 -405.5 0.815384914 -405.5 0.54881639
6019.4 -395.5 33.21010344 -395.5 0.815465233 -395.5 0.5475948
6160.3 -385.5 32.71411464 -385.5 0.816356094 -385.5 0.551111923
6311.3 -375.5 33.21864219 -375.5 0.815457872 -375.5 0.546756041
6457.9 -365.5 33.80009866 -365.5 0.814816425 -365.5 0.541794013
6607.8 -355.5 32.53689364 -355.5 0.816202298 -355.5 0.552983896
6759.5 -345.5 33.13130801 -345.5 0.812119815 -345.5 0.544132858
6901.7 -335.5 32.44716352 -335.5 0.812452209 -335.5 0.549583717
7055 -325.5 32.24443167 -325.5 0.811234455 -325.5 0.549039696

7232.5 -315.5 33.31283064 -315.5 0.808465478 -315.5 0.537525635
7391.2 -305.5 32.62006454 -305.5 0.810749129 -305.5 0.545027751
7535.5 -295.5 32.29316114 -295.5 0.808810875 -295.5 0.545458019
7688.4 -285.5 31.73920263 -285.5 0.810646492 -285.5 0.549845233
7848.6 -275.5 31.48529711 -275.5 0.806994391 -275.5 0.551226263
8023.3 -265.5 31.55214729 -265.5 0.804064565 -265.5 0.549255607
8200.6 -255.5 31.61539411 -255.5 0.803717024 -255.5 0.547199857
8375.6 -245.5 30.33464205 -245.5 0.804357635 -245.5 0.560989563
8572.5 -235.5 29.90677078 -235.5 0.80275831 -235.5 0.565140344
8771.5 -225.5 29.8784394 -225.5 0.803020718 -225.5 0.565070326
8989.5 -215.5 30.18602141 -215.5 0.800590192 -215.5 0.559402644
9190.9 -205.5 30.90121963 -205.5 0.796742588 -205.5 0.55133924
9375.4 -195.5 30.59444883 -195.5 0.7950935 -195.5 0.556256483
9578.5 -185.5 30.61018657 -185.5 0.793588559 -185.5 0.556143106
9785.2 -175.5 29.63144323 -175.5 0.796500746 -175.5 0.568811652
9994.6 -165.5 30.78363064 -165.5 0.789803017 -165.5 0.553795509

10173.8 -155.5 30.52331267 -155.5 0.790464499 -155.5 0.558406552
10374 -145.5 29.20421785 -145.5 0.789305555 -145.5 0.573795135

10596.7 -135.5 29.48129452 -135.5 0.787464791 -135.5 0.571609147
10809.6 -125.5 30.1485502 -125.5 0.786359019 -125.5 0.566121581
11015.1 -115.5 30.50221779 -115.5 0.786996025 -115.5 0.565986221
11207.3 -105.5 30.56924686 -105.5 0.786740835 -105.5 0.569478982
11399.9 -95.5 31.3629271 -95.5 0.786396024 -95.5 0.566871722
11599.7 -85.5 32.44513602 -85.5 0.784193352 -85.5 0.559869646
11773.4 -75.5 33.4333706 -75.5 0.78916618 -75.5 0.556906308
11933.8 -65.5 34.36088067 -65.5 0.788774298 -65.5 0.553055352
12056.1 -55.5 34.72400917 -55.5 0.785939165 -55.5 0.551951498
12184.4 -45.5 35.5578409 -45.5 0.78931088 -45.5 0.551444639
12292.6 -35.5 36.08025769 -35.5 0.790623684 -35.5 0.552990066
12373.7 -25.5 36.55177015 -25.5 0.791445964 -25.5 0.554526541
12446.3 -15.5 37.39081633 -15.5 0.793754521 -15.5 0.555964424
12492.4 -5.5 38.17761505 -5.5 0.794939549 -5.5 0.556242141
12533.9 4.5 40.26223151 4.5 0.798643453 4.5 0.550351981
12578 14.5 42.82297557 14.5 0.797712264 14.5 0.541690273

12616.3 24.5 43.79300233 24.5 0.800509627 24.5 0.540684105
12646.3 34.5 43.96022044 34.5 0.803225918 34.5 0.544121894
12656.7 44.5 44.07317785 44.5 0.806256358 44.5 0.547486642
12648.7 54.5 45.07490558 54.5 0.802909476 54.5 0.541824858
12650.8 64.5 45.13341404 64.5 0.803095134 64.5 0.542542055
12666.2 74.5 45.11461394 74.5 0.800072837 74.5 0.540988442
12667.2 84.5 44.71465237 84.5 0.802469536 84.5 0.544444277
12662.1 94.5 44.41490581 94.5 0.80204987 94.5 0.546372892
12667.4 104.5 43.59424759 104.5 0.798591248 104.5 0.548677593
12662.4 114.5 44.05291425 114.5 0.797932506 114.5 0.543992248
12657.6 124.5 42.83346853 124.5 0.796679365 124.5 0.550761392
12650.9 134.5 43.1023064 134.5 0.79550033 134.5 0.546103111
12631.1 144.5 43.05509827 144.5 0.792943226 144.5 0.543465066
12639.3 154.5 41.54248586 154.5 0.794513319 154.5 0.551682373
12636.6 164.5 41.07520614 164.5 0.792893869 164.5 0.551264748
12634.9 174.5 40.10993069 174.5 0.78967176 174.5 0.555498548
12612 184.5 40.54533638 184.5 0.784822814 184.5 0.548437572

12566.3 194.5 39.57271987 194.5 0.783616039 194.5 0.553228818
12527.5 204.5 39.47936118 204.5 0.783528657 204.5 0.551478812
12488.1 214.5 39.96006343 214.5 0.782875088 214.5 0.547526424
12443.3 224.5 39.35574884 224.5 0.784924611 224.5 0.553506082
12398.6 234.5 39.24992433 234.5 0.783689903 234.5 0.55222409
12336.1 244.5 38.38919795 244.5 0.785100781 244.5 0.557552829
12253.7 254.5 38.23006477 254.5 0.785910405 254.5 0.557766529
12168.6 264.5 38.06115558 264.5 0.785612008 264.5 0.5584027
12063.6 274.5 37.81255101 274.5 0.786638295 274.5 0.559844879
11966.6 284.5 37.99177821 284.5 0.78730375 284.5 0.556878773
11875 294.5 37.55861983 294.5 0.785538442 294.5 0.558285933

11776.7 304.5 37.64966886 304.5 0.784877987 304.5 0.556166518
11661.4 314.5 38.12225923 314.5 0.789178498 314.5 0.553602526
11542.9 324.5 38.32663196 324.5 0.785540121 324.5 0.551536485
11436.5 334.5 38.16450855 334.5 0.789948572 334.5 0.552470242
11297.1 344.5 38.81077727 344.5 0.788298676 344.5 0.546843957
11174.7 354.5 38.44188266 354.5 0.790238732 354.5 0.549899955
11019 364.5 39.12778326 364.5 0.790443387 364.5 0.544211784

10890.1 374.5 37.51261603 374.5 0.794682087 374.5 0.559662481
10755.9 384.5 37.94877606 384.5 0.793547464 384.5 0.553392557
10598.4 394.5 37.88645543 394.5 0.791465831 394.5 0.550898149
10442.9 404.5 36.76221005 404.5 0.791756214 404.5 0.558533274
10285.6 414.5 36.97514524 414.5 0.791808772 414.5 0.555869434
10149 424.5 36.01082574 424.5 0.797235587 424.5 0.56549908
10003 434.5 36.71653676 434.5 0.791299187 434.5 0.554471286
9829.8 444.5 37.37004026 444.5 0.79277852 444.5 0.549066712
9690.3 454.5 37.52859678 454.5 0.792839909 454.5 0.546516462
9541.6 464.5 36.74323721 464.5 0.792020563 464.5 0.550569466
9396.6 474.5 36.95330199 474.5 0.793060799 474.5 0.548266515
9241.4 484.5 36.06428427 484.5 0.794723684 484.5 0.555626246
9070.2 494.5 35.59163781 494.5 0.797306441 494.5 0.560745398
8886.1 504.5 35.35660569 504.5 0.79440686 504.5 0.557637545
8717.8 514.5 34.41699019 514.5 0.795917957 514.5 0.56254212
8547.9 524.5 33.51493715 524.5 0.795010167 524.5 0.566021768
8401 534.5 32.30259307 534.5 0.792960018 534.5 0.572802358

8242.9 544.5 31.45110496 544.5 0.790681378 544.5 0.575836913
8075.4 554.5 31.15514398 554.5 0.787649502 554.5 0.572310466
7943.3 564.5 30.25185032 564.5 0.785577164 564.5 0.576451836
7784.7 574.5 29.83467202 574.5 0.783194566 574.5 0.574810763
7640.8 584.5 29.76596481 584.5 0.780066476 584.5 0.568675017
7480.2 594.5 28.4549678 594.5 0.781590695 594.5 0.580352565
7305.8 604.5 29.49743767 604.5 0.778255657 604.5 0.562761611
7153.6 614.5 28.18404835 614.5 0.781278806 614.5 0.575491865
7015.2 624.5 28.42308605 624.5 0.780337071 624.5 0.568252467
6866.5 634.5 26.96206637 634.5 0.784028162 634.5 0.583886524
6715.7 644.5 27.31328057 644.5 0.78295456 644.5 0.575320986
6556.3 654.5 27.2275096 654.5 0.783977019 654.5 0.573747372
6404.2 664.5 27.6798447 664.5 0.780591421 664.5 0.563267781
6264 674.5 27.09742398 674.5 0.782509733 674.5 0.568794832

6139.5 684.5 27.28611222 684.5 0.780023891 684.5 0.562606331
6004.5 694.5 27.05422575 694.5 0.78275473 694.5 0.563551848
5881.5 704.5 27.58094157 704.5 0.781134258 704.5 0.553737814
5761.2 714.5 25.7653847 714.5 0.784986748 714.5 0.575511852
5634.2 724.5 25.90215852 724.5 0.784951441 724.5 0.570282919
5514.4 734.5 26.44448165 734.5 0.785009046 734.5 0.560164892
5401.7 744.5 25.43719448 744.5 0.784009425 744.5 0.567482867
5287.1 754.5 25.25981243 754.5 0.784509799 754.5 0.567388573
5177.1 764.5 25.3314754 764.5 0.784851709 764.5 0.562829578
5064.6 774.5 24.83612948 774.5 0.786090875 774.5 0.567211459
4961 784.5 24.82544556 784.5 0.784140922 784.5 0.564939041

4866.1 794.5 24.77252031 794.5 0.785198899 794.5 0.564856035
4762.2 804.5 24.96146984 804.5 0.783130831 804.5 0.561333814
4669.2 814.5 25.22466723 814.5 0.783064455 814.5 0.556740916
4567.9 824.5 24.48986237 824.5 0.785586358 824.5 0.565409524
4459.5 834.5 24.8024201 834.5 0.783671457 834.5 0.560632932
4365.5 844.5 24.1969444 844.5 0.786436563 844.5 0.569651531
4276.1 854.5 24.77400813 854.5 0.786173951 854.5 0.560829199
4183.2 864.5 24.82980301 864.5 0.786348622 864.5 0.558867507
4082.8 874.5 24.78294873 874.5 0.789267208 874.5 0.560273979
3977.8 884.5 24.26613669 884.5 0.78827605 884.5 0.567012085
3886.2 894.5 24.20087567 894.5 0.789863321 894.5 0.567609437
3798.3 904.5 24.1057804 904.5 0.78980393 904.5 0.567057304
3707.7 914.5 24.01160295 914.5 0.791897298 914.5 0.56941866
3627.9 924.5 24.01890346 924.5 0.792295454 924.5 0.568278794
3556.3 934.5 25.29013272 934.5 0.791384651 934.5 0.55195951
3489.3 944.5 24.41847177 944.5 0.791943109 944.5 0.56193764
3411.2 954.5 24.84340551 954.5 0.791213304 954.5 0.55598454
3337.5 964.5 24.88848206 964.5 0.792774677 964.5 0.556819345
3272.4 974.5 23.77631103 974.5 0.78982193 974.5 0.568388344
3204.4 984.5 24.23176142 984.5 0.792402158 984.5 0.562838877
3132 994.5 23.82550317 994.5 0.790119213 994.5 0.566555171

3066.1 1004.5 22.84153864 1004.5 0.788646979 1004.5 0.579849011
3001.3 1014.5 24.02264978 1014.5 0.790136835 1014.5 0.563429347
2945.6 1024.5 24.33745112 1024.5 0.787865259 1024.5 0.559196642
2892.1 1034.5 23.93027232 1034.5 0.791901591 1034.5 0.566887965
2842.1 1044.5 24.0439505 1044.5 0.791991714 1044.5 0.565784758
2782.4 1054.5 23.78752596 1054.5 0.795189475 1054.5 0.57223817
2730.2 1064.5 24.29802321 1064.5 0.792752306 1064.5 0.564760876
2680.2 1074.5 24.01418237 1074.5 0.790479629 1074.5 0.566254629
2628.7 1084.5 24.2244735 1084.5 0.790461767 1084.5 0.563294116
2576.4 1094.5 24.01858484 1094.5 0.791740624 1094.5 0.565277066
2538.4 1104.5 23.36643432 1104.5 0.792189769 1104.5 0.57398753
2492.1 1114.5 24.12980235 1114.5 0.792671222 1114.5 0.563716682
2435.5 1124.5 23.75660185 1124.5 0.791685452 1124.5 0.567642879
2394.2 1134.5 24.06667771 1134.5 0.793082694 1134.5 0.565158937
2350.5 1144.5 23.66388306 1144.5 0.792510286 1144.5 0.571199869
2310.5 1154.5 24.37345225 1154.5 0.790593939 1154.5 0.560123463
2271.2 1164.5 23.41203187 1164.5 0.78867832 1164.5 0.570098348
2228.9 1174.5 22.97862427 1174.5 0.791679615 1174.5 0.577701683
2188.2 1184.5 23.76317125 1184.5 0.790777631 1184.5 0.567321603
2144.9 1194.5 22.58812767 1194.5 0.790699355 1194.5 0.58444479
2099.2 1204.5 23.26931351 1204.5 0.786942145 1204.5 0.572610955
2053.8 1214.5 23.06114885 1214.5 0.789590837 1214.5 0.578388658
2019.5 1224.5 23.26278362 1224.5 0.788717907 1224.5 0.574608394
1980.1 1234.5 23.29814863 1234.5 0.786688205 1234.5 0.572042062
1932.3 1244.5 23.39900594 1244.5 0.787379872 1244.5 0.573011896
1897.9 1254.5 23.43562471 1254.5 0.788913563 1254.5 0.573543317
1858.1 1264.5 23.07674865 1264.5 0.791556707 1264.5 0.580316331
1822.6 1274.5 22.68891569 1274.5 0.790034292 1274.5 0.585002217
1778.6 1284.5 22.88487395 1284.5 0.789012375 1284.5 0.583188297
1748.1 1294.5 23.1958792 1294.5 0.79076372 1294.5 0.579248371
1724.4 1304.5 23.6129832 1304.5 0.788156542 1304.5 0.573890474
1695.6 1314.5 22.876554 1314.5 0.791038385 1314.5 0.586788319
1657.1 1324.5 23.07374789 1324.5 0.792219068 1324.5 0.58412285
1621.3 1334.5 23.47569802 1334.5 0.790362144 1334.5 0.578583409
1589.9 1344.5 23.09760185 1344.5 0.794058561 1344.5 0.585385289
1568.3 1354.5 22.81574619 1354.5 0.792689926 1354.5 0.59011132
1540.7 1364.5 22.77497254 1364.5 0.79140412 1364.5 0.59184095
1506.5 1374.5 23.4697772 1374.5 0.78974608 1374.5 0.581644369
1481.6 1384.5 22.87347465 1384.5 0.790597923 1384.5 0.590646012
1456.1 1394.5 23.58506204 1394.5 0.789301091 1394.5 0.580080621
1435.8 1404.5 23.19981095 1404.5 0.789819046 1404.5 0.583978157
1405.1 1414.5 22.76660633 1414.5 0.789317247 1414.5 0.591016025
1380 1424.5 22.67282121 1424.5 0.789708278 1424.5 0.592321221
1354 1434.5 22.80332169 1434.5 0.791235215 1434.5 0.590607965

1335.8 1444.5 22.65656676 1444.5 0.790148098 1444.5 0.592809706
1316.4 1454.5 22.57346427 1454.5 0.788898856 1454.5 0.592951127
1295.8 1464.5 22.7777721 1464.5 0.79012993 1464.5 0.589273136
1275.8 1474.5 22.92287277 1474.5 0.787364987 1474.5 0.584785467
1257 1484.5 22.78452872 1484.5 0.789970289 1484.5 0.587437288

1228.5 1494.5 22.85688458 1494.5 0.787663547 1494.5 0.584649567
1204.8 1504.5 22.27813197 1504.5 0.785629661 1504.5 0.591641181
1183.8 1514.5 22.5413627 1514.5 0.783970454 1514.5 0.586504153
1169.3 1524.5 22.13110986 1524.5 0.788252324 1524.5 0.59546037
1152.4 1534.5 22.37952748 1534.5 0.787957566 1534.5 0.589842869
1129.6 1544.5 22.95555495 1544.5 0.788183538 1544.5 0.581545368
1114.8 1554.5 22.31229119 1554.5 0.788150888 1554.5 0.590992302
1105.4 1564.5 22.81383007 1564.5 0.790567378 1564.5 0.585977123
1089.5 1574.5 23.48539635 1574.5 0.787366008 1574.5 0.57448928
1076.8 1584.5 22.51089003 1584.5 0.788734571 1584.5 0.591226062
1061.6 1594.5 22.8167571 1594.5 0.789943506 1594.5 0.586727528
1049.9 1604.5 23.15365357 1604.5 0.790495106 1604.5 0.58097529
1033.8 1614.5 22.38093071 1614.5 0.788828742 1614.5 0.590195841
1017.7 1624.5 22.98886391 1624.5 0.785283106 1624.5 0.580809734
1000.6 1634.5 22.65634999 1634.5 0.788538954 1634.5 0.589575748
982.5 1644.5 21.88958359 1644.5 0.789086187 1644.5 0.601181551
969.3 1654.5 22.98375898 1654.5 0.789857034 1654.5 0.5855463
959.5 1664.5 22.83701263 1664.5 0.789696357 1664.5 0.586865503
949.4 1674.5 22.67408773 1674.5 0.789473868 1674.5 0.590397839
939.4 1684.5 22.81212529 1684.5 0.790473105 1684.5 0.589406264
929.1 1694.5 22.48290221 1694.5 0.78928585 1694.5 0.594244805
910.1 1704.5 22.84461886 1704.5 0.790268016 1704.5 0.589106646
894.3 1714.5 21.89834849 1714.5 0.789284631 1714.5 0.601924905
881.5 1724.5 22.50662032 1724.5 0.788764792 1724.5 0.591849614
866.8 1734.5 22.07983566 1734.5 0.788503859 1734.5 0.596442787
853.3 1744.5 22.71206396 1744.5 0.791106965 1744.5 0.587449252
841 1754.5 22.26595139 1754.5 0.792241803 1754.5 0.595874329

830.1 1764.5 22.92311964 1764.5 0.790354841 1764.5 0.585545382
819.8 1774.5 22.5758074 1774.5 0.789778479 1774.5 0.590384542
807.4 1784.5 22.91928907 1784.5 0.789077978 1784.5 0.584760396
797.3 1794.5 22.45363558 1794.5 0.78911175 1794.5 0.592687823
789.1 1804.5 22.28833094 1804.5 0.790604803 1804.5 0.59648949
782.2 1814.5 22.82902688 1814.5 0.789449109 1814.5 0.586388194
775.5 1824.5 22.7741168 1824.5 0.788436149 1824.5 0.585280895
771 1834.5 22.43403427 1834.5 0.789534693 1834.5 0.591181122

759.1 1844.5 22.56470754 1844.5 0.788432655 1844.5 0.58713446
744.8 1854.5 21.69729397 1854.5 0.789345539 1854.5 0.600605562
736.5 1864.5 22.14984068 1864.5 0.787937326 1864.5 0.590784909
723.5 1874.5 21.46231487 1874.5 0.791048608 1874.5 0.601933967
710.4 1884.5 21.76694123 1884.5 0.789511707 1884.5 0.594151227
702.2 1894.5 21.24738063 1894.5 0.788098017 1894.5 0.601893306
692.8 1904.5 21.95907819 1904.5 0.789685188 1904.5 0.590812307
687 1914.5 21.39058638 1914.5 0.788436908 1914.5 0.599049954

681.1 1924.5 21.90526131 1924.5 0.785660837 1924.5 0.590220584
674.7 1934.5 20.96863246 1934.5 0.787476702 1934.5 0.607846098
664.9 1944.5 21.7717834 1944.5 0.787296109 1944.5 0.594239763
653.6 1954.5 21.77019122 1954.5 0.787665093 1954.5 0.592047751
644.1 1964.5 21.18919491 1964.5 0.788642455 1964.5 0.60268675
635.9 1974.5 21.2638797 1974.5 0.788335974 1974.5 0.600901657
631.5 1984.5 20.43784254 1984.5 0.789151217 1984.5 0.615763856
627.7 1994.5 21.52675788 1994.5 0.788823215 1994.5 0.597858927

692.8 0 21.95907819 0 0.789685188 0 0.590812307

687 0 21.39058638 0 0.788436908 0 0.599049954

681.1 0 21.90526131 0 0.785660837 0 0.590220584

674.7 0 20.96863246 0 0.787476702 0 0.607846098

664.9 0 21.7717834 0 0.787296109 0 0.594239763

653.6 0 21.77019122 0 0.787665093 0 0.592047751

644.1 0 21.18919491 0 0.788642455 0 0.60268675

635.9 0 21.2638797 0 0.788335974 0 0.600901657

631.5 0 20.43784254 0 0.789151217 0 0.615763856

627.7 0 21.52675788 0 0.788823215 0 0.597858927
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Figure 1.4: Average genome wide properties of DNA methylation rel-
ative to the transcription start site (TSS) of 49506 human genes. (A)
The coverage of CpG islands shows a peak at the beginning of the first
exon. (B) Coverage of the Methylation Cores indicate a steep enrich-
ment between 0 and 500 downstream. (C) The average methylation
of the MCs (D) The average entropy.
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2

Primer Design for Bisulfite
Treated DNA

2.1 Introduction

The polymerase chain reaction (PCR) [200], a method for making many
copies of a specific DNA fragment, is one of the most widely applied
tools in modern molecular biology. The development of Methylation spe-
cific PCR by Herman et Al. in 1996 [167] was a major breakthrough in
speed and sensitivity for DNA methylation analysis. MSDP Primer de-
sign require a cumbersome gene by gene primer design and experimental
validation. Bisulphite DNA treatment results in sequence alterations by
converting unmethylated cytosines into uracils. The result is a general
sequence complexity reduction as cytosines become underrepresented.
Methylation specific primers of a region target methylated cytosines (M-
primers containing methylated CpGs) or their unmethylated counterparts
(U-primers donating TG (C → T) or CA (G → A)). When sequencing
techniques became more widespread in the early 2000s due to new tech-
niques and lower costs, Methylation unspecific Bisulphite primers became
more important. These primers amplify a bisulphite treated region of the
genome regardless of the methylation levels. They dont contain CpGs
but allow researchers to sequence the CpGs located between the primers
in the generated amplicon.

2.2 Bisulphite Primer Design

Primers for bisulphite treated DNA have a higher chance for non-specific
binding on other parts of the genome because of the lowered sequence
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complexity. Therefore it is very important to map the primers back onto
methylated and unmethylated bisulphite version of the genome and only
retain those primer pairs that only bind in the designated region. Next
to specificity, its also crucial to check for primer dimers

2.3 DNA Thermodynamics

2.3.1 The nearest-neighbour model for DNA

The application of the nearest-neighbor (NN) model to nucleic acids
was pioneered by Crothers and Zimm [201] and by Tinoco and cowork-
ers [202]. The NN model for nucleic acids assumes that the stability
of a given base pair depends on the identity and orientation of neigh-
boring base pairs. For oligonucleotide duplexes, additional parameters
for the initiation of duplex formation are introduced. Importantly, all
other sequence-independent effects are also combined into the initiation
parameter including differences between terminal and internal NNs and
counterion condensation. To account for differences between duplexes
with terminal AT vs. terminal GC pairs, two initiation parameters are
used: initiation with terminal GC and intiation with terminal AT. An
additional entropic penalty for the maintenance of the C2 symmetry of
self-complementary duplexes is also included. The total ∆G37 is given
by:

∆G0(total) =
∑

i ni∆G
0(i) + ∆G0(initw/termG · C)+

∆G0(initw/termA · T ) + ∆G0(sym)

where ∆G(i) are the standard free-energy changes for the 10 possi-
ble Watson-Crick NNs, ni is the number of occurrences of each nearest
neighbor i, and ∆G(sym) equals 0.43 kcal/mol if the duplex is self- com-
plementary and zero if it is non-self-complementary. dG for different
temperatures can also be calculated with the following formula:

∆G0
T = ∆H0 − T∆S0

The values can be found in table 2.1.
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B

A

Figure 2.1: Possible binding states of primers and template: The first
line is the sense strand of the template; the line below is the antisense
strand of the template; the arrow with the square end is the forward
primer; the arrow with the round end is the reverse primer; dashed
lines indicate binding (or folding) via hydrogen bonding. (A) Desired
binding interactions. High rates of binding are desired between the
primers and the template priming regions. (B) Undesired binding and
folding reactions. Primers can fold onto itself, dimerize with other
primers, or bind to the target outside of the priming regions.
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Table 2.1: Neirest-Neighbor dH,dS en dG for all possible dinucleotides

Sequence ∆H0 kcal/mol ∆S0 (cal/k.mol) ∆G0 (kcal/mol)
AA/TT -7.9 -22.2 -1.00
AT/TA -7.2 -20.4 -0.88
TA/AT -7.2 -21.3 -0.58
CA/GT -8.5 -22.7 -1.45
GT/CA -8.4 -22.4 -1.44
CT/GA -7.8 -21.0 -1.28
GA/CT -8.2 -22.2 -1.30
CG/GC -10.6 -27.2 -2.17
GC/CG -9.8 -24.4 -2.24
GG/CC -8.0 -19.9 -1.84
Init w/term G.C 0.1 -2.8 0.98
Init w/term G.C 2.3 4.1 1.03
Symmetry correction 0 -1.4 0.43

2.3.2 Predicting the melting temperature (TM)

The melting temperature of a Double DNA helix is described as the
temperature at which half of the strands are in the double-helical state
and half of the strands are denatured Random Coil strand. The TM for
self-complementary oligonucleotide duplexes is calculated by using the
equation:

TM = ∆H0

∆S0+R·lnCT

Thus TM can be calculated from ∆H0 en ∆S0 and the total oligonu-
cleotide concentration C(T), R is the gas constant (1.987 cal/K · mol).

2.3.3 Salt Dependency of Oligonucleotides and

Polymers

The thermodynamic salt correction for DNA is assumed to depend on
the sequence length but not on the sequence composition itself. Helix
formation in polymers does not formally involve an initiation parameter
so the salt dependence is by default incorporated into the NN propaga-
tion terms. According to Santalucia et al. [203] the following empirical
equations were derived:
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∆G0
37(oligomer, [Na+]) =

∆G0
37(unified oligomer, 1 M NaCl) - 0.114·ln[Na+] - 0.20.

∆G0
37(polymer NN, [Na+]) =

∆G0
37(unified NN, 1 M NaCl) - 0.175·ln[Na+] - 0.20.

2.3.4 Thermodynamic Primer Design

A thermodynamic approach allows us to develop theoretically guided
methods for predicting primer quality. This method has two significant
benefits compared with commonly used ad hoc primer scoring schemes.
First, they take advantage of accurate methods for assessing DNA bind-
ing and folding stability. These accurate assessments are critical because
PCR relies fundamentally on DNA binding reactions. Second, a physi-
cally motivated approach reduces the number of parameters that must
be chosen, and shifts the emphasis of primer selection from choosing ar-
bitrary thresholds to specifying physically meaningful reaction conditions
and primer quality criteria. Ad hoc methods for primer design compute
a variety of quality scores and combine these individual metrics into a
weighted sum model that produces a final score like the Primer3 software
package [204]. These quality scores try to account for considerations
such as primer melting temperature, thermodynamic stability of a primer
at the 3 prime end, homopolymers and a variety of other criteria mostly
motivated by practical experience with PCR. However, these quality met-
ric weights can present two significant difficulties: These metrics are not
always physically interpretable and they can be redundant. The ther-
modynamic approach calculates binding and folding energies with the
formulas explained in this chapter for a variety of relevant primer species,
and integrates these calculations into a final measure of PCR efficiency.
In addition to predicting whether the primers will amplify a given locus,
one must also evaluate the primer specificity. Specific primers will amplify
only the desired locus, whereas nonspecific primers have binding sites in
the background DNA that lead to undesired copying of background frag-
ments in addition to the target locus. This approach is especially helpful
for Bisulphite treated DNA. During the bisulphite conversion, the double
helix loses part of its complexity by converting all the non-methylated
Cytisones into Uracil and eventually into Thymines. This results into
primers being more prone to aspecific binding, a lower melting temper-
ature and higher amount of homopolymers compared to primers for ge-
nomic DNA.
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WRN promoter CpG island
hypermethylation does not predict
a favorable outcome for metastatic
colorectal cancer patients treated
with irinotecan-based therapy

From article:
WRN promoter CpG island hypermethylation does not predict
more favorable outcomes for metastatic colorectal cancer patients
treated with irinotecan-based therapy
Linda J.W. Bosch, Yanxin Luo, Victoria V. Lao, Petur Snaebjornsson,
Geert Trooskens, Ilse Vlassenbroeck, Sandra Mongera, Weiliang Tang,
Piri Welcsh, James G. Herman, Miriam Koopman, Iris D. Nagtegaal,
Cornelis J.A. Punt, Wim van Criekinge, Gerrit A. Meijer, Raymond J.
Monnat Jr, Beatriz Carvalho and William M. Grady ; Clinical cancer re-
search, 2016 [205]

1.1 Introduction

The current care for metastatic colorectal cancer includes, if clinically in-
dicated, surgical resection of the primary tumor and/or liver metastases,
together with chemotherapy (5- fluoruracil and oxaliplatin or irinotecan)
and in some patients targeted therapy (anti-EGFR antibodies or anti-
VEGF therapy). The clinical response to this regimen is variable, and it
is difficult to predict who will benefit from treatment. Moreover, for most
therapies, we lack accurate biomarkers to identify the optimal treatment
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for individual patients. DNA repair proteins such as the Werner syn-
drome RECQ helicase, WRN, are promising biomarkers for predicting the
response to genotoxic chemotherapy. We attempted to validate previ-
ous studies that showed WRN promoter hypermethylation predicted the
response to irinotecan using an independent sample set. We did not
find a clear association between aberrant WRN promoter hypermethy-
lation and reduced WRN expression. Moreover, in contrast to earlier
studies we found an inverse correlation of WRN promoter hypermethy-
lation with survival in metastatic colorectal cancer patients treated with
irinotecan. Our results highlight the need for further studies to identify
biomarkers that can predict the response of colorectal cancer to standard-
of-care chemotherapeutic agents including irinotecan, oxaliplatin and 5-
fluorouracil.

1.2 Material and Methods

Experiments were conducted at the University of Washington in Seat-
tle (UWSEA) and the VU University Medical Center in Amsterdam, the
Netherlands (VUmc) using cell lines and patient samples.

1.2.1 cell lines and tissues

Two independent collections of cultured CRC-derived cell lines were in-
vestigated. The adenoma cell line AAC1 and CRC cell lines RKO, LoVo,
SW480, LS174T, AAC1/SB10, HCT116, SW48, FET, VACO400, VACO411,
VACO5 were cultured at UWSEA. The UWSEA lines were authenticated
by DNA fingerprint analysis prior to use (IDEXX/Radil Bioresearch; IRB).
CRC cell lines Colo205, Colo320, HCT116, HCT15, HT29, LIM1863,
LS174T, LS513, RKO, SW480, and SW1398 were cultured at VUmc and
authenticated by array comparative genomic hybridization (aCGH, 244
k Agilent oligonucleotide platform) at the VU University Medical Cen-
ter, Amsterdam, the Netherlands. The patterns of chromosomal changes
observed were in concordance to the previously described chromosomal
changes in these cell lines [206]. Twenty-six fresh frozen (FF) primary
CRC tissues with matched FF normal colon tissue, and 21 formalin-fixed
paraffin-embedded (FFPE) normal colon tissues from cancer-free patients
were collected and studied following IRB approved protocols and in ac-
cordance with the ethical regulations of the corresponding institutions
(UWSEA and VUmc). The samples used at UWSEA were provided by
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the Cooperative Human Tissue Network (CHTN). Collection, storage and
use of patient-derived tissue and data from VUmc was performed in ac-
cordance with the Code for Proper Secondary Use of Human Tissue in
The Netherlands [207].

1.2.2 Tissue samples from the CAIRO clinical trial

In the CAIRO study CRC patients with metastatic disease were random-
ized between sequential treatment (capecitabine (CAP) followed upon
disease progression by irinotecan (IRI), then oxaliplatin plus capecitabine
(CAPOX)), or combination therapy with irinotecan plus capecitabine
(CAPIRI) followed by CAPOX [208]. The primary endpoint of the study
was overall survival (OS). DNA was isolated from FFPE tissue of surgi-
cally resected primary tumors from 183 patients that participated in the
CAIRO study. Of these 183 patients, 93 received CAPIRI as first-line ther-
apy while 90 received first-line CAP monotherapy. From the 90 patients
that received first-line CAP monotherapy, 52 received more than 2 cycles
of second-line IRI. These samples were selected to match stratification
factors in the original study for the subgroup of patients that underwent
primary tumor resection, i.e. resection status, WHO performance status,
predominant localization of metastases, previous adjuvant therapy and
serum lactate dehydrogenase levels. Samples were also selected based
on a high proportion of tumor cells in sections (at least 70%). A large
proportion of these samples overlap with samples described in [209].

1.2.3 WRN methylation analyses

WRN methylation status was assessed by two different methylation-specific
PCR (MSP) assays together with bisulfite sequencing (see Supplementary
Methods for additional detail). A WRN 5 region from -31 bp to +128 rel-
ative to the transcription start site (TSS), hereafter referred to as Region
1, was analyzed by a gel-based MSP assay. Region 2, located at -410
to -331 bp upstream of the WRN TSS was analyzed with a quantitative
MSP assay. Bisulfite sequencing was performed for the region -193 bp to
+157bp that encompassed the TSS, and overlapped with the locations
of the WRN MSP primer pairs described in Agrelo et al. [210] and an
independent set of WRN MSP primers reported by Ogino et al. [211].
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1.2.4 WRN expression analyses

RNA expression analyses were performed by real-time quantitative PCR
assays using TaqMan Gene Expression Assays from Applied Biosystems for
WRN (Hs00172155 m1), β-2 micoglobulin (B2M, Hs00984230 m1), and
β-glucuronidase (GusB, Hs99999908 m1). Protein expression analyses
were performed by Western blotting, using monoclonal antibodies for
WRN (W0393, Sigma) and β-actin (13E5, Cell Signaling Technologies).

1.2.5 TCGA data

WRN DNA methylation (Illumina Infinium HM27 bead array; HM27) and
mRNA expression (Agilent microarray) data from 223 CRC tumors from
The Cancer Genome Atlas (TCGA) Colorectal Cancer project [212] were
obtained via cBioPortal (http://www.cbioportal.org; data downloaded on
2 March 2014) [213]. When data from more than one probe per gene is
available from the methylation assay, cBioPortal uses methylation data
from the probe with the strongest negative correlation between the methy-
lation signal and mRNA gene expression.

1.2.6 Statistical analyses

Students T-test was used to compare WRN expression levels in HCT116
and Colo205 before and after 5-aza-2-deoxycytidine (DAC) and/or tri-
chostatin A (TSA) treatment. Pearson correlation analysis was used to
measure correlation between WRN methylation and mRNA expression
levels. Progression-free survival (PFS) for first-line treatment was calcu-
lated from the date of randomization to the date of first observed disease
progression or death after first-line treatment. Overall survival (OS) was
measured from the date of randomization to date of death due to can-
cer. Other causes of death were censored. The prognostic or predictive
value of WRN methylation status was assessed by a Kaplan-Meier sur-
vival analysis and log-rank test. A Cox proportional hazard regression
model was used to estimate Hazard Ratios (HR) and 95% Confidence
Intervals (95%CI). A multivariate Cox regression model was used to as-
sess and adjust for important prognostic variables including age, gender,
serum lactate dehydrogenase (LDH), WHO performance status, previous
adjuvant therapy and location of metastases. Multivariate Cox regression
analysis was also used to assess and adjust for possible prognostic vari-
ables Microsatellite Instability (MSI) status, BRAF mutational status and
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mucinous differentiation, for which information was available on a sub-
set of the samples (136 out of 183) [214], [215]. Results were considered
significant when p-values were ≤ 0.05.

1.3 Results

1.3.1 WRN methylation and expression status in

colon cancer cell lines

In order to accurately detect and quantify WRN promoter methylation in
CRC samples, we independently developed and cross-validated methylation-
specific PCR (MSP) primer sets and assays in both labs (UWSEA and
VUmc) for two WRN regions adjacent to and overlapping the TSS at
base pair position +1: Region 1 (-31 bp to +128 bp) and Region 2
(-410 to -331 bp) (Figure 1.1A). WRN methylation status in Region 1
was assessed in 11 colon cancer cell lines (SW480, Vaco411, AAC1/SB10,
Vaco400 LS174T, LoVo, HCT116, Vaco5, FET, RKO, SW48), and 1 ade-
noma cell line (AAC1) from UWSEA. Seven of 11 colon cancer cell lines
(6%) had Region 1-methylated WRN (Figure 1.1B), while the adenoma
cell line was unmethylated. There was no association between WRN Re-
gion 1 methylation and MSI and/or CpG Island Methylator Phenotype
(CIMP).

WRN methylation status in Region 2 was successfully evaluated in
10 colon cancer cell lines (SW480, Vaco411, Vaco400, LS174T, LoVo,
HCT116, Vaco5, FET, RKO, SW48; UWSEA), and was comparable to
Region 1 methylation status within a cell line (Figure 1.1C). Bisulfite se-
quencing of cells lines with methylated (HCT116) or unmethylated WRN
(SW480) was performed to confirm the methylation status of both re-
gions and validate the MSP results using an orthogonal assay (Figure
1.2D).

We assessed WRN Region 2 methylation status in a second, over-
lapping series of colon cancer cell lines (Colo205, Colo320, HCT116,
HCT15, HT29, LIM1863, LS174T, LS513, RKO, SW480, and SW1398,
SW48 and Caco2; VUmc). These analyses revealed that 10 of 13 cell
lines, or 77%, were WRN Region 2 methylated (Figure 1.2B).

Cell lines that carried methylated WRN expressed relatively high lev-
els of WRN as assessed by WRN mRNA qRT-PCR (Figure 1.2A&B).
There was either no or a slightly positive correlation between WRN Re-
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Figure 1.1: WRN promoter region methylation analysis in cell lines.
A. WRN promoter region CpG island and primer locations Genomic coordinates, CpG density and
positions are shown in the top panel. Each vertical bar in the lower panel represents the presence
of a CpG dinucleotide. Black horizontal bars indicate regions amplified by newly designed and
validated MSP primer pairs (Region 1 and Region 2), the region amplified by the original primer
pair described by Agrelo et al [210], and the region targeted for bisulfite sequencing (BS). TSS,
Transcription Start Site.
B. Methylation analysis of Region 1 (see Figure 1) in the adenoma cell line AAC1 and in colon
cancer cell lines. DNA from Peripheral Blood Lymphocytes (PBL) was used as an unmethylated
control. H2O and DNA from SssI methylase-treated DNA from the colorectal cancer cell line
SW48 were used, respectively, as no template and methylated template controls.
C. Quantitative methylation analysis of WRN promoter Region 2 in the same colon cancer cell
lines shown in panel A.
D. Sodium bisulfite sequencing results of WRN gene promoter on cell lines HCT116 and SW480
in the region depicted in Figure 1. Each row represents an individual cloned allele and each circle
indicates a CpG dinucleotide. Black circle=methylated CpG site; white circle=unmethylated CpG
site; no circle=not determined.
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Figure 1.2: WRN expression analysis in cell lines
A. WRN mRNA (upper panel) and protein (lower paired panels) expression in CRC cell lines in
relation to methylation status in WRN promoter Region 1 (lower panel). Error bars represent
standard deviations across triplicate independent experiments, in which WRN mRNA was normal-
ized to mRNA expression of the reference gene GUSB (upper panel) and, for protein expression
-actin (lower panel). Methylation status of WRN promoter Region 1 is indicated below each pair
of immunoblots (M = methylated; U = unmethylated).
B. WRN mRNA expression level in relation to methylation status of WRN promoter Region 2.Er-
ror bars represent standard deviations of mean expression values of two independent experiments.
Methylation status of WRN promoter Region 2 is indicated below each cell line designation (M =
methylated; U = unmethylated).
C. WRN mRNA expression analysis of Colo205 (left) and HCT116 (right) with and without 5-
aza-2-deoxycytidine (DAC) or DAC/trichostatin A (TSA) treatment. Bars represent mean in two
independent experiments, with error bars represent standard deviations. Expression was quanti-
fied relative to mRNA expression levels of B2M. *p=0.001
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gion 2 methylation and expression level in two different groups of CRC
cell lines: SW480, Vaco411, Vaco400 LS174T, LoVo, HCT116, Vaco5,
FET, RKO, SW48 (UWSEA; Pearson correlation of 0.32, p=0.3); and
Colo205, Colo320, HCT116, HCT15, HT29, LIM1863, LS174T, LS513,
RKO, SW480, and SW1398, SW48 and Caco2 (VUmc; Pearson corre-
lation of 0.68, p=0.04). Consistent with these results, treatment of the
methylated CRC cell lines HCT116 and Colo205 with the demethylating
agent 5-aza-2-deoxycytidine (DAC) and/or tricostatin A (TSA) either
did not change or resulted in decreased WRN mRNA expression (Figure
1.2C). Western blot analysis of WRN protein expression as a function of
Region 1 and 2 promoter methylation in CRC cell lines in the UWSEA col-
lection further emphasized the lack of correlation between WRN promoter
hypermethylation and mRNA and protein expression (Figure 1.2A&B).

1.3.2 WRN methylation and expression status in

CRC tissues

In order to determine whether there was a more consistent relationship
between WRN methylation status and expression in primary tumor sam-
ples, we analyzed WRN methylation status and expression in primary
CRC samples and in adjacent normal colon mucosa. We detected Region
1 methylation in 33% (7 of 21) of primary CRCs, but in none of the paired
normal mucosa samples tested (N=12). Region 2 methylation was de-
tected in 45% (9 of 20) of primary CRCs, and in 1 of 20 matched normal
mucosa samples (Figure 1.3A). Methylation status was largely concor-
dant between the two regions: all samples that showed methylation in
Region 1 were also in Region 2 methylated.

Only two cases showed an unmethylated Region 1 and a methylated
Region 2. Bisulfite sequencing of a subset of these samples (8 CRCs and
2 normal mucosa samples) confirmed the results of MSP assays (data not
shown). A second analysis of Region 2 methylation using an independent
series of primary colorectal cancers (N=183 from the CAIRO series, see
next section) and normal colon mucosa samples (N=21, VUmc) revealed
WRN promoter hypermethylation in 40% (74/183) of the primary CRCs,
and very low or absent WRN methylation level in normal colon mucosa.

In our first series of colon tissues, WRN mRNA expression was higher
in primary CRC vs matched normal mucosa samples in 10 of 20 pa-
tients (50%), lower in 6 samples (6 of 20 or 30%) and equivalent in the
remaining 4 samples (20%; Figure 1.3B). No association was observed
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Figure 1.3: WRN promoter region methylation and expression anal-
yses in CRC and matched normal colon tissues.
A. WRN methylation levels in CRC tumor tissues (black bars) and
matched normal colon tissues (grey bars). Bars represent mean ex-
pression of duplicate measurements in one experiment. A sample was
considered methylated when the Ct ratio exceeded the threshold of
0.03, which was set based on an analysis of normal colon samples
(N=21), which all had values below this threshold.
B. WRN mRNA expression versus a GUSB control in the same CRC
tumor (black bars) and matched normal colon (grey bars) samples
shown in panel A. Bars represent mean expression of triplicate mea-
surements in one experiment.
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between WRN Region 1 or 2 hypermethylation and mRNA expression
(Region 2: Pearson correlation 0.14, p=0.4). WRN protein expression
could not be detected by Western blot in 10 of 20 (50%) of paired pri-
mary CRC/normal mucosa samples (data not shown). An independent
assessment of WRN methylation status and mRNA expression in 223
CRCs included in the TCGA Colorectal Cancer Project (see The Cancer
Genome Atlas (TCGA) database at www.cBioportal.org; [213]) did not
reveal a negative correlation between WRN methylation level and mRNA
expression (Pearson correlation of 0.1, p=0.03;).

1.3.3 Relationship of WRN methylation to clini-

cal outcome

In order to determine if there is a relationship between WRN promoter
hypermethylation and treatment outcomes, we assessed the correlation
between WRN promoter methylation status and survival in patients who
participated in the CAIRO study [208]. OS did not differ between the
two treatment arms in the original study population, or in the subset
included in this analysis. Patient characteristics such as age, sex, perfor-
mance status, predominant localization of metastases, previous adjuvant
therapy and serum lactate dehydrogenase level (LDH) were comparable
between the two treatment arms in the subset included in this analy-
sis (Supplementary Table 2). Thus we pooled patients from the two
treatment arms to evaluate the association of WRN promoter methyla-
tion status and OS. The cohort of 183 patients included a total of 160
death events. The group of 109 patients with unmethylated WRN had
91 death events and the group of 74 patients with methylated WRN had
69 death events. Patients with methylated WRN CRC had shorter OS
compared to patients with unmethylated WRN (median OS of 407 vs
610 days for methylated vs unmethylated WRN, respectively (HR = 1.6
(95%CI 1.2-2.2), p = 0.003; Figure 1.4A). This was observed for patients
in the sequential treatment arm (median OS of 405 vs 589 days; HR =
1.5 (95%CI 1.0-2.4), p=0.05), as well as in the combination treatment
arm (median OS of 410 vs 680 days for methylated vs unmethylated
WRN, respectively; HR = 1.7 (95%CI 1.1-2.7), p=0.02; compare Figure
1.4B, 1.4C). However, in the sequential treatment arm, a negative effect
of WRN promoter hypermethylation on outcome was observed only for
patients who received irinotecan during their treatment course (n=55;
median OS of 567 vs 646 days for methylated vs unmethylated WRN,
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respectively; HR = 1.9 (95%CI 1.1-3.5), p=0.03; Figure 1.4D). This ef-
fect was not observed in patients who did not receive irinotecan (n=37;
median OS of 320 vs 326 days for methylated vs unmethylated WRN,
respectively; HR = 1.0 (95%CI 0.5-2.0), p=1.0; Figure 1.4E).

We next determined whether WRN methylation status had predictive
value for irinotecan-treated outcomes by assessing the relationship be-
tween WRN methylation status and response to CAPIRI. Patients with
unmethylated WRN showed significantly longer PFS when treated with
CAPIRI compared to CAP alone, as was expected from the results of the
original CAIRO trial [208] (median PFS of 272 vs 164 days for CAPIRI
vs CAP, respectively; HR=0.48 (95%CI 0.32-0.70), p=0.0001; Figure
1.5A). However, patients with methylated WRN did not benefit from
CAPIRI therapy (median PFS of 211 vs 190 days for CAPIRI vs CAP,
respectively;

HR=1.1(95%CI 0.69-1.77), p=0.7; Figure 1.5B). The same trend
was observed for patients receiving second-line irinotecan monotherapy
in the sequential treatment arm, though the number of patients was
small. Multivariate Cox regression analysis showed significant interaction
effects between treatment arm and WRN methylation status, even after
adjusting for potentially confounding factors including age, gender, serum
LDH, WHO performance status, previous adjuvant therapy, predominant
location of metastasis, MSI status, BRAF mutational status and mucinous
differentiation.

1.4 Discussion

DNA repair proteins such as the RECQ helicase WRN are promising
biomarkers for predicting the response to genotoxic chemotherapy. In
this study, we aimed to validate the reported association between WRN
promoter hypermethylation and transcriptional silencing, and determine
the predictive value of WRN promoter hypermethylation for increased
sensitivity to IRI-based therapy in CRC patients [210]. We developed
and used two new sets of MSP PCR primers to reliably assess WRN
methylation status in both CRC and normal colon tissue. Methylation
status was also analyzed by bisulfite sequencing (BS) of a region over-
lapping the WRN TSS. Our new MSP primer pairs and BS assay covered
the regions analyzed in previous reports [210, 211] (Figure 1.1A), and
proved more reliable in our hands than the originally reported primer pair
for WRN MSP assays [210]. Despite using these newly developed and
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Figure 1.4: Overall survival (OS) of CRC patients with unmethylated
(solid lines, U) or methylated (dashed lines, M) WRN promoter re-
gions in response to (A) sequential and combination treatment arms
combined (sequential or combined capecitabine (CAP) and Irinote-
can (IRI), followed by capecitabine + oxaliplatin (CAPOX)); (B) in
the sequential treatment arm alone (1st line capecitabine (CAP), 2nd
line Irinotecan (IRI), 3rd line capecitabine + oxaliplatin (CAPOX));
(C) in the combination treatment arm alone (1st line capecitabine +
irinotecan (CAPIRI), 2nd line capecitabine + oxaliplatin (CAPOX));
in the subset of patients who received (D) or did not receive (E)
irinotecan (IRI) in the sequential treatment arm. HR = Hazard Ra-
tio (Methylated WRN vs unmethylated WRN).
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Figure 1.5: Progression-free survival in metastatic CRC patients
treated with CAP (solid lines) or CAPIRI (dashed lines) as a func-
tion of WRN promoter region methylation. PFS is shown for CRCs
with unmethylated (panel A) or methylated (panel B) WRN promoter
regions. HR = Hazard Ratio (CAPIRI vs CAP).

well-validated methylation-specific reagents, we found no consistent as-
sociation between WRN promoter hypermethylation and WRN expression
at the mRNA or protein level. Moreover, we found that WRN promoter
hypermethylation was associated with reduced, as opposed to the pre-
viously reported increased, OS in CRC patients with metastases who
received irinotecan [210]. Progression free survival (PFS) improved only
when irinotecan was added to CAP in the presence of unmethylated WRN,
which was not expected from the results of the original CAIRO trial [208].
One explanation for the differing results between our study and a previous
report [210] could be the use of different methylation assays. However,
this is unlikely: we designed and validated new primer sets for overlapping
MSP and bisulfite sequencing assays that worked reliably, and covered a
567 bp region that encompassed the TSS. These reagents reliably and
accurately detected WRN promoter methylation status in both cell lines
and primary tumor samples across the locations of both the originally
reported [210] and an additional reported overlapping primer pair [211]
(1.1A). Other possible reasons for the contrasting results in the current
and previous report [210] encompass the lack of robust analytical tools in
the previous report [210], together with the limited number of cell lines
and the small size and nature of the clinical samples analyzed [210]. Of
note, The clinicopathological details of the 88 patients reported in [210]
were not described in the original report or in the reference to this cohort
included in the initial report [210]. Hence, selection bias cannot be ex-
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cluded. We further corroborated our finding of no consistent relationship
between WRN promoter methylation level and gene expression using data
on 223 CRC samples included in the TCGA Colorectal Cancer Project,
where again no correlation could be identified between WRN hyperme-
thylation and WRN transcriptional silencing [213, 216]. In order to test
the association between WRN methylation status and clinical outcomes,
we used material from patients enrolled in the CAIRO study (the Dutch
CApecitabine, IRinotecan and Oxaliplatin (CAIRO) study [208]. Our
CAIRO study cohort (n=183) was larger than the initial cohort (n=183
vs 88) and has been described in detail. The CAIRO study provided high
quality clinical data, which are essential to evaluate predictive biomark-
ers [217] and to test the association between WRN methylation status
and clinical outcomes. The CAIRO cohort also offered the opportunity
to compare first-line CAP monotherapy versus CAPIRI therapy. Despite
our larger well-characterized study population, we were not able to con-
firm the initial observation that WRN promoter hypermethylation was
associated with improved outcome in irinotecan-treated metastatic CRC
patients [210]. In contrast, we observed a significantly worse outcome
for irinotecan-treated colorectal cancer patients with WRN-methylated
tumors. This is similar to the outcome observed in an independent, well-
described study [211] that used primer pairs targeting the same WRN
region as the initial report [210] (see 1.1A). These observations indicate
that WRN promoter hypermethylation may be useful as a biomarker, to
predict a worse response to irinotecan treatment.

This effect is likely to reflect as-yet unidentified co-variables, as WRN
promoter hypermethylation does not consistently alter WRN expression.
WRN is a housekeeping gene that is expressed at comparatively low copy
number (≤1000 to 10,000 copies/cell) in many cell types [218]. The
WRN promoter region includes Sp1, RCE (retinoblastoma/TP53), AP2
and MYC E-box binding sites, and there are experimental data show-
ing that these binding sites and/or transcription factors can alter WRN
transcription [219, 220]. WRN expression is also known to be cell cycle-
responsive, and upregulated by cellular oncogenic transformation [221],
though none of these mechanisms has been shown thus far to be WRN
DNA methylation-dependent or modulated. Alternatively, WRN promoter
hypermethylation has been associated to microsatellite instability, CpG
island methylator phenotype, BRAF mutations and mucinous differen-
tiation, which themselves are associated to clinical outcome in colon
cancer [211, 222, 223]. Information on MSI, BRAF and mucinous dif-
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ferentiation available on a sub-set of our sample set revealed that those
variables did not explain the association between WRN promoter hyper-
methylation and clinical outcome after treatment with irinotecan- based
therapy. However, the number of samples with MSI status and/or BRAF
mutation was very low (n=6 and n=11, respectively), hence no hard con-
clusions can be drawn from these results. Future functional analyses and
validation studies in large, independent and well-annotated cohorts are
needed to shed light on the role of WRN promoter hypermethylation as
a determinant of the response to irinotecan-based therapy.

Our study has the following limitations. First, measurements were
performed on the primary tumors, while patients were treated for their
metastases, which raises the question whether intra tumor heterogene-
ity could play a role. Although metastases can acquire additional ge-
nomic alterations, they keep most alterations present in the primary tu-
mor [224,225]. Furthermore, DNA methylation is usually an early event in
colorectal carcinogenesis, which we suspect is true for WRN methylation
as well [226].

Second, we were not able to independently analyze all cell lines at both
participating institutions, though note that the subset of cells analyzed
by both groups gave concordant results. This strengthens our conclu-
sion that previous findings on the negative relationship between WRN
promoter methylation level and gene expression at the mRNA or protein
level could not be validated. A final limitation of the current study was
the use of DNA from 183 patients and tumor tissue which represented a
subset of all patients in the CAIRO trial [208]. However, this selection
was representative for the subgroup of patients that underwent resection
of the primary tumor in terms of clinical characteristics and survival out-
come (see also [209]). Furthermore, the current cohort is larger than the
cohort as described in [210] (n=183 vs n=88) and was large enough to
have statistical power.

In summary, we found that the methylation status of the WRN pro-
moter region can be reliably assessed in both CRC and normal colorectal
tissue using newly developed methylation-specific PCR and bisulfite se-
quencing assays. However, there was no consistent association between
WRN promoter hypermethylation and loss of WRN expression at the
mRNA or protein level in CRC cell lines or tumors. Moreover, we could
not validate findings from a previous study that WRN promoter hyper-
methylation was associated with a better response to irinotecan-based
therapy and found, instead, that WRN promoter hypermethylation was
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associated with reduced OS and PFS in our well- characterized CRC
patient cohort who received irinotecan-based therapy. Despite growing
evidence for a role for WRN genomic alterations in CRC disease progres-
sion [227], our results indicate that WRN promoter hypermethylation does
not reliably predict WRN gene expression or, as originally reported [210],
improved clinical outcomes in CRC patients treated with irinotecan-based
chemotherapy regimens.
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DCR1 methylation and response
to irinotecan in colorectal cancer

From:
Decoy receptor 1 (DCR1) promoter hypermethylation and re-
sponse to irinotecan in metastatic colorectal cancer
Linda J.W. Bosch, Geert Trooskens, Petur Snaebjornsson, Veerle M.H.
Coup, Sandra Mongera, Josien C. Haan, Susan D. Richman, Miriam
Koopman, Jolien Tol, Tim de Meyer, Joost Louwagie, Luc Dehaspe,
Nicole C.T. van Grieken, Bauke Ylstra, Henk M.W. Verheul, Manon van
Engeland, Iris D. Nagtegaal, James G. Herman, Philip Quirke, Matthew
T. Seymour, Cornelis J.A. Punt, Wim van Criekinge, Beatriz Carvalho
and Gerrit A. Meijer ; Oncotarget, 2017 [228]

Diversity in the biology of colorectal cancer (CRC) is associated with
variable responses to standard chemotherapy. We aimed to identify and
validate DNA hypermethylated genes as predictive biomarkers for irinote-
can treatment of patients with metastatic CRC.

Candidate genes were selected from 389 genes involved in DNA Dam-
age Repair by correlation analyses between gene methylation status and
drug response in 32 cell lines. The discovery and initial validation set con-
sisted of primary tumors of 185 and 166 metastatic CRC patients, respec-
tively, from the phase III CAIRO trial. An external validation set consisted
of 467 primary tumors from the phase III FOCUS study. Methylation sta-
tus in tumor tissue was correlated to progression free survival (PFS) by
first-line treatment regimen, containing either single-agent fluorouracil
(i.e. CAP in CAIRO or 5-FU in FOCUS) or combination chemother-
apy (i.e. CAP or 5-FU plus irinotecan (CAPIRI in CAIRO / FOLFIRI in
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FOCUS)).
In the discovery and initial validation set, patients with methylated De-

coy Receptor 1 (DCR1) tumors did not significantly benefit from CAPIRI
treatment over CAP treatment (discovery set: HR=12 (95%CI 07-19,
p=06), validation set: HR=0.9 (95%CI 0.6-1.4, p=0.5)), whereas pa-
tients with unmethylated DCR1 tumors did (discovery set: HR=0.4 (95%CI
0.3-0.6, p=0.00001), validation set: HR=0.5 (95%CI 0.3-0.7, p=0.0008)).
These results, however, could not be validated in the external data set,
where a similar effect size was found in patients with methylated and un-
methylated DCR1 (methylated DCR1: HR=0.7 (95%CI 0.5-0.9, p=0.01),
unmethylated DCR1: HR=0.8 (95%CI 0.6-1.2, p=0.4)).

DCR1 promoter methylation was identified and initially validated as a
potential negative predictive biomarker for response to irinotecan-based
therapy, but external validation could not validate these findings. These
results underline the importance of extensive clinical evaluation of candi-
date biomarkers.

2.1 Introduction

The outcome of patients with colorectal cancer (CRC) strongly depends
on tumor stage at time of diagnosis. Whereas stage I CRC patients have
a 5-year overall survival of more than 90%, in stage IV CRC patients it
declines to 20% or less [229]. When distant irresectable metastases de-
velop, palliative systemic therapy is the only treatment option available to
these patients. The backbone of this is 5-fluorouracil (5-FU) in combina-
tion with either oxaliplatin or irinotecan [230]. More recently, addition of
targeted agents directed against vascular epithelial growth factor (VEGF)
(bevacizumab) or epidermal growth factor receptor (EGFR) (cetuximab
and panitumumab) has been demonstrated to give additional survival
benefit [231]. Only a subset of patients benefit from these regimens,
while those patients that do not, still may suffer from considerable toxi-
city. With the exception of KRAS/NRAS mutation status that predicts
resistance to EGFR-targeted therapy [232, 233], no other biomarkers ex-
ist that adequately predict treatment response in metastatic CRC. Thus,
predictive biomarkers are urgently needed to a priori identify the subset
of patients that will benefit from a specific treatment.

Hypermethylated genes form a particular category of biomarkers and
a number of these have been reported to predict drug response in CRC
patients [210, 234], but inconsistent results for the same markers have
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been reported [211, 235]. Hypermethylated genes are of particular inter-
est, since DNA methylation is potentially reversible by DNA methyltrans-
ferase inhibitors, which could provide a way to restore expression of genes
silenced by DNA hypermethylation and thus increase the sensitivity of tu-
mor cells to the agents the gene is associated with [236]. In the present
study we set out to identify and validate novel hypermethylated genes
that could potentially predict response to treatment with irinotecan in
patients with metastatic CRC, using material from two clinical trials, i.e.
the Dutch CApecitabine, IRinotecan and Oxaliplatin (CAIRO) study [208]
and the Fluorouracil, Oxaliplatin, CPT-11: Use and Sequencing (FOCUS)
study from the UK [237].

2.2 Material and Methods

2.2.1 Candidate gene selection

Candidate gene selection was based on correlations between methylation
of 389 genes involved in DNA Damage Repair and Response and drug
response in 32 cell lines, which is described in detail in the Supplementary
Information.

2.2.2 Patient sample selection

Patients selected for the current study participated in either of two phase
III trials, namely the CApecitabine, IRinotecan and Oxaliplatin (CAIRO)
study of the Dutch Colorectal Cancer Group (DCCG) (CKTO 2002-07,
ClinicalTrials.gov; NCT00312000), and the Medical Research Council Flu-
orouracil, Oxaliplatin, CPT-11: Use and Sequencing (FOCUS) study (IS-
RCTN 79877428) under the auspices of the United Kingdom National
Cancer Research Institute Colorectal Cancer Studies Group. Written in-
formed consent was required from all patients before study entry, and
included consent for translational research on tumor tissue. Details on
the CAIRO and FOCUS study are provided in the Supplementary Infor-
mation.

2.2.3 CAIRO biomarker populations

An initial 185 patients were selected for a discovery set of which 90 pa-
tients were treated with first-line capecitabine (CAP) and 95 were treated
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with first-line capecitabine plus irinotecan (CAPIRI). The patient samples
were matched according to the stratification factors in the original study
(for the subgroup of patients that underwent resection of the primary
tumor, since these are the patients from whom material was available
to be included in this study), that is, performance status, predominant
metastatic site, previous adjuvant therapy and serum lactate dehydro-
genase level (LDH). In addition, only patients were included who had
received at least three cycles of 1st line therapy, or two cycles when
death followed due to progressive disease. A large proportion of these
samples overlap with samples described in [209].

For the initial validation set, patients who had received at least three
cycles of 1st line therapy or two cycles when death followed due to pro-
gressive disease were selected, with no further criteria, from the remaining
patients of which tumor DNA samples were available. These comprised
166 patients, of which 78 were treated with first-line CAP and 88 were
treated with first-line CAPIRI.

2.2.4 FOCUS biomarker validation population

A total of 467 tumor DNA samples from the FOCUS trial were available
for the current study. These came from 331 patients treated with at least
three cycles of first-line 5-FU and 136 patients treated with at least three
cycles of first-line 5-FU plus irinotecan (FOLFIRI).

2.2.5 DNA isolation and methylation analysis

From formalin-fixed paraffin-embedded tissue samples from primary tu-
mors, resected before chemotherapy, DNA was extracted as described
before. [238, 239]

All methylation assays were performed blindly to information on treat-
ment or survival outcome. The CAIRO discovery set was subjected to
high-throughput LightCycler MSP assay (LightCycler 480 SYBR Green I
Master kit (Roche, Vilvoorde, Belgium)). Primers were designed in pro-
moter regions (i.e. -1000 to +200 bp relative to the transcription start
site). Primers from literature were used when they experimentally passed
our quality control; see supplementary table 1 for primer sequences. For
the CAIRO validation set and CRC cell lines a quantitative MSP (qMSP)
assay for DCR1 was used. The primers for methylated DNA were equal
to the primers used for LightCycler analyses described above and were
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designed at the exact location as described before [240]. The FOCUS
validation set was analyzed with a qMSP assay for DCR1 as well. The
primers for methylated DNA were equal to the primers used in the CAIRO
discovery and validation study. All details on DNA isolation and methy-
lation assays can be found in the Supplementary Information.

2.2.6 Cell lines

Details on the culture conditions of HCT15, HCT116, LS513, LS174T,
Colo320, SW48, SW1398, HT29, Colo205, SW480 RKO, Caco2, and
LIM1863 can be found in the Supplementary Information. To investigate
re-expression of DCR1 after inhibition of DNA metyltransferases, HCT116
and Colo205 cells were treated with 5000 nM 5-aza-2-deoxycytidine for
three days (DAC, Sigma Chemical Co., St. Louis, MO, USA).

2.2.7 RNA isolation and qRT-PCR

Details on the RNA isolation can be found in the Supplementary Infor-
mation. Quantitative RT-PCR was done using TaqMan Gene Expression
Assays from Applied Biosystems directed to DCR1 (Hs00182570 m1) and
B2M (Hs00984230 m1). Relative expression levels were determined by
calculating the Ct-ratio (Ct ratio = 2e-(Ct(DCR1)-Ct(B2M)))x1000.

2.2.8 TCGA data

DCR1 DNA methylation (Illumina Infinium HM27 bead array; HM27) and
mRNA expression (Agilent array) data were obtained via cBioPortal for
Cancer Genomics (http://www.cbioportal.org; [213]) on 223 CRC tumors
included in The Cancer Genome Atlas (TCGA) Colorectal Cancer project.
This data set was downloaded on the 14th of July 2015 from all tumors
with available methylation and mRNA expression data from the Colorectal
Adenocarcinoma (TCGA, Nature 2012) dataset [216].

2.2.9 Statistical analysis

PFS for first-line treatment was calculated from the date of randomiza-
tion to the first observation of disease progression or death reported after
first-line treatment. To test the predictive value of candidate genes,
multivariate Cox proportional hazard models were built that included
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the variables treatment, candidate gene and an interaction term treat-
ment*candidate gene. For DCR1-specific analyses, we also included age,
gender, WHO performance status and prior adjuvant therapy for both
the CAIRO and the FOCUS samples, plus normal or abnormal LDH, and
location of metastases for CAIRO. Cox proportional hazard models were
used to estimate Hazard Ratios (HR) and 95% confidence intervals (CI).
Kaplan-Meier analyses and log-rank tests were used to estimate survival
over time. Correction for multiple testing in the discovery set was done
by the Benjamini Hochberg method.

Students T-test was used for comparison of DCR1 expression levels
before and after DAC treatment of HCT116. Pearson correlation analysis
was used to measure correlation between DCR1 methylation and mRNA
expression levels from 223 primary CRC tissue samples as provided by
The Cancer Genome Atlas (TCGA) database.

Statistical analyses were performed using the computing environment
R version 3.2 [241], including the packages survival
(http://CRANR-projectorg/package=survival 2014) and rms
(http://CRANR-projectorg/package=rms 2015). [242]

2.3 Results

2.3.1 Candidate gene selection

Correlation analyses of the DNA methylation status of 389 genes involved
in DNA Damage Repair and Response with sensitivity to 118 drugs in 32
cell lines yielded 22 genes associated with topoisomerase-inhibitor related
mode of action. These genes were analyzed for DNA methylation status
in the discovery set (n=185). Methylation frequencies ranged from 5%
to 98%, average 43%.

2.3.2 Evaluation of biomarker potential in the dis-

covery set (CAIRO)

In concordance with the original CAIRO study, the patients of the dis-
covery set showed significantly longer PFS when treated with CAPIRI
(n=95) compared to CAP alone (n=90) (median PFS of 252 vs 182 days
for CAPIRI vs CAP, respectively; HR=0.67 (95% CI 0.50-0.90, p=0.007)
(figure 1A). DCR1 was methylated in 72/185 (39%) tumors. To assess
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HR = 2·9; p = 0·0008;  
adjusted p-value = 0·02  

HR = 2·6; p = 0·003;  
adjusted p-value = 0·03  

HR = 5·0; p = 0·007;  
adjusted p-value = 0·06  

log  
HR 

-10 log  
p-value 

Table	1.	Mul$variate	analysis	for	predic$ve	value	of	candidate	genes,		
showing	p-values	(size)	and	Hazard	Ra$o’s	(color)	

Figure 2.1: Multvariate analysis for predictive value of candidate
genes, showing p-values (size) and Hazard Ratios (color)
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the predictive value of each candidate gene, a multivariate survival model
was generated including clinical variables, treatment arm, and an interac-
tion term between treatment arm and candidate gene. After correcting for
multiple testing, the treatment arm*candidate gene interaction remained
significant for Tumor Necrosis Factor Receptor Superfamily member 10c
(TNFRSF10c, also known as Decoy Receptor 1 (DCR1)) and Interleukin-1
Receptor-Associated Kinase 1 (IRAK1). This indicates that the methy-
lation status of these candidate genes exerted an independent effect on
PFS that was different in the one treatment arm compared to the other
treatment arm (Figure 2.1).

Kaplan-Meyer curve analysis revealed that out of the two final can-
didate genes, the methylation status of DCR1 was predictive of PFS
after treatment with CAPIRI, but not for PFS after treatment with CAP;
patients with methylated DCR1 tumors progressed more quickly than
patients with unmethylated DCR1 tumors when treated with CAPIRI
(HR=2.1 (95% CI 1.3-3.3, p=0.001), but no difference was observed
between patients with unmethylated or methylated DCR1 tumors when
treated with CAP (HR=0.7 (95% CI 0.5-1.1, p=0.1). IRAK1 methylation
was predictive of PFS after treatment with CAP and hence was not fur-
ther studied . Because CAIRO was a randomized controlled trial, we were
able to estimate the benefit of CAPIRI treatment over CAP treatment
for patients with methylated or unmethylated DCR1 tumors by compar-
ing PFS between the different treatment arms. Patients with methylated
DCR1 (72 out of 185; 39%) did not benefit from adding irinotecan to
CAP (median PFS of 192 vs 184 days for CAPIRI vs CAP, respectively;
HR=1.2 (95%CI 0.7-1.9, p=0.6; figure 2.2B)). In contrast, patients with
unmethylated DCR1 showed a significantly longer PFS when treated with
CAPIRI compared to CAP alone (median PFS of 270 vs 178 days for
CAPIRI vs CAP, respectively; HR=0.4 (95% CI 0.3-0.6, p=0.00001; fig-
ure 2.2C)).

2.3.3 Internal validation set (CAIRO)

In the second set of patients from the CAIRO study, in concordance
with the original CAIRO study [208], PFS was significantly longer for
patients treated with CAPIRI (n=88) compared to patients treated with
CAP alone (n=78) (median PFS of 267 vs 200 days for CAPIRI vs CAP,
respectively; HR=0.6 (95% CI 0.5-0.9, p=0.003; figure 2.3A)).

DCR1 was methylated in 88 out of 166 (53%) tumors. A multivariate
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Ratio (CAPIRI versus CAP).
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analysis, as described for the discovery set, showed a significant interac-
tion between treatment arm and DCR1 methylation (p=0.04, table 2).
Kaplan-Meyer analyses confirmed that patients with methylated DCR1
tumors did not significantly benefit from CAPIRI treatment over CAP
treatment (median PFS of 267 vs 203 days for CAPIRI vs CAP, respec-
tively; HR=0.9 (95%CI 0.6-1.4, p=0.5; figure 2.3B)), whereas patients
with unmethylated DCR1 tumors did (median PFS of 261 vs 195 days
for CAPIRI vs CAP, respectively; HR=0.5 (95%CI 0.3-0.7, p=0.0008)
(figure 2.3C).

2.3.4 External validation set (FOCUS)

As an independent validation series, we analyzed 467 tumor samples from
another randomized controlled phase III clinical trial (FOCUS).12 In this
series, similar to the original FOCUS trial, PFS was significantly longer
for patients treated with FOLFIRI (n=136) compared to patients treated
with 5-FU alone (n=331) (median PFS of 272 vs 231 days for CAPIRI
vs CAP, respectively; HR=0.8 (95%CI 0.6-1.0, p=0.02); figure 2.4A).

DCR1 was methylated in 225 out of 467 (48%) tumors. Multivariate
analysis revealed that there was no significant interaction between treat-
ment arm and DCR1 methylation status (p=0.3). Indeed, Kaplan-Meyer
analyses revealed that patients with methylated or unmethylated DCR1
had a similar effect size from FOLFIRI treatment over 5-FU treatment
(methylated DCR1: median PFS of 283 vs 225 days for FOLFIRI vs 5-FU,
respectively; HR=0.7 (95%CI 0.5-0.9, p=0.01); figure 3C; unmethylated
DCR1: median PFS of 253 vs 235 days for FOLFIRI vs 5-FU, respectively;
HR=0.8 (95%CI 0.6-1.2, p=0.4) (figure 2.4B)).

2.3.5 Methylation of DCR1 is associated to de-

creased gene expression

The relation between DCR1 promoter hypermethylation and gene expres-
sion was investigated in vitro in a panel of 13 CRC cell lines. Ten out of 13
CRC cell lines were fully methylated for DCR1 and showed low or absent
gene expression. The other three CRC cell lines were hemi-methylated
and showed clearly higher gene expression levels (figure 2.5A). Treatment
of two CRC cell lines, HCT116 and Colo205, with the demethylating
agent DAC resulted in increased DCR1 expression (p=0.005 and p=0.08,
respectively; figure 2.5B). In addition, data from The Cancer Genome At-
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Figure 2.3: CAIRO validation set: Progression-free survival in
metastatic CRC cancer patients treated in first-line with CAP (blue
line) or CAPIRI (red line) in (A) all patients from the CAIRO val-
idation set, in (B) patients with methylated tumor DCR1 or in (C)
patients with unmethylated tumor DCR1. 95% confidence interval of
the survival probability is shown by blue and red shades. HR=Hazard
Ratio (CAPIRI versus CAP)
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Figure 2.4: FOCUS validation set: Progression-free survival in
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idation set, in (B) patients with methylated tumor DCR1 or in (C)
patients with unmethylated tumor DCR1. 95% confidence interval of
the survival probability is shown by blue and red shades. HR=Hazard
Ratio (FOLFIRI versus 5-FU)
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las (TCGA) database (http://cancergenome.nih.gov), including 223 CRC
tumors, confirmed a negative correlation between DCR1 DNA methyla-
tion and DCR1 mRNA expression (Pearson correlation of -0.4, p=3.4E-9;
figure 2.5B).

2.4 Discussion

In the present study we used a candidate gene approach to identify methy-
lation markers for response to treatment with irinotecan-based therapy.
We first made a selection of candidate genes based on in vitro findings
on their function in relation to the mode of action of irinotecan, i.e.
topoisomerase inhibition. We next tested for correlation of the methyla-
tion status of the candidate genes and PFS after treatment with CAPIRI
therapy of metastatic CRC patients participating to the phase III CAIRO
trial, [208] which identified DCR1 as a candidate marker. Because pa-
tients treated with CAP alone were used as a control group, this analysis
showed DCR1 methylation as a potential negative predictive marker for
response to irinotecan-based therapy. The initial finding in the discov-
ery set could be confirmed in a second series of patients from the same
CAIRO study, which indicated that the initial finding was not a stochastic
statistical finding. However, validation in a second, independent series of
metastatic CRC patients from the phase III FOCUS trial, [237] treated
with first-line FOLFIRI or 5-FU alone, did not confirm the negative pre-
dictive value of DCR1 methylation status to irinotecan-based therapy.

Developing predictive biomarkers that reach the phase of introduction
into clinical practice has proven to be highly challenging. Literature is
full of proof of concept publications on potential biomarkers, but in most
instances no further validation follows. The current study was carefully
designed in order to overcome most common pitfalls in biomarker discov-
ery [243,244]; i.e. a strong biological rationale existed for the preselected
candidate genes, and extensive evaluation (discovery, internal validation
and external validation) was performed in a prospective-retrospective de-
sign [245] on a total of 818 archival tumor samples derived from two
similar well-conducted phase III randomized clinical trials, providing the
highest quality of clinical annotation. [208,237] In addition, both clinical
trials included a control group (i.e. CAP as control group for CAPIRI and
5-FU as control group for FOLFIRI), which is required to distinguish pre-
dictive from prognostic markers. Furthermore, biomarker independence
was tested by including potential confounding factors in the statistical
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Figure 2.5: DCR1 methylation and mRNA expression levels A. DCR1
mRNA expression analysis in CRC cell lines by RT-PCR. DCR1 DNA
methylation percentage as measured by qMSP (M%) is indicated be-
low each cell line. Quantifications represent mean expression values
from three independent experiments. B. DCR1 mRNA expression
analysis by RT-PCR of HCT116 (left panel) and Colo205 (right panel)
with and without DAC treatment (p=0.005 and p=0.08, respectively).
Scatter plot including a linear regression line and 95% confdence in-
terval, showing the correlation of DCR1 methylation levels and DCR1
mRNA expression in 223 CRC tissues from TCGA
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models. Nonetheless, after initial validation in a second subsample of
the CAIRO study, we were not able to validate the negative predictive
value of DCR1 methylation for irinotecan-based therapy in the indepen-
dent patient series from FOCUS. A lack of correlation between DCR1
methylation and DCR1 gene expression could be one of the reasons why
we were not able to validate DCR1 methylation as a marker for response
to irinotecan-based therapy. However, our cell-line experiments as well
as analysis of a large series from the TCGA database did show a correla-
tion between DCR1 DNA methylation and gene expression silencing. All
this data together obviously raised the question whether DCR1 methy-
lation should simply be discarded as a potential biomarker for response
to irinotecan-based therapy, or whether our findings can be explained
otherwise.

The two trials for instance, while they show substantial resemblances
at first glance differ in a number of features related to inclusion (e.g.
the performance scores leading to differences in patient characteristics)
and treatment (e.g. different backbone treatment; CAP versus 5-FU).
In addition, potential differences in the collection and storage of material
may affect the results of analytical procedures. However, one could argue
that a predictive biomarker of clinical value should be robust enough to
cope with these variations. On the other hand, it is well known that
standardization in sample handling and processing is critical also in the
field of mRNA profiling and NGS. [246, 247]

The current study has some limitations. For example, measurements
were performed on samples from the primary tumor, while patients were
treated for their metastases, which provokes the question whether intra
tumor heterogeneity could play a role. Although metastases can acquire
additional genomic alterations, they keep most alterations present in the
primary tumor. [224, 225] As DNA methylation is usually an early event
in colorectal carcinogenesis, this is likely to be the case here as well.
[226] Another limitation of the current study is that DCR1 methylation
analyses were performed with identical primers but with different reagents
in different laboratories for the three study cohorts. This could have
introduced variability in test results. The proportion of patients having
a positive test result was slightly different for the three cohorts indeed
(39% in the discovery set, 53% in the internal validation set and 48%
in the external validation set). However, because the predictive value of
DCR1 methylation with regard to irinotecan-based therapy showed similar
results in the two cohorts with largest relative difference in prevalence of
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methylation (39% vs 53%), this variability is not likely to be the cause of
the inability to validate DCR1 methylation as a predictive biomarker.

In conclusion, the present study revealed DCR1 methylation as a neg-
ative predictive marker for irinotecan-based therapy in metastatic colorec-
tal cancer in both a discovery and an initial validation set, which could
not be confirmed in an external validation data set. The present study
highlights the importance of extensive evaluation of potential biomarkers.
It also shows the complexity and extensiveness of systematic evaluation
of a potential biomarker in order to generate more than just a proof of
concept, and that a well-designed study is not a guarantee of success.
Improvements in multi-team collaborations and in organizing data acqui-
sition and biobanking in clinical trials will be necessary for efficient and
successful discovery of predictive biomarkers in the future.
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vival in glioblastoma patients receiving chemoradiotherapy with
temozolomide
Geert Trooskens, Annika Malmstroem, Martin Hallbeck, Peter Soderkvist,
Greg Jones, Leander Van Neste, Wim Van Criekinge [Submitted]

3.1 Abstract

Glioblastoma multiforme (GBM) is the highest-grade astrocytoma and
the most common and most aggressive form of brain cancer. Epigenetic
silencing of MGMT is associated with longer overall survival in patients
with GBM who receive radiotherapy (RT) combined with temozolomide
(TMZ) chemotherapy. Methylation-specific PCR (MSP), a PCR-based
technique that can sensitively detect methylated molecules in a back-
ground of unmethylated DNA is commonly used to determine the epige-
netic status of the MGMT promoter. The purpose of this study was to
investigate if next-generation sequencing (NGS) can be used to draw a
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more detailed picture of the methylation profile compared to MSP, allow-
ing more accurate assessment of the heterogeneity of methylation, both
inter- and intra-allele. We show that NGS enhances the prognostic value
of MGMT promoter methylation, offering an interesting alternative to
MSP.

3.2 Introduction

Over 14.000 brain cancer-related deaths, or 2.4% of all cancer-related
deaths, are reported per year in the US [248]. Glioblastoma multiforme
(GBM) is the highest-grade astrocytoma and the most common and most
aggressive form of brain cancer. It can occur de novo or as a secondary
glioblastoma in 5 % of the cases [249]. GBM constitutes 30% of all brain
tumors and patients have a 5-year survival rate lower than 17% [248].
In normal cells the O-6-methylguanine-DNA methyltransferase gene (MGMT)
is responsible for repair of DNA damage caused by ionizing radiation, or-
ganic cyclic compounds and oxidative stress through DNA de-alkylation
[250]. The MGMT protein removes alkyl groups from the O6-position of
guanine by an irreversible transfer of the alkyl group to a cysteine residue
at its active site. The original guanine nucleotide is thereby restored and
the alkylated MGMT protein send to proteasome-mediated degradation.
Thus, the amount of MGMT proteins in a cell correlates directly with the
cells ability to repair DNA damage [251–253] . Epigenetic silencing of
MGMT by DNA methylation has been observed in various tumors [254].
When MGMT is silenced, patients showed an increased risk for developing
Colorectal Cancer. [255]. Interestingly, epigenetic silencing of MGMT has
been associated with longer overall survival in patients with GBM who re-
ceive radiotherapy (RT) combined with temozolomide (TMZ) chemother-
apy. [61, 256]. Approximately 30% to 45% of the patients with gliomas
have a methylated MGMT promoter serving as a favorable prognostic
factor for chemoradiotherapy [62, 257]. The MGMT methylation sta-
tus can be combined with gene expression and genomic mutations to
enhance the prognostic test for GBM patients receiving RT with TMZ
further. [258, 259].
With the increased utilization of next-generation sequencing (NGS), mainly
in research settings, the question arises whether this technique offers ben-
efits over PCR-based approaches. Methylation-specific PCR (MSP), a
PCR-based technique that can sensitively detect methylated molecules in
a background of unmethylated DNA [167], is commonly used to determine
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DNA methylation. However, MSP typically results in a binary (methy-
lated or unmethylated) call of the sample, lacking single-base methyla-
tion patterns. Earlier studies showed great variability in determining the
methylation status of the MGMT promoter. Pyrosequencing and Sanger
sequencing outperformed other techniques, including MSP as predictor
of prognosis in GBM patients [260–262].
The purpose of this study was to investigate if ultra deep NGS (bisul-
phite treatment, target amplfication, followed by NGS) can be used to
draw a more detailed picture of the methylation profile, allowing more
accurate assessment of the heterogeneity of methylation, both inter- and
intra-allele. This increased accuracy can potentially improve the prognos-
tic value of MGMT promoter methylation. With the decreasing cost of
NGS [263], this technique could be a valuable alternative to MSP, leading
to increased prognostic value at the same relatively low cost.

3.3 Results

3.3.1 MSP

An average of 2986 ng of DNA (median: 2114 ng) was extracted from
the samples. For 26 out of the 72 (36%) samples that received RT in
combination with TMZ, the DNA yield, measured as ACTB copy num-
bers, was too low to assign an unambiguous methylation call using MSP
according to Vlassenbroeck et al. [264]. Over the total cohort of 121
samples 40% lacked sufficient ACTB copy numbers.

3.3.2 Deep Sequencing

An average sample coverage of 659.000 reads was obtained. On aver-
age, 29% of the reads could be unambiguously mapped and passed the
quality filter. The low mapping percentage is due to the strict quality
filter applied (no mismatches over the entire amplicon) and a consider-
able amount of the synthetic control gene spiked in each sample. Two
samples showed a significantly (<10000) lower amount of mapped reads
(Sample 24020; 2765 reads, sample 24174; 640 reads). Both of them did
not receive the RT + TMZ treatment thus were excluded in the overall
survival analysis. The average overall methylation level was 24.1%.
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3.3.3 Correlation between NGS and MSP Results

The spearman correlation between the MSP ratio and the observed methy-
lation frequency of each individual CpG was calculated and plotted on the
genomic coordinates (Figure 3.1 D). The highest correlation was found
for the three middle C ‘s in the forward primer (po. Interestingly, only the
CpG located at the most 3 ‘-end of the reverse primer correlated well with
the MSP ratio, while the methylation frequency of the remaining two C ‘s
in the reverse primer seemed to have limited influence on the MSP ratio.
In summary, this indicates that the methylation frequency of only a few
C‘s are really important in driving the MSP result, most notably the four
most 3‘-CpG ‘s in the forward primer and the most 3‘-CpG in the reverse
primer.

3.3.4 Comparing Next Generation Sequencing and

MSP as a Prognostic Marker for Overall

Survival

By using ultra deep bisulphite sequencing we identified two CpGs with
a higher prognostic value for the 72 GBM patients receiving RT and
TMZ (CPG44 with P=2.0e-05 by the log-rank test, hazard ratio 0.31;
95% confidence interval, 0.17 to 0.54 and CpG61 with P=2.9e-05 by the
log-rank test, hazard ratio 0.31; 95% confidence interval, 0.18 to 0.55 )
compared to MSP (P=3.8e-03 by the log-rank test, hazard ratio 0.40;
95% confidence interval, 0.21 to 0.76). The proportional hazard model
containing the CpG44, CpG61 and Age Variable outperformed the MSP
assay and the single CpG methylation values (P=3.4e-07 by the log-rank
test, hazard ratio 0.20; 95% confidence interval, 0.10 to 0.39). The
ROC curve analysis for one year, two year and three year overall survival
generated similar results: (1 Year OS AUCs: 0.60 MSP, 0.64 CpG44,
0.66 CpG61; 2 Year OS AUCs: 0.75 MSP, 0.78 CpG44, 0.80 CpG61; 3
Year OS AUCs: 0.68 MSP, 0.84 CpG44, 0.81 CpG61)

Survival analysis using proportional regression model of NGS
methylation data

A Cox proportional Hazard model containing the all the individual CpG
methylation fraction and age variables was generated to predict the Over-
all Survival in the patient cohort. The model outperformed the individual
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Figure 3.1: Overview of the BS Sequencing amplicon, The X-axis rep-
resent the genomic region sequenced in the MGMT gene promoter re-
gion: (A) The Sequencing amplicon. The MSP primer pair is colored
blue, methylation prone cytosines in a CpG context are represented
in red. (B) Survival ROC statistics: The Area under the curve scores
for 1,2 and 3 year overall survival in GBM patients receiving RT +
TMZ plotted for each individual CpG. A clear peak can be seen over
the three years in AUC value for the CpGs at position 44 and 61 (C)
The Y-axis represents -log(10) of the p-value for each individual CpG
for overall survival in GBM patients receiving RT + TMZ. Higher
peaks correspond to lower P-values. A difference in p-values between
the CpG methylation ratios of several orders of magnitude was obe-
served. (D) Spearman correlation between the MSP MGMT ratio and
the individual CpG methylation levels.
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Table 1
Variable 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

MSP 0.644444444 0.644444444 0.568181818 0.674418605 0.615384615 0.657894737 0.654654655 0.654654655 0.639705882 0.638694639 0.653763441 0.592292089 0.598440546 0.598440546 0.615384615 0.615384615 0.65973535 0.640151515 0.643274854 0.678571429 0.665314402 0.725446429 0.725446429 0.748251748 0.748251748 0.748251748 0.748251748 0.748251748 0.748251748 0.748251748 0.720588235 0.680519481 0.680519481 0.680519481 0.680519481 0.680519481

Model 0.816901408 0.816901408 0.85 0.879227053 0.6328125 0.615520282 0.65483871 0.63338301 0.741807349 0.728181818 0.790133779 0.753246753 0.752950433 0.752950433 0.756756757 0.766203704 0.832415421 0.803528468 0.818723404 0.829636202 0.825454545 0.830188679 0.830188679 0.840641711 0.840641711 0.861607143 0.861607143 0.861607143 0.861607143 0.861988304 0.848522167 0.839634941 0.839634941 0.839634941 0.839634941 0.839634941

CpG_44 0.676056338 0.676056338 0.507142857 0.579710145 0.634765625 0.633156966 0.593548387 0.561847988 0.658391261 0.651818182 0.677257525 0.637987013 0.61054288 0.61054288 0.615444015 0.631944444 0.711250983 0.690457097 0.714893617 0.746228926 0.742727273 0.747765641 0.747765641 0.781818182 0.781818182 0.816964286 0.816964286 0.816964286 0.816964286 0.866666667 0.850985222 0.839634941 0.839634941 0.839634941 0.839634941 0.839634941
CpG_61 0.718309859 0.718309859 0.642857143 0.685990338 0.654296875 0.657848325 0.635483871 0.597615499 0.67428004 0.657272727 0.703177258 0.663149351 0.659323367 0.659323367 0.667181467 0.68441358 0.69866247 0.703287891 0.732765957 0.776397516 0.765454545 0.786494538 0.786494538 0.796791444 0.796791444 0.824776786 0.824776786 0.824776786 0.824776786 0.840935673 0.82635468 0.807040417 0.807040417 0.807040417 0.807040417 0.807040417
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Figure 3.2: Overview of performance for predicting Overall Survival
over time for the MSP assay, The proportional hazard model, CPG44
and CPG61. (A) Area under the ROC curve over time for the four
variables. (B) Receiver Operating Characteristic (ROC) curve for
predicting overall one year survival, two year survival and three year
survival
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Figure 3.3: KaplanMeier Estimates of Overall Survival, According to:
(A) The Proportional hazard model (P=3.45e-07) (B) MGMT Pro-
moter Methylation Status measured by MSP (P=3.8e-03), (C) The
Methylation Status of CpG 61 (P=2.9e-05), (D) The Methylation Sta-
tus of CpG 44 (P=2.0e-05). The colored surface around the curves
indicate the 95% upper and lower confidence interval. P values were
calculated using the log-rank test. The three variables that are cal-
culated from NGS data have a better prognostic value then the MSP
assay. The proportional hazard Model that was build on all the indi-
vidual CpG values does not outperform the most significant individual
CpG (CpG number 44)

.
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CpG methylation values and the MSP assay at the different timepoints
(1 Year OS AUCs: 0.60 MSP, 0.75 Model, 0.64 CpG44, 0.66 CpG61; 2
Year OS AUCs: 0.75 MSP, 0.84 Model, 0.78 CpG44, 0.80 CpG61; 3 Year
OS AUCs: 0.68 MSP, 0.84 Model, 0.84 CpG44, 0.81 CpG61) (Figure 3.3
A)

3.4 Discussion

While MSP is a technique with proven usefulness and utility to detect
DNA methylation of MGMT in GBM tumor specimen, our data sug-
gests that ultra deep NGS sequencing paints a broader picture of the
DNA methylation landscape in the MGMT promoter region, providing us
with high resolution quantitative measurements to increase the prognos-
tic value for chemoradiotherapy with TMZ in GBM patients.
A challenge when comparing different techniques to measure methyla-
tion levels lies in defining a threshold to classify a sample as methy-
lated/unmethylated. The Gel Electrophoresis-Based MSP assay [62] has
an inherent binary cutoff by visualising the actual PCR product. The real-
time PCR assay [264] provides us with a continuous methylation ratio
variable if the DNA copy numbers of the control gene are high enough.
The ultra-deep sequencing assay generates a quantitative methylation
fraction for every sequenced position in the region of interest. We chose
the optimal thresholds for both the MSP ratio and the individual CpG
methylation levels based on the logrank test. A disadvantage is the di-
rect influence of the cutoff on the proportional amount of patients in each
group. The fraction of patients that will be classified as positive is not
only a statistical question, but is part of a larger medical decision-making
process based on different factors such as overall life quality, cost and the
availability of alternative treatments [265]. Therefore we also compared
the MSP assay to NGS with threshold independent measurements (ROC
analysis) after defined periods. Regardless of the threshold, we found
that some CpGs have a higher prognostic value then others within the
MGMT promoter.The two most significant CpGs outperformed the MSP
assay both with the treshold-dependent (logrank test) method and the
treshold-independent time-dependent (ROC analysis) approach.
A relatively large portion of the MSP samples lacked a sufficient amount
of ACTB gene copy numbers to assign an unambiguous methylation call
using MSP, this could be due to sample handling, resulting in a subop-
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timal amount of sample DNA in the PCR reaction. Interestingly, this
limitations was not observed in the NGS data showing adequate coverage
for all samples that received the combinational chemoradiotherapy.
A proportional hazard model incorporating the deep sequencing measure-
ments with the patients ’age at diagnosis’ variable enhances the prog-
nostic accuracy further. Adding clinical variables to a biomarker test has
been shown to notably improve the precision of the test [266]. However,
caution should be exercised for overfitting when generating a model from
a relatively small dataset (72 samples).

Correlation with MSP suggests that the calculated ratio is a measure-
ment of the averages of the individual methylation levels, with the 3‘end
CpGs of the primers being the most influential ones showing the highest
correlation. Indeed, when these CpGs are methylated, a high ratio will
be obtained with MSP. However, when one or both CpGs have a low
methylation frequency, it will affect primer binding. The main limitations
of this study was the relatively small amount of patients in this cohort
that received cobinational chemoradiotherapy with TMZ (72 samples).
In order to use sequencing as an alternative for MSP, the coverage depth
needs to be adequate to assure that the alleles with the low frequency‘s
can be observed when they are present in the sample while still remaining
economically feasible.

3.5 Conclusion

Ultradeep sequencing allows for more accurate high resolution quanti-
tative measurements of individual CpG methylation levels compared to
methylation specific PCR. We found two CpGs that outperformed the
current MSP test in prognostic value for GBM patients receiving combi-
national RT with TMZ treatment. A model that combines methylation
levels from NGS with clinical variables shows potential to increase the
accuracy of the test further. In addition, a large portion of the MSP
samples lacked a sufficient amount of ACTB copy numbers to assign
an unambiguous methylation call using MSP, while this limitations was
not seen in the NGS data showing adequate coverage for all samples.
As next-generation sequencing becomes a routine part of health care, it
shows promise as a more sensitive, accurate and reliable procedure to de-
tect the MGMT promoter methylation status in glioblastoma multiforme
patients receiving combinational chemoradiotherapy with temozolomide
treatment
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3.6 Materials and Methods

Samples

A total of 112 GBM samples from the Linköping University (Sweden)
were analyzed using MSP and NGS. The majority of the samples were
collected between 2008 and 2012, however, 10 were older, dating back
to 2003. 72 received RT combined with TMZ treatment.

Sample Preparation

A total of four ten-micron formalin-fixed paraffin-embedded (FFPE) slides
were obtained from all patients. The tumor areas were separated from
benign tissue before DNA isolation using the phenol-chloroform method.
The DNA was bisulfite treated using the EZ DNA Methylation kit (Zymo
Research).

Direct, Real-Time MSP

MGMT and ACTB quantification was performed by real-time MSP as-
says. These consisted of parallel amplification/quantification processes
using specific primer and primer/detector pairs for each analyte using
the Amplifluor assay format on an ABI Prism 7900HT instrument (Ap-
plied Biosystems, Foster City, CA). The Amplifluor direct forward primers
are preceded by the detection elements (underlined). Sequence details for
both forward and re- verse primers are as follows: forward primer MGMT:
5 -TTCGACGTTCGTAGGTTTTCGC - 3 ; reverse primer MGMT: 5 -
CTCGAAACTACCACCGTCCCGA-3 ;
forward primer ACTB: 5 -AGGGAGTATATAGGTTGG GGAAGTT-3 ;
reverse primer ACTB: 5 -AACACACAATAACAAACACAAATTCAC-3 .
The MGMT target sequence is located on the sense strand of chromo-
some 10 between positions 131265515 and 131265629. ACTB target
sequence resides on the anti-sense strand of chromosome 7 between po-
sitions 5571902 and 5571799 , based on version 37.2 of the NCBI human
genome. MSP reactions were performed using 1.5 µg of input DNA as
described previously [264] and ratios were calculated using the ACTB
control gene.
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Target Amplification and Sequencing

50 ng of all samples was used for target amplification. Flanking primes,
without CpGs were designed that span the entire region of the MSP
assay (5’-GGATATGTTGGGATAGTT-3’, 5’-GCCTACAAAACCACTC-3’,
Integrated DNA Technologies, Leuven, Belgium) covering 19 CpGs (3.1).
Each bisulfite deep-sequencing amplicon was generated using the Fast-
Start High Fidelity PCR System (Roche) in a 50 µl reaction and a touch-
down PCR at annealing temperatures from 60◦C and 55◦C (five cycles
at each temperature) followed by 30 cycles at an annealing temperature
of 52◦C. Reactions were performed in the GENEAMP PCR system 9700
(Applied Biosystems). After amplification each amplicon was qualified for
the expected length using capilair electrophoresis with the Caliper Labchip
GX (HT1000 DNA chip). Amplicons were quantified with a PicoGreen as-
say (Quant-iT PicoGreen dsDNA Assay Kit, Invitrogen-Molecular Probes,
P7589) after column purification (High Pure PCR Cleanup Micro Kit,
Roche). Next, a pooled and indexed library was prepared using the TruSeq
DNA Sample Prep Kit (Illumina), starting with 200 ng of DNA for the end
repair reaction. After library preparation, all samples containing adaptor
and index sequences were quantified and an equimolar pool was gener-
ated. Samples and the artificial amplicon were sequenced on the MiSeq in
5 runs using 24 different indexes. The MiSeq v2 Reagent Kit (Illumina),
was used for paired-end sequencing with two times 251 cycles.

Mapping and Analysis

The paired end 251bp sequence reads were trimmed and aligned using the
Smith-Waterman algorithm. No mismatches were allowed (in the non-
CpGs) . We used the human genome build GRCh37/hg19 as a reference.
A methylation percentage was obtained for every CpG within the target
amplicon in all samples.

Statistical analysis

MSP ratio cutoffs and CpG methylation cutoffs were optimised based on
overall survival log-rank p-value. A Cox proportional-hazards model was
generated with the methylation values of the individual CpG’s and the
patients age variable. Overall survival curves for the MSP ratio, each
CpG methylation variable and the model were estimated by the Kaplan-
Meier (KM) technique and compared with use of the two-sided log-
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rank test [267]. An additional methylation cutoff-independent analysis
was performed: Time-dependent receiver operating characteristic (ROC)
curves and corresponding area under the ROC curve values were calcu-
lated from censored survival data using the KM method [268]. Statistical
analyses were performed with R, a free software environment available at
http://www.r-project.org/.
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4

Conclusions and
Further Research

4.1 Conclusions

Epigenetics is a fine-tuning mechanism that allows the biological com-
plexity needed in cells of higher organisms to differentiate, specialise and
quickly adapt to the environment. It is now common knowledge that
when epigenetics goes astray, it can trigger a wide variety of illnesses, be-
haviors, and other health indicators, including almost all types of cancer,
cognitive dysfunction, respiratory, cardiovascular, reproductive, autoim-
mune, and neurobehavioral illnesses.
Promising methodologies have been developed in the last decades to ac-
curately detect epigenetic changes. This has led to the discovery of new
epigenetic biomarkers that can diagnose diseases in an early stage and
predict the outcome of specific treatments.
During this PhD, the focus shifted from genome-wide epigenetic biomarker
discovery to applying the newly discovered biomarkers as a diagnostic,
prognostic or predictive test for patients, particularly focused on cancer.
The ultimate goal is to provide personalized treatments, allowing physi-
cians to respond earlier to a disease and reducing ineffective treatments,
cutting healthcare costs and improving the quality of live for the patients.
The following are the main research contributions of this dissertation:
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4.1.1 Epigenomewide DNA-Methylation Profiling

Using Methyl-CpG Binding Domain Cap-

turing Based Ssequencing

We used methyl-CpG binding domain capturing based sequencing (MethylCap-
Seq) to uncover DNA methylation in a genome-wide manner. We ap-
plied this technique to 345 human samples from different tissues and
diseases and constructed a map of the human methylome by identifying
the methylation-prone regions. The map enables researchers to reduce
the comparison problem to a discrete amount of variables. This allowed
multiple research projects to look for disease and tissue specific DNA-
methylation markers.

4.1.2 Validation of Epigenetic Markers Using Bisul-

phite Sequencing Approaches and Methyla-

tion Specific PCR (MSP)

By optimizing and automating bisulphite primer design for PCR and se-
quencing purposes using a thermodynamic approach, we facilitated the
validation of epigenetic biomarkers by shortening the primer design pro-
cess and enhancing the primer quality.

4.1.3 WRN and DCR1 Promoter Methylation and

Their Response to Irinotecan in Colorectal

Cancer

DNA repair proteins such as the Werner syndrome RECQ helicase, WRN,
are promising biomarkers for predicting the response to genotoxic chemother-
apy. We attempted to validate previous studies that showed WRN pro-
moter hypermethylation predicted the response to irinotecan using an
independent sample set. We did not find a clear association between
aberrant WRN promoter hypermethylation and reduced WRN expression.
Moreover, in contrast to earlier studies we found an inverse correlation of
WRN promoter hypermethylation with survival in metastatic colorectal
cancer patients treated with irinotecan.

DCR1 promoter methylation was identified and initially validated as a
potential negative predictive biomarker for response to irinotecan-based
therapy, but external validation could not validate these findings. The
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results of both studies underline the importance of extensive clinical eval-
uation of candidate biomarkers. The fact that the follow-up studies could
not validate the initial results of the biomarkers shows the complexity and
extensiveness of a systematic biomarker evaluation. Most research today
stops at just a proof-of-concept. Improvements in multi-team collabora-
tions and in organizing data acquisition and biobanking in clinical trails
will be necessary for the discovery and validation of future biomarkers.

4.1.4 Sequencing Assay Predicting MGMT Methy-

lation and Overall Survival in Glioblastoma

Patients Receiving Chemoradiotherapy with

Temozolomide

Glioblastoma multiforme (GBM) is the highest-grade astrocytoma and
the most common and most aggressive form of brain cancer. Epigenetic
silencing of MGMT is associated with longer overall survival in patients
with GBM who receive radiotherapy (RT) combined with temozolomide
(TMZ) chemotherapy. Methylation-specific PCR (MSP), a PCR-based
technique that can sensitively detect methylated molecules in a back-
ground of unmethylated DNA is commonly used to determine the epige-
netic status of the MGMT promoter. Ultradeep sequencing enabled more
accurate high resolution quantitative measurements of individual CpG
methylation levels compared to MSP. We found two CpGs that outper-
formed the current MSP test in prognostic value for GBM patients re-
ceiving combinational RT with TMZ treatment. A model that combines
methylation levels from NGS with clinical variables shows potential to
increase the accuracy of the test further. In addition, a large portion of
the MSP samples lacked a sufficient amount of ACTB copy numbers to
assign an unambiguous methylation call using MSP, while this limitations
was not seen in the NGS data showing adequate coverage for all samples.
As next-generation sequencing becomes a routine part of health care, it
shows promise as a more sensitive, accurate and reliable procedure to de-
tect the MGMT promoter methylation status in glioblastoma multiforme
patients receiving combinational chemoradiotherapy with temozolomide
treatment.
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4.2 Future Research

In recent years, technologies and biomedical research have offered a wide
range of clinical applications for epigenetics. It is to be expected in the
next decade epigenetics will overcome the limitations of traditional genet-
ics and genomics by the development of new assays based on epigenetic
biomarkers and new epigenetic drugs able to control the function of our
genome. Epigenetics can provide answers to some of the most pressing
unresolved questions in our understanding of personalized medicine. Epi-
genetic biomarkers serve in the dynamic study of diseases, and therefore,
epigenetic biomarkers will serve to predict the evolution of disease and to
monitor the effect of treatments on diseases. Specifically, aberrant DNA
methylation of genes serves as biomarkers for screening of epigenetic dis-
eases and many types of cancers through potentially noninvasive means
such as cheek swabs, urine and blood. This allows experts to closely mon-
itor their patients by repetitive measurements. The future of diagnosis
will involve more panels that consist of multiple biomarkers for screening
and prognosis of specific diseases including cancers. The panels may of-
fer more sensitive detection and accurate prognosis of diseases, as well as
the discovery of potential therapeutic targets. Many recent publications
describe development of biomarker screening panels for DNA methyla-
tion as well as other epigenetic markers, including miRNA, lncRNA, and
histone modifications. Some of them are already available as commercial
kits (Table 2.1). These can be combined in a model with other clinical
variables to improve the test performance even further [266].

The integration of classical epigenetics methods with NGS technolo-
gies has improved current assays (part 3, chapter 3) and opened up re-
search avenues that scientists could only dream about a couple of years
ago. The capacity to study epigenetic modifications on a genome-wide
scale is unparalleled and has given researchers the means to answer re-
search questions about the deeper molecular mechanisms of epigenetic
regulation, the overall epigenetic profile within tissues and diseases (part
2, chapter 1), the changes in epigenetic information over time, environ-
mental exposures on a genome-wide scale and much more.

New technology developments are on the horizon (and in some cases
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already available as research tools) that include single-molecule and single-
cell assays for DNA methylation, histone modification, chromosomal pro-
teins, ncRNAs, and chromatin structure. Advances in sequencing tech-
nology are enabling the detection of modified DNA bases without bisul-
fite conversion. These third-generation sequencing technologies allow for
the combined analysis of genetic and epigenetic features on a single run
within a single day [269]. It is without question that these new technolo-
gies currently in development will have an even more profound impact
on clinical epigenetics research, as they will circumvent the limitations of
tissue availability and remove the problems of PCR amplification biases
by allowing single cell measurements and full length, single molecule RNA
and DNA detection .

This thesis highlights the importance of the extensive evaluation of
potential biomarkers. It also shows the difficulties evaluating and vali-
dating potential biomarkers in a clinical setting in order to generate more
than just a proof-of-concept. The whole process of developing robust
biomarkers that reach the phase of introduction into clinical practice has
proven to be highly challenging (e.g. part 3). Statistical overfitting,
inter-lab variability, different sample handling and non-optimal patient
data acquisition are just a few of the possible culprits that cause a val-
idation study to fail. Literature is full of proof of concept publications
on potential biomarkers, but for most papers, no follow-up validation is
performed.

While the availability of validated protocols and easy-to-use kits has
facilitated the incorporation of epigenetics research into clinical research
and diagnostics, some obstacles do persist: A well known issue is the limi-
tation by sample amount requirements for some of the epigenetics assays.
Typically, tissue samples availability is limited for clinical research, and
much smaller than what is often required as starting materials for most of
the well established protocols. This limitation forces clinical researchers
to work with more difficult protocols and drives the development of new
methods that require less input material. A second critical point is the
standardization in sample handling and processing to reproduce results
at different time point, between different operators, at different locations
and in different countries. [246, 247] Storage of clinical samples can also
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Figure 4.1: U.S. epigenetics market, by product, 2012-2020, (USD
Million, according to Transparency Market Research)

be an issue, especially when fragile molecules such as RNAs need to be
assayed. Improvements in multi-team collaborations and in organizing
data acquisition and biobanking in clinical trials will be necessary for ef-
ficient and successful discovery of predictive biomarkers in the future.

In the light of the increasing knowledge on the role epigenetic fac-
tors play in disease, it is now becoming clear that epigenetic mechanisms
could be promising therapeutic targets. Particularly taking into consid-
eration that many of these epigenetic factors are potentially reversible.
Epigenetic drugs could potentially help reverse abnormal gene expression
back to pre-disease levels.
The global market for epigenetic drugs and diagnostics will be worth an
estimated $5.7 billion by 2018 and is expected to reach $16.31 billion by
2022 (according to Transparency Market Research). Currently, epigenetic
drugs have primarily been studied for their use in treating cancer. The
increasing funding efforts have opened up new possibilities for researchers
to pursue the use in other diseases like Alzheimer and asthma.

If we are to address the current increasing burden to national and
private health-care systems from diseases such as metabolic diseases,
obesity, cancer and neurological disorders, we need to develop a wide
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array of biomarkers (diagnostic, prognostic, predictive, and for monitor-
ing) which will contribute to improving precision medicine and helping
rationalize health-care funding and resources. In the not too distant fu-
ture, an amplitude of epigenetic biomarkers used in clinical diagnostics
will not only help to boost the health of people, but also enhance the
economic sustainability of health-care systems by avoiding side-effects,
optimizing dosage and minimizing over-treatment.
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Krista Fischer, Tõnu Esko, Ida Surakka, Linda Broer, Dale R
Nyholt, Irene Mateo Leach, Perttu Salo, Sara Hägg, Mary K
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