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Part I

PROLOGUE

In this introductory part we describe our research problems and the region
within the realms of mathematics and mathematical physics where they are
situated.





I NTRODUCT ION

We first give an overview of the research questions that will be addressed and the context
they appear in. After this follows an exposition of the approach followed in tackling these
problems.

research questions

We begin our story by introducing a first protagonist in the form of the so-called Lapla-
cian or Laplace operator. Named after Pierre-Simon de Laplace and denoted by ∆, on
n-dimensional Euclidean space this second-order differential operator is defined as the
divergence of the gradient. In a Cartesian coordinate system x = (x1, x2, . . . , xn) ∈ Rn,
we thus have

∆ = 〈∇, ∇〉 =

n∑
j=1

∂2

∂x2
j
,

where ∇ = (∂x1 , . . . , ∂xn) contains the partial derivatives ∂x j = ∂/∂x j and 〈x, y〉 =
x1y1 + · · · + xnyn is the standard inner product on Rn.
The Laplace operator is used in differential equations modeling all sorts of pheno-

mena in nature, and thus plays an important role in areas such as electromagnetism,
wave theory, and (quantum) mechanics. Furthermore, the Laplacian is at the core of
harmonic analysis, with the solid harmonics being the homogeneous polynomials in
the kernel of ∆. The restriction of these polynomials to the surface of the sphere then
yields the spherical harmonics, which will reappear later in our story. For the purposes
at hand, the interaction of ∆ with other operators is mainly of interest, so we assume
the function space on which is being acted to be sufficiently well-behaved — at least
twice-differentiable.
We elaborate upon the algebraic structure in which ∆ is embedded. In this setting, a

first research question will arise involving the well-known Fourier transform. Let |x | =√
〈x, x〉 denote the Euclidean norm of a vector x ∈ Rn. The squared norm |x |2 = 〈x, x〉

is the natural partner for the Laplace operator ∆ to generate a realization of the Lie
algebra sl(2). Indeed, the following commutation relations are readily verified to hold:[

|x |2, −∆
]
= 4(E + n

2 ) ,
[
E + n

2, |x |
2
]
= 2|x |2 ,

[
E + n

2, −∆
]
= 2∆ ,

where the Lie bracket is the commutator [X, Y ] = XY −YX , and E = 〈x, ∇〉 =
∑n

j=1 x j∂x j
is the so-called Euler operator, whichmeasures the degree of a homogeneous polynomial.
This algebraic structure leads to a natural decomposition of the spherical harmonics, in
the form of Howe duality [13, 14].
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The starting point for Chapter 1 is the observation that the objects −∆ and |x |2 are
linked also as conjugate quantities in the sense that they are Fourier transform duals.
Over Rn, the Fourier transform F is defined as the integral transform

(F f )(y)=
1

(2π)n/2

∫
Rn

ei〈x, y〉 f (x) dx .

The appropriate function space is now given by the space of rapidly decreasing functions
S(Rn). Related to the algebraic structure of ∆ and |x |2 is the following description of
the Fourier transform as an operator exponential

F = ei π2 H , H =
1
2
(
− ∆x + |x |2 − n

)
.

This expression for F is an immediate consequence of the action on a basis of mutual
eigenfunctions of both the Fourier transform and the operator H. These eigenfunctions
can explicitly be given in terms of spherical harmonics and Laguerre polynomials. For
the one-dimensional case, the Laguerre polynomials reduce to the well-known Hermite
polynomials. Both Laguerre and Hermite polynomials are classical families of orthogo-
nal polynomials classified in the Askey-scheme of hypergeometric orthogonal polyno-
mials [18]. The latter is a way of organizing orthogonal polynomials of hypergeometric
type which satisfy besides the standard three-terms recurrence relation, as all orthogo-
nal polynomials do, also a second order differential (continuous) or difference (discrete)
equation. Later on in our journey, we will encounter also polynomials in the discrete side
of the Askey-scheme.
The duality of −∆ and |x |2 is evident from F interchanging differentiation and coor-

dinate multiplication as follows

F ◦ ∂x j = −i yj ◦ F
F ◦ x j = −i ∂yj ◦ F

(j = 1, . . . , n).

This property uniquely characterizes the Fourier transform, though from the point of
view of ∆, a natural follow-up question now arises: Is the Fourier transform unique
in linking the naturally coupled quantities ∆ and |x |2? As the answer turns out to be
negative, can we suitably restrict the set of all operators having this property to a select
class of interesting ones? This forms the starting point of the matter covered in the first
part of Chapter 1.
In a second part of Chapter 1, we address the same question for the related first-order

Dirac operator. This square root of the Laplacian was first considered by the theoretical
physicist Paul Dirac to make the Schrödinger equation of quantummechanics consistent
with Einstein’s theory of relativity. This led to the formulation of the celebrated Dirac
equation, which describes the behavior of spin- 1

2 particles such as electrons and quarks
that make up what is classically known as matter. The Dirac equation predicted the
existence of the previously unsuspected and unobserved antimatter, which was later
experimentally confirmed. We will get back to the Dirac equation in Chapter 3.
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The algebraic structure governing thematrices which Dirac used to construct the equa-
tion named after him, is but one realization of what is more generally called a Clifford
algebra [11]. In this context, the Fourier dual of the Dirac operator D is the vector vari-
able x satisfying x2 = |x |2. Together, D and x satisfy the defining relations of the Lie
superalgebra osp(1|2):

[{D, x}, D] = −2D, [{D, x}, x] = 2x ,

where now {X, Y } = XY + YX is the anticommutator. This superalgebra contains as its
even part the sl(2) Lie algebra generated by −∆ and |x |2.
The objective thus reads: Determine the Fourier-like operators intertwining the natu-

rally coupled quantities ∆ and |x |2 on the one hand, and D and x on the other hand.
Both for the Laplace and the Dirac case, the question regarding uniqueness was trans-
lated to one concerning symmetries, by means of the operator exponential formulation
ofF . In general, a symmetry is understood in the sense of an operation leaving an object
unchanged. For an operator T which itself acts on objects, by symmetries we mean op-
erators commuting with T . In the setting of superalgebras, it is natural to consider also
operators anticommuting with T . The composition of two symmetries of an operator T
is of course again a symmetry, so we have an algebra: the symmetry algebra of T . This
theme of symmetries will lead us to the next part of our journey.

After the project pertaining to Fourier transforms was finished, we set out with a new
aim in mind. To this end, we were inspired by recent work on generalizations of the
Dirac and Laplace operator involving reflection groups. The so-called Dirac-Dunkl and
Laplace-Dunkl operator are obtained by replacing partial derivatives by deformations
thereof in the form of Dunkl operators [12, 22]. The latter are differential-difference
operators associated to a root system with a corresponding Weyl group of reflections.
The reflection terms in this deformation are accompanied by parameters which can be
set to zero to recover the regular partial derivatives. A precise definition of the Dunkl
operators is given in Chapter 2.
In recent work [9], a specific case of a Dirac-Dunkl operator in three dimensions

was considered, namely for the most straightforward root system, corresponding to the
abelian reflection group (Z2)3. Here, Z2 is the cyclic group of order 2. The symmetry
algebra of this Dirac operator was shown to be equivalent with (a central extensions
of) the so-called Bannai-Ito algebra [8, 23], which appeared as the algebraic structure
encoding the bispectral properties of the Bannai-Ito polynomials. The latter were first
proposed as a q → −1 limit of the q-Racah polynomials and shown to be the most
general orthogonal polynomial systems satisfying the Leonard duality property [6, 23].
In abstract form, the Bannai-Ito algebra is the associative algebra with three generators
K1, K2, K3 governed by the relations

{K1, K2} = K3 + ω3 , {K2, K3} = K1 + ω1 , {K3, K1} = K2 + ω2 ,

and scalars ω1, ω2, ω3. In the realization as symmetry algebra of the Dirac-Dunkl oper-
ator, these scalars depend on the Dunkl deformation parameters.
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When the Dunkl parameters are all set to zero, the (Z2)3 Dirac-Dunkl operator re-
duces to the regular three-dimensional Dirac operator on Euclidean space. It is a clas-
sical result that the latter is invariant under a realization of the angular momentum
algebra, the Lie algebra so(3). Indeed, when ω1 = ω2 = ω3 = 0 the Bannai-Ito algebra
is in fact equivalent to so(3) (or su(2)) supplemented with an involution. The study of
the symmetry algebra of generalizations of the Dirac operator thus provides a recipe to
obtain extensions of the angular momentum algebra so(3). For the Dunkl case, these
extensions are deformations including parameters, which reduce to the classical so(3)
algebra when the parameters are set to zero. When moving up to arbitrary dimension
n, the same holds true for the Lie algebra so(n) as the symmetry algebra of the Dirac
operator on Rn. A higher rank version of the Bannai-Ito was postulated in this manner
as the symmetry algebra of the (Z2)n Dirac-Dunkl operator [10].
We thus set out on our exploration for symmetries of a specific case of the Dirac-Dunkl

operator, namely for the root system of type An−1. The associatedWeyl group of this root
system is the symmetric group on n elements, denoted by Sn. The three-dimensional se-
tup then provides the toy model, being sufficiently far from trivial, yet inducing compu-
tations which remain somewhat manageable. The insights obtained here, led not only
to a systematic approach for the n-dimensional case, but also to a casting of our problem
into a bigger class of generalized Laplace and Dirac operators. To explain this relocation,
we will take a slight detour to the quantum-mechanical world.
The Fourier transform, the Laplace and the Dirac operator all play a prominent role in

the theory of quantum physics. One of themost importantmodels in quantummechanics
is that of the quantum harmonic oscillator. It is one of the few quantum-mechanical
systems where explicit expressions for the exact solution are known, and it forms a
sound approximation for more involved systems when near a stable equilibrium. For the
n-dimensional harmonic oscillator, the Hamiltonian corresponding to the total energy
of the system is given by

Ĥ =
1
2

n∑
j=1

p̂2
j +

1
2

n∑
j=1

x̂2
j ,

in units with mass, frequency and the reduced Planck constant ~ all equal to 1. When es-
tablishing a quantum mechanical analog of the classical harmonic oscillator, one has to
accommodate, in a mathematical framework, for quantum phenomena at small scales
and low energy levels. Experimental observations include objects having characteris-
tics of both particles and waves, the discrete nature of certain physical quantities, and
an inherent uncertainty as to the precision certain pairs of physical quantities can be
known. Mathematically, observable physical quantities are translated to operator repre-
sentations, with commuting operators corresponding to physical properties which can
be defined with arbitrary precision. Operators do not necessarily commute, a property
which is used to represent these uncertainty limits for certain pairs of observables.
In canonical quantization the position operators x̂ j and their associated momentum

operators p̂j are Fourier duals, satisfying the canonical commutation relations [x̂i, p̂j] =
iδi, j (again with ~ = 1). In the coordinate representation, the position operator x̂ j stands
for multiplication by the position coordinate variable x j and hence the associated mo-
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mentum operator becomes p̂j = −i∂x j . The Hamiltonian Ĥ then corresponds, up to an
additive constant, to the function H we encountered already in the exponent of the
Fourier transform. The kinetic energy operator is thus being represented by the Laplace
operator ∆. It is in this context that our next research questions will arise.
Eugene Wigner rightfully noticed that the canonical commutation relations are not

the only way to accommodate quantization of a classical system [25]. Without a physi-
cal justification for imposing such relations, the equations of motion permit also other,
more fundamental, quantization procedures. Another main argument to relinquish the
canonical commutation relations, is that they are not compatible with finite-dimensional
Hilbert spaces, and hence with discrete models having only a finite number of modes.We
will get back to this second issue in Chapters 4–6. For the quantum harmonic oscillator,
in the Wigner framework, the (self-adjoint) position operators x̂1, . . . , x̂n and momen-
tum operators p̂1, . . . , p̂n are to satisfy the compatibility conditions of the Hamiltonian
as generator of time evolution with the equations of motion, that is

[Ĥ, x̂ j] = −ip̂j, [Ĥ, p̂j] = ix̂ j (j = 1, . . . , n).

These relations are also called the Hamilton-Lie equations. Here, canonical quantization
is but one possible solution.
Now, the problem we were originally interested in was the study of symmetries of gen-

eralizations of the Dirac and Laplace operator involving reflection groups, namely the
Dirac-Dunkl and Laplace-Dunkl operator. This problem may appear totally unrelated to
our quantum-mechanical detour. However, it can be cast in the form of a Wigner system.
The Dunkl operators are valid candidates for the momentum operators p̂1, . . . , p̂n under
the previously stated compatibility conditions. In this Wigner system, the Laplace-Dunkl
operator takes the role of the kinetic energy term, which was canonically played by the
ordinary Laplace operator. Working in this more general framework not only helped us
in finding symmetries for the Dirac-Dunkl and Laplace-Dunkl operators, but also for a
bigger class of abstract operators. The formulation of symmetries of these Dirac-like and
Laplace-like operators, and the algebraic relations governing the symmetry algebra, is
the topic of Chapter 2.
While Chapter 2 deals with the symmetry algebra in an abstract fashion, the natural

follow-up investigation is one of representation theoretic nature. The classification of all
possible representations of an algebraic structure is valuable both from a purely math-
ematical point of view and because of potential applications in, for instance, physical
models. This forms the impetus for Chapter 3. Armed with the results obtained in Chap-
ter 2, we return to the three-dimensional case of the Dirac-Dunkl operator for the root
system A2 with non-abelian reflection group S3. In the context of explicit realizations of
these representations, it is natural to consider also the Dirac equation associated to this
Dirac-like operator. The study of the S3 Dirac-Dunkl operator symmetry algebra and its
representations thus forms the starting point for Chapter 3.

Finally, we return to the other reason for resorting to Wigner quantization: quantum
systems modeled by a finite-dimensional Hilbert space. For simplicity, we restrict our-
selves to the one-dimensional case. Specifically, what we have in mind are models, or
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extensions, of the quantum harmonic oscillator, where the energy and the position vari-
able can only take on a finite number of discrete values. Such models are of interest
for applications in quantum optics and signal analysis [3–5]. This finiteness is achieved
through working in a finite-dimensional representation of a suitable underlying alge-
braic structure. We will first elaborate on the context and give a brief overview of some
different existing quantum oscillator models.
In the one-dimensional case, we have only onemomentum operator p̂ and one position

operator which we will denote by q̂. The Hamiltonian Ĥ is again the generator of time
evolution. These operators are assumed to be essentially self-adjoint. The Hamilton-Lie
equations, which state the compatibility of Hamilton’s equations with the Heisenberg
equations, now read

[Ĥ, q̂] = −ip̂ , [Ĥ, p̂] = iq̂ ,

again in units with mass, frequency and the reduced Planck constant ~ all equal to 1. For
the one-dimensional canonical quantum oscillator, these relations close into an algebraic
structure by means of the canonical commutation relation [q̂, p̂] = i. This structure is
the oscillator Lie algebra of quantummechanics, containing the Heisenberg algebra. The
position wavefunctions of this model are given in terms of Hermite polynomials, a type
of classical (continuous) orthogonal polynomials, contained also in the Askey-scheme.
Wewill see that this is but one example of an intrinsic relation between oscillator models,
their algebraic description and special functions.
An alternative model is the so-called parabose oscillator or Wigner quantum oscilla-

tor [20, 21, 25]. Wigner considered a system where the canonical commutation relation
was dropped, but the Hamiltonian retained the classical form

Ĥ =
1
2
(p̂2 + q̂2).

The underlying algebraic structure then turns out to be the Lie superalgebra osp(1|2).
This leads to working in an infinite-dimensional representation of osp(1|2), which inhe-
rently contains a parameter. This parameter induces a shift of the energy levels, which
remain equidistant nonetheless. For a specific value of the representation parameter, the
paraboson oscillator reduces to the canonical model. Likewise, the position wavefunc-
tions are now given in terms of Laguerre polynomials, containing also this parameter, of
which the Hermite polynomials are a special case for this specific parameter value.
In general, an algebraic recipe for a quantum oscillator model contains three (self-

adjoint) operators q̂, p̂, Ĥ which satisfy the Hamilton-Lie equations. They are moreover
assumed to belong to some algebraic structure, such as the enveloping algebra of a
Lie algebra or Lie superalgebra. A physical property which is usually imposed is that the
spectrum of Ĥ in a unitary representation of this algebra is equidistant. To obtain a finite
oscillator model, we require an algebra which has finite-dimensional representations.
The discrete position values then correspond to the spectrum of the position operator
q̂. These values are real due to the self-adjointness of q̂, though a priori they are not
necessarily equidistant. The usefulness as a practical model depends on the structure of
these position values. We will see that the, now discrete, position wavefunctions in this
case will be given in terms of discrete orthogonal polynomials.
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The simplest example is the so-called su(2) finite oscillator model [1, 2]. Here, the
Hamiltonian, position and momentum operator are compatible with the Hamilton equa-
tions and the equations of motion, but instead of satisfying the canonical commutation
relation, they close into the Lie algebra su(2). This algebra is usually defined [15, 26] by
its basis elements J0, J+, J− with commutators [J0, J±] = ±J± and [J+, J−] = 2J0. For
a system with N equidistant possible position values, the model at hand is the standard
finite (irreducible) su(2) representation of dimension N = 2j + 1, where j is a non-
negative integer or half-integer. The position (and momentum) operators then have as
spectrum the set {−j, −j + 1, . . . , +j}, corresponding to the N position values. The
discrete wavefunctions can be written in terms of symmetric Krawtchouk polynomials,
a specific case of a family of finite and discrete orthogonal polynomials classified also
in the discrete side of the Askey-scheme of hypergeometric orthogonal polynomials. In
the limit N →∞, the Krawtchouk wavefunctions (after rescaling) tend to the common
continuous wavefunctions of the harmonic oscillator in terms of Hermite functions.
It was observed that the su(2) finite oscillator model could be extended by the addi-

tion of new elements to the algebra and through introducing parameters into the alge-
braic relations. This lead to the formulation of the one-parameter deformations u(2)α
and su(2)α, both of which are connected to a finite oscillator model [16, 17]. For a
specific value of the parameter α, they coincide with the su(2) model. The u(2)α alge-
bra, which was investigated first, was constructed in such a way that the representations
of this algebra are suitable extensions of the su(2) model. However, this was possible
only for the even-dimensional representations. As it turned out, a different deformation
was required to extend the odd-dimensional representations, which brought about the
su(2)α algebra. A remarkable property is that the discrete spectrum of the position op-
erator in these representations no longer remains equidistant, and becomes dependent
of the deformation parameter α.
For both models, the discrete position wavefunctions could be expressed in terms of

another type of discrete orthogonal polynomials in the Askey-scheme, namely the so-
called (dual) Hahn polynomials. These polynomials generally contain two independent
parameters, though for the cases at hand, they appeared with both parameters speci-
fied in terms of the deformation parameter α. More specifically, the wave functions of
even and odd degree were characterized by dual Hahn polynomials with different sets
of parameters. The action of the position operator on these wavefunctions boiled down
to a pair of recurrence relations for the sets of dual Hahn polynomials with different
parameters. In turn, this is equivalent to a pair of contiguous relations for (generalized)
hypergeometric functions similar to the ones explored already by Gauss. The question
which thus pops up is: Are there other ways to combine dual Hahn polynomials with dif-
ferent parameters? Furthermore, can we use them to obtain interesting finite oscillator
models?
The act of combining two sets of orthogonal polynomials to obtain a new family was

investigated already by Chihara and others [7, 19, 24]. In essence, one obtains a ker-
nel partner for a set of orthogonal polynomials by means of the Christoffel-Geronimus
transform and a given parameter. A new family of orthogonal polynomials is then con-
structed by interweaving the original set of polynomials and this kernel partner. The
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question of combining dual Hahn polynomials with different parameters thus becomes:
For which Christoffel parameter is the kernel partner of a dual Hahn polynomial again
a dual Hahn polynomial with possibly different parameters? The follow-up question re-
mains the same: Do these combinations lead to interesting finite oscillator models, in
particular, having an equidistant position spectrum? The answers to these questions will
be affirmative and form the basis for Chapter 4 and the subsequent chapters.

plan of action

Recall that for our first objective we want to investigate whether there are operators
on the space of rapidly decreasing functions S(Rn), other than the Fourier transform,
which intertwine −∆ and |x |2. The latter two operators are invariant under O(n), the
group of orthogonal transformations on Rn. This orthogonal invariance has two im-
portant consequences. First, there is a class of trivial solutions obtained through the
composition of the classical Fourier transform with an orthogonal transformation, since
this yields another operator with the desired property. In order to avoid such trivialities,
we shall consider two solutions to our problem as being equivalent if they are linked by
means of an orthogonal transformation. Second, the orthogonal invariance will provide
a useful tool in the form of a classical result known as Howe-duality. The space S(Rn) ad-
mits a natural decomposition in irreducible subspaces under the action of the dual pair
(O(n), sl(2)). These subspaces have a basis in terms of Laguerre polynomials which are
eigenfunctions of the Fourier transform with a natural accompanying action of sl(2) as
realized by −∆ and |x |2. It will be helpful to describe operators by their action on this
basis. Paired with this basis of eigenfunctions is the operator exponential formulation
of the classical Fourier transform. Here in the exponent of the imaginary unit i appears
a specific element of sl(2) with a diagonal action on the aforementioned basis and in-
teger eigenvalues. As an extension of this approach, we consider exponentials of other
diagonal elements of sl(2) and related algebraic structures.
To effectively determine solutions, the property of intertwining −∆ and |x |2 is first

translated to commuting or anticommuting with appropriate elements in the sl(2) reali-
zation. In order to construct such symmetries we make use of the Casimir element Ω in
the center of the universal enveloping algebra of sl(2). In this way we obtain a class of
solutions containing exponentials of polynomials or infinite series inΩ. These functions
must satisfy the extra requirement of taking on only integer values when evaluated at
the eigenvalues of Ω. Moreover, their values matter only up to a modulo 4 congruency.
Depending on the parity of the dimension we work in, the eigenvalues of Ω are squa-
res of either integers or half-integers. To describe all the solutions we thus define an
appropriate polynomial basis for each situation. For every solution defined as an oper-
ator exponential, there exists a related formulation as an integral transform where its
kernel is given by a plane wave decomposition in terms of Bessel functions and Gegen-
bauer polynomials. To further restrict the class of solutions to a finite set of interesting
operators, we impose an extra condition in the form of a periodicity restriction on the
eigenvalues, as is the case for the classical Fourier transform. We proceed with a com-
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plete classification and description of all solutions satisfying these extra conditions. For
this subset of solutions, we are able to obtain explicit closed form expressions for the
associated kernel when written as an integral transform. Finally, we demonstrate that
these transforms satisfy an uncertainty principle.
Next, the same procedure is repeated for the Dirac operator in the more general set-

ting of Clifford algebra-valued functions. Here, the Lie algebra sl(2) is extended to the
Lie superalgebra osp(1|2). We now use the Casimir element C in the center of the univer-
sal enveloping algebra of osp(1|2) to construct the desired operators. We again classify
the subset of solutions which satisfy a periodicity restriction, for which we determine
also explicit closed form expressions for the associated integral kernels.

In Chapter 2, we are dealing with a generalized Laplace operator

∆ =

n∑
j=1

p2
j ,

in the context of a Wigner quantum system. For ease of notation and computation, we
have substituted the physical momentum p̂j by operators pj = ip̂j, and similarly we use
x j to denote the position operator x̂ j. We work in the algebraic structure A generated
by n commuting position operators x1, . . . , xn and n commuting momentum operators
p1, . . . , pn subject to the relations

[∆, x j] = 2pj , [|x |2, pj] = −2x j .

First, by means of these relations, it is shown that the generalized Laplace operator ∆
and its partner the squared norm |x |2 generate a realization of the Lie algebra sl(2), just
as was the case for the classical Laplacian.
Instead of looking for symmetries of just ∆, we will keep momentum and position

operators on equal footing. The goal is to determine the elements in A which commute
with both ∆ and its conjugate partner |x |2, and thus with the entire sl(2) realization.
Symmetries obtained in this way will contain an equal number of position and momen-
tum operators, so we repress trivialities such as functions of p1, . . . , pn which obviously
commute with ∆ as [pi, pj] = 0. The most basic (non-trivial) symmetries in A will then
be linear in the momentum operators, and thus also in the position operators. Next,
we establish the algebraic relations satisfied by these symmetries and go over the main
examples in the setting of Dunkl operators.
In the second part, the generalized Dirac operator D is realized as square root of ∆

using a Clifford algebra C. We show that the algebraic structure in the form of the tensor
product A ⊗ C contains an osp(1|2) realization, as was the case for the regular Dirac
operator. In this setting of superalgebras, we consider also anticommuting symmetries
and we start by classifying all operators that commute or anticommute with the osp(1|2)
realization. Next, we determine the quadratic relations satisfied by these symmetries,
beginning with the simplest interactions of symmetries. A helpful guideline in doing
so, are the results obtained already for the ZN

2 Dirac-Dunkl operator. For this relatively
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simple case, the symmetries and their algebraic relations have been determined and
give rise to the (higher rank) Bannai-Ito algebra [9, 10]. Hence, our general algebraic
structure should coincide with these results when p1, . . . , pn are set equal to the Dunkl
operators associated to that specific root system.
In Chapter 3, we consider in detail a specific type of Dirac-Dunkl operator in three

dimensions. The general relations for the symmetry algebra we obtained earlier then
take on an explicit form. The case we have in mind is that of the root system A2 with
Weyl group S3, the symmetric group on three elements. The symmetry algebra then
becomes a one-parameter deformation of the classical angular momentum algebra, the
Lie algebra so(3), incorporating elements of S3. To classify all finite-dimensional irre-
ducible representations of this algebra in abstract fashion, we first construct a form of
ladder operators. Starting from a highest weight vector, being an eigenvector of a set of
mutually commuting elements of our algebra, we build our representation space using
the ladder operators. Next, we determine whether the obtained representations are uni-
tary. Finally, we return to the realization in the framework of Dunkl operators and we
construct explicit expressions for the wavefunctions on which the symmetry algebra acts
as a unitary irreducible representation.

The final chapters originated from the context of finite oscillator models. To construct
new models, we want to classify all pairs of recurrence relations for two sets of dual
Hahn polynomials with different parameters. Equivalently, such a pair of recurrence re-
lations corresponds to a Christoffel-Geronimus transform where the kernel partner of a
dual Hahn polynomial is again of this same family, with different parameters. On the
level of hypergeometric series this translates to a pair of contiguous relations. For our
classification, we begin with a general pair of recurrence relations linking two sets of
polynomials and determine conditions for the coefficients. These two recurrence rela-
tions can be combined to obtain three-term recurrence relations. This, we can compare
to the well-known three-term recurrence relation for the dual Hahn orthogonal poly-
nomials, and solve to find all possible coefficients. The same classification process can
then also be applied to other discrete orthogonal polynomials such as Hahn and Racah
polynomials.
Next, we elaborate upon the link with finite oscillator models. In the previously ob-

tained models, the dual Hahn polynomials appeared as discrete position wavefunctions.
Being of discrete nature, the considered pairs of recurrence relations can be cast in ma-
trix form. In this way, an eigenvalue equation arises where each eigenvector contains, in
alternating order, the two families of dual Hahn polynomials evaluated in the discrete
position values. Such an eigenvector corresponds to a polynomial in a new orthogonal
system, of which the tridiagonal Jacobi matrix will play the role of the position operator
in a finite oscillator model. The spectrum of this matrix then yields the possible position
values, and its eigenvectors correspond to the position wavefunctions.
The matrices appearing in this way can be seen as representation matrices of defor-

mations or extensions of su(2) through which the algebraic relations can be determined.
In general, the dual Hahn polynomials contain two independent parameters, which are
also present in the algebraic structure and in the recurrence relations. The ensuing task
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is to check which parameters values lead to suitable algebraic relations and position val-
ues for constructing finite oscillator models. This is the subject of the next two chapters.
In Chapter 5, we investigate in particular a finite oscillator model which has the poten-

tial to have equidistant position values. The related algebraic structure is an extension
of su(2) by a parity operator P, which we refer to as the algebra su(2)P . Before getting
to the oscillator model, we classify all irreducible unitary finite-dimensional represen-
tations of this algebra. Next, we use the obtained odd-dimensional representations to
construct a finite oscillator model with equidistant position values related to the alge-
bra su(2)P . The orthonormal eigenvectors of the position and momentum operator form
the corresponding wavefunctions, which are given in terms of the previously determined
pair of dual Hahn polynomials.
In Chapter 6, we develop a finite oscillator model pertaining to a pair of Racah poly-

nomials. This pair was also obtained in the previous classification, where their Jacobi
matrix was observed to have equidistant eigenvalues for specific values of the Racah po-
lynomial parameters. Contrary to Chapter 5, we have models for an odd number as well
as for an even number of position values. We investigate the properties of the discrete
position wavefunctions and plot the lowest energy states for some specific parameter
values.
The final chapter is a spin-off of the previously obtained results. Recall that the clas-

sified pairs of recurrence relations could be cast in the form of an eigenvalue equation.
Here, we have a matrix with a well-defined tridiagonal structure and explicit expressions
for both eigenvalues and eigenvectors. Moreover, as the original discrete polynomials
contain parameters, these are present also in the eigenvalues and matrix entries. What
we have are perfect candidates to test the accuracy of numerical eigenvalue computa-
tions. Our matrices are in fact extensions of a standard test matrix which goes by several
names: the Sylvester-Kac matrix, the Kac matrix, the Clement matrix. This tridiagonal
with zero diagonal matrix has simple integer entries and eigenvalues. We investigate
the use of the new classes of test matrices by comparing the exact known eigenvalues
with those computed using the inherent MATLAB function eig() for different parameter
values.
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abstract

The Howe dual pair (sl(2), O(m)) allows the characterization of the classical Fourier
transform (FT) on the space of rapidly decreasing functions as the exponential of a well-
chosen element of sl(2) such that the Helmholtz relations are satisfied. In this paper
we first investigate what happens when instead we consider exponentials of elements
of the universal enveloping algebra of sl(2). This leads to a complete class of general-
ized Fourier transforms, that all satisfy properties similar to the classical FT. There is
moreover a finite subset of transforms which very closely resemble the FT. We obtain
operator exponential expressions for all these transforms by making extensive use of the
theory of integer-valued polynomials. We also find a plane wave decomposition of their
integral kernel and establish uncertainty principles. In important special cases we even
obtain closed formulas for the integral kernels. In the second part of the paper, the same
problem is considered for the dual pair (osp(1|2), Spin(m)), in the context of the Dirac
operator on Rm. This connects our results with the Clifford-Fourier transform studied
in previous work.

1 introduction

The classical Fourier transform (FT) over Rm is given by

(F f )(y)=
1

(2π)m/2

∫
Rm

ei 〈x, y〉 f (x) dx

and is of crucial importance in many aspects of harmonic analysis and signal processing.



20 chapter 1

Recently, various extensions of the FT have been investigated by rewriting the trans-
form as an operator exponential. Indeed, introducing the operators

∆x
..=

m∑
i=1

∂2
xi, |x |2 ..=

m∑
i=1

x2
i , Ex

..=

m∑
i=1

xi∂xi

with ∆x the Laplace operator and Ex the Euler operator, one has

F = e−i
π
4 mei

π
4 (−∆x+ |x |2) (1.1)

which relates the transform with the representation theory of the Lie algebra sl(2) as
the operators E = |x |2/2, F = −∆x/2 and H = Ex + m/2 satisfy

[H, E] = 2E, [H, F] = −2F, [E, F] = H, (1.2)

see for example [23, 28] for a detailed mathematical treatment.
By now well-established fields of research based on this observation include the frac-

tional FT [39] and the family of linear canonical transforms [45]. Both have extensive
practical applications in the design of optical systems and signal processing.
The observation in formula (1.1) has also led to many other theoretically oriented

generalizations of the FT, by considering alternative realizations of sl(2) in terms of dif-
ferential or difference operators (or combinations thereof). Once such a realization is
obtained, it is possible to define a generalized FT based on formula (1.1). It is then a
challenging question to find a concrete integral transform expression for this operator.
Research on this topic has a long history: it has been investigated in both the continuous
and the discrete case, and also for more complicated algebras than sl(2), such as the
superalgebra osp(1|2). Important examples in the continuous case include the Dunkl
transform [2, 19] and the radially deformed Fourier transform [3, 14, 35, 36] as well
as its Clifford deformation [15, 17]. In more complicated geometries, the super Fourier
transform [12] and a q-deformed version [10] have been investigated. In the discrete
case we mention the fractional Fourier–Kravchuk transform [1] and various further de-
formations [32, 33]. For a more detailed review of the followed strategy and the results
in this line of investigation we refer the reader to [13, 37].
The present paper has a related yet different aim. We do not intend to change the

realization of sl(2) in formula (1.2), but instead wish to study precisely how unique the
operator realization of the FT in (1.1) is and to what extent the interplay of sl(2) and its
Howe dual O(m) fixes the FT (see [29]). We are specifically interested in determining
whether any other operators portray similar behaviour.
A crucial property of the classical FT is its interaction with differential operators. In

particular, we have for j = 1, . . . , m

F ◦ ∂x j = −i yj ◦ F
F ◦ x j = −i ∂yj ◦ F,

(1.3)

which uniquely determines the FT and its integral kernel up to a normalization constant.
We can relax (1.3) to a more general interaction with differential operators featuring
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now the elements of the sl(2) realization that appear in the operator exponential for-
mulation (1.1) of the FT (which also takes into account the O(m) symmetry). Hereto,
let

(T f )(y)=
1

(2π)m/2

∫
Rm

K(x, y) f (x) dx

be an integral transform on the space of rapidly decreasing functions S(Rm)⊂ L2(Rm);
we say that T satisfies the Helmholtz relations if

T ◦ ∆x = −|y |2 ◦ T

T ◦ |x |2 = −∆y ◦ T .
(1.4)

These relations no longer have the classical FT as unique solution for the operator T .
Only when imposing the extra condition that T must be the exponential of an element of
sl(2)= span{∆x, |x |2, [∆x, |x |2]} do they yield as unique solution the FT (or its inverse)
up to a normalization constant [28, 37].
The aim of our paper is to look for generalized Fourier transforms, satisfying pro-

perties similar to the classical FT. We do this by investigating what other solutions the
Helmholtz relations (1.4) have, where wemake explicit use of the sl(2) relations in (1.2)
and theirO(m) invariance. Indeed, we wish to analyse in detail what happens when con-
sidering T an operator exponential from the universal enveloping algebra of sl(2). If we
combine this with a periodicity restriction on the eigenvalues, as is the case for the FT,
we are led to an interesting finite set of new generalized Fourier transforms that behave
in a way very similar to the classical FT. In Theorem 2.13, we establish for all transforms
in this set their operator exponential formulation. Subsequently, in Theorem 2.16, we
are even able to determine explicit integral kernels for some of these transforms, thus
realizing them as integral transforms. A crucial role for reaching these results is played
by the Casimir Ω of sl(2) and the (very technical) study of integer-valued polynomials
in Ω.
In the more general context of Clifford-algebra valued functions, where the Dirac op-

erator takes over the role of the Laplace operator (see [20, 27]) and the Lie superalgebra
osp(1|2) that of sl(2), quite a bit of attention has already been paid to transforms consis-
ting of a specific operator exponential from the universal enveloping algebra of osp(1|2).
Most notably, the so-called Clifford–Fourier transform [7, 8, 16, 18] is defined as such
an operator exponential.
To provide a solid motivation for the study of this transform, we will also treat the

case of Clifford analysis with the tools developed in the present paper. We again find
an interesting class of generalized, now essentially non-scalar Fourier transforms that
behave similarly to the classical FT, see Theorem 3.10 for their operator exponential
formulation and Theorem 3.13 for explicit kernels realizing them as integral transforms.
The resulting generalized FTs that we obtain in both the harmonic and Clifford case

exhibit properties and behaviour similar to the FT. To emphasize that, we will also show
that they, for example, still satisfy a version of the uncertainty principle (see e.g., [24]
for a review). This is achieved in Theorem 2.21 and Theorem 3.6.
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The paper is organized as follows. We commence Section 2 by laying out the specific
properties we will use as a starting point to determine generalized FTs and introducing
the relevant sl(2) and O(m) representation theory. Next, we work out the requirements
for our operators which brings us to the concept of integer-valued polynomials. These
polynomials allow us to give an explicit expression for the desired operators. For a sub-
set of solutions which satisfy a periodicity restriction we give a complete classification
and we also obtain explicit integral kernels for these transforms. Finally, we establish
a generalized uncertainty principle. In Section 3 we lift our objective to the setting of
Clifford analysis and apply the strategy we developed in the previous section to obtain
analogous results. In particular, we again give a complete classification of the subset of
solutions which satisfy a periodicity restriction and we obtain explicit integral kernels.
Finally, in Section 4 we present some conclusions regarding our results, while in the
appendix we give an overview of main definitions and results used in the main text, as
well as some technical proofs that have been omitted from the text.

2 fourier transforms in harmonic analysis

We want to look for generalized Fourier transforms, satisfying similar properties to the
classical FT. As interaction with differential operators we require the Helmholtz relations
(1.4) and we will further impose two additional important properties of the FT. In par-
ticular, we require the eigenfunction basis of the space of rapidly decreasing functions
S(Rm)⊂ L2(Rm) to be preserved, which will be explained in more detail shortly.
This gives our first goal, which is to determine all operators T : S(Rm)→ S(Rm) that

satisfy the following properties:

(i) the Helmholtz relations

T ◦ ∆x = −|y |2 ◦ T

T ◦ |x |2 = −∆y ◦ T

(ii) T φj,k, ` = µ j,k φj,k, ` with µ j,k ∈ C

(iii) T4 = id

Here, the standard eigenfunction basis of S(Rm)⊂ L2(Rm) is given by the Hermite
functions

φj,k, `
..= 2j j! L

m
2 +k−1
j (|x |2)H(`)

k e−|x |
2/2. (2.1)

Here j, k ∈ Z≥0, Lαj is a generalized Laguerre polynomial and { H(`)
k }

dim(Hk)
`=1 is a basis for

Hk, the space of spherical harmonics of degree k, that is, homogeneous polynomial null-
solutions of the Laplace operator of degree k. This basis {φj,k, `} realizes the complete
decomposition of S(Rm) in irreducible subspaces under the natural action of the dual
pair (sl(2), O(m)) [3]. The action of the Fourier transform on the eigenfunction basis is
given by

Fφj,k, ` = ei
π
2 (2j+k) φj,k, ` = i2j+k φj,k, ` . (2.2)
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Another way to write the Hermite functions (see [11]) is

φj,k, ` =

(
−
∆x

2
−
|x |2

2
+ Ex +

m
2

) j
H(`)
k e−|x |

2/2. (2.3)

Now, consider the following linear combinations of the operators E, F, H satisfying
(1.2)

h = −
∆x

2
+
|x |2

2
, e = −

∆x

4
−
|x |2

4
+

1
2
Ex +

m
4
, f =

∆x

4
+
|x |2

4
+

1
2
Ex +

m
4
. (2.4)

This triple generates another operator realization of the Lie algebra sl(2) (see also [2,
3] for a more general situation). Indeed, by means of (1.2) one easily verifies that they
satisfy the commutation relations

[h, e] = 2e, [h, f ] = −2 f, [e, f ] = h. (2.5)

Using these operators, the Helmholtz property (i) translates to the (anti-)commutation
relations

T ◦ h = h ◦ T, T ◦ e = −e ◦ T, T ◦ f = − f ◦ T. (2.6)

Moreover, in terms of these operators we can write property (2.3) more compactly as
φj,k, ` =

(
2e

) j
φ0,k, ` , and the operator exponential formulation of the classical Fourier

transform as
F = ei

π
4 (−∆x+ |x |2−m) = ei

π
2 (h−

m
2 ). (2.7)

The action of the operators (2.4) on the basis (2.1) is as follows

h φj,k, ` =
(
2j+k+m

2

)
φj,k, `, e φj,k, ` =

1
2
φj+1,k, `, f φj,k, ` = −j (2j−2+m+2k) φj−1,k, ` .

Note that h is a diagonal operator while e works as a raising operator on the j-index and
f as a lowering operator.

remark 2.1: For every k ∈ Z≥0 and ` ∈ {1, . . . , dim(Hk)}, the set { φj,k, ` | j ∈ Z≥0 }

forms a basis for the positive discrete series representation of sl(2) with lowest weight
k + m/2. This is an irreducible unitary representation of the real form su1,1 of sl(2)
(determined by the ∗-conditions: h∗ = h, e∗ = − f , f ∗ = −e).

For every j, k ∈ Z≥0 the set { φj,k, ` | ` = 1, ..., dim(Hk) } forms a basis for an
irreducible representation of O(m) for m > 2.

Before moving on to the explicit computation of solutions for the operator T , we first
glance at some important consequences that hold for every operator satisfying the pro-
perties (i)–(iii).

lemma 2.2: For T an operator that satisfies the properties (i)–(iii), there are only four
possible values for the eigenvalues µ j,k of T , namely µ j,k ∈ {1, i, −1, −i}. Moreover, the
spectrum of eigenvalues is completely determined by the eigenvalues µ0,k for k ∈ Z≥0; the
other eigenvalues for j > 0 follow from the relation

µ j,k = (−1)jµ0,k. (2.8)
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Proof. Property (iii) necessitates that the eigenvalues µ j,k of T satisfy (µ j,k)4= 1 and
thus are integer powers of i = ei

π
2 . Using property (ii) and the relations (2.3) and (2.6),

we find

µ j+1,k φj+1,k, ` = Tφj+1,k, ` = T◦(2e)φj,k, ` = −2e◦Tφj,k, ` = −2e µ j,k φj,k, ` = −µ j,k φj+1,k, `

for all valid j, k, `. Relation (2.8) now follows from subsequent application of µ j+1,k =

−µ j,k.

proposition 2.3: LetT : S(Rm)→ S(Rm) be an operator that satisfies the properties (i)
and (ii). Then, on the basis {φj,k, `}, the operator T coincides with the integral transform

(T f )(y)=
1

(2π)m/2

∫
Rm

Km(x, y) f (x) dx

where

Km(x, y)= 2λ Γ(λ)
+∞∑
k=0

(k + λ) µ0,k z−λ Jk+λ(z)Cλk (w). (2.9)

Here, the following notations are used: λ = (m−2)/2, z = |x | |y |,w = 〈x, y〉/z, and Jk+λ
are Bessel functions while Cλk denote the so-called Gegenbauer or ultraspherical polynomials
(see Appendix A.1).

Proof. For ξ, η ∈ Sm−1 and H` ∈ H` , the following reproducing kernel formula holds
(see e.g. [21])

1
(2π)m/2

∫
Sm−1

2λ Γ(λ) (k + λ)Cλk (〈ξ, η〉)H`(ξ) dξ = δk` H`(η). (2.10)

Using the explicit form (2.1) of the eigenfunctions, together with formula (2.10) and
the identity∫ ∞

0
r2λ+1+kLk+λj (r2) e−r

2/2 (rs)−λ Jk+λ(rs) dr = (−1)j sk Lk+λj (s2) e−s
2/2 (2.11)

(see e.g. [43, exercise 21, p. 380]), it follows that

1
(2π)m/2

∫
Rm

Km(x, y) φj,k, `(x) dx = (−1)j µ0,k φj,k, `(y).

By relation (2.8) for the eigenvalues of T , this integral transform coincides with T on
the Hermite basis.

lemma 2.4: The kernel Km satisfies

Km(Ax, y) = Km(x, Ay), A ∈ O(m)
Km(cx, y) = Km(x, cy), c ∈ R.

(2.12)

Proof. This follows from the explicit formula (2.9) for Km(x, y).
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proposition 2.5: A continuous operator T : S(Rm)→ S(Rm) satisfying (i)–(iii) has a
unitary extension to L2(Rm).

Proof. This result follows from the fact that S(Rm) is dense in L2(Rm) and that all
eigenvalues have unit norm.

We now continue to determine new operators T that satisfy properties (i)–(iii). We
already know one solution, namely the classical Fourier transform. In order to find more
solutions, we first introduce a new operator as follows. Assume we have an operator T
that satisfies (i)–(iii), we then put T̃ ..= T ◦ F−1. As the classical Fourier transform is
an automorphism on S(Rm), the operator T̃ uniquely defines T and we can retrieve the
operator T by the relation

T = T̃ ◦ F . (2.13)

Our objective to obtain operators T is thus equivalent with finding suitable operators T̃ .
Hereto we determine what the requirements are for such an operator T̃ in order to yield
an operator T that satisfies properties (i)–(iii).
Clearly, the basis {φj,k, `} must also form an eigenbasis of T̃ . Next, as F already satis-

fies the set of equations (2.6), we have that an operator T decomposed as (2.13) will
satisfy the set of equations (2.6) if the operator T̃ commutes with the operators h, e, f .
A consequence of imposing this commutative property on T̃ combined with F being of
the form (2.7), is that T̃ also commutes with F . Property (iii) together with F4 = id
then gives us T̃4 = id. These requisites for the operator T̃ naturally lead to the following
result.

proposition 2.6: Every operator T̃ of the form

T̃ = exp
(
i π2 F

)
, (2.14)

with F an operator that

• commutes with (the generators of) sl(2)= span{∆x, |x |2, [∆x, |x |2]}

• has integer eigenvalues on the functions {φj,k, `} (independent of `)

will yield an operator T by (2.13) that satisfies the properties (i)–(iii).

Furthermore, in the next section we will show that for each operator satisfying the
properties (i)–(iii), we have an equivalent operator of the form (2.14).
Now, we want to establish an explicit expression for the operator F in (2.14). He-

reto we start by looking at the first condition listed in Proposition 2.6, which requires
commuting operators. We denote by U

(
sl(2)

)
the universal enveloping algebra of sl(2).

The center of U
(
sl(2)

)
is the subset consisting of the elements that commute with all

elements of sl(2), and hence also with all elements of U
(
sl(2)

)
. The center is finitely

generated by the Casimir element (see [30]):

Ω = 1 + h2 + 2ef + 2 f e, (2.15)
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or in the framework of our operator realization: Ω =
(
Ex +

m−2
2

)2
− |x |2∆x . Every

polynomial function of the operator Ω will yield an operator F that commutes with the
generators of sl(2). This notion can be further generalized to include infinite power
series in Ω. Such operators live in the extension U

(
sl(2)

)
of the universal enveloping

algebra that also allows infinite power series in the elements of sl(2) [31].
The second condition in Proposition 2.6 is also facilitated by operators of this form

as the Casimir element is a diagonal operator on the representation space span{ φj,k, ` |

j ∈ Z≥0 }. The eigenvalues of Ω are given by

Ω φj,k, ` =
(
k +

m
2
− 1

)2
φj,k, ` = (k + λ)2 φj,k, `, (2.16)

with λ = m/2−1. Note that for even dimensions m, the eigenvalues ofΩ are squares of
integers, while for odd dimension, we have squares of half-integers (elements of Z+ 1

2).
In order to find expressions for F that have integer eigenvalues on the functions {φj,k, `},
we need functions that take on integer values when evaluated at the eigenvalues of Ω.
To this end, we invoke the notion of integer-valued polynomials. This is the subject of
the following subsection.

2.1 Integer-valued polynomials

An integer-valued polynomial on Z is a polynomial whose value at every integer n ∈ Z
is again an integer. We denote the set of all such polynomials by Int(Z)= { f ∈ Q[x] |
f (Z)⊆ Z }. It is an elementary result that the polynomials(

x
n

)
=

n−1∏̀
=0

x − `
n − `

=
1
n!

n−1∏̀
=0

(x − `) (2.17)

are integer-valued; moreover, they form a basis of the Z-module Int(Z) (see e.g. [9]).
The polynomial

(x
n

)
has degree n and its roots are the integers {0, 1, . . . , n − 1}. The

first few polynomials are given by(
x
0

)
= 1,

(
x
1

)
= x,

(
x
2

)
=

1
2
x2 −

1
2
x,

(
x
3

)
=

1
6
x3 −

1
2
x2 +

1
3
x.

Now, we are interested in functions that take on integer values when evaluated at the
eigenvalues of the Casimir operator Ω. As there is a disparity pertaining to the form of
the eigenvalues (2.16), depending on the dimension m, we first handle the case where
the dimension is even.

2.1.1 On squares of integers

For even dimension m, the eigenvalues (2.16) of Ω are squares of integers, which are of
course again integers, so every integer-valued polynomial with Ω substituted for x is a
valid solution for F in (2.14). However, the condition to be integer-valued on squares of
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integers is less restrictive than the requirement of being integer-valued on all integers. In
order to specify the exact class of solutions, we introduce a special type of integer-valued
polynomials. For n = 0, put E0(x)≡ 1, and for n ∈ Z≥1, put

En(x)=
n−1∏̀
=0

x2 − `2

n2 − `2
=

2
(2n)!

n−1∏̀
=0

(x2 − `2). (2.18)

The polynomial En has degree 2n and its roots are the integers {0, ±1, ±2, . . . , ±(n−1)},
while En(n)= 1. The first few of these polynomials are given by

E0(x)= 1, E1(x)= x2, E2(x)=
1
12

x4−
1
12

x2, E3(x)=
1

360
x6−

1
72

x4+
1
90

x2.

proposition 2.7: The polynomials { En(x)| n ∈ Z≥0 } are integer-valued on Z.

Proof. The case n = 0 is obvious. For n ≥ 1 one has

En(x)=
2

(2n)!

n−1∏̀
=0

(x2 − `2)=
x
n

1
(2n − 1)!

2n−2∏̀
=0

(x − ` + n − 1)=
x
n

(
x + n − 1

2n − 1

)
.

Using a property of binomial coefficients we get

x
n

(
x + n − 1

2n − 1

)
=

x + n − n
n

(
x + n − 1

2n − 1

)
= 2

(
x + n

2n

)
−

(
x + n − 1

2n − 1

)
,

which is clearly integer-valued.

The prominent feature of the polynomials defined in (2.18) is that they contain only
even powers of x. Because of this, substituting the operator Ω for x2 in En(x) yields an
operator whose eigenvalues when acting on the eigenfunctions {φj,k, `} are all integers.
We use the notation

En(
√
Ω)= En(x)

���
x2=Ω

to denote this substitution. Moreover, we have the following important property.

proposition 2.8: Every integer-valued polynomial P(x) that contains only even powers
of x can be written as a Z-linear combination of the polynomials En(x), i.e.

P(x)=
N∑

n=0

anEn(x), an ∈ Z. (2.19)

Proof. Let P(x) be an integer-valued polynomial that contains only even powers of x.
The polynomial P(x) necessarily has even degree, say 2N. Now, we know that the po-
lynomial En has degree 2n and its roots are the integers {0, ±1, ±2, . . . , ±(n − 1)},
while En(n)= 1. Hence, the coefficients a0, a1, . . . , aN ∈ Z in the sum (2.19) can be
recursively determined from the (integer) values P(0), P(1), . . . , P(N) such that when
evaluated at 0 ≤ x ≤ N the sum (2.19) equals P(x). Moreover, as P(−x)= P(x), (2.19)
coincides with P(x) on at least 2N + 1 points. A polynomial of degree 2N is uniquely
determined by its values at 2N + 1 points, which completes the proof.
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Note that every polynomial in x that is integer-valued on squares can be turned into
a polynomial that is integer-valued on Z and that contains only even powers in x (by
substituting x2 for x). Hence, we have shown that the polynomials En(x) suffice to con-
struct every polynomial that takes on integer values when evaluated at the eigenvalues
of the Casimir operator Ω.
One can further generalize the previous concept to construct any integer-valued func-

tion F satisfying F(x)= F(−x), by specifying the coefficients an ∈ Z in the (possibly
infinite) series

∞∑
n=0

anEn(x).

Indeed, when x = 0 this series equals the coefficient a0, while its value at x = n is fixed
by the coefficients a0, a1, . . . , an and thus can be specified by the choice of the value of
an. Note that when evaluated at an integer x ∈ Z, only a finite number of terms in this
series is non-zero, as En(x)= 0 for n > |x |.
To conclude, we remark that there is an additional important aspect we have to con-

sider for the goal we have in mind. In the operator formulation (2.14), the function F is
used as an exponent of ei

π
2 = i. For an integer n, the relation in = in mod 4 holds. Hence,

given two functions such that on each square number their function values are integers
in the same congruence class modulo 4, they will yield the same eigenvalues and thus
equivalent operators T̃ . It thus suffices to consider the series

∞∑
n=0

anEn(x), an ∈ {0, 1, 2, 3}, (2.20)

which gives all possible functions modulo 4.
The values of the polynomials En(x) modulo 4 can be computed by means of a compu-

ter algebra package. For the first few polynomials these are given in Table 1. Here, one
can observe that En(x) is periodic in x with period dependent on n. The exact relation
is stated in Corollary A.2 (Appendix).

table 1: The values of the polynomials E0, E1, . . . , E5 modulo 4 for x = 0, . . . , 15.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
E0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
E2 0 0 1 2 0 2 1 0 0 0 1 2 0 2 1 0
E3 0 0 0 1 0 3 0 2 0 2 0 3 0 1 0 0
E4 0 0 0 0 1 2 2 2 0 2 2 2 1 0 0 0
E5 0 0 0 0 0 1 0 1 0 3 0 3 0 2 0 2
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2.1.2 On squares of half-integers

In the odd-dimensional case, the eigenvalues (2.16) of Ω are squares of half-integers.
Therefore, we define the following polynomials. For n ∈ Z≥1, put

Dn(x)=
n−1∏̀
=0

x2 − (`+ 1
2)

2

(n+ 1
2)

2−(`+ 1
2)

2
=

1
(2n)!

n−1∏̀
=0

(
x2 − (`+ 1

2)
2) . (2.21)

and for n = 0 put D0(x)≡ 1. These polynomials are integer-valued on half-integers.
Indeed, for n ≥ 1 and k ∈ Z one has

Dn
(
k + 1

2

)
=

1
(2n)!

2n−1∏̀
=0

(
k + 1

2 + n − 1 − ` + 1
2

)
=

(
k + n

2n

)
.

The first few polynomials are given by D0(x)= 1, D1(x)=
1
2
x2 −

1
8
,

D2(x)=
1
24

x4 −
5
48

x2 +
3

128
, D3(x)=

1
720

x6 −
7

576
x4 +

259
11520

x2 −
5

1024
.

The polynomial Dn has degree 2n and its roots are the half-integers {± 1
2, ±

(
1+1

2

)
, ±

(
2+

1
2

)
, . . . , ±

(
n − 1

2

)
}, while Dn(n+ 1

2)= 1.
The values of the first few polynomials Dn(x) modulo 4 are given in Table 2. Again,

one clearly perceives the periodicity of Dn(x), as stated in Corollary A.4 (Appendix).

table 2: The values of the polynomials D0, D1, . . . , D5 modulo 4 for x = 1
2, . . . , 15+ 1

2

x−1/2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
D0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
D1 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0
D2 0 0 1 1 3 3 2 2 2 2 3 3 1 1 0 0
D3 0 0 0 1 3 0 0 2 2 0 0 3 1 0 0 0
D4 0 0 0 0 1 1 1 1 3 3 3 3 2 2 2 2
D5 0 0 0 0 0 1 3 2 2 1 3 0 0 2 2 0

Similar to what we had for even dimension, the polynomials Dn(x) contain only even
powers of x, so we can again substitute the Casimir Ω for x2 in Dn(x). In this way, we
arrive at the following general form

∞∑
n=0

anDn(x), an ∈ {0, 1, 2, 3}. (2.22)

Note that when evaluated at a half-integer x ∈ Z+ 1
2 , only a finite number of terms in

this series is non-zero, as again Dn(x)= 0 for n > |x |.
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2.1.3 Conclusion

In this way, we arrive at the following result for arbitrary dimension m.

theorem 2.9: The properties

(i) the Helmholtz relations

T ◦ ∆x = −|y |2 ◦ T

T ◦ |x |2 = −∆y ◦ T

(ii) T φj,k, ` = µ j,k φj,k, ` with µ j,k ∈ C

(iii) T4 = id

are satisfied by an operator T of the form

T = ei
π
2 F(
√
Ω)ei

π
2 (h−

m
2 ) ∈ U

(
sl(2)

)
, (2.23)

where F(
√
Ω) is an operator that consists of a function given by (2.20) (for even dimension)

or (2.22) (for odd dimension) with the Casimir operator Ω substituted for x2. Conversely,
every operator that satisfies properties (i)–(iii) is equivalent with an operator of the form
(2.23).

Proof. Only the last part remains to be proved. For this, it suffices to note that for an
operator satisfying properties (i)–(iii), by Lemma 2.2, its spectrum of eigenvalues is
completely determined by the eigenvalues µ0,k for k ∈ Z≥0. Now, the coefficients an in
(2.20) or (2.22) can be chosen to yield every possible set of valid eigenvalues µ0,k for
k ∈ Z≥0. Indeed, recursively working upwards from k = 0, the coefficient a bk+λ c fixes
the value of the function F evaluated at k + λ, with λ = m/2 − 1. This in turn fixes the
eigenvalue µ0,k of T as we have

T φ0,k, ` = iF(k+λ)ik φ0,k, ` ,

where we used that the eigenvalues of Ω are given by (2.16).

Note that the preceding theorem naturally contains the classical Fourier transform.
Indeed, for F ≡ 0 the operator (2.23) is precisely the operator exponential formulation
(2.7) of the Fourier transform. We now investigate how we can further narrow down
this class of integral transforms T , preferably to a finite set of interesting transforms.
Throughout this process we seek inspiration in other useful properties of the Fourier
transform.

2.2 Periodicity restriction

We now assume that T is an operator of the form (2.23) as described in Theorem 2.9.
The behavior of the eigenvalues µ j,k ofT with regard to the index j is given in Lemma 2.2.
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By successive application of relation (2.8) we find that the eigenvalues are two-periodic
in j:

µ j+2,k = (−1)2 µ j,k = µ j,k.

As far as the k index is concerned there are thus far no restrictions on the eigenvalues
of the solutions (2.23) for T . From (2.2) one clearly sees that the eigenvalues of the
Fourier transform are four-periodic in the index k. If we restrict the class of operators in
Theorem 2.9 to those operators whose eigenvalues are four-periodic in the index k, we
necessarily have but a finite number of valid operator solutions. Indeed, from Lemma 2.2
we know that every operator T whose eigenvalues are four-periodic in k, that is

µ j,k+4 = µ j,k

will have its eigenvalue spectrum completely determined by the four values µ0,0, µ0,1,
µ0,2, µ0,3 (or any other set of four eigenvalues with k indices that are mutually incon-
gruent modulo 4) . Furthermore, each one of these four eigenvalues can take on only
four possible values, namely {1, i, −1, −i}, as by Lemma 2.2 theymust be integer powers
of i. Hence, this leaves us with a finite number of valid operator solutions.
An additional advantage of imposing this periodicity restriction on T is that this will

allow us to obtain a closed formula for the kernel when T is written as an integral
transform. This will be discussed subsequently in Section 2.3.
First, to find these solutions, we again look at the decomposition (2.13) of T . As

we now require the eigenvalues of the operator T to be four-periodic in k, and using
that those of the Fourier transform already are four-periodic in k, this implies that the
eigenvalues of the operator T̃ must also be four-periodic in k. In order for this to hold,
we need a function of the form (2.20) or (2.22) that is four-periodic modulo 4 when
evaluated at (the square root of) the eigenvalues of Ω.
Depending on the parity of the dimension m one works in, the desired operators

follow from the results in the following theorems. Here, we denote by 1A the indicator
function of the set A, defined as

1A : A→ {0, 1} : x 7→ 1A(x)=


1 if x ∈ A

0 if x < A

and also 4Z + b = { 4a+ b | a ∈ Z }. For even dimension, the theorem is formulated as
follows.

theorem 2.10: For x ∈ Z≥0, one has

E1(x)≡ 14Z+1(x)+14Z+3(x) (mod 4)

E2(x)+2 E3(x)≡ 14Z+2(x) (mod 4)
∞∑
n=1

(
E2n+1(x)+

n−1∑
j=1

2 E2n+1+2j(x)
)
≡ 14Z+3(x) (mod 4).



32 chapter 1

If one denotes
E0101(x)..= E1(x), E0010(x)..= E2(x)+2 E3(x),

E0001(x)..=
∞∑
n=1

(
E2n+1(x)+

n−1∑
j=1

2 E2n+1+2j(x)
)
,

then modulo 4 every integer-valued even function F(x) on the integers that is four-periodic
in x can be written as

F(x)= a + b E0101(x)+c E0010(x)+d E0001(x), (2.24)

with a, b, c, d ∈ {0, 1, 2, 3}.

Proof. The proof of these results involves some long technical calculations and has the-
refore been omitted from the main text. It can be found in Appendix A.2.

To illustrate this property, the first few values of these functions modulo 4 are listed
in Table 3.

table 3: The values of the functions E0101, E0010, E0001 modulo 4 for x = 0, . . . , 15

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

E0101 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
E0010 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
E0001 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

In the same fashion, we have for odd dimension

theorem 2.11: For x ∈ Z≥0, one has

D1
(
x+ 1

2

)
+ 2 D2

(
x + 1

2

)
≡ 14Z+1(x)+14Z+2(x) (mod 4)

∞∑
n=1

(
D2n

(
x + 1

2

)
+

n−1∑
j=1

2 D2n+2j
(
x + 1

2

) )
≡ 14Z+2(x)+14Z+3(x) (mod 4)

2D3
(
x + 1

2

)
+

∞∑
n=0

(
D2n+1

(
x + 1

2

)
+

n−1∑
j=1

2 D2n+1+2j
(
x + 1

2

) )
≡ 14Z+2(x) (mod 4).

If one denotes

D0110(x)..= D1
(
x+1

2

)
+2 D2

(
x+ 1

2

)
, D0011(x)..=

∞∑
n=1

(
D2n

(
x+ 1

2

)
+

n−1∑
j=1

2 D2n+2j
(
x+ 1

2

) )
,



2 fourier transforms in harmonic analysis 33

D0010(x)..= 2D3
(
x + 1

2

)
+

∞∑
n=0

(
D2n+1

(
x + 1

2

)
+

n−1∑
j=1

2 D2n+1+2j
(
x + 1

2

) )
,

then modulo 4 every integer-valued even function F(x) on the half-integers that is four-
periodic in x can be written as

F(x)= a + bD0110(x)+cD0011(x)+d D0010(x), (2.25)

with a, b, c, d ∈ {0, 1, 2, 3}.

Proof. The proof of these results is similar to that of Theorem 2.10.

The first few values of these functions modulo 4 are listed in Table 4.

table 4: The values of the functions D0110, D0011, D0010 modulo 4 for x = 1
2, . . . , 15+ 1

2

x−1/2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

D0110 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
D0011 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
D0010 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

remark 2.12: The polynomials occurring in the preceding two theorems which are not
an infinite series have as explicit form

E0101(x)= x2, E0010(x)=
1

180
x6 +

1
18

x4 −
11
180

x2, D0110(x)=
1
12

x4 +
7

24
x2 −

5
64
.

Putting everything together, we can summarize our results in the following theorem.

theorem 2.13: Let T : S(Rm)→ S(Rm) be an operator that satisfies the following pro-
perties:

(i) the Helmholtz relations

T ◦ ∆x = −|y |2 ◦ T

T ◦ |x |2 = −∆y ◦ T

(ii) T φj,k, ` = µ j,k φj,k, ` with µ j,k ∈ C

(iii) T4 = id

(iv) the eigenvalues of T are 4-periodic in the index k: µ j,k+4 = µ j,k.



34 chapter 1

Then T can be written as
T = ei

π
2 F(
√
Ω)ei

π
2 (h−

m
2 )

where F consists of a function as specified in (2.24) (Theorem 2.10) if m even and (2.25)
(Theorem 2.11) if m odd.

Conversely, every operator T of this form satisfies properties (i)−(iv).

Proof. The four eigenvalues µ0,0, µ0,1, µ0,2, µ0,3 completely determine the eigenvalue
spectrum of the operator T . By Theorem 2.10 or Theorem 2.11, depending on the
parity of the dimension, we can construct a function F such that the eigenvalues of
ei

π
2 F(
√
Ω)ei

π
2 (h−

m
2 ) and T coincide. The rest is a direct consequence of Theorem 2.9.

2.3 Closed formulas for the kernel

In Proposition 2.3 we already found a formulation as an integral transform for all of
the operator exponentials we obtained. The kernel of these integral transforms, given
in (2.9), consists of an infinite series of Bessel functions and Gegenbauer polynomials.
Now, a natural question is whether it is possible to reduce these infinite series to a closed
formula. For a select case of transforms that also satisfy Theorem 2.13 the answer to this
is indeed positive. Our approach consists of first determining a formula for the kernel in
the lowest dimension, followed by using a recursive relation to move up in dimension.
Hereto, we first prove the following lemma.

lemma 2.14: Let T be an operator of the form (2.23) as specified in Theorem 2.9. When
T is written as an integral transform, its kernel satisfies the following recursive relation

Km+2 = −i z−1∂wKm

for m ≥ 2. Here Km+2 denotes the kernel in dimension m + 2.

Proof. As T is of the form (2.23), its eigenvalues are given by

T φj,k, ` = ei
π
2 F(
√
Ω)ei

π
2 (h−

m
2 ) φj,k, ` = ei

π
2 F(k+λ)ei

π
2 (2j+k) φj,k, `,

where we used (2.16) for the eigenvalues of Ω, (2.2) for those of F and λ = (m− 2)/2.
From Proposition 2.3 we know that T can be written as an integral transform

(T f )(y)=
1

(2π)m/2

∫
Rm

Km(x, y) f (x) dx

with kernel

Km(x, y)= 2λ Γ(λ)
+∞∑
k=0

(k + λ) iF(k+λ)ik z−λ Jk+λ(z)Cλk (w).

Using Appendix A.1, property (A.1) of the Gegenbauer polynomials, we find

−i z−1∂wKm(x, y) = 2λ Γ(λ)
+∞∑
k=0

(k + λ) iF(k+λ)(−i) ik z−λ−1Jk+λ(z) ∂wCλk (w)
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= 2λ Γ(λ)
+∞∑
k=1

(k + λ) iF(k+λ)ik−1 z−(λ+1)Jk+λ(z) 2λ Cλ+1
k−1 (w)

= 2λ+1
Γ(λ + 1)

+∞∑
k=0

(k + 1 + λ) iF(k+1+λ)ik z−(λ+1)Jk+1+λ(z)Cλ+1
k (w)

As λ + 1 = m/2, this last expression is precisely Km+2(x, y).

2.3.1 Even dimension

The previous lemma allows us to move up in dimension in steps of two. We now consider
only even dimension, starting with the two-dimensional case. An important asset in the
explicit computation of a formula for the kernels in dimensionm = 2will be the property
of 4-periodicity in the index k, as is the case for the solutions specified in Theorem 2.13.
In the two-dimensional case, the Gegenbauer polynomials in the kernel (2.9) reduce to
cosines. The 4-periodicity in k then allows us to make explicit use of the formulas

cos(z sin θ)= J0(z)+2
+∞∑
n=1

J4n(z) cos(4nθ)+2
+∞∑
n=0

J4n+2(z) cos
(
(4n + 2)θ

)
, (2.26)

cos(z cos θ)= J0(z)+2
+∞∑
n=1

J4n(z) cos(4nθ)−2
+∞∑
n=0

J4n+2(z) cos
(
(4n + 2)θ

)
, (2.27)

sin(z cos θ)= 2
+∞∑
n=0

J4n+1(z) cos
(
(4n + 1)θ

)
− 2

+∞∑
n=0

J4n+3(z) cos
(
(4n + 3)θ

)
, (2.28)

which can be found in [44, p. 22], formulas (1), (3) and (4). In this way we arrive at
the following result.

theorem 2.15: In dimension m = 2, the operator exponential

Tabc = ei
π
2 Fabc(

√
Ω)ei

π
2 (h−1)

with Fabc(x)= a + b E0101(x)+c E0010(x) (as specified in Theorem 2.10) and a, b, c ∈
{0, 1, 2, 3}, can be written as an integral transform whose kernel is given by

K2(x, y)= ia
(1 + ic

2
cos(s)+ib+1 sin(s)+

1 − ic

2
cos(t)

)
, (2.29)

where s = 〈x, y〉 and t =
√
|x |2 |y |2 − s2.

Proof. By Theorem 2.9, Tabc satisfies the properties (i)–(iii) and consequently, by Propo-
sition 2.3, Tabc can be written as an integral transform with kernel (2.9). For m = 2, we
have λ = (m − 2)/2 = 0 and using the identity, forw = cos θ and integer k ≥ 1,

lim
λ→0

Γ(λ) Cλk (cos θ)=
2
k

cos(kθ),
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(see [22, Vol. I, section 3.15], formula (14)) this kernel reduces to

K2(x, y)= µ0,0 J0(z)+2
+∞∑
k=1

µ0,k Jk(z) cos(kθ).

From Theorem 2.10 we see that the eigenvalues of Tabc are 4-periodic in k and for
m = 2 we have

µ0,0 = ia, µ0,1 = ia+bi, µ0,2 = ia+c(−1), µ0,3 = ia+b(−i).

This allows us to rewrite the kernel as

K2(x, y)= ia
(
J0(z)+2

+∞∑
n=1

J4n(z) cos(4nθ)−ic 2
+∞∑
n=0

J4n+2(z) cos
(
(4n + 2)θ

)
+ ib+1

(
2
+∞∑
n=0

J4n+1(z) cos
(
(4n + 1)θ

)
− 2

+∞∑
n=0

J4n+3(z) cos
(
(4n + 3)θ

) ))
The formulas (2.26), (2.27), (2.28), s = z cos θ and t = z sin θ then yield

K2(x, y)= ia
(1
2
(
cos(s)+ cos(t)

)
+ ic

1
2
(
cos(s)− cos(t)

)
+ ib+1 sin(s)

)
.

Using Lemma 2.14 we now find the following theorem.

theorem 2.16: In even dimension m, the operator exponential

Tabc = ei
π
2 Fabc(

√
Ω)ei

π
2 (h−

m
2 ) (2.30)

with Fabc(x)= a+ b E0101(x)+c E0010(x) (as specified in Theorem 2.10), can be written as
an integral transform whose kernel is given by

Km(x, y)= ia(−i)λ
(1 + ic

2
(
∂s

)λ cos(s)+ib+1 (∂s)λ sin(s)+
1 − ic

2

(
∂s −

s
t
∂t

)λ
cos(t)

)
,

(2.31)
with λ = (m − 2)/2, s = 〈x, y〉 and t =

√
|x |2 |y |2 − s2. Moreover, one has

(
∂s −

s
t
∂t

)λ
cos(t)=

√
π

2

b λ2 c∑̀
=0

sλ−2` 1
2``!

Γ(λ + 1)
Γ(λ + 1 − 2`)

Jλ−1/2−`(t)
tλ−1/2−`

. (2.32)

Proof. For m = 2 we have λ = 0, and the expression (2.31) coincides with the kernel
(2.29) which was obtained in Theorem 2.15. By successive application of Lemma 2.14
we have for even dimension m ≥ 2

Km =
(
−i z−1∂w

)λ K2.
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From s = zw and t = z
√

1 −w2, we easily find

z−1∂w = z−1∂w [s] ∂s + z−1∂w [t] ∂t = ∂s −
w

√
1 −w2

∂t = ∂s −
s
t
∂t,

which proves (2.31).
We now show (2.32) by induction. The statement holds for m = 2 as equation (2.32)

then reduces to the identity (see (A.3))

cos t =
√
π

2
t1/2J−1/2(t).

Before we continue, we make a distinction between λ even and λ odd (or equivalently
m ≡ 2 (mod 4) and m ≡ 0 (mod 4)), as the upper bound of the summation in (2.32)
contains a floor function.
Consider the case λ = 2j (or thus m = 4j + 2) and assume (2.32) holds for this λ.

We have, using property (A.4) of the Bessel function,(
∂s −

s
t
∂t

)λ+1
cos(t)=

(
∂s −

s
t
∂t

) (√π

2

j∑̀
=0

s2j−2` 1
2``!

Γ(2j + 1)
Γ(2j + 1 − 2`)

J(m−2`−3)/2(t)
t(m−2`−3)/2

)
=

√
π

2

j−1∑̀
=0

s2j−2`−1 1
2``!

Γ(2j + 1)
Γ(2j − 2`)

J(m−2`−3)/2(t)
t(m−2`−3)/2

+

√
π

2

j∑̀
=0

s2j−2`+1 1
2``!

Γ(2j + 1)
Γ(2j + 1 − 2`)

J(m−2`−1)/2(t)
t(m−2`−1)/2

=

√
π

2

j∑̀
=1

s2j−2`+1 2`
2``!

Γ(2j + 1)
Γ(2j + 2 − 2`)

J(m−2`−1)/2(t)
t(m−2`−1)/2

+

√
π

2

j∑̀
=0

s2j−2`+1 (2j + 1 − 2`)
2``!

Γ(2j + 1)
Γ(2j + 2 − 2`)

J(m−2`−1)/2(t)
t(m−2`−1)/2

=

√
π

2

j∑̀
=1

s2j−2`+1 (2j + 1)
2``!

Γ(2j + 1)
Γ(2j + 2 − 2`)

J(m−2`−1)/2(t)
t(m−2`−1)/2

+

√
π

2
s2j+1 (2j + 1)

J(m−1)/2(t)
t(m−1)/2

=

√
π

2

j∑̀
=0

s2j−2`+1 1
2``!

Γ(2j + 2)
Γ(2j + 2 − 2`)

J(m−2`−1)/2(t)
t(m−2`−1)/2

,

as required. The inductive step in the case λ odd is treated similarly.

remark 2.17: The explicit form for the kernel obtained in the preceding theorem,
together with the Helmholtz relations, yields its polynomial boundedness similar to
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Lemma 5.2 and Theorem 5.3 in [18], which can be proven in exactly the same fashion.
This ensures the corresponding integral transforms to be well-defined and continuous
on S(Rm).

Next, we consider some specific cases of operators manifested in Theorem 2.16. The
function Fabc in (2.30) contains three parameters, each having four possible values (up
to modulo 4 congruence). The role of the parameter a is but a scalar multiplicative factor,
so we take a = 0 in the following.
Putting c = 0, (2.30) reduces to the operator exponential

Tb = ei
π
2 bΩei

π
2 (h−

m
2 ), (2.33)

where we used E0101(x)= E1(x)= x2. When written as an integral transform we find
that its kernel is given by

Km(x, y)=
(
−i ∂s

)λ (cos(s)+ib+1 sin(s)
)
= ibλ

2
cos(〈x, y〉)+ib(λ+1)2+1 sin(〈x, y〉).

(2.34)
Here, we distinguish four possible scenarios for the value of b:

• For b ≡ 0 (mod 4), the operator exponential (2.33) is precisely the classical
Fourier transform and (2.34) indeed gives

Km(x, y)= cos(〈x, y〉)+i sin(〈x, y〉)= ei 〈x, y〉 .

• Taking b ≡ 2 (mod 4) and multiplying (2.34) by eiπλ , we get the kernel

cos(〈x, y〉)−i sin(〈x, y〉)= e−i 〈x, y〉

of the inverse Fourier transform and hence

F−1 = eiπλeiπΩei
π
2 (h−

m
2 ) = e−i

π
2 (h−

m
2 ).

As F−1 = F3, we also have

F2 = eiπ(Ω+λ) = eiπ(h−
m
2 ).

• The other cases for the value of b, namely b ≡ 1 (mod 4) and b ≡ 3 (mod 4), give
rise to another pair of interesting transforms. Taking b = 2λ + 1 and multiplying
by an appropriate multiplicative factor, we find the kernel cos(〈x, y〉)− sin(〈x, y〉),
corresponding to the operator exponential

ei
π
2 λ

2
ei

π
2 (2λ+1)Ωei

π
2 (h−

m
2 ).

Furthermore, the operator exponential

ei
π
2 (λ

2+2λ)ei
π
2 (2λ−1)Ωei

π
2 (h−

m
2 )

can be written as an integral transform whose kernel is given by cos(〈x, y〉)+
sin(〈x, y〉). This is the cosine-and-sine or Hartley kernel of the integral transform
known as the Hartley transform. The Hartley transform is a real linear operator
that is symmetric and Hermitian [4, 5]. Moreover, it is a unitary operator that is
its own inverse.
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We summarize this in the following table

T̃ = T ◦ F−1 Km(x, y)
ei

π
2 bΩ ibλ

2
cos(〈x, y〉)+ib(λ+1)2+1 sin(〈x, y〉)

1 cos(〈x, y〉)+i sin(〈x, y〉)
eiπλeiπΩ cos(〈x, y〉)−i sin(〈x, y〉)

ei
π
2 λ

2
ei

π
2 (2λ+1)Ω cos(〈x, y〉)− sin(〈x, y〉)

ei
π
2 (λ

2+2λ)ei
π
2 (2λ−1)Ω cos(〈x, y〉)+ sin(〈x, y〉)

Note that the kernel of all of these integral transforms is of the form

Km(x, y)= cos(〈x, y〉)+id sin(〈x, y〉)

for some integer d. As cos(〈x, y〉) and sin(〈x, y〉) are given by the real and imaginary
parts of the Fourier transform, an integral transform with such a kernel coincides with

1
2

(
(F f )(y)+(F f )(−y)

)
+ id−1 1

2

(
(F f )(y)−(F f )(−y)

)
.

Finally, we consider one more special instance. Putting c = 2 (and again a = 0),
(2.31) reduces to the kernel

Km(x, y)= ib+1i−λ sin
(
s + λ

π

2

)
+ i−λ

√
π

2

b m−2
4 c∑̀
=0

s
m
2 −1−2` 1

2``!

Γ(m2 )
Γ(m2 − 2`)

J(m−2`−3)/2(t)
t(m−2`−3)/2

,

corresponding to the operator exponential

Tb = ei
π
2 (

3
2Ω

2− 3
2Ω+bΩ)ei

π
2 (h−

m
2 ).

For m = 2 this kernel becomes

K2(x, y)= ib+1 sin(〈x, y〉)+ cos
(√
|x |2 |y |2 − 〈x, y〉2

)
.

2.3.2 Odd dimension

While Lemma 2.14 remains valid for odd dimension m, we have no specific formulas for
dimension m = 3 comparable to those we used for dimension m = 2, that is, formulas
(2.26)–(2.28). We do have another way to obtain a closed formula for a kernel of the
form (2.9). This other approach holds for a more restricted class of operators (for even
dimension this class is already included in Theorem 2.16) but it has the advantage that
we can also use this in odd dimension.

lemma 2.18: If the action of an operator T on the Hermite basis {φj,k, `} is given by

T φj,k, ` = µ j,k φj,k, `,
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with eigenvalues µ j,k ∈ C that satisfy µ j+1,k = −µ j,k and µ j,k+2 = −µ j,k for j, k ∈ Z≥0.
Then, on {φj,k, `}, T can be written as an integral transform

(T f )(y)=
1

(2π)m/2

∫
Rm

Km(x, y) f (x) dx

with kernel
Km(x, y)= µ0,0 cos(〈x, y〉)+µ0,1 sin(〈x, y〉). (2.35)

Proof. Let T be as specified in the lemma. From the conditions on its eigenvalues we
know that the spectrum of T is completely determined by its eigenvalues µ0,0 and µ0,1,
while the others follows from

µ j,2n = (−1)j(−1)nµ0,0, µ j,2n+1 = (−1)j(−1)nµ0,1.

From the proof of Proposition 2.3 we know that the integral transform

(T f )(y)=
1

(2π)m/2

∫
Rm

Km(x, y) f (x) dx

with kernel Km(x, y), given by (2.9), will have the same eigenvalue spectrum as that of
T .
Distinguishing between even and odd values of k, the series in Km(x, y) becomes

Km(x, y)= µ0,0 2λ Γ(λ)
+∞∑
n=0

(2n + λ) (−1)n z−λ J2n+λ(z)Cλ2n(w)

+ µ0,1 2λ Γ(λ)
+∞∑
n=0

(2n + 1 + λ) (−1)n z−λ J2n+1+λ(z)Cλ2n+1(w).

The desired result now follows from formulas (44) and (45) of [22, Vol. II, section
7.15].

Note that the condition µ j,k+2 = −µ j,k for j, k ∈ Z≥0 immediately implies the eigen-
values being 4-periodic in the index k. In even dimension, one easily verifies that the
operator exponential Tb given by (2.33) satisfies the conditions of Lemma 2.18. Indeed,
we have already obtained its kernel to be (2.34), which is of the form (2.35).
Now, in the odd dimensional case, we find an operator with suitable eigenvalues by

constructing a function that alternates between two values modulo 4, as is the case for
the function in the exponent of Tb in even dimension. The function

Fab(x)= a + b
(
D0110(x)+D0011(x)+2D0010(x)

)
.

meets this requirement as for k ∈ Z≥0, Fab
(
2k+ 1

2

)
≡ a and Fab

(
2k+1+ 1

2

)
≡ a+ b. This

function allows us to state the following theorem, where we have plugged in values for
a and b to yield the simplest form for the kernel function.
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theorem 2.19: In odd dimension, let Td be the operator exponential

Td = ei
π
2 dF(
√
Ω)ei

π
2 (h−

m
2 )

with d ∈ {0, 1, 2, 3} and

F
(√
Ω
)
= (m − 2)

(
D0110

(√
Ω
)
+ D0011

(√
Ω
)
+ 2D0010

(√
Ω
) )
+

(m + 1
2

)2
.

Then Td can be written as an integral transform

(T f )(y)=
1

(2π)m/2

∫
Rm

Km(x, y) f (x) dx

whose kernel is given by

Km(x, y)= cos
(
〈x, y〉

)
+ id+1 sin

(
〈x, y〉

)
.

Proof. The operator Td is 4-periodic in the index k by Theorem 2.13 and its eigenvalues
are given by

ei
π
2 dF(
√
Ω)ei

π
2 (h−

m
2 ) φj,k, ` = ei

π
2 dF(k+λ)ei

π
2 (2j+k) φj,k, ` .

The first four eigenvalues with j = 0 are

µ0,0 = 1, µ0,1 = id+1, µ0,2 = −1, µ0,3 = −id+1,

Using also Lemma 2.2, we see that Td satisfies the conditions of Lemma 2.18 and thus
find the desired kernel.

2.4 Uncertainty principle

As an application of our previous results, we show how to obtain generalized uncertainty
principles (following the same strategy as developed for the Dunkl transform in [40, 41]
and later generalized and streamlined in [3]) for any continuous integral transform

(T f )(y)=
∫
Rm

K(x, y) f (x) dx

on S(Rm) that satisfies all the properties of Theorem 2.13. Hence, it applies in particular
to the operators from e.g. Theorem 2.16 and Theorem 2.19 as they have polynomially
bounded kernels (see Remark 2.17). By Proposition 2.5, such a T has a unitary extension
to L2(Rm) and we may now establish the following lemma.

lemma 2.20: If the continuous integral transform T on S(Rm) satisfies the properties (i)–
(iii), then for its unitary extension to L2(Rm) the following inequality holds:

‖ |x | f ‖2 + ‖|x |T( f )‖2 ≥ m‖ f ‖2, f ∈ S(Rm), (2.36)

with ‖ · ‖ the L2 norm. The inequality becomes an equality if and only if f = αe−|x |
2/2

with α ∈ R.
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Proof. We can compute that for f ∈ S(Rm)

‖|x |T( f )‖2 = 〈|x |T( f ), |x |T( f )〉

= 〈|x |2T( f ), T( f )〉
= −〈T(∆x f ), T( f )〉
= −〈∆x f, f 〉

where we used the Helmholtz relations and the unitarity of T . Using this result, the
left-hand side of (2.36) equals

‖|x | f ‖2 + ‖|x |T( f )‖2 = 〈|x |2 f, f 〉 − 〈∆x f, f 〉

= 〈(|x |2 − ∆x) f, f 〉
= 2〈hf, f 〉
≥ m〈 f, f 〉

as the smallest eigenvalue of h is m/2. The equality then follows as this minimal eigen-
value corresponds to the ground state f = αe−|x |

2/2.

Subsequently we establish the following generalized uncertainty principle.

theorem 2.21: Let
(T f )(y)=

∫
Rm

K(x, y) f (x) dx

be a continuous integral transform on S(Rm) that satisfies the properties (i)–(iii), then
one has the following uncertainty principle:

‖ |x | f ‖ · ‖ |x |T( f )‖ ≥
m
2
‖ f ‖2

for f ∈ S(Rm).

Proof. Put, for c > 0, fc(x)= f (cx). An easy computation then shows that

‖|x | fc‖2= c−m−2‖ |x | f ‖2

and similarly
‖ fc‖2 = c−m‖ f ‖2.

We also have, using the homogeneity of the kernel as given in (2.12),

(T fc)(y) =
∫
Rm

K(cx, y/c) f (cx) dx

= c−m
∫
Rm

K(x, y/c) f (x) dx

= c−m(T f )(y/c).
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As a consequence we have

‖ |x |T( fc)‖2 = ‖c−m |x |(T f )(y/c)‖2

= c−2m
∫
Rm
|x |2 |(T f )(x/c)|2 dx

= c−m+2‖ |x |T( f )‖2.

Now substitute fc for f in Lemma 2.20, and apply the previously established relations.
This yields:

c−2‖|x | f ‖2+c2‖ |x |T( f )‖2≥ m‖ f ‖2.

Finally put

c =

√
‖ |x | f ‖
‖ |x |T( f )‖

and the theorem follows.

remark 2.22: More specialized uncertainty principles can be developed following a
strategy similar to the one used in, for example, [34].

3 fourier transforms in clifford analysis

In the previous section we obtained a class of operators satisfying the set of properties
(i)–(iii). We did this by capitalizing on the relation between these properties, the classi-
cal Fourier transform and a realization of the Lie algebra sl(2). Now, we wish to expand
this train of thought to a broader setting. The aforementioned operator realization of
sl(2) possesses a natural generalization to the Lie superalgebra osp(1|2). For this rea-
son, we turn our attention to the context of Clifford analysis and aim to find solutions
by applying the techniques developed in the previous section.
We start by giving a brief overview of the framework of Clifford analysis (see e.g. [6,

20]), a higher dimensional function theory where functions take on values in a Clifford
algebra. The orthogonal Clifford algebra Clm is generated by the canonical basis { ei |
i = 1, . . . , m } of Rm under the relations

eiej + ejei = 0 (i , j)
e2
i = −1.

This algebra has dimension 2m as a vector space over Rm, and we have

Clm =
m⊕
k=0

span{ ei1ei2 · · · eik | 1 ≤ i1 < · · · < ik ≤ m }.

The empty product (k = 0) is defined as the multiplicative identity element.
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Functions taking values in Clm can be decomposed as

f = f0 +
m∑
i=1

ei fi +
∑
i< j

eiej fi j + · · · + e1 · · · em f1...m

with f0, fi, fi j, . . . , f1...m all real-valued functions on Rm. We identify the point x = (x1,
. . . , xm) in Rm with the vector variable x given by

x =
m∑
j=1

ejx j.

The Clifford product of two vectors splits into a scalar part and a bivector part, given by,
respectively, minus the inner product of the two vectors and the outer product or wedge
product:

x y = −〈x, y〉 + x ∧ y,

with−〈x, y〉 = −
∑m

j=1 x jyj =
1
2(x y+y x) and x∧y =

∑
j<k ejk(x jyk−xkyj)=

1
2(x y−y x).

Furthermore, we introduce a first-order vector differential operator by

∂x =

m∑
j=1

∂x jej.

This operator is the so-called Dirac operator. Together with the vector variable they
satisfy the relations

∂2
x = −∆x, x2 = −|x |2, {x, ∂x} = −2Ex − m,

where {a, b} = ab + ba, and hence they generate a realization of the Lie superalgebra
osp(1|2), which contains the Lie algebra sl(2)= span{∆x, |x |2, [∆x, |x |2]} as its even
part [25].
As the Clifford-valued operators ∂x and x factorize the operators −∆x and −|x |2, they

allow us to refine the Helmholtz relations to what we call the Clifford–Helmholtz rela-
tions

T ◦ ∂x = −i y ◦ T

T ◦ x = −i ∂y ◦ T

Every operator that satisfies this system will by definition also satisfy the Helmholtz
relations. They form an intermediate step in the generalization of the properties of the
Fourier transform:{ T ◦ ∂x j = −i yj ◦ T

T ◦ x j = −i ∂yj ◦ T
=⇒

{ T ◦ ∂x = −i y ◦ T

T ◦ x = −i ∂y ◦ T
=⇒

{ T ◦ ∆x = −|y |2 ◦ T
T ◦ |x |2 = −∆y ◦ T

where in the first we assume it must hold for all j ∈ {1, . . . , m}.
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In the previous section we made extensive use of the eigenfunction basis of S(Rm)⊂
L2(Rm) given by the functions (2.1). In the framework of Clifford analysis the relevant
function space is the space S(Rm)⊗Clm which decomposes under the action of the dual
pair (osp(1|2), Spin(m)). This action leads to the following important basis (see [42])

ψ2p,k, `(x) ..= 2pp! L
m
2 +k−1
p (|x |2)M(`)

k e−|x |
2/2,

ψ2p+1,k, `(x) ..= 2pp!
√

2 L
m
2 +k
p (|x |2) x M(`)

k e−|x |
2/2,

(3.1)

where p, k ∈ Z≥0 and { M(`)
k | ` = 1, ..., dim(Mk) } is a basis for Mk, the space of

spherical monogenics of degree k, that is, homogeneous polynomial null-solutions of
the Dirac operator of degree k. It is clear that every spherical monogenic is a spherical
harmonic, indeed we have Hk ⊗ Clm =Mk ⊕ xMk−1.
The action of the Fourier transform on the eigenfunctions {ψj,k, `} is given by

Fψj,k, ` = ei
π
2 (j+k) ψj,k, ` = i j+k ψj,k, ` .

Moreover, the functions {ψj,k, `} have the following important property (see e.g. [42]),
comparable to property (2.3),

ψj,k, `(x)=

(√
2

2
(
x − ∂x

)) j
M(`)

k e−|x |
2/2 . (3.2)

Now, our aim is to find all operators T : S(Rm)⊗Clm → S(Rm)⊗Clm that satisfy

(I) the Clifford–Helmholtz relations

T ◦ ∂x = −i y ◦ T,

T ◦ x = −i ∂y ◦ T,

(II) T ψj,k, ` = µ j,k ψj,k, ` with µ j,k ∈ C,

(III) T4 = id.

In line with Section 2, we first introduce some suitable linear combinations of the
operators of interest, namely x and ∂x . Hereto put

b+ =
√

2
2

(
x − ∂x

)
and b− = −

√
2

2
(
x + ∂x

)
.

They satisfy the relations
[{b−, b+}, b±] = ±2b±, (3.3)

and hence also generate a realization of the Lie superalgebra osp(1|2), [38]. This Lie
superalgebra contains an even subalgebra isomorphic with sl(2) generated by the even
(or “bosonic”) elements

h =
1
2
{b−, b+}, e =

1
4
{b+, b+}, f = −

1
4
{b−, b−}.
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These are precisely the operators (2.4) we considered in the previous section.
Working in this realization of osp(1|2) the Clifford–Helmholtz relations translate to

the relations

T ◦ b+ = i b+ ◦ T
T ◦ b− = −i b− ◦ T,

(3.4)

and property (3.2) can be written more compactly as ψj,k, `(x)=
(
b+

) j M(`)
k e−|x |

2/2.
Moreover, in this realization the operators act on the eigenfunctions (3.1) in a nice

way. We have
b+ ψj,k, ` = ψj+1,k, ` (3.5)

and for integer p,

b− ψ2p,k, ` = 2pψ2p−1,k, `, b− ψ2p+1,k, ` = (2p + m + 2k)ψ2p,k, ` .

The action of the other operators is then as follows

hψj,k, ` = (j + k + m
2 )ψj,k, `, eψj,k, ` =

1
2
ψj+2,k, `

and, again for integer p,

f ψ2p,k, ` = −p (2p− 2+m+ 2k)ψ2p−2,k, `, f ψ2p+1,k, ` = −p (2p+m+ 2k)ψ2p−1,k, ` .

Note that h again acts diagonally on ψj,k, ` .

remark 3.1: For every k ∈ Z≥0 and ` ∈ {1, . . . , dim(Mk)}, the set { ψj,k, ` | j ∈ Z≥0 }

forms a basis for the irreducible representation of the Lie superalgebra osp(1|2) with
lowest weight k + m/2. This representation is a direct sum of two positive discrete
series representations of su1,1.
For every j, k ∈ Z≥0 the set { ψj,k, ` | ` = 1, ..., dim(Mk) } forms a basis for an

irreducible spinor representation of Spin(m), when restricting the values Clm to a spinor
space.

Similar to the results obtained in the harmonic case, we immediately have some im-
portant consequences for an operator T that satisfies the properties (I)–(III).

lemma 3.2: Let T be an operator satisfying the properties (I)–(III). There are only four
possible values for the eigenvalues µ j,k of the operator T , namely µ j,k ∈ {1, i, −1, −i}.
Moreover, the spectrum of eigenvalues is completely determined by the eigenvalues µ0,k for
k ∈ Z≥0; the other eigenvalues for j > 0 follow from the relation

µ j,k = i j µ0,k. (3.6)

Proof. Property (III) necessitates that the eigenvalues µ j,k of T satisfy (µ j,k)4= 1 and
thus are integer powers of i. Using property (II) and the relations (3.2) and (3.5), we
find

µ j+1,k ψj+1,k, ` = T ψj+1,k, ` = T◦b+ ψj,k, ` = i b+◦T ψj,k, ` = i b+ µ j,k ψj,k, ` = i µ j,k ψj+1,k, ` .

The relation (3.6) now follows from subsequent application of µ j+1,k = i µ j,k.
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proposition 3.3: Let T : S(Rm)⊗Clm → S(Rm)⊗Clm be an operator that satisfies the
properties (I) and (II). Then, on the basis {ψj,k, `}, the operatorT coincides with the integral
transform

(T f )(y)=
1

(2π)m/2

∫
Rm

Km(x, y) f (x) dx

with
Km(x, y)= A(w, z)+(x ∧ y) B(w, z) (3.7)

where

A(w, z) = 2λ Γ(λ)
+∞∑
k=0

1
2
(
i k µ0,k−1 + (k + 2λ)µ0,k

)
z−λ Jk+λ(z)Cλk (w)

B(w, z) = 2λ+1
Γ(λ + 1)

+∞∑
k=1

1
2
(
i µ0,k−1 − µ0,k

)
z−λ−1Jk+λ(z)Cλ+1

k−1 (w),

(3.8)

Here, the notations λ = (m − 2)/2, z = |x | |y | andw = 〈x, y〉/z are used.

Proof. We refer to Theorem A.6 in Appendix A.3 for the full proof of this result.

In the following result, Spin(m) denotes the spin group, which is a subgroup of the
Clifford algebra Clm that is a double cover of the special orthogonal group SO(m).

lemma 3.4: The kernel satisfies

Km(x, cy) = Km(cx, y) ∀c ∈ R
Km(x, Ay) = Km(Ax, y) ∀A ∈ Spin(m)

Proof. This follows from the explicit formulas (3.7)–(3.8) for Km(x, y).

proposition 3.5: A continuous operator T : S(Rm)⊗Clm → S(Rm)⊗Clm satisfying
(I)–(III) has a unitary extension to L2(Rm)⊗Clm.

Proof. This result follows from the fact that S(Rm)⊗Clm is dense in L2(Rm)⊗Clm and
that all eigenvalues have unit norm.

We also have an uncertainty principle, using the inner product (A.10) for L2(Rm)⊗Clm:

theorem 3.6: Let

(T f )(y)=
∫
Rm

K(x, y) f (x) dx

be a continuous integral transform on S(Rm)⊗Clm that satisfies the properties (I)–(III).
Then one has the following uncertainty principle:

‖x f ‖2 · ‖xT( f )‖2 ≥
m
2

(
‖ f ‖2

)2

for f ∈ S(Rm)⊗Clm.
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Proof. This follows by the same reasoning as used to prove Theorem 2.21, now using
Lemma 3.4 and noting that the Clifford–Helmholtz relations imply the regular Helm-
holtz relations.

remark 3.7: In the special case of the Clifford–Fourier transform of [7, 8, 16, 18] more
specialized uncertainty principles can be developed following the strategy of [26].

Now, to determine operators that satisfy properties (I)–(III), we proceed in the same
way as we did in the previous section for the harmonic case. We start by decomposing
T as T = T̃ ◦ F, with again T̃ ..= T ◦ F−1. From (3.4) and property (III), we have the
following conditions for the operator T̃: T̃ has to commute with b± and T̃4 = id. There-
fore, we look at the universal enveloping superalgebra of the Lie superalgebra osp(1|2),
denoted by U

(
osp(1|2)

)
(and its extension U

(
osp(1|2)

)
which also allows infinite power

series). The center of U
(
osp(1|2)

)
is finitely generated by the Casimir element [25]:

C =
1
4
+

1
2
b−b+ −

1
2
b+b− + h2 + 2ef + 2 f e.

remark 3.8: The Casimir element C differs from the Casimir elementΩ of sl(2), given
by (2.15), by an additional term. This extra term is related to another special element
which we call the Scasimir element (see [25]). The Scasimir element

S =
1
2
b−b+ −

1
2
b+b− −

1
2

is a square root of the Casimir operator: S2 = C. It commutes with the even (“bosonic”)
generators and anti-commutes with the odd (“fermionic”) generators b+ and b−. The
Scasimir S in our operator realization of osp(1|2) is related to the angular Dirac operator
or Gamma operator in Clifford analysis as follows:

S =
m − 1

2
− Γx, with Γx = −x∂x − Ex = −

∑
j<k

ejk(x j∂xk − xk∂x j).

The Casimir element C is a diagonal operator on the representation space spanned by
{ ψj,k, ` | j ∈ Z≥0 }. Its action is given by

C ψj,k, ` =
(
k +

m − 1
2

)2
ψj,k, ` . (3.9)

Note that the eigenvalues of the Casimir operator C are again squares of integers or
half-integers depending on the value of the dimension m. However, contrary to the ei-
genvalues of the Casimir element Ω in the harmonic case (2.16), the eigenvalues of C
are now squares of half-integers for even dimension, while for odd dimension we have
squares of integers.
The desired operators follow by using again the integer-valued polynomials defined

in (2.18) and (2.21). We summarize this in the following theorem, which should be
compared to Theorem 2.9.
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theorem 3.9: The properties

(I) the Clifford–Helmholtz relations

T ◦ ∂x = −i y ◦ T

T ◦ x = −i ∂y ◦ T

(II) T ψj,k, ` = µ j,k ψj,k, ` with µ j,k ∈ C,

(III) T4 = id

are satisfied by operators T of the form

T = ei
π
2 F(
√
C)ei

π
2 (h−

m
2 ) ∈ U

(
osp(1|2)

)
(3.10)

where F(
√
C) is an operator that consists of a function given by (2.20) (for odd dimension)

or (2.22) (for even dimension) with the Casimir operator C substituted for x2. Moreover,
every operator that satisfies properties (I)–(III) is equivalent with an operator of the form
(2.23).

Proof. The last part follows by exactly the same reasoning as used in the proof of Theo-
rem 2.9.

In line with our approach in the previous section we now proceed by imposing a
periodicity restriction to further narrow down this set of operators T . This will again aid
us in finding closed formulas for their kernels when written as integral transforms.

3.1 Periodicity restriction

The behavior of the eigenvalues µ j,k ofT with regard to the index j is given in Lemma 3.2.
By successive application of (3.6) we find that these eigenvalues are four-periodic in j:

µ j+4,k = (i)4 µ j,k = µ j,k.

For the same reasons as in the harmonic case we can again impose that the eigenvalues
of T should be 4-periodic in k. Depending on the parity of the dimensionm one works in,
the desired operators follow from the results in either Theorem 2.10 or Theorem 2.11,
which of course remain valid. We summarize this in the following theorem.

theorem 3.10: Let T be an operator that satisfies the following properties:

(I) the Helmholtz relations

T ◦ ∆x = −|y |2 ◦ T,

T ◦ |x |2 = −∆y ◦ T,

(II) T φj,k, ` = µ j,k φj,k, ` with µ j,k ∈ C,
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(III) T4 = id,

(IV) the eigenvalues of T are 4-periodic in the index k: µ j,k+4 = µ j,k.

Then T can be written as
T = ei

π
2 F(
√
C)ei

π
2 (h−

m
2 )

where F consists of a function of type (2.24) as specified in Theorem 2.10 (for odd dimen-
sion) or of type (2.25) as in Theorem 2.11 (for even dimension).
Conversely, every operator T of this form satisfies properties (I)−(IV).

Proof. Completely analogous to the proof of Theorem 2.13.

3.2 Closed formulas for the kernel

We are again interested in finding closed formulas for the kernel of the integral trans-
forms corresponding to the determined operator solutions. It turns out that in even di-
mensions we have a result which can be compared with Theorem 2.16 in the harmonic
case. Hereto we first rewrite the kernel (3.7) of

(T f )(y)=
1

(2π)m/2

∫
Rm

Km(x, y) f (x) dx

as obtained in Proposition 3.3. We put

Km(x, y)= Am(w, z)−λ Bm(w, z)+(x ∧ y) z−1∂w Bm(w, z)

where

Am(w, z) = 2λ Γ(λ)
+∞∑
k=0

(k + λ)
1
2
(i µ0,k−1 + µ0,k) z−λ Jk+λ(z)Cλk (w)

Bm(w, z) = 2λ Γ(λ)
+∞∑
k=0

1
2
(
i µ0,k−1 − µ0,k

)
z−λ Jk+λ(z)Cλk (w)

z−1∂w Bm(w, z) = 2λ+1
Γ(λ + 1)

+∞∑
k=1

1
2
(
i µ0,k−1 − µ0,k

)
z−λ−1Jk+λ(z)Cλ+1

k−1 (w),

(3.11)

using the notations λ = (m − 2)/2, z = |x | |y | and w = 〈x, y〉/z. We then find the
recursive relations listed in the following lemma.

lemma 3.11: Let T be an operator of the form (3.10) as specified in Theorem 3.9. When
written as an integral transform, the components of its kernel as specified in (3.11) satisfy
the following recursive relations

Am+2 = −i z−1∂w Am

Bm+2 = −i z−1∂w Bm

for m ≥ 2.
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Proof. As T is of the form (3.10), its eigenvalues are given by

T ψj,k, ` = ei
π
2 F(
√
C)ei

π
2 (h−

m
2 ) ψj,k, ` = ei

π
2 F(k+λ+

1
2 )ei

π
2 (j+k) ψj,k, ` = µ j,k ψj,k, ` ,

where we used (3.9) for the eigenvalues of C.
Using property (A.1) of the Gegenbauer polynomials, we find for −i z−1∂w Am(w, z)

the expression

2λ Γ(λ)
+∞∑
k=0

(k + λ)
1
2
(i iF(k−1+λ+ 1

2 )ik−1 + iF(k+λ+
1
2 )ik) z−λ−1Jk+λ(z) ∂wCλk (w)

= 2λ Γ(λ)
+∞∑
k=1

(k + λ)
1
2
(iF(k−1+λ+ 1

2 )ik + iF(k+λ+
1
2 )ik) z−(λ+1)Jk+λ(z) 2λ Cλ+1

k−1 (w)

= 2λ+1
Γ(λ + 1)

+∞∑
k=0

(k + 1 + λ)
1
2
(iF(k+λ+

1
2 )ik + iF(k+1+λ+ 1

2 )ik)z−(λ+1)Jk+1+λ(z)Cλ+1
k (w).

This is precisely Am+2(w, z). The second relation follows in exactly the same way.

To obtain closed formulas for the kernels in even dimension, we again start by looking
at dimension m = 2 where we want to use the formulas (2.26), (2.27), (2.28). An
additional complication is that when written as an integral transform the kernel contains
a non-scalar part. In dimension m = 2 the Gegenbauer polynomials occurring in this
bivector part reduce to sine functions. With this in mind we aim to use the formula

sin(z sin θ)= 2
∞∑
n=0

J2j+1(z) sin
(
(2n + 1)θ

)
, (3.12)

which can be found in [44, p. 22, formula (2)]. In m = 2, the component z−1∂w Bm of
(3.11) will take on the form (3.12) only if the eigenvalues of the corresponding operator
T satisfy, for k ≥ 1, 

i µ0,k−1 − µ0,k = 0 if k is even

i µ0,k−1 − µ0,k = c0 if k is odd,

with c0 a constant independent of k. The operators of the form (3.10) whose eigenvalues
satisfy these requirements are the subject of the following theorem. In what follows we
use the notations s = 〈x, y〉 and t =

√
|x |2 |y |2 − s2.

theorem 3.12: In dimension m = 2, the operator exponential

Tab = ei
π
2 Fab(

√
C)ei

π
2 (h−1)

with Fab(x)= a+ bD0110(x) (as specified in Theorem 2.11) and a, b ∈ Z4, can be written
as an integral transform whose kernel is given by

K2(x, y)= ia
(1 + ib

2
(
cos(s)+i sin(s)

)
+

1 − ib

2
cos(t)+(x ∧ y)

1 − ib

2
i sin(t)

t

)
. (3.13)
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Proof. The proof goes along the same lines as the proof of Theorem 2.15.
By Theorem 3.9, Tab satisfies the properties (I)–(III). For m = 2, the kernel K2(x, y)

obtained in Proposition 3.3 (for the formulation of T as an integral transform), reduces
to

µ0,0 J0(z)+
+∞∑
k=1

(i µ0,k−1+µ0,k) Jk(z) cos(kθ)+(x∧ y)
+∞∑
k=1

(i µ0,k−1−µ0,k) Jk(z)
sin(kθ)
z sin θ

.

This follows from λ = 0 and the identities (see [22, Vol. I, section 3.15], formulas (14)
and (15)), forw = cos θ and integer k ≥ 1,

lim
λ→0

Γ(λ) Cλk (cos θ)=
2
k

cos(kθ), and C1
k−1(cos θ)=

sin(kθ)
sin θ

.

Now, using the fact that the eigenvalues of Tab are 4-periodic in k, with (for m = 2)

µ0,0 = ia, µ0,1 = ia+bi, µ0,2 = ia+b(−1), µ0,3 = ia(−i),

we can rewrite the kernel as

K2(x, y)= ia
(
J0(z)+2

+∞∑
n=1

J4n(z) cos(4nθ)−ib 2
+∞∑
n=0

J4n+2(z) cos
(
(4n + 2)θ

)
+ (1 + ib) i

(+∞∑
n=0

J4n+1(z) cos
(
(4n + 1)θ

)
−

+∞∑
n=0

J4n+3(z) cos
(
(4n + 3)θ

) )
+ (x ∧ y) (1 − ib) i

+∞∑
n=0

J2n+1(z)
sin

(
(2n + 1)θ

)
z sin θ

)
.

The formulas (2.26), (2.27), (2.28), (3.12) and s = zw = z cos θ, t = z
√

1 −w2 =

z sin θ then yield for K2(x, y) the expression

ia
(1
2
(
cos(s)+ cos(t)

)
+

ib

2
(
cos(s)− cos(t)

)
+
(1 + ib)i

2
sin(s)

)
+ (x ∧ y)

1 − ib

2
i sin(t)

t

)
.

Using Lemma 3.11 we now find the following theorem.

theorem 3.13: In even dimension m, the operator exponential

Tab = ei
π
2 Fab(

√
C)ei

π
2 (h−

m
2 )

with Fab(x)= a+ bD0110(x) (as specified in Theorem 2.11), can be written as an integral
transform whose kernel is given by

Km(x, y)= ia−λ
(1 − ib

2

(
∂s −

s
t
∂t

)λ
cos(t)−λ

1 − ib

2

(
∂s −

s
t
∂t

)λ−1 i sin(t)
t

+
1 + ib

2
(
cos(s)+i sin(s)

)
+ (x ∧ y)

1 − ib

2

(
∂s −

s
t
∂t

)λ i sin(t)
t

)
,

(3.14)
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with λ = (m − 2)/2. Moreover, one has

(
∂s −

s
t
∂t

)λ
cos(t)=

√
π

2

b m−2
4 c∑̀
=0

s
m
2 −1−2` 1

2``!

Γ(m2 )
Γ(m2 − 2`)

J(m−2`−3)/2(t)
t(m−2`−3)/2

.

(
∂s −

s
t
∂t

)λ−1 sin(t)
t
=

√
π

2

b m−4
4 c∑̀
=0

s
m
2 −2−2` 1

2``!

Γ(m2 − 1)
Γ(m2 − 1 − 2`)

J(m−2`−3)/2(t)
t(m−2`−3)/2

.

(
∂s −

s
t
∂t

)λ sin(t)
t
=

√
π

2

b m−2
4 c∑̀
=0

s
m
2 −1−2` 1

2``!

Γ(m2 )
Γ(m2 − 2`)

J(m−2`−1)/2(t)
t(m−2`−1)/2

.

Proof. This is analogous to the proof of Theorem 2.16 in the harmonic case. For m = 2
we have λ = 0, and the expression (3.14) coincides with (3.13) which was obtained in
Theorem 3.12. Starting from K2, we find the kernel in every even dimension m > 2 by
means of the recursive relations obtained in Lemma 3.11. Note that when moving from
dimension m = 2 to m = 4, although we have no explicit expression for B2, we can
obtain B4 directly from the bivector part in K2:

K2(x, y)= A2(w, z)+(x ∧ y) z−1∂w B2(w, z)= A2(w, z)+(x ∧ y) i B4(w, z).

3.2.1 Specific cases

The kernel (3.14) in Theorem 3.13 consists of a linear interpolation of two terms, with
coefficients (1+ ib)/2 and (1− ib)/2. The first term is precisely the kernel of the classical
Fourier transform, while the second term contains a non-scalar part and can be written
as a finite sum of Bessel functions. This second term closely resembles an expression
found for the kernel of the Clifford-Fourier transform in [18] and also for similar trans-
forms devised in [16].
We can isolate this second term by putting b = 2 in (3.14). Multiplying by iλ−a to

eliminate a scalar multiplicative factor, the kernel reduces to

Km(x, y)=
((
∂s −

s
t
∂t

)λ
cos(t)−λ i

(
∂s −

s
t
∂t

)λ−1 sin(t)
t

)
+ (x ∧ y) i

(
∂s −

s
t
∂t

)λ sin(t)
t
,

which corresponds to the operator exponential

T = ei
π
2 λei

π
2 (C−

1
4 )ei

π
2 (h−

m
2 ) = ei

π
2 (C−

5
4+h).

For dimension m = 2 this kernel reduces to

K2(x, y)= cos(t)+(x ∧ y) i
sin(t)

t
.
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4 conclusions and remarks

We started our investigation from a list of properties (i)–(iii) which specifically high-
lights two symmetric structures underlying the higher dimensional Fourier transform,
namely the orthogonal symmetry and an algebraic symmetry with respect to an oper-
ator realization of the Lie algebra sl(2). We then obtained a complete set of solutions
satisfying (i)–(iii) in the form of operator exponentials, which includes in particular
the classical Fourier transform. The transforms we have constructed also demonstrate
other interesting features. For instance, for each of them, we found a corresponding for-
mulation as an integral transform. Moreover, for a select set of operators when written
as an integral transform the kernel could even be reduced to a closed formula being
polynomially bounded.
In the process of describing these solutions, we gave a brief overview on the subject

of integer-valued polynomials and a generalization thereof, i.e. polynomials that are
integer-valued on the set of square numbers, the set of half-integers or the set of squares
of half-integers.
These results were subsequently lifted to the setting of Clifford analysis where the

Lie algebra sl(2) in the algebraic symmetry was generalized to the Lie superalgebra
osp(1|2), resulting in a new list of properties (I)–(III). Also in this case the obtained
operators form a complete set of solutions and they all have an equivalent formulation
as an integral transform. For a select set of transforms we again find a polynomially
bounded formula for the kernel. The findings obtained here coalesce with those for
similar generalized Fourier transforms in the context of Clifford analysis as described in
[16, 18].

We note that in both the regular and the Clifford setting more closed formulas for
kernels are found for even dimension than in the odd dimensional case. The reason for
this is that, although the recursive relations obtained in Lemma 2.14 and Lemma 3.11
also hold for odd dimension, we have no formula for dimension m = 3 to use as starting
point and as a consequence no such form is found.
Finally, we note that when moving to Clifford analysis we replaced the Helmholtz rela-

tions by their more restrictive variant called the Clifford–Helmholtz relations. Neverthe-
less, one may also consider solutions to the regular Helmholtz relations in the context of
Clifford analysis. Following the same strategy we applied before, this leads to the subset
of U

(
osp(1|2)

)
consisting of the elements that commute with all elements of sl(2), in-

stead of osp(1|2). This subset is generated by S, the Scasimir element of osp(1|2), whose
eigenvalues on the basis {ψj,k, `} square to those of the Casimir C, given by (3.9). Ac-
cordingly, this brings us to polynomials in S that again take integer values when acting
on the basis {ψj,k, `}. This gives rise to a bigger class of more general operator exponen-
tials which includes in particular the operators we obtained by imposing the Clifford–
Helmholtz relations.
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A appendix

Here we give an overview of some definitions and results used in the main text, as well
as some proofs that have been omitted from the text.

A.1 Special functions

For α > −1, p a positive integer and Γ(·) the Gamma function, the generalized Laguerre
polynomials are given by

Lαj (x)=
j∑

n=0

Γ(j + α + 1)
n! (j − n)! Γ(n + α + 1)

(−x)n.

For k ∈ Z≥0 and λ > −1/2, the Gegenbauer polynomials are defined as

Cλk (w)=
b k2 c∑
j=0

(−1)j
Γ(k − j + λ)

Γ(λ) j! (k − 2j)!
(2w)n−2j.

They are a special case of the Jacobi polynomials and satisfy the differentiation property
(see e.g. [21, 43]):

d
dw

Cλk (w)= 2λ Cλ+1
k−1 (w). (A.1)

The Bessel function can be defined by the power series

Jν(t)=
∞∑
n=0

(−1)n

n! Γ(n + ν + 1)

( t
2

)2n+ν
, (A.2)

where ν ∈ C is the order of the Bessel function (see e.g. [44]). In particular, for ν = 1/2
and ν = −1/2, the power series (A.2) reduces to

J1/2(t)=

√
2
πt

sin t, J−1/2(t)=

√
2
πt

cos t, (A.3)

as found in [44, p. 54]. The Bessel functions satisfy (see [44, p. 45])

−
1
t

d
dt
[t−ν Jν(t)] = t−(ν+1)Jν+1(t). (A.4)

A.2 Integer-valued polynomials

We will now elaborate on the identities showcased in Theorem 2.10 and Theorem 2.11
of which the proofs were omitted from the main text. Before delving into the actual
proofs, we first show some auxiliary results. In subsection 2.1 we already mentioned
the polynomials En(x) and Dn(x) exhibiting a property of periodicity when evaluated
modulo 4.We now prove a similar result for themore general integer-valued polynomials(x
n

)
from which the other periodicity results follow.
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proposition a.1: For n, N ∈ Z≥0 such that n < 2N , and x ∈ Z, one has(
x
n

)
≡

(
x + 2N+1

n

)
(mod 4)

Proof. Take N ∈ Z≥0 and n = 2N − 1, the proof for every n < 2N − 1 is similar.
From (2.17), we have by definition(

x + 2N+1

2N − 1

)
=

1
(2N − 1)!

2N−2∏
k=0

(2N+1 + x − k). (A.5)

When expanding this product, each term consists of a number of factors of the form
x − k multiplied with a power of 2N+1. We will show that every term containing a factor
2N+1 is divisible by four and hence congruent 0 modulo 4.
First, note that the denominator (2N − 1)! in (A.5) contains 2N − N − 1 times the

factor 2. This follows from adding the number of integers smaller than 2N − 1 that are
divisible by the powers 2j for j ranging from 1 to N − 1.
Next, we determine when a term containing a factor 2N+1 in the expansion of the

numerator of (A.5) has a minimal number of factors 2 in its prime factorization. This
is the case when its other factors in the product (A.5) are the integers of the set Ax

..=

{ x − k | k ∈ Z≥0 and 0 ≤ k ≤ 2N − 2 } that contain less than N + 1 factors 2 and its
remaining factors being 2N+1. For a given x ∈ Z, the set Ax consists of 2N−1 consecutive
integers. The absolute minimal case thus ensues when the set Ax contains 2N−2 integers
that are not divisible by 2N−1. The product of these integers gives a minimum of 2N −2N
factors 2. Hence, a factor 2N+1 multiplied by such a product of integers contains at least
2N − N + 1 times the factor 2.
As the denominator in (A.5) contains 2N − N − 1 times the factor 2, every term in

the expansion of (A.5) with a factor 2N+1 must contain at least two factors 2 or thus be
divisible by four.

corollary a.2: For natural numbers n, N ∈ Z≥0 such that n ≤ 2N , and x ∈ Z≥0, one
has

En(x)≡ En
(
x + 2N+2) (mod 4),

and
2 En(x)≡ 2 En

(
x + 2N+1) (mod 4),

Proof. Writing (2.18) as

En(x)=
2

(2n)!

n−1∏
k=0

(x2 − k2)=
2

(2n)!
x

2n−2∏
k=0

(x − n + 1 + k),

the periodicity follows by the same reasoning as used in the proof of Proposition A.1.

We need one more lemma which will prove to be useful in the proof of Theorem 2.10.
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lemma a.3: For n an odd integer and k an even integer, we have

En(k)≡ 0 (mod 4).

Proof. Put n = 2N + 1 and k = 2K for some integers N, K. Then

E2N+1(2K)=
2K

2N + 1

(
2K + 2N
4N + 1

)
=

2K(2K + 2N)
(2N + 1)(4N + 1)

(
2K + 2N − 1

4N

)
≡ 0 (mod 4)

as the numerator contains a factor 4 while the denominator contains only odd factors.

Proof of Theorem 2.10. Note first that for a, b, c, d ∈ {0, 1, 2, 3} the function

F(x)= a + b (14Z+1(x)+14Z+3(x))+c 14Z+2(x)+d 14Z+3(x)

is 4-periodic with its first four values given by

F(0)= a, F(1)= a + b, F(2)= a + c, F(3)= a + b + d.

By specifying a, b, c, d ∈ {0, 1, 2, 3} one can clearly obtain every possible combination
of first four values modulo 4.
The first identity of Theorem 2.10 follows easily from the fact that E1(x)= x2, as

every x ∈ Z≥0 is equal to either 2k or 2k + 1 for some k ∈ Z≥0, so

(2k)2= 4k2 ≡ 0 (mod 4), while (2k + 1)2= 4k2 + 4k + 1 ≡ 1 (mod 4).

For the second identity, by (2.18) we have

E2(x)+2 E3(x)=
1

12
x2(x2 − 1)+

1
180

x2(x2 − 1)(x2 − 4)=
x2(x2 − 1)(x2 + 11)

4 · 45
.

Now for k ∈ Z≥0, we find

E2(2k + 1)+2 E3(2k + 1)=
(4k2 + 4k + 1)(4k2 + 4k)(4k2 + 4k + 12)

4 · 45
≡ 0 (mod 4).

Moreover, again for k ∈ Z≥0, it holds that

E2(2k)+2 E3(2k)=
4k2(4k2 − 1)(4k2 + 11)

4 · 45
≡ k2 (mod 4).

We already know that k2 is congruent 1 modulo 4 when k is odd, which corresponds to
2k ≡ 2 (mod 4), and congruent 0 modulo 4 when k is even, corresponding to 2k ≡ 0
(mod 4).

For the last identity, we will show that

E0001(x)≡ 14Z+3(x) (mod 4).
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Hereto we write

E0001(x)=
∞∑
n=1

Tn(x) with Tn(x)..= E2n+1(x)+
n−1∑
j=1

2 E2n+1+2j(x).

By Lemma A.3 we immediately have that for x an even integer each term in Tn(x)
is congruent 0 modulo 4. What remains to be shown is that for k an integer one has
E0001(4k+1)≡ 0 (mod 4) and E0001(4k+3)≡ 1 (mod 4). Hereto we look at the values
of the functions E2n+1 and 2 E2n+1+2j that constitute Tn and in this way generate the
values of Tn and ultimately those of E0001.
Recall that

En(x)=
∏n−1
`=0(x

2 − `2)∏n−1
`=0(n2 − `2)

.

We are dealing with functions that consist of a fraction with integer numerator and
denominator which evaluates to an integer. To determine the value of this integer up to
modulo 4 congruence, we will look at the numerator and the denominator separately
and factorize them into a power of 2 and a remaining odd part. For instance, if a/b is
such a fraction and we have the following factorization a = 2ka′ and b = 2`b′ with a′

and b′ odd integers, then

a
b

mod 4 ≡


0 if k − ` ≥ 2

2 if k − ` = 1

a′ · (b′)−1 if k = `.

Note that k ≥ ` must hold as 2−1 is not defined modulo 4 and we know that a/b must
evaluate to an integer. Moreover, modulo 4 we have for odd integers (1)−1≡ 1 (mod 4)
and (3)−1≡ 3 (mod 4).
We first look at the denominator of the function E2n+1(x) for n ≥ 1 which is given by

2n∏̀
=0

(
(2n + 1)2−`2

)
≡

2n−1−1∏
j=0

(
(2n + 1)2−(2j + 1)2) (mod 4). (A.6)

Here, we carried out a first simplification where we removed a number of factors con-
gruent 1 modulo 4 as they have no impact on the final value modulo 4 of the product.
Indeed, for ` even, say ` = 2j, we have (2n+1)2−(2j)2= 4n2+4n+1−4j2 ≡ 1 (mod 4).
If n = 1, (A.6) reduces to just one factor, yielding

0∏
j=0

(
(2 + 1)2−(2j + 1)2) = (

32 − 12) = 23

for the denominator of E3(x). For n ≥ 2 we work out (A.6) as follows

2n−1−1∏
j=0

(
(2n + 1)2−(2j + 1)2) = 2n−1−1∏

j=0

(
2n + 1 − 2j − 1

) (
2n + 1 + 2j + 1

)
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=

2n−1−1∏
j=0

(
2n − 2j

) (
2n + 2j + 2

)
= (2n+1)!!

= 2(2n)(2n)!

Using repeatedly the recursive relation (for n ≥ 1)

(2n)! = 2(2n−1)(2n − 1)!! (2n−1)!

we find

2(2n)(2n)! = 2(2n)
n∏
j=1

2(2j−1)(2j − 1)!!

= 2(2n+1−1)
n∏
j=1

(2j − 1)!!

Now, the double factorial (2j−1)!! consists of a product of 2j−1 odd consecutive integers.
For j = 1 this product consists of just one factor, namely 1. The product of two odd
consecutive integers is always congruent 3 modulo 4, hence j = 2 contributes a factor
3, while for ` ≥ 3 this double factorial is thus necessarily congruent 1 modulo 4. In this
way, for the denominator of E2n+1(x) we arrive at

22n+1−1
n−1∏̀
=0

2`−1∏
j=0

(2j + 1)≡ 2(2n+1−1) · 3 (mod 4). (A.7)

Using this information we will show that for integers k and x

E2n+1(2nk + 2x + 1)≡
k(k + 1)

2
(mod 4) (0 ≤ x < 2n−1).

For n = 1 we immediately have

E3(2k + 1)≡
1
23

2∏
j=0

(
(2k + 1)2−j2

)
≡

4k2 + 4k + 1 − 1
23 ≡

k(k + 1)
2

(mod 4),

while for n ≥ 2 we find for the numerator of E2n+1(2nk + 2x + 1):

2n∏
j=0

(
(2nk + 2x + 1)2−j2

)
≡

2n−1−1∏
j=0

(
(2nk + 2x + 1)2−(2j + 1)2) (mod 4)

=

2n−1−1∏
j=0

(
2nk + 2x − 2j

) (
2nk + 2x + 2j + 2

)
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=

2n∏
j=1

(
2n(k − 1)+2x + 2j

)
.

Here we have a product of 2n even consecutive integers starting at 2n(k − 1)+2x + 2.
For x = 0 this product starts at 2n(k − 1)+2 and goes up to 2n(k − 1)+2n+1. Compared
to the case x = 0, a shift occurs when x > 0 where for j from 1 up to x the factor
2n(k − 1)+2j in this product gets replaced by 2n(k − 1)+2j + 2n+1. Now, our goal is
to factor out all powers of 2 and look at the remaining odd part modulo 4. As long as
2j < 2n, or thus x < 2n−1, we see that 2n(k − 1)+2j contains at most a power of 2
equal to 2n−1. Hence, when factoring out all powers of 2 the added term 2n+1 in the
replacement factor 2n(k − 1)+2j + 2n+1 can at most reduce to 22. This means that the
odd part remaining after factoring out all powers of 2 of the replacement factor and the
original factor give the same value modulo 4. Note that this no longer holds for x = 2n−1

as one can then factor out 2n.
For 0 ≤ x < 2n−1 we have

2n∏
j=1

(2n(k − 1)+2x + 2j
)
≡

2n∏
j=1

(2n(k − 1)+2j
)

(mod 4)

Using repeatedly the recursive relation (for n ≥ 1)

2n∏
j=1

(2n(k − 1)+2j
)
= 2(2n)

2n−1∏
j=1

(2n−1(k − 1)+2j − 1
) 2n−1∏

j=1

(2n−1(k − 1)+2j
)

we find

2n∏
j=1

(2n(k − 1)+2j
)
= (k + 1)

n∏̀
=1

2(2`)
2`−1∏
j=1

(
2`−1(k − 1)+2j − 1

)
= (k + 1)2(2n+1−2)

n∏̀
=1

2`−1∏
j=1

(
2`−1(k − 1)+2j − 1

)
.

Now, for ` = 1 the inner most product reduces to one factor 20(k − 1)+1 = k, while for
` = 2 we have

(
2(k − 1)+1

) (
2(k − 1)+3

)
≡ 3 (mod 4). For all other values of `, we

have a product of 2`−1 odd consecutive integers which is always congruent 1 modulo 4.
In this way, we arrive at

2(2n+1−2) · 3 · k(k + 1)

for the numerator of E2n+1(2nk + 2x + 1). Together with what we obtained for the
denominator of E2n+1(x) in (A.7) we ultimately find

E2n+1(2nk + 2x + 1)≡
k(k + 1)

2
(mod 4)

(
0 ≤ x < 2n−1) .
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What this means is that when looking at the values of E2n+1 modulo 4 evaluated at
the odd integers, starting at 1 we have 2n−1 times the value 0, followed by 2n−1 times
the value 1, then 2n−1 times the value 3 and 2n−1 times the value 2 after which the
sequence mirrors and repeats due to the periodicity result in Corollary A.2 and the fact
that En(−x)= En(x). This is illustrated in Table A1.
Using the same techniques as above one shows that

2E2n+1+2j
(
2n + 2n+1k + 2x + 2jy + 1

)
≡ (k + 1)2y(y + 1) (mod 4),

for 0 ≤ x < 2j−1 and 0 ≤ y < 2n−j+1. Note that because of the added factor 2 in
front, it suffices to count the powers of 2 and we do not need to take into account the
congruence class modulo 4 of the remaining odd part when decomposing the numerator
and the denominator. This result translates to the evaluation at odd integers as follows:
starting at 1, for 2E2n+1+2j we have 2n−1 times the value 0, followed by 2n−j+1 times a
sequence consisting of 2j−1 values 0, 2j values 2 and again 2j−1 values 0. This is followed
by 2n−1 times the value 0 and the other values follow from Corollary A.2.
Together with what we obtained for E2n+1, this gives the following sequence of values

for Tn with n ≥ 2 evaluated at the integers 4k + 1 starting at 1 (k = 0): we have 2n−2

times the value 0, followed by 2n−1 times the value 1, 2n−1 times the value 2, 2n−1 times
the value 3 and finally 2n−2 times the value 0, after which the sequence repeats due to
the periodicity result in Corollary A.2. This is illustrated in Table A2. A similar result
holds for the values of Tn evaluated at the integers 4k+3 which is illustrated in table A3.
More formally, we can also write this as (for n ≥ 2)

Tn(2nk + 4x + 1) ≡
k(k + 1)

2
+

k2(k2 − 1)
2

(mod 4) (0 ≤ x < 2n−2)

Tn(2nk + 4x + 3) ≡
k(k − 1)

2
+

k2(k2 − 1)
2

(mod 4) (0 ≤ x < 2n−2).
(A.8)

Putting

EN
0001(x)

..=

N∑
n=1

Tn(x),

the function EN
0001 has periodicity 2N+3 due to Corollary A.2. When evaluated at integers

congruent 1 modulo 4 it thus suffices to know the first 2N+1 values. We now show that
the values EN

0001(4k + 1) for k from 0 to 2N+1 are 2N−1 times 0, followed by 2N−1 times
3, followed by 2N−1 times 2 and finally 2N−1 times 1.
This obviously holds for the case N = 1, as then we have T1 = E3 which evaluated at

4k+1 gives the sequence 0, 3, 2, 1 repeated indefinitely. Next, we assume this holds for
EN

0001(4k + 1) and we show that it also holds for EN+1
0001(4k + 1). We have by definition

EN+1
0001(x)= TN+1(x)+

N∑
n=1

Tn(x).

Owing to Corollary A.2, it suffices to look at TN+1 evaluated at the values 4k + 1 for k
from 0 to 2N+2, which we found in (A.8). The addition of these values with the assumed
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values of EN
0001 now give the desired values of EN+1

0001 modulo 4. This is illustrated in
Table A4.
Hence, for an integer congruent 1 modulo 4, say 4k+ 1, we thus find that EN

0001(4k+
1)≡ 0 (mod 4) for N such that 4k + 1 ≤ 2N−1. As E0001 = limN→∞ EN

0001, we have
E0001(4k + 1)≡ 0 (mod 4) for every integer k. In exactly the same manner one finds
that E0001(4k + 3)≡ 1 (mod 4).

The proof of Theorem 2.11 is analogous to the one of Theorem 2.10, now using the
following periodicity property of the polynomials Dn.

corollary a.4: For natural numbers n, N ∈ Z≥0 such that n ≤ 2N , and x ∈ Z≥0, one
has

Dn
(
x+ 1

2

)
≡ Dn

(
x+ 1

2 + 2N+2) (mod 4),

and
2 Dn

(
x+ 1

2

)
≡ 2 Dn

(
x+ 1

2 + 2N+1) (mod 4),

Proof. Writing (2.21) as

Dn
(
x+ 1

2

)
=

1
(2n)!

n−1∏
k=0

(
(x+ 1

2)
2−(k+ 1

2)
2) = 1

(2n)!

2n−1∏
k=0

(x − n + 1 + k),

the periodicity follows by the same reasoning as used in the proof of Proposition A.1.

A.3 Clifford analysis

To show Proposition 3.3, we first give some auxiliary results. For these results, let T be
an integral transform

T[ f (x)](y)=
1

(2π)m/2

∫
Rm

K(x, y) f (x) dx

with kernel given by
K(x, y)= A(w, z)+(x ∧ y) B(w, z)

where, for αk, βk ∈ C,

A(w, z) = 2λ Γ(λ)
+∞∑
k=0

(k + λ) αk z−λ Jk+λ(z)Cλk (w)

B(w, z) = 2λ+1
Γ(λ + 1)

+∞∑
k=1

(k + λ) βk z−λ−1Jk+λ(z)Cλ+1
k−1 (w).

The eigenvalues of T can be determined using the following proposition, which is a
generalization of Bochner’s formulas for the classical Fourier transform.
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table A1: The values (modulo 4) of the polynomials E3, E5, . . . , E31 evaluated on the odd inte-
gers 1 to 33

2k + 1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33
E3 0 1 3 2 2 3 1 0 0 1 3 2 2 3 1 0 0
E5 0 0 1 1 3 3 2 2 2 2 3 3 1 1 0 0 0
E9 0 0 0 0 1 1 1 1 3 3 3 3 2 2 2 2 2
E17 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 3
E31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

table A2: The values (modulo 4) of the polynomials T1, T2, . . . , T6 evaluated on the integers
congruent 1 modulo 4, ranging from 1 to 65

4k + 1 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
T1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
T2 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 0 0
T3 0 0 1 1 1 1 2 2 2 2 3 3 3 3 0 0 0
T4 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2
T5 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
T6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

table A3: The values (modulo 4) of the polynomials T1, T2, . . . , T6 evaluated on the integers
congruent 3 modulo 4, ranging from 3 to 67

4k + 3 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67
T1 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 0
T2 0 3 3 2 2 1 1 0 0 3 3 2 2 1 1 0 0
T3 0 0 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0
T4 0 0 0 0 3 3 3 3 3 3 3 3 2 2 2 2 2
T5 0 0 0 0 0 0 0 0 3 3 3 3 3 3 3 3 3
T6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

table A4: The values (modulo 4) of EN+1
0001 evaluated on the first 2N+2 integers congruent 1

modulo 4
2N−1︷ ︸︸ ︷ 2N−1︷ ︸︸ ︷ 2N−1︷ ︸︸ ︷ 2N−1︷ ︸︸ ︷ 2N−1︷ ︸︸ ︷ 2N−1︷ ︸︸ ︷ 2N−1︷ ︸︸ ︷ 2N−1︷ ︸︸ ︷

EN
0001(4k + 1) 0 . . . 0 3 . . . 3 2 . . . 2 1 . . . 1 0 . . . 0 3 . . . 3 2 . . . 2 1 . . . 1
TN+1(4k + 1) 0 . . . 0 1 . . . 1 1 . . . 1 2 . . . 2 2 . . . 2 3 . . . 3 3 . . . 3 0 . . . 0
EN+1

0001(4k + 1) 0 . . . 0 0 . . . 0 3 . . . 3 3 . . . 3 2 . . . 2 2 . . . 2 1 . . . 1 1 . . . 1︸              ︷︷              ︸
2N

︸              ︷︷              ︸
2N

︸              ︷︷              ︸
2N

︸              ︷︷              ︸
2N
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proposition a.5: Let Mk ∈Mk be a spherical monogenic of degree k. Let f (x)= f0(|x |)
be a real-valued radial function in S(Rm). Further, put ξ = x/|x |, η = y/|y | and r = |x |.
Then one has

T[ f (x)Mk(x)](y)=
(
αk − k βk

)
Mk(η)

∫ +∞

0
rm+k−1 f0(r)z−λ Jk+λ(z) dr

and

T[ f (x)xMk(x)](y)= (αk+1 + (k + m − 1)βk+1)ηMk(η)
∫ +∞

0
rm+k f0(r)z−λ Jk+1+λ(z) dr

with z = r |y | and λ = (m − 2)/2.

Proof. The proof relies on (2.10) and goes along similar lines as the proof of Theorem
6.4 in [18].

We then have the following theorem.

theorem a.6: The functions {ψj,k, `} are eigenfunctions of T . One has, putting β0 = 0,

(Tψ2p,k, `)(y) = (−1)p
(
αk − k βk

)
ψ2p,k, `(y)

(Tψ2p+1,k, `)(y) = (−1)p
(
αk+1 + (k + m − 1)βk+1

)
ψ2p+1,k, `(y).

(A.9)

Proof. The functions {ψj,k, `} are of the form f (x)Mk(x) or f (x)xMk(x) with f (x)=
f0(|x |) a real-valued radial function in S(Rm). Hence we can apply Proposition A.5 and
we find, using λ = (m − 2)/2,

(Tψ2p,k, `)(y)=
(
αk − k βk

)
M(`)

k (η)
∫ ∞

0
r2λ+1+kLk+λp (r2) e−r

2/2z−λ Jk+λ(z) dr.

Substituting z = r |y |, the integral becomes∫ ∞

0
r2λ+1+kLk+λp (r2) e−r

2/2(r |y |)−λ Jk+λ(r |y |) dr.

Now we can apply the identity (2.11) to give the final result of

(Tψ2p,k, `)(y) = (−1)p
(
αk − k βk

)
M(`)

k (y)Lk+λp (|y |2)e−|y |
2/2

= (−1)p
(
αk − k βk

)
ψ2p,k, `(y).

The expression for (Tψ2p+1,k, `)(y) follows similarly.

Using these results, we finally arrive at:

Proof of Proposition 3.3. Denote the eigenvalues of T by µ j,k for j, k ∈ Z≥0. From
Lemma 3.2, we see that these eigenvalues satisfy

µ j+2,k = −µ j,k.
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Moreover, as µ j+1,k = i µ j,k we find that putting

αk =
1

2(k + λ)
(
i k µ0,k−1 + (k + 2λ)µ0,k

)
, βk =

1
2(k + λ)

(
i µ0,k−1 − µ0,k

)
in (A.9), gives an integral transform that coincides withT on the eigenfunction basis.

We conclude with a note relevant to the space L2(Rm)⊗Clm in Theorem 3.6. This
space is equipped with the inner product

〈 f, g〉 =
[∫

Rm
f c g dx

]
0
. (A.10)

Here, u 7→ ū is the anti-involution on the Clifford algebra Clm defined by

uv = v u and ej = −ej (j = 1, . . . , m).

Furthermore, f c denotes the complex conjugate of the function f and u 7→ [u]0 is
the projection on the space of 0-vectors (scalars). The functions {ψj,k, `} defined in for-
mula (2.1) are after suitable normalization an orthonormal basis for L2(Rm)⊗Clm (see
e.g. [42]), satisfying

〈ψj1,k1, `1, ψj2,k2, `2〉 = δ j1 j2δk1k2δ`1`2 .
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abstract

We consider a generalization of the classical Laplace operator, which includes the
Laplace-Dunkl operator defined in terms of the differential-difference operators associ-
ated with finite reflection groups called Dunkl operators. For this Laplace-like operator,
we determine a set of symmetries commuting with it, which are generalized angular
momentum operators, and we present the algebraic relations for the symmetry alge-
bra. In this context, the generalized Dirac operator is then defined as a square root of
our Laplace-like operator. We explicitly determine a family of graded operators which
commute or anti-commute with our Dirac-like operator depending on their degree. The
algebra generated by these symmetry operators is shown to be a generalization of the
standard angular momentum algebra and the recently defined higher rank Bannai-Ito
algebra.

1 introduction

The study of solutions of the Laplace equation or of the Dirac equation, in any context
or setting, is a major topic of investigation. For that purpose, a crucial role is played
by the symmetries of the Laplace operator ∆ or of the Dirac operator D, i.e. operators
commuting with ∆ or (anti)commuting with D. The symmetries involved and the alge-
bras they generate lead to topics such as separation of variables and special functions.
Without claiming completeness we refer the reader to [2, 3, 6, 7, 10, 18].

For this paper, the context we have in mind is that of Dunkl derivatives [9, 23], i.e.
where the ordinary derivative ∂

∂xi
is replaced by a Dunkl derivative Di in the expression

of the Laplace or Dirac operator. One often refers to these operators as the Laplace-
Dunkl and the Dirac-Dunkl operator. The chief purpose of this paper is to determine
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the symmetries of the Laplace-Dunkl operator and of the Dirac-Dunkl operator, and
moreover study the algebra generated by these symmetries.
In the process of this investigation, it occurred to us that it is advantageous to treat

this problem in a more general context, which we shall describe here in the introduc-
tion. For this purpose, let us first turn to a standard topic in quantum mechanics: the
description of the N-dimensional (isotropic) harmonic oscillator. The Hamiltonian Ĥ of
this oscillator (with the common convention m = ω = ~ = 1 for mass, frequency and
the reduced Planck constant) is given by

Ĥ =
1
2

N∑
j=1

p̂2
j +

1
2

N∑
j=1

x̂2
j . (1.1)

In canonical quantum mechanics, the coordinate operators x̂ j and momentum opera-
tors p̂j are required to be (essentially self-adjoint) operators satisfying the canonical
commutation relations

[x̂i, x̂ j] = 0, [p̂i, p̂j] = 0, [x̂i, p̂j] = iδi j. (1.2)

So in the “coordinate representation”, where x̂ j is represented by multiplication with
the variable x j, the operator p̂j is represented by p̂j = −i ∂∂x j .
Because the canonical commutation relations are sometimes considered as “unphysi-

cal” or “imposedwithout a physical motivation”, more fundamental ways of quantization
have been the topic of various research fields (such as geometrical quantization). One
of the pioneers of a more fundamental quantization procedure was Wigner, who intro-
duced a method that later became known as “Wigner quantization” [21, 20, 24, 26, 27].
Briefly said, in Wigner quantization one preserves all axioms of quantum mechanics,
except that the canonical commutation relations are replaced by a more fundamental
principle: the compatibility of the (classical) Hamilton equations with the Heisenberg
equations of motion. Concretely, these compatibility conditions read

[Ĥ, x̂ j] = −ip̂j, [Ĥ, p̂j] = ix̂ j (j = 1, . . . , N). (1.3)

Thus for the quantum oscillator, one keeps the Hamiltonian (1.1), but replaces the rela-
tions (1.2) by (1.3). When the canonical commutation relations (1.2) hold, the compati-
bility relations (1.3) are automatically valid (this is a version of the Ehrenfest theorem),
but not vice versa. Hence Wigner quantization is a generalization of canonical quanti-
zation, and canonical quantization is just one possible solution of Wigner quantization.
Note that in Wigner quantization the coordinate operators x̂ j (and the momentum op-
erators) in general do not commute, so this is of particular significance in the field of
non-commutative quantum mechanics.
In a mathematical context, as in this paper, one usually replaces the physical momen-

tum operator components p̂j by operators pj = ip̂j, and one also denotes the coordinate
operators x̂ j by x j. Then the operator H takes the form

H = −
1
2

N∑
j=1

p2
j +

1
2

N∑
j=1

x2
j . (1.4)
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So in the canonical case, where x j stands for multiplication by the variable x j, pj is
just the derivative ∂

∂x j
, and the first term of H is (up to a factor −1/2) equal to the

Laplace operator
∑N

j=1 p2
j =

∑N
j=1

∂2

∂x2
j
= ∆. In the more general case, the compatibility

conditions (1.3) read

[H, x j] = −pj, [H, pj] = −x j (j = 1, . . . , N). (1.5)

We are now in a position to describe our problem in a general framework:

Given N commuting operators x1, . . . , xN and N commuting operators p1, . . . ,

pN , consider the operator H = −
1
2

N∑
j=1

p2
j +

1
2

N∑
j=1

x2
j , and suppose that the

compatibility conditions (1.5) hold. Classify the symmetries of the generalized
Laplace operator, i.e. classify the operators that commute with

∑N
j=1 p2

j .

In other words, we are given N operators x1, . . . , xN and N operators p1, . . . , pN that
satisfy

[xi, x j] = 0, [pi, pj] = 0, (1.6)[1
2

N∑
i=1

p2
i , x j

]
= pj,

[1
2

N∑
i=1

x2
i , pj

]
= −x j. (1.7)

Under these conditions, the first problem is: determine the operators that commute with
the generalized Laplace operator

∆ =

N∑
i=1

p2
i . (1.8)

Our two major examples of systems satisfying (1.6) and (1.7) are the “canonical case”
and the “Dunkl case”.
For the first example, xi is just the multiplication by the variable xi, and pi is the

derivative with respect to xi: pi = ∂
∂xi

. Clearly, these operators satisfy (1.6) and (1.7),
and the operator ∆ in (1.8) coincides with the classical Laplace operator.
For the second example, xi is again the multiplication by the variable xi, but pi is the

Dunkl derivative pi = Di, which is a certain differential-difference operator with an
underlying reflection group determined by a root system (a precise definition follows
later in this paper). Conditions (1.6) still hold: the commutativity of the operators xi is
trivial, but the commutativity of the operators pi is far from trivial [9, 11]. Following [9],
also the conditions (1.7) are valid in the Dunkl case. The operator ∆ in (1.8) now takes
the form

∑N
i=1 D2

i and is known as the Dunkl Laplacian or the Laplace-Dunkl operator.
By the way, it is no surprise that the operators xi and Dj do not satisfy the canonical
commutation relations. It is, however, very surprising that they satisfy the more general
Wigner quantization relations (for a Hamiltonian of oscillator type).

So the solution of the first problem in the general context will in particular lead to
the determination of symmetries of the Laplace-Dunkl operator.
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Since we are dealing with these operators in an algebraic context, it is worthwhile to
move to a closely related operator, the Dirac operator. For this purpose, consider a set
of N generators of a Clifford algebra, i.e. N elements ei satisfying

{ei, ej} = eiej + ejei = ε 2δi j

where ε is +1 or −1. The generators ei are supposed to commute with the general
operators x j and pj. Under the general conditions (1.6) and (1.7), the second problem
is now: determine the operators that commute (or anti-commute) with the generalized
Dirac operator

D =
N∑
i=1

eipi. (1.9)

Obviously, this is a refinement of the first problem, since D2 = ε ∆.
For our two major examples, in the canonical case the operator (1.9) is just the clas-

sical Dirac operator; in the Dunkl case, the operator (1.9) is known as the Dirac-Dunkl
operator.
In the present paper we solve both problems in the general framework (1.6)–(1.7),

and even go beyond it by determining the algebraic relations satisfied by the symme-
tries. In section 2 we consider the generalized Laplace operator ∆ and determine all
symmetries, i.e. all operators commuting with ∆ (Theorem 2.3). Next, in Theorem 2.5
the algebraic relations satisfied by these symmetries are established. For the generalized
Dirac operator D, the determination of the symmetries is computationally far more in-
volved. In section 3, Theorem 3.7 classifies essentially all operators that commute or
anti-commute with D. In the following subsections, we derive the quadratic relations
satisfied by the symmetries of the Dirac operator. The computations of these relations
are very intricate, and involve subtle techniques. Fortunately, there is a case to com-
pare with. For the Dunkl case, in which the underlying reflection group is the simplest
possible example (namely ZN

2 ), the symmetries and their algebraic relations have been
determined in [6, 7] and give rise to the so-called (higher rank) Bannai-Ito algebra. Our
results can be considered as an extension of these relations to an arbitrary underlying
reflection group, in fact in an even more general context.

2 symmetries of laplace operators

We start by formally describing the operator algebra that will contain the desired sym-
metries of a generalized Laplace operator (1.8), as brought up in the introduction.

definition 2.1: We define the algebra A to be the unital (over the field R or C) asso-
ciative algebra generated by the 2N elements x1, . . . , xN and p1, . . . , pN subject to the
following relations:

[xi, x j] = 0, [pi, pj] = 0,[1
2

N∑
i=1

p2
i , x j

]
= pj,

[1
2

N∑
i=1

x2
i , pj

]
= −x j.
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Note that an immediate consequence of the relations of A is

[xi, pj] = [xi, −[H, x j]] = −[[xi, H], x j] = −[pi, x j] = [x j, pi],

where H is given by (1.4). This reciprocity

[xi, pj] = [x j, pi] (2.1)

will be useful for many ensuing calculations, starting with the following theorem.

theorem 2.2: The algebra A contains a copy of the Lie algebra sl(2) generated by the
elements

|x |2

2
=

1
2

N∑
i=1

x2
i , −

∆

2
= −

1
2

N∑
i=1

p2
i , E =

1
2

N∑
i=1

{pi, xi}, (2.2)

satisfying the relations[
E,
|x |2

2

]
= |x |2,

[
E, −

∆

2

]
= −∆,

[
|x |2

2
, −
∆

2

]
= E.

Proof. By direct computation we have

1
4
[∆, |x |2] =

1
4

N∑
i=1

[∆, x2
i ] =

1
4

N∑
i=1

{[∆, xi], xi} =
1
2

N∑
i=1

{pi, xi}.

Using the commutativity of p1, . . . , pN and relation (2.1), we have

[E, ∆] =
1
2

N∑
i=1

N∑
j=1

[{pi, xi}, p2
j ] =

1
2

N∑
i=1

N∑
j=1

{[{pi, xi}, pj], pj}

=
1
2

N∑
i=1

N∑
j=1

{
(
pi(xipj − pjxi)+(xipj − pjxi)pi

)
, pj}

=
1
2

N∑
i=1

N∑
j=1

{
(
pi(x jpi − pix j)+(x jpi − pix j)pi

)
, pj}

= −
1
2

N∑
j=1

{[ N∑
i=1

p2
i , x j

]
, pj

}
= −

N∑
j=1

{pj, pj} = −2∆.

In the same manner, using now the commutativity of x1, . . . , xN , we find [E, |x |2] =
2|x |2.

In the spirit of Howe duality [16, 17], our objective is to determine the subalgebra
of A which commutes with the Lie algebra sl(2) realized by ∆ and |x |2 as appearing in
Theorem 2.2. As mentioned in the introduction, the element ∆ corresponds to a general-
ized version of the Laplace operator, which reduces to the classical Laplace operator for a
specific choice of the elements p1, . . . , pN . In the (Euclidean) coordinate representation,
|x |2 of course represents the norm squared.
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2.1 Symmetries

As p1, . . . , pN are commuting operators, by definition they also commute with ∆. How-
ever, in general they are not symmetries of |x |2. An immediate first example of an oper-
ator which does commute with both ∆ and |x |2 is given by the Casimir operator (in the
universal enveloping algebra) of their sl(2) realization

Ω = E2 − 2E − |x |2∆ ∈ U(sl(2))⊂ A. (2.3)

Note that this operator is of the same order in both x1, . . . , xN and p1, . . . , pN as it has to
commute with both∆ and |x |2. More precisely it is of fourth order in the generators ofA,
being quadratic in x1, . . . , xN and quadratic in p1, . . . , pN . We now set out to consider
the most elementary symmetries, those which are of second order in the generators of
A.

theorem 2.3: In the algebraA, the elements quadratic in the generators x1, . . . , xN and
p1, . . . , pN , which commute with ∆ and |x |2 are spanned by

Li j = xipj − x jpi, Ci j = [pi, x j] = pix j − x jpi (i, j ∈ {1, . . . , N}). (2.4)

Note that when i = j we have Lii = 0, while Cii = [pi, xi] does not necessarily
vanish. Moreover, as Li j = −Lji, every symmetry Li j is up to a sign equal to one of the
N(N − 1)/2 symmetries {Li j | 1 ≤ i < j ≤ N}. By relation (2.1), Ci j = C ji and thus we
have N(N + 1)/2 symmetries {Ci j | 1 ≤ i ≤ j ≤ N}. In total, this gives N2 generically
distinct symmetries.

Proof. It is trivial that there are no nonzero quadratic elements in x1, . . . , xN that com-
mute with ∆, and no nonzero quadratic elements in p1, . . . , pN that commute with
|x |2. Now, as ∆ commutes with p1, . . . , pN and using condition (1.7), we have for i, j ∈
{1, . . . , N}

[∆, xipj − x jpi] = xi[∆, pj] + [∆, xi]pj − x j[∆, pi] − [∆, x j]pi = 2pipj − 2pjpi = 0.

In the same manner we have [∆, pix j − x jpi] = 0. The relations for |x |2 follow similarly.

2.2 Symmetry algebra

For the following results, we make explicit use of the symmetry Ci j = [pi, x j] being
symmetric in its two indices, by relation (2.1). This is the case for pi corresponding
to classical partial derivatives, but also for their generalization in the form of Dunkl
operators.Wewill return in detail to these examples in section 2.3. Another consequence
of relation (2.1) pertains to the form of the other symmetries of Theorem 2.3. By means
of xipj − pjxi = x jpi − pix j we readily observe that

Li j = xipj − x jpi = pjxi − pix j. (2.5)
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Given these symmetry properties, the symmetries of Theorem 2.3 generate an algebraic
structure within A whose relations we present after the following lemma.

lemma 2.4: In the algebra A, the symmetries (2.4) satisfy the following relations for all
i, j, k ∈ {1, . . . , N}

[Ci j, pk] = [Ckj, pi], and [Ci j, xk] = [Ckj, xi].

Moreover, we also have

Li jpk + Lkipj + Ljkpi = 0 = pkLi j + pjLki + piLjk,

and
xkLi j + x jLki + xiLjk = 0 = Li jxk + Lkix j + Ljkxi.

Proof. For the first relation, writing out the commutators in [[pk, x j], pi] − [[pi, x j], pk]
we find

pkx jpi − x jpkpi − pipkx j + pix jpk − pix jpk + x jpipk + pkpix j − pkx jpi.

We see that all terms cancel due to themutual commutativity of the operators p1, . . . , pN .
The other relation of the first line follows in the same way.
For the other two relations, the identities follow immediately by choosing the ap-

propriate expression for Li j of (2.5) and making use of the commutativity of either
x1, . . . , xN or p1, . . . , pN .

theorem 2.5: In the algebra A, the symmetries (2.4) satisfy the following relations for
all i, j ∈ {1, . . . , N},

[Li j, Lkl] = LilC jk + LjkCil + LkiCl j + Ll jCki (2.6)
= C jkLil + CilLjk + Cl jLki + CkiLl j,

and
{Li j, Lkl} + {Lki, Ljl} + {Ljk, Lil} = 0, (2.7)

and
[Li j, Ckl] + [Lki, C jl] + [Ljk, Cil] = 0. (2.8)

Proof. We will prove the first line of the first relation, i.e. (2.6), the second line follows
in a similar manner. We have

[xipj − x jpi, xkpl − xlpk] = [xipj, xkpl] − [xipj, xlpk] − [x jpi, xkpl] + [x jpi, xlpk]
= xi[pj, xk]pl + xk[xi, pl]pj − xi[pj, xl]pk − xl[xi, pk]pj
− x j[pi, xk]pl − xk[x j, pl]pi + x j[pi, xl]pk + xl[x j, pk]pi

= xiC jkpl − xkClipj − xiC jlpk + xlCkipj
− x jCikpl + xkCl jpi + x jCilpk − xlCkjpi.
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Swapping all operators pl with C jk, we find

[Li j, Lkl] = xiplC jk + xi[C jk, pl] − xkpjCli − xk[Cli, pj] − xipkC jl − xi[C jl, pk]
+ xlpjCki + xl[Cki, pj] − x jplCik − x j[Cik, pl] + xkpiCl j

+ xk[Cl j, pi] + x jpkCil + x j[Cil, pk] − xlpiCkj − xl[Ckj, pi]
= xiplC jk − xkpjCli − xipkC jl + xlpjCki − x jplCik + xkpiCl j + x jpkCil − xlpiCkj

+ xi
(
[C jk, pl] − [C jl, pk]

)
+ xk

(
− [Cil, pj] + [Cl j, pi]

)
− xl

(
− [Cki, pj] + [Ckj, pi]

)
− x j

(
[Cik, pl] − [Cil, pk]

)
= LilC jk + LjkCil + LkiCl j + Ll jCki,

where we used C jk = Ckj and Lemma 2.4.
The identities (2.7) and (2.8) follow by making explicit use of both expressions of

(2.5) for Li j. For the left-hand side of (2.7) we have

Li jLkl + LklLi j + LkiLjl + LjlLki + LjkLil + LilLjk
= (xipj − x jpi)(plxk − pkxl)+(xkpl − xlpk)(pjxi − pix j)+(xkpi − xipk)(plx j − pjxl)
+ (x jpl − xlpj)(pixk − pkxi)+(x jpk − xkpj)(plxi − pixl)+(xipl − xlpi)(pkx j − pjxk),

where again one observes that all terms vanish due to the commutativity of p1, . . . , pN .
Working out the commutators, the left-hand side of (2.8) becomes

Li j[pl, xk] − [pl, xk]Li j + Lki[pl, x j] − [pl, x j]Lki + Ljk[pl, xi] − [pl, xi]Ljk
= Li jplxk − plxkLi j + Lkiplx j − plx jLki + Ljkplxi − plxiLjk
− Li jxkpl + xkplLi j − Lkix jpl + x jplLki − Ljkxipl + xiplLjk.

Hence, plugging in suitable choices for the symmetries Li j, this becomes

(xipj − x jpi)plxk − plxk(xipj − x jpi)+(xkpi − xipk)plx j − plx j(xkpi − xipk)
+ (x jpk − xkpj)plxi − plxi(x jpk − xkpj)−(pjxi − pix j)xkpl + xkpl(pjxi − pix j)
− (pixk − pkxi)x jpl + x jpl(pixk − pkxi)−(pkx j − pjxk)xipl + xipl(pkx j − pjxk).

One observes that all terms vanish due to the commutativity of x1, . . . , xN and p1, . . . ,
pN respectively.

2.3 Examples

example 2.1: As a first example, we consider N mutually commuting variables x1, . . . ,
xN , doubling as operators acting on functions by left multiplication with the respective
variable and pj being just the derivative ∂/∂x j for j ∈ {1, . . . , N}. In this case obviously
p1, . . . , pN mutually commute and the operators of interest are

∆ =

N∑
i=1

∂2

∂x2
i
, |x |2 =

N∑
i=1

x2
i , H = −

1
2
∆ +

1
2
|x |2,
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which satisfy
1
2
[∆, xi] =

∂

∂xi
= pi,

1
2
[|x |2, pi] = −xi.

By Theorem 2.3, we have the following symmetries:

Li j = xi
∂

∂x j
− x j

∂

∂xi
, Ci j = δi j =


1 if i = j

0 if i , j.

WhileCi j is a scalar for every i, j, the Li j symmetries are the standard angular momentum
operators whose symmetry algebra is the Lie algebra so(N):

[Li j, Lkl] = Lilδ jk + Ljkδil + Lkiδl j + Ll jδik.

This is in accordance with Theorem 2.5 as in this case evidently Ci j = C ji.
Note that ∆ and |x |2 are also invariant under O(N), the group of orthogonal transfor-

mations on RN , but these transformations are not contained in the algebra A.
example 2.2: A more intriguing example is given by a generalization of partial deriva-
tives to differential-difference operators associated to a Coxeter or Weyl group W. Let
R be a (reduced) root system and k a multiplicity function which is invariant under the
natural action of the Weyl groupW consisting of all reflections associated to R,

σα(x)= x − 2〈x, α〉α/‖α‖2, α ∈ R, x ∈ RN .

For ξ ∈ RN , the Dunkl operator [9, 23] is defined as

Dξ f (x):=
∂

∂ξ
f (x)+

∑
α∈R+

k(α)
f (x)− f (σα(x))
〈α, x〉

〈α, ξ〉,

where the summation is taken over all roots in R+, a fixed positive subsystem of R. For
a fixed root system and function k, the Dunkl operators associated to any two vectors
commute, see [9]. Hence, they form potential candidates for the operators p1, . . . , pN
satisfying condition (1.6). The operator of interest is the Laplace-Dunkl operator ∆k,
which can be written as

∆k =

N∑
i=1

(Dξi)
2

for any orthonormal basis {ξ1, . . . , ξN } of RN . For the orthonormal basis associated to
the coordinates x1, . . . , xN we use the notation

Di f (x):=
∂

∂xi
f (x)+

∑
α∈R+

k(α)
f (x)− f (σα(x))
〈α, x〉

αi i ∈ {1, . . . , N}. (2.9)

For our purpose, let x j again stand for multiplication by the variable x j and take now
pj = Dj for j ∈ {1, . . . , N}. Besides condition (1.6), condition (1.7) is also satisfied
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(see for instance [9, 23]). We note that the sl(2) relations in this context were already
obtained by [14].
By Theorem 2.3 we have as symmetries, on the one hand, the Dunkl version of the

angular momentum operators

Li j = xiDj − x jDi.

On the other hand, the symmetries

Ci j = [Di, x j] = δi j +
∑
α∈R+

2k(α)αiα jσα

consist of linear combinations of the reflections in the Weyl group, with coefficients
determined by the multiplicity function k and the roots of the root system. This is of
course in agreement with ∆k beingW-invariant [23]. The Weyl group is a subgroup of
O(N), and in this case the algebra A does contain these reflections inW.
Note that indeed Ci j = C ji, in accordance with relation (2.1). Theorem 2.5 now yields

the Dunkl version of the angular momentum algebra for an arbitrary Weyl group or root
system:

[Li j, Lkl] = LilC jk + LjkCil + LkiCl j + Ll jCki

= Lilδ jk + Ljkδil + Lkiδl j + Ll jδki

+
∑
α∈R+

2k(α)
(
Lilα jαk + Ljkαiαl + Lkiαlα j + Ll jαkαi

)
σα .

This relation states the interaction of the Li j symmetries amongst one another. The inter-
action between the symmetries Ckl is governed by the group multiplication of the Weyl
group, while the relations for the symmetries Li j and Ckl follow from the action of a
reflection σα for a root α:

σαDξ = Dσα(ξ)σα, hence σαLi j = Lσα(ξi)σα(ξ j)σα,

where {ξ1, . . . , ξN } is the orthonormal basis associated to the coordinates x1, . . . , xN .
This allows us to interchange any two symmetries of the form Li j and Ckl.
Specific cases of this result have been considered before, namely forW = (Z2)3 in [13]

andW = SN in [12].

3 symmetries of dirac operators

We now turn to a closely related operator of the generalized Laplace operator considered
in the preceding section, namely the Dirac operator. For an operator of the form (1.8),
one can construct a “square root” by introducing a set of elements e1, . . . , eN which
commute with xi and pi for all i ∈ {1, . . . , N} and which satisfy the following relations

{ei, ej} = eiej + ejei = ε 2δi j, (3.1)
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where ε = ±1, or thus for i , j

(ei)2= ε = ±1, eiej + ejei = 0.

We use these elements to define the following two operators

D =
N∑
i=1

eipi, x =
N∑
i=1

eixi,

whose squares equal

D2 = ε

N∑
i=1

(pi)2= ε∆, x2 = ε

N∑
i=1

(xi)2= ε |x |2,

by means of the anti-commutation relations (3.1) of e1, . . . , eN and condition (1.6). For
the classical case where pi is the ith partial derivative, the operator D is the standard
Dirac operator.
The elements e1, . . . , eN in fact generate what is known as a Clifford algebra [22],

which we will denote as C = C`(RN). A general element in this algebra is a linear
combination of products of e1, . . . , eN . The standard convention is to denote for instance
e1e2e3 simply as e123. Hereto, we introduce the concept of a ‘list’ for use as index of
Clifford numbers.

definition 3.1: We define a list to indicate a finite sequence of distinct elements of a given
set, in our case the set {1, . . . , N}. For a list A = a1 · · · an of {1, . . . , N} with 0 ≤ n ≤ N,
we will use the notation

eA = ea1ea2 · · · ean . (3.2)

remark 3.2: Note that in a list the order matters as the Clifford generators e1, . . . , eN
anti-commute. Moreover, duplicate elements would cancel out as they square to ε = ±1,
so we consider only lists containing distinct elements. For a set A = {a1, . . . , an} ⊂
{1, . . . , N}, the notation eA stands for ea1ea2 · · · ean with a1 < a2 < · · · < an.

The collection {eA | A ⊂ {1, . . . , N}} forms a basis of the Clifford algebra C, where
for the empty set we put e∅ = 1.

remark 3.3: In general, the square of each individual element ei (i ∈ {1, . . . , N}) can
independently be chosen equal to either +1 or −1. This corresponds to an underlying
space with arbitrary signature defined by the specified signs. The original Dirac operator
was constructed as a square root of the wave operator by means of the gamma or Dirac
matrices which form a matrix realization of the Clifford algebra for N = 4 with Minkow-
ski signature. To simplify notations in the following, we have chosen the square of all ei
(i ∈ {1, . . . , N}) to be equal to ε which can be either +1 or −1. One can generalize all
results to arbitrary signature by making the appropriate substitutions.
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In order to consider symmetries of the generalized Dirac operator (1.9) we will work
in the tensor product A ⊗ C with the algebra A as defined in Definition 2.1. To avoid
overloading on notations, wewill omit the tensor symbol ⊗whenwriting down elements
ofA⊗ C and use regular product notation. In this notation e1, . . . , eN indeed commutes
with xi and pi for all i ∈ {1, . . . , N}.
Akin to the realization of the Lie algebra sl(2) in the algebraA given by Theorem 2.2,

we have something comparable in this case.

theorem 3.4: The algebra A ⊗ C contains a copy of the Lie superalgebra osp(1|2) gene-
rated by the (odd) elements D and x satisfying the relations

{x, x} = ε 2|x |2 {D, D} = ε 2∆ {x, D} = ε 2E

[|x |2, x] = 0 [|x |2, D] = −2D [E, x] = x
[∆, x] = 2x [∆, D] = 0 [E, D] = −D

and containing as an even subalgebra the Lie algebra sl(2) in the algebra A given by
Theorem 2.2 with relations[

E,
|x |2

2

]
= |x |2

[
E, −

∆

2

]
= −∆

[
|x |2

2
, −
∆

2

]
= E.

Proof. The relations follow by straightforward computations. By means of the anti-
commutation relations (3.1) one finds that

{x, D} =
N∑
i=1

xiei
N∑
j=1

pjej +
N∑
j=1

pjej
N∑
i=1

xiei

=

N∑
i=1

ε(xipi + pixi)+
∑

1≤i< j≤N

(xipj − pjxi − x jpi + pix j)eiej.

Looking back at (2.2), the first summation is precisely ε 2E, while the second summation
vanishes by relation (2.1). Moreover, by relation (2.1) we have

[E, D] =
1
2

N∑
i=1

N∑
j=1

[{pi, xi}, pj]ej =
1
2

N∑
i=1

N∑
j=1

{pi, [xi, pj]}ej

=
1
2

N∑
i=1

N∑
j=1

{pi, [x j, pi]}ej = −
1
2

N∑
j=1

[ N∑
i=1

p2
i , x j

]
ej = −D,

and in the same manner [E, x] = x.

3.1 Symmetries

We wish to determine symmetries in the algebra A ⊗ C for the Dirac operator D which
are linear in both x1, . . . , xN and p1, . . . , xN . Given the Lie superalgebra framework, it
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is natural to consider operators which either commute or anti-commute with D. Indeed,
the Lie superalgebra osp(1|2) has both a Scasimir and a Casimir element in its universal
enveloping algebra [1]. The Scasimir operator

S = 1
2

(
[D, x] − ε

)
∈ U(osp(1|2))⊂ A ⊗ C, (3.3)

anti-commutes with odd elements and commutes with even elements. In the classical
case, the Scasimir operator is up to a constant term equal to the angular Dirac operator
Γ, i.e. D restricted to the sphere. The Scasimir S is a symmetry which is linear in both
x1, . . . , xN and p1, . . . , xN and we will get back to it before the end of this subsection.
Finally, the square of the Scasimir element yields the Casimir element C = S2, which
commutes with all elements of osp(1|2).
Note that another symmetry is obtained by means of the anti-commutation relations

(3.1) of the Clifford algebra. The so-called pseudo-scalar e1 · · · eN is easily seen to com-
mute with D for N odd and anti-commute with D for N even.
The Dirac operator is defined such that it squares to the Laplace operator, D2 = ε∆.

This allows us to readily make use of the properties of ∆ by means of the following
straightforward relations. For an operator Z, we have that

[D, {D, Z}] = D(DZ + ZD)−(DZ + ZD)D =
[
D2, Z

]
(3.4)

and
{D, [D, Z]} = D(DZ − ZD)+(DZ − ZD)D =

[
D2, Z

]
. (3.5)

A direct consequence of these relations is that every symmetry of the Laplace operator
∆ yields symmetries of the Dirac operator D.

proposition 3.5: If Z commutes with ∆ and D2 = ε∆, then the operator {D, Z} com-
mutes with D, while the operator [D, Z] anti-commutes with D.

Letting Z be one of the symmetries of Theorem 2.3, we indeed obtain symmetries of
D, but they are not of the same order in x1, . . . , xN as in p1, . . . , pN . These symmetries
are in fact combinations of the obvious symmetries p1, . . . , pN and symmetries which
are linear in x1, . . . , xN and in p1, . . . , pN . We set forth to determine the latter explicitly.
Hereto, a first observation is that the elements of the Clifford algebra also commute with
the Laplace operator, by definition as it is a scalar (non-Clifford) operator. For A a list of
distinct elements of {1, . . . , N}, we have

D(DeA ± eAD)∓(DeA ± eAD)D =
[
D2, eA

]
= 0.

The explicit expressions of these operators follow from the anti-commutation relations
(3.1) as

eAD = eA
N∑
l=1

plel = (−1) |A |−1
∑
a∈A

paeaeA + (−1) |A |
∑
a<A

paeaeA, (3.6)
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with |A| denoting the number of elements of the list A, so

DeA − (−1) |A |eAD =
∑
a∈A

2paeaeA and DeA + (−1) |A |eAD =
∑
a<A

2paeaeA, (3.7)

where (here and throughout the paper) the summation index a < A is meant to run
over all elements of {1, . . . , N} \ A. Note that for a list of one element A = i, we have
Dei + eiD = ε2pi. With this information, the relations (3.4) and (3.5) now also lend
themselves to the construction of more intricate symmetries of both D and x.

theorem 3.6: In the algebra A ⊗ C, for i ∈ {1, . . . , N}, the operator

Oi =
ε

2
(
[D, xi] − ei

)
=
ε

2
(
[pi, x] − ei

)
=
ε

2

(
N∑
l=1

elCli − ei

)
(3.8)

anti-commutes with D and x.

Proof. The equalities in (3.8) follow immediately from Ci j = [pi, x j] = [pj, xi] = C ji. By
direct computation, using (3.5) and the anti-commutation relations (3.1), we have

{D, Oi} =
ε

2
{D, [D, xi]} − ε

1
2
{D, ei} =

1
2
[∆, xi] − pi = 0.

In the same manner, one finds that Oi =
ε
2

(
[pi, x] − ei

)
anti-commutes with x.

The symmetries Oi with one index i ∈ {1, . . . , N} defined in (3.8) can be generalized
to symmetries with multiple indices. Hereto, we define the operators

DA =
∑
a∈A

paea and xA =
∑
a∈A

xaea, (3.9)

for A a subset of {1, . . . , N}, and by extension for A a list of {1, . . . , N} as the order does
not matter in the summation. By means of the operators (3.9) we state the following
result.

theorem 3.7: In the algebra A ⊗ C, for A a list of distinct elements of {1, . . . , N}, the
operator

OA =
1
2
(
D xAeA − eAxAD − εeA

)
(3.10)

=
1
2
(
eADA x − x DAeA − εeA

)
(3.11)

=
1
2

(
− ε +

∑
j∈A

∑
i<A\{ j}

Ci jeiej −
∑
{i, j}⊂A

2Li jeiej
)
eA (3.12)

satisfies
DOA = (−1) |A |OAD and x OA = (−1) |A |OAx.
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Proof. We first show the equivalence of the three expressions (3.10) and (3.12). Starting
from (3.10), up to a factor 1/2, and using Ci j = C ji, we have

D xAeA − eAxAD − εeA =
N∑
l=1

plel
∑
a∈A

xaeaeA − eA
∑
a∈A

xaea
N∑
l=1

plel − εeA

=
∑
a∈A

(
ε(paxa − xapa)eA +

∑
l∈A\{a}

(plxa + xapl)eleaeA +
∑
l<A

(plxa − xapl)eleaeA
)
− εeA

=
∑
a∈A

(
ε(paxa − xapa)eA +

∑
l∈A\{a}

(paxl + xlpa)eaeleA +
∑
l<A

(paxl − xlpa)eleaeA
)
− εeA

= eA
∑
a∈A

paea
N∑
l=1

xlel −
N∑
l=1

xlel
∑
a∈A

paeaeA − εeA = eADA x − x DAeA − εeA.

Again starting from (3.10), up to a factor 1/2, we have

D xAeA − eAxAD − εeA = −εeA +
N∑
l=1

plel
∑
a∈A

xaeaeA − eA
∑
a∈A

xaea
N∑
l=1

plel

=
(
− ε +

N∑
l=1

plel
∑
a∈A

xaea −
∑
a∈A

xaea
∑
l∈A

plel +
∑
a∈A

xaea
∑
l<A

plel
)
eA

=
(
− ε + ε

∑
a∈A

(paxa − xapa)+
∑
a∈A

∑
l∈A\{a}

(plxa + xapl)elea +
∑
a∈A

∑
l<A

(plxa − xapl)elea
)
eA

=
(
− ε +

∑
a∈A

∑
l<A\{a}

Claelea +
∑
{a, l}⊂A

((plxa + xapl)elea + (paxl + xlpa)eael)
)
eA

which equals (3.12), up to a factor 1/2, when using Li j = xipj − x jpi = pjxi − pix j and
Ci j = C ji.
Now for the proof itself, the case where A is the empty set is trivial, as O∅ = −ε/2

obviously commutes with D and x. For A a singleton the result is given by Theorem 3.6
so let now |A| ≥ 2. Using xAeA = (−1) |A |−1eAxA and (3.6), we have

DOA − (−1) |A |OAD

=
1
2
D
(
D xAeA − eAxAD − εeA

)
− (−1) |A |

1
2
(
D xAeA − eAxAD − εeA

)
D

=
1
2
(
D2 xAeA − xAeAD

2) − ε
2
(
DeA − (−1) |A |eAD

)
=
ε

2

∑
a∈A

[∆, xa]eaeA − ε
∑
a∈A

paeaeA,

which vanishes because of condition (1.7). In the same manner, using now the form
(3.11) for OA, the expression x OA − (−1) |A |OAx vanishes.
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remark 3.8: Note that if the order of the list A is altered, OA changes but only in sign.
Say π is a permutation on the list A, we have OA = sign(π)Oπ(A), where sign(π) is
positive for an even permutation π and negative for an odd one. Hence up to a sign all
the symmetries of this form are given by {OA | A ⊂ {1, . . . , N}} where the elements of
A are in ascending order in accordance with the standard order for natural numbers.

For the special case where A = {1, . . . , N}, the operator (3.10) is seen to correspond
precisely to the Scasimir element (3.3) of osp(1|2) multiplied by the pseudo-scalar

O1· · ·N =
1
2

(
[D, x] − ε

)
e1 · · · eN .

For a list A of {1, . . . , N}, the operator OA either commutes or anti-commutes with
D and x. The subsequent corollary is useful if one is interested solely in commuting
symmetries.

corollary 3.9: In the algebra A ⊗ C, for A a list of distinct elements of {1, . . . , N}, we
have [

D, OA

∏
i∈A

Oi

]
= 0.

Note that the order of the product matters in general, but not for the result.

Proof. Follows immediately from Theorem 3.6 and Theorem 3.7.

Expression (3.12) shows that the symmetries OA are constructed using the symme-
tries Ci j and Li j from the previous section, together with the Clifford algebra generators
e1, . . . , eN . The factor 1/2 is chosen such that for a list of {1, . . . , N} consisting of just
two distinct elements i and j, the symmetry Oi j corresponds to the generalized angular
momentum symmetry Li j, up to additive terms. Indeed, we have that

Oi j = Li j − ε
1
2
eiej + ε

1
2

∑
l,j

Clielej − ε
1
2

∑
l,i

Cl jelei.

This can be written more compactly by means of the explicit expression (3.8) for Oi as

Oi j = Li j + ε
1
2
eiej + Oiej − Ojei (3.13)

Together with the Clifford algebra generators e1, . . . , eN , the symmetries Oi with one
index andOi j with two indices in fact suffice to build up all other symmetriesOA. Indeed,
plugging in the expression (3.8) for Oi, one easily verifies that

OA =
(
ε
|A| − 1

2
+ ε

∑
i∈A

Oiei −
∑
{i, j}⊂A

Li jeiej
)
eA (3.14)

reduces to (3.12). Using now the form (3.13) to substitute Li j, the operator OA can also
be written as

OA =
(
− ε

(|A| − 1)(|A| − 2)
4

− ε(|A| − 2)
∑
i∈A

Oiei −
∑
{i, j}⊂A

Oi jeiej
)
eA. (3.15)
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Finally, the symmetries can also be constructed recursively. If we denote by A \ {a}
the list A with the element a omitted, and we define sign(A, a) as either +1 or −1 such
that sign(A, a)eA\{a}ea = eA, then it follows that∑
a∈A

sign(A, a)OA\{a}ea =
∑
a∈A

(
ε
|A| − 2

2
+ ε

∑
i∈A\{a}

Oiei −
∑

{i, j}⊂A\{a}

Li jeiej
)
eA

=
(
ε |A|
|A| − 2

2
+ ε(|A| − 1)

∑
i∈A

Oiei − (|A| − 2)
∑
{i, j}⊂A

Li jeiej
)
eA

= ε
|A| − 2

2
eA + ε

∑
i∈A

OieieA + (|A| − 2)OA.

Using this relation, Theorem 3.7 can also be proved by induction on the cardinality of
A, starting from |A| = 3.

3.2 Symmetry algebra

Before establishing the algebraic structure generated by the symmetries OA, we first
introduce some helpful relations with Clifford numbers. From the definition (3.8) of Oj
we have

{ei, Oj} = eiOj + Ojei = [pi, x j] − δi j.

The property [pi, x j] = [pj, xi] then implies that {ei, Oj} = {ej, Oi}, or by a reordering
of terms Oiej − Ojei = eiOj − ejOi. This is in fact a special case of the following useful
result.

lemma 3.10: In the algebraA⊗ C, for A a list of distinct elements of {1, . . . , N}, we have∑
a∈A

OaeaeA = eA
∑
a∈A

eaOa.

Proof. The identity follows by direct calculation using the definition (3.8) of Oa and the
commutation relations of e1, . . . , eN :∑

a∈A

OaeaeA =
∑
a∈A

ε
1
2

N∑
l=1

[pl, xa]eleaeA −
∑
a∈A

ε
1
2
eaeaeA

=
∑
a∈A

ε
1
2

∑
l∈A

[pl, xa]eAelea −
∑
a∈A

ε
1
2

∑
l<A

[pl, xa]eAelea −
∑
a∈A

1
2
eA

=
∑
a∈A

ε
1
2

∑
l∈A

[pa, xl]eAeael +
∑
a∈A

ε
1
2

∑
l<A

[pl, xa]eAeael −
∑
a∈A

ε
1
2
eAeaea

= eA
∑
a∈A

eaOa.
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Note that by means of this lemma, the symmetry OA, in the form (3.14), can equiva-
lently be written with eA in front, that is

OA = eA
(
ε
|A| − 1

2
+ ε

∑
i∈A

eiOi −
∑
{i, j}⊂A

Li jeiej
)
.

3.2.1 Relations for symmetries with one or two indices

Next, we present some relations which hold for symmetries with one or two indices.

theorem 3.11: In the algebra A ⊗ C, for i, j, k ∈ {1, . . . , N} we have

[Oi j, Ok] + [Ojk, Oi] + [Oki, Oj] = 0.

Proof. If any of the indices are equal, the identity becomes trivial as Oi j = −Oji. For
distinct i, j, k, we have by (3.8), (3.13) and using Oiej − Ojei = eiOj − ejOi

[Oi j, Ok] + [Ojk, Oi] + [Oki, Oj]

= ε
1
2

N∑
l=1

el([Li j, Clk] + [Ljk, Cli] + [Lki, Cl j])

+ ε
1
2
([eiej, Ok] + [ejek, Oi] + [ekei, Oj])

+ (Oiej − Ojei)Ok − Ok(eiOj − ejOi)+(Ojek − Okej)Oi

− Oi(ejOk − ekOj)+(Okei − Oiek)Oj − Oj(ekOi − eiOk).

The first line of the right-hand side vanishes by Theorem 2.5, while the second line does
so by direct calculation plugging in the definition of Oi and using Ci j = C ji. Finally, the
remaining terms of the last two lines cancel out pairwise.

For the next result, we first write out the form (3.14) of OA for A a list of three ele-
ments, say i, j, k which are all distinct:

Oi jk = εeiejek + Oiejek − Ojeiek + Okeiej + Li jek − Likej + Ljkei. (3.16)

The commutation relations for symmetries with two indices are as follows.

theorem 3.12: In the algebra A ⊗ C, for i, j, k, l ∈ {1, . . . , N} the symmetries satisfy

[Oi j, Okl] = (Oil + ε[Oi, Ol])δ jk + (Ojk + ε[Oj, Ok])δil + (Oki + ε[Ok, Oi])δl j + (Ol j

+ ε[Ol, Oj])δki +
1
2
({Oi, Ojkl} − {Oj, Oikl} − {Oi jl, Ok} + {Oi jk, Ol}).

Proof. For the cases where i = j or k = l or {i, j} = {k, l}, both sides of the equation
reduce to zero, so from now on we assume that i , j and k , l and {i, j} , {k, l}.
Plugging in (3.13) we have

[Oi j, Okl] =

[
Li j + ε

1
2
eiej + Oiej − Ojei, Lkl + ε

1
2
ekel + Okel − Olek

]
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= [Li j, Lkl] + [Li j, Okel − Olek] + [Oiej − Ojei, Lkl] + [Oiej − Ojei, Okel − Olek]

+
1
4
[eiej, ekel] + ε

1
2

(
[eiej, Okel] − [eiej, Olek] + [Oiej, ekel] − [Ojei, ekel]

)
By Theorem 2.5, and using {ei, Oj} = [pi, x j] − δi j, we have

[Li j, Lkl] = Lilδ jk + Ljkδil + Lkiδl j + Ll jδki
+ Lil{ej, Ok} + Ljk{ei, Ol} + Lki{el, Oj} + Ll j{ek, Oi}.

Using {ei, Oj} = {ej, Oi} = 1/2{ei, Oj} + 1/2{ej, Oi}, the terms in the last line can be
rewritten as

1
2
((Lilej + Ll jei)Ok + (Ljkei + Lkiej)Ol + (Ll jek + Ljkel)Oi + (Lkiel + Lilek)Oj)

+
1
2
((LjkOl + Ll jOk)ei + (LilOk + LkiOl)ej + (Ll jOi + LilOj)ek + (LkiOj + LjkOi)el).

Together with

[Li j, Okel − Olek] = [Li j, Ok]el − [Li j, Ol]ek = {Li jek, Ol} − {Li jel, Ok}

[Oiej − Ojei, Lkl] = [Oi, Lkl]ej − [Oj, Lkl]ei = {Lklej, Oi} − {Lklei, Oj},

we find that [Li j, Lkl] + [Li j, Okel − Olek] + [Oiej − Ojei, Lkl] equals

Lilδ jk + Ljkδil + Lkiδl j + Ll jδki

+
1
2
((Lilej + Ll jei)Ok + {−Li jel, Ok} + (Ljkei + Lkiej)Ol + {Li jek, Ol}

+ (Ll jek + Ljkel)Oi + {Oi, Lklej} + (Lkiel + Lilek)Oj + {Oj, −Lklei})

+
1
2
((LjkOl + Ll jOk + [Lkl, Oj])ei + (LilOk + LkiOl − [Lkl, Oi])ej

+ (Ll jOi + LilOj − [Li j, Ol])ek + (LkiOj + LjkOi + [Li j, Ok])el).

This simplifies to

Lilδ jk + Ljkδil + Lkiδl j + Ll jδki +
1
2
({Lilej + Ll jei + Ljiel, Ok}

+ {Ljkei + Lkiej + Li jek, Ol} + {Oi, Ll jek + Ljkel + Lklej} + {Oj, Lkiel + Lilek + Llkei}),

by means of

([Ljk, Ol] + [Ll j, Ok] + [Lkl, Oj])ei + ([Lil, Ok] + [Lki, Ol] − [Lkl, Oi])ej
+ ([Ll j, Oi] + [Lil, Oj] − [Li j, Ol])ek + ([Lki, Oj] + [Ljk, Oi] + [Li j, Ok])el = 0,

which is a direct consequence of Theorem 2.5 after plugging in the definition (3.8) of
Oi.
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Now, the other terms appearing in [Oi j, Okl] can be expanded as follows. First,

[eiej, ekel] = 2ε(δ jkeiel − δilekej − δl jeiek + δikelej).

Moreover, we have

[eiej, Okel] = eiejOkel − Okeleiej
= eiej{el, Ok} − eiejelOk + Okeielej − Ok(ε2δil)ej
= eiej{el, Ok} − eiejelOk − Okeiejel + Okei(ε2δ jl)−Ok(ε2δil)ej.

As {ek, Ol} = {el, Ok}, after interchanging k and l in this result, subtraction yields the
following

[eiej, Okel −Olek] = ε2(δ jlOkei − δilOkej − δ jkOlei + δikOlej)+{eiejek, Ol} − {eiejel, Ok}.

For the last term, [Oiej − Ojei, Okel − Olek], we use Lemma 3.10 to find

2[Oiej − Ojei, Okel − Olek] = 2(Oiej − Ojei)(ekOl − elOk)−2(Okel − Olek)(eiOj − ejOi)
= (Okelej − Olekej)Oi + Oi(ejekOl − ejelOk)
+ (−Okelei + Olekei)Oj + Oj(−eiekOl + eielOk)
+ (−Oiejel + Ojeiel)Ok + Ok(−eleiOj + elejOi)
+ (Oiejek − Ojeiek)Ol + Ol(ekeiOj − ekejOi).

We first consider the case where one of i, j is equal to either k or l, for instance say i = l:

(Okeiej − Oiekej)Oi + Oi(ejekOi − ejeiOk)
+ (−Okε + Oiekei)Oj + Oj(−eiekOi + εOk)
+ (−Oiejei + Ojε)Ok + Ok(−εOj + eiejOi)
+ (Oiejek − Ojeiek)Oi + Oi(ekeiOj − ekejOi)

= (Okeiej − Oiekej − Ojeiek + Oiejek − Ojeiek + Okeiej)Oi

+ Oi(ejekOi − ejeiOk + ekeiOj + ekeiOj − ekejOi − ejeiOk)+ε2[Oj, Ok]

= (Okeiej − Oiekej − Ojeiek + Oiejek − Ojeiek + Okeiej)Oi

+ Oi(Oiejek − Okejei + Ojekei + Ojekei − Oiekej − Okejei)+ε2[Oj, Ok]

= 2{Okeiej − Ojeiek + Oiejek, Oi} + ε2[Oj, Ok].

Finally, when i, j, k, l are all distinct, 2[Oiej − Ojei, Okel − Olek] equals

(Okelej − Olekej)Oi + Oi(−ekejOl + elejOk + ekelOj − ekelOj)
+ (−Okelei + Olekei)Oj + Oj(ekeiOl − eleiOk + elekOi − elekOi)
+ (−Oiejel + Ojeiel)Ok + Ok(eielOj − ejelOi + ejeiOl − ejeiOl)
+ (Oiejek − Ojeiek)Ol + Ol(−eiekOj + ejekOi + eiejOk − eiejOk)

= (Okelej − Olekej − Ojelek)Oi + Oi(−Olekej + Okelej + Ojekel)
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+ (−Okelei + Olekei − Oiekel)Oj + Oj(Olekei − Okelei + Oielek)
+ (−Oiejel + Ojeiel − Oleiej)Ok + Ok(Ojeiel − Oiejel + Olejei)
+ (Oiejek − Ojeiek − Okejei)Ol + Ol(−Ojeiek + Oiejek + Okeiej)

= {Okelej − Olekej + Ojekel, Oi} + {Olekei − Okelei + Oielek, Oj}

+ {Ojeiel − Oiejel + Olejei, Ok} + {Oiejek − Ojeiek + Okeiej, Ol}.

This boils down to [Oiej − Ojei, Okel − Olek] being equal to

εδ jk[Oi, Ol] + εδil[Oj, Ok] + εδl j[Ok, Oi] + εδki[Ol, Oj]

+
1
2
({Okelej − Olekej + Ojekel, Oi} + {Olekei − Okelei + Oielek, Oj}

+ {Ojeiel − Oiejel + Olejei, Ok} + {Oiejek − Ojeiek + Okeiej, Ol}).

Hence, combining all of the above, we find for [Oi j, Okl]

Lilδ jk + Ljkδil + Lkiδl j + Ll jδki +
1
2
({Lilej + Ll jei + Ljiel, Ok}

+ {Ljkei + Lkiej + Li jek, Ol} + {Lkiel + Lilek + Llkei, Oj}

+ {Ll jek + Ljkel + Lklej, Oi})+ε
1
2
(δ jkeiel − δilekej − δl jeiek + δikelej)

+ εδ jk[Oi, Ol] + εδil[Oj, Ok] + εδl j[Ok, Oi] + εδki[Ol, Oj]

+
1
2
({Okelej − Olekej + Ojekel, Oi} + {Olekei − Okelei + Oielek, Oj}

+ {Ojeiel − Oiejel + Olejei, Ok} + {Oiejek − Ojeiek + Okeiej, Ol})

+ ε
1
2
(δ jlε2Okei − δilε2Okej − {eiejel, Ok} − δ jkε2Olei + δikε2Olej + {eiejek, Ol})

− ε
1
2
(δl jε2Oiek − δkjε2Oiel − {ekelej, Oi} − δliε2Ojek + δkiε2Ojel + {ekelei, Oj}).

Collecting the appropriate terms, we recognize all ingredients to make symmetries with
three indices (3.16) and we arrive at the desired result

[Oi j, Okl] = (Oil + ε[Oi, Ol])δ jk + (Ojk + ε[Oj, Ok])δil + (Oki + ε[Ok, Oi])δl j

+ (Ol j + ε[Ol, Oj])δki +
1
2
({Oi, Ojkl} − {Oj, Oikl} − {Oi jl, Ok} + {Oi jk, Ol}).

In summary, for i, j, k, l all distinct elements of {1, . . . , N} we have

[Oi j, Oki] = Ojk + ε[Oj, Ok] + {Oi jk, Oi}

[Oi j, Okl] =
1
2
({Oi, Ojkl} − {Oj, Oikl} − {Oi jl, Ok} + {Oi jk, Ol}).
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3.2.2 Relations for symmetries with general index

Now, we are interested in relations for general symmetries with an arbitrary index list
A, i.e.

OA =
1
2
(
D xAeA − eAxAD − εeA

)
.

Before doing so, we make a slight detour clearing up some conventions and notations.
An important fact to take into account is the interaction of the appearing Clifford num-
bers with different lists as index (recall Definition 3.1). For instance, if A and B denote
two lists of {1, . . . , N}, the following properties are readily shown to hold by direct
computation:

eBeA = (−1) |A | |B |− |A∩B |eAeB, (3.17)

and
(eA)2= ε |A |(−1)

|A|2−|A|
2 . (3.18)

The product eAeB in fact reduces (up to a sign) to contain only ei with i an index in the
set (A ∪ B)\(A ∩ B), since all indices in A ∩ B appear twice and cancel out (for these
set operations we disregard the order of the lists A and B and view them just as sets).
The remaining indices are what is called the symmetric difference of the sets A and B.
We will denote this associative operation by A4B = (A∪ B)\(A∩ B)= (A \ B)∪(B \ A).
When applied to two lists A and B, we view them as sets and the resultant A4B is a set.
Note that |A4B| = |A| + |B| − 2|A ∩ B|.
When dealing with interactions between symmetries OA and OB for two lists A and

B, products of the kind eAeB are exactly what we encounter. Not wanting to overburden
notations, but still taking into account all resulting signs due to the anti-commutation
relations (3.1) if one were to work out the reduction eAeB, we introduce the following
notation

OA,B =
1
2
(
D xA4BeAeB − eAeBxA4BD − εeAeB

)
. (3.19)

Note that the order of A and Bmatters, as by (3.17) we haveOA,B = (−1) |A | |B |− |A∩B |OB, A.
Moreover, up to a signOA,B is equal toOA4B, where the elements of A4B are in ascending
order when used as a list, see Remark 3.2. Since the symmetric difference operation on
sets is associative, one easily extends this definition to an arbitrary number of lists, e.g.

OA,B,C =
1
2
(
D xA4B4CeAeBeC − eAeBeCxA4B4CD − εeAeBeC

)
.

As an example, if we consider the lists A = 234 and B = 31, then the set A4B contains
the elements 2, 4, 1 but not 3 as 3 appears in both A and B, so we have

O234,31 =
1
2
(
D x
{2,4,1}e234e31 − e234e31x {2,4,1}D − εe234e31

)
= − ε

1
2
(
D (x2e2 + x4e4 + x1e1)e241 − e241(x2e2 + x4e4 + x1e1)D − εe241

)
= − εO241 = −εO124.



3 symmetries of dirac operators 91

We elaborate on one final convention. If A and B denote two lists of {1, . . . , N}, then
when viewed as ordinary sets, the intersection A∩ B contains all elements of A that also
belong to B (or equivalently, all elements of B that also belong to A). As a list appearing
as index of a Clifford number, we distinguish between A∩ B and B∩ A in the sense that
we understand the elements of A ∩ B to be in the sequential order of A, while those of
B ∩ A are in the sequential order of B. If A = 124 and B = 231, then eA∩B = e12, while
eB∩A = e21.
The framework where operators of the form (3.19) make their appearance is one

where both commutators and anti-commutators are considered. Inspired by property
(3.17), we define the “supercommutators”

⟦OA, OB⟧− = OAOB − (−1) |A | |B |− |A∩B |OBOA, (3.20)

⟦OA, OB⟧+ = OAOB + (−1) |A | |B |− |A∩B |OBOA. (3.21)

The algebraic relations we obtained in Theorem 3.12 can now be generalized to higher
index versions. We start with a generalization of Theorem 3.11.

theorem 3.13: In the algebra A ⊗ C, for A a list of distinct elements of {1, . . . , N}, we
have ∑

a∈A

⟦Oa, Oa, A⟧− = 0.

Note that Oa, A is up to a sign equal to OA\{a} since a ∈ A, where A \ {a} is the list A
with the element a removed.

Proof. By direct calculation and using (3.8), (3.14) and Lemma 3.10 to arrive at the
second line we have∑

a∈A

(OaOa, A − (−1) |A |−1Oa, AOa)= ε
|A| − 2

2

(∑
a∈A

OaeaeA − (−1) |A |−1
∑
a∈A

eaeAOa

)
+ ε

∑
a∈A

∑
b∈A\{a}

OaeaeAebOb − (−1) |A |−1ε
∑
a∈A

∑
b∈A\{a}

ObebeaeAOa

+ ε
1
2

∑
a∈A

∑
{i, j}⊂A\{a}

∑
l<A\{a, i, j}

[Li j, Cla]eleiejeaeA

+ ε
1
2

∑
a∈A

∑
{i, j}⊂A\{a}

∑
l∈A\{a, i, j}

{Li j, Cla}eleiejeaeA

− ε
1
2

∑
a∈A

∑
{i, j}⊂A\{a}

Li j(eaeiejeaeA − (−1) |A |−1eiejeaeAea).

As (−1) |A |−1eaeA = eAea for a ∈ A, the last line vanishes identically. Similarly, the
first line of the right-hand side vanishes by Lemma 3.10. Moreover, the second line
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then vanishes by interchanging the summations. In the third line, we write the first two
summations as one summation running over all three-element subsets of A as follows

ε
1
2

∑
{a, i, j}⊂A

∑
l<A\{a, i, j}

([Li j, Cla] + [Lai, Cl j] + [Lja, Cli])eleiejeaeA,

which vanishes by Theorem 2.5. Finally, rewriting the four summations in the fourth
line as one summation over all four-element subsets of A, one sees that all terms in this
summation cancel out using Ci j = C ji and Li j = −Lji.

Using Theorem 3.13 for the list A = i jkl yields

{Oi, Ojkl} − {Oj, Oikl} + {Ok, Oi jl} − {Ol, Oi jk} = 0.

By means of this identity, the relation of Theorem 3.12 for four distinct indices can be
cast also in two other formats:

⟦Oi j, Okl⟧− = [Oi j, Okl] = {Oi, Ojkl} − {Oj, Oikl} = −{Oi jl, Ok} + {Oi jk, Ol}. (3.22)

The results of Theorem 3.12 are actually special cases of two different more general
relations. By means of the following three theorems and the supercommutators (3.20)–
(3.21), one is able to swap two symmetry operators OA and OB for A, B arbitrary lists
of {1, . . . , N}. Moreover, the supercommutators reduce to explicit expressions in terms
of the symmetries and supercommutators containing (at least) one symmetry with just
one index. First, we generalize (3.22) to arbitrary disjoint lists.

theorem 3.14: In the algebra A ⊗ C, for two lists of {1, . . . , N}, denoted by A and B,
such that A ∩ B = ∅ as sets, we have

⟦OA, OB⟧− = ε
∑
a∈A

⟦Oa, Oa, A,B⟧− .

Note that in this case a4A4B = (A \ {a})∪B. Moreover, following a similar strategy
(or using Theorem 3.13) one also obtains

⟦OA, OB⟧− = ε
∑
b∈B

⟦OA,B,b, Ob⟧− .

Proof. A practical property for this proof and the following ones is (3.7). By definition,
plugging in (3.10), we find

⟦OA, OB⟧− = OAOB − (−1) |A | |B |− |A∩B |OBOA

=
1
4
(
D xAeA − eAxAD − εeA

) (
D xBeB − eBxBD − εeB

)
− (−1) |A | |B |

1
4
(
D xBeB − eBxBD − εeB

) (
D xAeA − eAxAD − εeA

)
.
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First, note that for the terms of ⟦OA, OB⟧− which do not contain D, we have

eAeB − (−1) |A | |B |eBeA = 0.

For the terms with a single occurrence of D, we have (up to a factor −ε/4)

(D xAeA − eAxAD)eB − (−1) |A | |B |eB(D xAeA − eAxAD)

− (−1) |A | |B |(D xBeB − eBxBD)eA + eA(D xBeB − eBxBD)

=
∑
a∈A

(
D xaeaeAeB − xaeAeaDeB − (−1) |A | |B |eBD xaeaeA + (−1) |A | |B |eBeAeaxaD

)
− (−1) |A | |B |D xBeBeA + (−1) |A | |B |eBxBDeA + eAD xBeB − eAeBxBD

=
∑
a∈A

(
D xaeaeAeB − (−1) |A |−1xaDeAeaeB − (−1) |A | |B |+ |A |−1eBeaeAD xa + eAeBeaxaD

)
+ (−1) |A |−1

∑
a∈A

xa
∑

l∈A\{a}

2pleleAeaeB − (−1) |A | |B |
∑
a∈A

eB
∑

l∈A\{a}

2pleleaeAxa

− D xBeAeB + (−1) |A | |B |+ |A |eBxBeAD + (−1) |A |D eA xBeB − eAeBxBD

+ (−1) |A | |B |eBxB
∑
a∈A

2paeaeA − (−1) |A |
∑
a∈A

2paeaeAxBeB

=
∑
a∈A

(
D xaeaeAeB − xaDeaeAeB − (−1) |B |+ |A |−1eaeAeBD xa + (−1) |A |+ |B |−1eaeAeBxaD

)
+ (−1) |A |+ |B |−1

∑
a∈A

eaeAeB
∑

l∈A\{a}

xlelε{D, ea} +
∑
a∈A

ε{D, ea}
∑

l∈A\{a}

elxleaeAeB

+
∑
a∈A

(−1) |B |+ |A |−1eaeAeBxBε{D, ea} +
∑
a∈A

ε{D, ea}xBeaeAeB

=
∑
a∈A

(
D xaeaeAeB − xaDeaeAeB − (−1) |B |+ |A |−1eaeAeBD xa + (−1) |A |+ |B |−1eaeAeBxaD

+ ε(−1) |A |+ |B |−1eaeAeBxa4A4BD ea − εeaeaeAeBxa4A4BD

− ε(−1) |A |+ |B |−1D xa4A4BeaeAeBea + εeaD xa4A4BeaeAeB,

where we made use of (3.7), {D, ea} = ε2pa and xa4A4B = xA\{a} + xB for a ∈ A and
A ∩ B = ∅.
Next, we work out the terms of ⟦OA, OB⟧− containing two occurrences of D, that is(
D xAeA − eAxAD

) (
D xBeB − eBxBD

)
− (−1) |A | |B |

(
D xBeB − eBxBD

) (
D xAeA − eAxAD

)
.

For the terms having DD in the middle we readily find

− eAxADD xBeB + (−1) |A | |B |eBxBDD xAeA

= −
∑
a∈A

(
eAxaeaDD xBeB − (−1) |A | |B |eBxBDD xaeaeA

)
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= −
∑
a∈A

(
xaDD xBeaeAeB − (−1) |A |−1+ |B |eaeAeBxBDD xa

)
= −

∑
a∈A

(
xaDD xa4A4BeaeAeB − (−1) |A |−1+ |B |eaeAeBxa4A4BDD xa

)
,

since ∑
a∈A

(
xaDD xa4AeaeAeB − (−1) |A |−1+ |B |eaeAeBxa4ADD xa

)
=

∑
a∈A

∑
l∈A\{a}

xaDD xleleaeAeB −
∑
a∈A

∑
l∈A\{a}

xlDD xaeaeleAeB

= 0.

Similarly, we have

− D xAeAeBxBD + (−1) |A | |B |D xBeBeAxAD

= −
∑
a∈A

(
D xaeaeAeBxBD − (−1) |A | |B |D xBeBeAxaeaD

)
= −

∑
a∈A

(
D xaeaeAeBxa4A4BD − (−1) |A |−1+ |B |D xa4A4BeaeAeBxaD

)
.

Finally, we manipulate the remaining terms as follows

D xAeAD xBeB + eAxADeBxBD − (−1) |A | |B |D xBeBD xAeA − (−1) |A | |B |eBxBDeAxAD

=
∑
a∈A

(
D xaeaeAD xBeB + eAxaeaDeBxBD

− (−1) |A | |B |(D xBeBD xaeaeA + eBxBDeAxaeaD)
)

=
∑
a∈A

(
(−1) |A |−1D xaD eaeAxBeB + (−1) |A |−1xaDeAeaeBxBD

− (−1) |A | |B |+ |A |−1D xBeBeaeAD xa − (−1) |A | |B |+ |A |−1eBxBeAeaDxaD
)

+
∑
a∈A

∑
l∈A\{a}

(
− (−1) |A |−1D xa2pleleaeAxBeB − (−1) |A |−1xa2pleleAeaeBxBD

− (−1) |A | |B |D xBeB2pleleaeAxa − (−1) |A | |B |eBxB2pleleAeaxaD
)

=
∑
a∈A

(
D xaD xa4A4BeaeAeB + xaDeaeAeBxa4A4BD

− (−1) |B |+ |A |−1D xa4A4BeaeAeBD xa − (−1) |A |−1+ |B |eaeAeBxa4A4BDxaD
)
.

In the last step we used the following (and a similar result for the other two terms)∑
a∈A

D xaD
∑

l∈A\{a}

xleleaeAeB − (−1) |B |+ |A |−1
∑
a∈A

D
∑

l∈A\{a}

xleleaeAeBD xa

=
∑
a∈A

∑
l∈A\{a}

D xaD xleleaeAeB +
∑
a∈A

∑
l∈A\{a}

D xlD eleaeAeBxa
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−
∑
a∈A

∑
l∈A\{a}

D xl
∑

b∈A\{a, l}∪B

2pbebeleaeAeBxa

= −
∑
a∈A

∑
l∈A\{a}

D xl
∑

b∈A\{a, l}

2pbebeleaeAeBxa −
∑
a∈A

∑
l∈A\{a}

D xl
∑
b∈B

2pbebeleaeAeBxa

= −
∑

{a, l,b}⊂A

2D (xlpbxa − xapbxl + xbpaxl − xbplxa + xaplxb − xlpaxb)ebeleaeAeB

−
∑
{a, l}⊂A

∑
b∈B

2D (xlpbxa − xapbxl)ebeleaeAeB

= −
∑
{a, l}⊂A

∑
b∈B

2D (xl(pbxa − xapb)−xa(pbxl − xlpb))ebeleaeAeB

= −
∑
{a, l}⊂A

∑
b∈B

2D (xl(paxb − xbpa)−xa(plxb − xbpl))ebeleaeAeB

= −
∑
{a, l}⊂A

∑
b∈B

2D (xlpa − xapl)xbebeleaeAeB −
∑
{a, l}⊂A

∑
b∈B

xb(xapl − xlpa)ebeleaeAeB

=
∑
a∈A

∑
l∈A\{a}

D xa2plxBeleaeAeB −
∑
a∈A

∑
l∈A\{a}

D xB2plxaeleaeAeB.

To arrive at this result we made use of property (3.7), Lemma 2.4, the commutativity
of x1, . . . , xN and Ci j = C ji.
Putting everything together and comparing with∑

a∈A

⟦Oa, Oa, A,B⟧−

=
∑
a∈A

ε

4
(
(D xa − xaD − ea)(D xa4A4BeaeAeB − eaeAeBxa4A4BD − εeaeAeB)

− (−1) |A |+ |B |−1(D xa4A4BeaeAeB − eaeAeBxa4A4BD − εeaeAeB)(D xa − xaD − ea)
)
,

the proof is completed.

theorem 3.15: In the algebra A ⊗ C, for two lists of {1, . . . , N}, denoted by A and B,
such that A ⊂ B as sets, we have

⟦OA, OB⟧− = ε
∑
a∈A

⟦Oa, Oa, A,B⟧− .

Note that in this case a4A4B = {a} ∪ (B \ A).

Proof. To prove this result, one is not limited to just the form (3.10) for OA and OB as
we did in the proof of Theorem 3.14. One may also use for instance the form (3.14),
and employ a strategy similar to the one used in the proof of Theorem 3.12. A proof in
this style can be found in the Appendix A.
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theorem 3.16: In the algebra A ⊗ C, for two lists of {1, . . . , N}, denoted by A and B,
we have

⟦OA, OB⟧+ = εOA,B + (eA∩B)2
⟦OA,(A∩B), O(A∩B),B⟧+ + (eA∩B)2

⟦OA∩B, O(A∩B), A,B⟧+.

Note that A4B = (A \ B)∪(B \ A), while A4(A ∩ B) = A \ B and (A ∩ B)4B = B \ A,
and finally (A ∩ B)4A4B = A ∪ B.

Proof. Because of its length and as it employs a similar strategy as used already in the
proof of Theorem 3.14, we have moved the proof of this result to the Appendix A.

corollary 3.17: In the algebra A ⊗ C, for two lists of {1, . . . , N}, denoted by A and B,
we have

⟦OA, OB⟧+ = εOA,B + (eA∩B)22OA,(A∩B)O(A∩B),B + (eA∩B)22OA∩BO(A∩B), A,B

− ε(eA∩B)2
∑

a∈A\B

⟦Oa, O(A∩B),B⟧− − ε(eA∩B)2
∑

a∈A∩B

⟦Oa, O(A∩B), A,B⟧− .

Proof. Note first that ⟦OA, OB⟧− + ⟦OA, OB⟧+ = 2OAOB. Now, combine Theorem 3.16
with Theorem 3.14 and Theorem 3.15, using (A \ B)∩(B \ A)= ∅ and (A ∩ B)⊂ (A ∪
B).

By means of Theorem 3.14, Theorem 3.15 and Theorem 3.16 (or thus Corollary 3.17)
we can swap any two operators OA and OB where A or B is not a list of just one element.
We briefly explain the need for three such theorems. Theorem 3.16 yields an empty
identity in two cases, when A ∩ B = ∅ or when either A or B is contained in the other
as sets. For example, say A ∩ B = ∅, then we have

⟦OA, OB⟧+ = εOA,B + (eA∩B)2
⟦OA,(A∩B), O(A∩B),B⟧+ + (eA∩B)2

⟦OA∩B, O(A∩B), A,B⟧+

= εOA,B + ⟦OA, OB⟧+ + O∅OA,B + OA,BO∅
= ⟦OA, OB⟧+ ,

as e∅ = 1 and O∅ = −ε/2. For these cases we can resort to Theorem 3.14 or Theo-
rem 3.15. However, if A is a list of a single element a, Theorem 3.14 and Theorem 3.15
are empty identities:

⟦OA, OB⟧− = ε
∑
a∈A

⟦Oa, Oa, A,B⟧− = ε⟦Oa, Oa,a,B⟧− = ⟦Oa, OB⟧−,

but so is Theorem 3.16 as either a ∈ B or a∩B = ∅. Now, for the case a < B Theorem 3.13
yields

OaOB = (−1) |B |OBOa − ε
∑
b∈B

⟦Ob, Ob,a,B⟧− ,

while by definition we also have

OaOB = ±(−1) |B |− |a∩B |OBOa + ⟦Oa, OB⟧∓.
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We see that all expressions involving supercommutators can be reduced to sums of su-
percommutators containing (at least) one symmetry with just one index. In the following
section we review again examples of specific realizations of the elements x1, . . . , xN and
p1, . . . , pN of the algebraA. For these examples, the one index symmetries in particular
take on an explicit form whose interaction with other symmetries can be computed ex-
plicitly. This form depends on the makeup of the symmetries Ci j = [pi, x j] as Oi is given
by (3.8).

4 examples

We recall the two examples from the previous section.
example 4.1: Let again ∆ be the classical Laplace operator, then

D =
N∑
i=1

eipi =
N∑
i=1

ei
∂

∂xi

is the classical Dirac operator. The osp(1|2) structure of Theorem 3.4 here was obtained
already in [15]. The commutator Cli in the definition (3.8) ofOi reduces to [pi, x j] = δi j,
so

Oi = ε
1
2

(
N∑
l=1

elδli − ei

)
= ε

1
2
(ei − ei) = 0.

Moreover, (3.13) then becomes

Oi j = Li j + ε
1
2
eiej,

in accordance with results obtained in [8], while for a general subset A ⊂ {1, . . . , N}
one has

OA =
(
ε
|A| − 1

2
−

∑
{i, j}⊂A

Li jeiej
)
eA.

Since [pi, x j] = 0 for i , j, given a subset A ⊂ {1, . . . , N} the operators xA and DA
as defined by (3.9) in fact also generate a copy of the Lie superalgebra osp(1|2) whose
Scasimir element we will denote by

SA =
1
2

(
[DA, xA] − ε

)
.

From (3.10), we see that in this case OA equals SAeA.
As in this case the one-index symmetries are identically zero, the algebraic relations

simplify accordingly. The symmetries with two indices generate a realization of the Lie
algebra so(N), as seen from the relations of Theorem 3.12. For general symmetries
Theorem 3.16 now yields

⟦OA, OB⟧+ = εOA,B + (eA∩B)22OA,(A∩B)O(A∩B),B + (eA∩B)22OA∩BO(A∩B), A,B,
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as by Theorem 3.14 and Theorem 3.15 ⟦OA, OB⟧− = 0 for A ∩ B = ∅, or A ⊂ B, or
B ⊂ A. This corresponds to (a special case of) the higher rank Bannai-Ito algebra of [7],
which strictly speaking is not included in the results obtained there.
To conclude, wemention another group of symmetries of D and x which are not inside

the algebra A ⊗ C in this case, but which will also be useful for the next example. For a
normed vector α, its embedding in the Clifford algebra

α =

N∑
l=1

elαl

is an element of the so-called Pin group, which forms a double cover of the orthogonal
group O(N). These elements have the property that

αv = −w α,

wherew = σα(v)= v − 2〈v, α〉α/‖α‖2. Hence, if we define the operators Sα as follows

Sα =
N∑
l=1

elαlσα = α σα, (4.1)

then it is immediately clear that they satisfy the following properties

Sαv = −wSα, Sα f (x)= f (σα(x))Sα, (Sα)2= ε .

where again w = σα(v) and f is a function or operator which does not interact with
the Clifford generators. By direct computation, one can show that the operator Sα anti-
commutes with the Dirac operator. Moreover, the interaction of Sα and a symmetry oper-
ator OA is simply given by the action of the reflection associated to α on the coordinate
vectors corresponding to the elements of A.
example 4.2: We consider again the case where p1, . . . , pN are given by the Dunkl
operators (2.9) associated to a given root system R and with multiplicity function k.
Here, the osp(1|2) structure of Theorem 3.4 was obtained already in [5, 19].
The commutator in the definition (3.8) of Oi is then given by

Ci j = [Di, x j] = δi j +
∑
α∈R+

2k(α)αiα jσα .

The symmetries of the Dunkl Dirac operator
∑N

i=1 Diei with one index thus become

Oi = ε
1
2

(
N∑
l=1

elδli +
N∑
l=1

el
∑
α∈R+

2k(α)αlαiσα − ei

)
= ε

∑
α∈R+

k(α)αi

N∑
l=1

elαlσα .

On the right-hand side we see the operators (4.1) appear for the roots α ∈ R+. By direct
computation, one can show that for a root α, the operator Sα anti-commutes with the
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Dirac-Dunkl operator. The one-index symmetry Oi thus consist of linear combinations
of the operators (4.1) determined by the root system and by the multiplicity function k

Oi = ε
∑
α∈R+

k(α)αiSα .

Higher-index symmetries OA contain the Dunkl angular momentum operators, appen-
ded with the anti-commuting symmetries Sα for α ∈ R+. For instance, if A = {i, j} we
have

Oi j = xiDj − x jDi + ε
1
2
eiej +

∑
α∈R+

k(α)(eiα j − ejαi)Sα .

The algebraic relations of Theorem 3.14 and Theorem 3.15 can now be worked out
explicitly as the action of the one-index symmetries is given by the reflections associated
to the roots of the root system.
example 4.2.1: For the root system with Weyl group W = (Z2)N , our results are in
accordance with what was already obtained in [6, 7]. Here, the Dunkl operators (2.9)
are given by

Di =
∂

∂xi
+
µi

xi
(1 − ri) i ∈ {1, . . . , N}

where ri is the reflection operator in the xi = 0 hyperplane and µi is the value of the
multiplicity function on the conjugacy class of ri. The one-index symmetry (3.8) in this
case reduces to

Oi = ε
∑
α∈R+

k(α)αiSα = εµiriei.

Here, we also have [pi, x j] = 0 for i , j, so for a given subset A ⊂ {1, . . . , N} the
operators xA and DA as defined by (3.9) generate a copy of the Lie superalgebra osp(1|2)
with the Scasimir element

SA =
1
2

(
[DA, xA] − ε

)
.

From (3.10), we see that in this case OA equals SAeA. The relation with the symmetries
denoted by ΓA in [7] is

ΓA = SA

∏
i∈A

ri = SA

∏
i∈A

1
µi

Oiei = SAeA
∏
i∈A

1
µi

Oi = OA

∏
i∈A

1
µi

Oi,

where the product over i ∈ A is taken according to the order of A. The operator ΓA
commutes with the Dunkl Dirac operator by Corollary 3.9. The algebraic structure ge-
nerated by the operators ΓA and corresponding to the relations of Theorem 3.16 is the
higher rank Bannai-Ito algebra of [7]. For the case N = 3, see [6, 13], this is the regular
Bannai-Ito algebra [25].
example 4.2.2: For the root system of type AN−1, with positive subsystem given, for
instance, by

R+ =
{ 1
√

2
(ξi − ξ j)

��� 1 ≤ i < j ≤ N
}
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where {ξ1, . . . , ξN } is an orthonormal basis ofRN , the associated Weyl group is the sym-
metric group SN of permutations on N elements. All permutations in SN are conjugate
so the multiplicity function k(α) has the same value for all roots, which we will denote
by κ. The Dunkl operators (2.9) are then given by

Di =
∂

∂xi
+ κ

∑
j,i

1 − gi j
xi − x j

i ∈ {1, . . . , N}

where gi j denotes the reflection corresponding to the root 1/
√

2(ξi − ξ j). The related
operator of the form (4.1) will be denoted as

Gi j =
1
√

2
(ei − ej)gi j = −G ji.

In this case, the commutator [pi, x j] does not reduce to zero for i , j. It is given by

[Di, x j] =


1 + κ

∑
l,i

gil if i = j

−κgi j if i , j

and the one-index symmetry (3.8) becomes

Oi = ε
∑
α∈R+

k(α)αiSα = εκ
∑

1≤l<i

−1
√

2
Gli + εκ

∑
i<l≤N

1
√

2
Gil =

εκ
√

2

N∑
l=1

Gil,

where Gii = 0, while for the symmetry (3.13) we have

Oi j = xiDj − x jDi + ε
1
2
eiej +

εκ
√

2

N∑
l=1

(eiG jl − ejGil).

The relations for two-index symmetries of Theorem 3.12 are

[Oi j, Okl] =
κ
√

2

(
(Oli j − Olik)G jk + (Okji − Okjl)Gil + (Oikl − Oikj)Gl j + (Ojlk − Ojli)Gki

)
for four distinct indices, and when l = i we have

[Oi j, Oki] = Ojk +
κ
√

2
2Oi jk(Gi j − Gki)+

κ
√

2

∑
a,i, j,k

(Oi jk − Oajk)Gia +
κ2

2

N∑
a=1

N∑
b=1

[G ja, Gkb].

5 summary and outlook

The replacement of ordinary derivatives by Dunkl derivatives Di in the expressions of
the Laplace and the Dirac operator in N dimensions gives rise to the Laplace-Dunkl
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∆ and Dirac-Dunkl operator D. This paper was devoted to the study of the symmetry
algebras of these two operators, i.e. to the algebraic relations satisfied by the operators
commuting or anti-commuting with ∆ or D.
In the case of Dunkl derivatives, the underlying object is the reflection group G acting

in N-dimensional space, characterized by a reduced root system. The Dunkl derivatives
themselves then consist of an ordinary derivative plus a number of difference operators
depending on this reflection group. So it can be expected that the reflection group G
plays an essential role in the structure of the symmetry algebra.
One of the leading examples was for N = 3 and G = Z3

2. Even for this quite simple
reflection group, the study of the symmetry algebras was already non-trivial, and led
to the celebrated Bannai-Ito algebra [6, 13]. Following this, the second case where the
symmetry algebra could be determined was for general N and G = ZN

2 [7], leading to
a “higher rank Bannai-Ito algebra”, of which the structure is already highly non-trivial.
The question that naturally arises is whether the symmetry algebras of the Laplace-

Dunkl and Dirac-Dunkl operators for other reflection groups G can still be determined,
and what their structure is. We considered it as a challenge to study this problem. Origi-
nally, we were hoping to solve the problem for the case G = SN , which would already be
a significant breakthrough. Herein, SN is the symmetric group acting on the coordinates
xi by permuting the indices; as a reflection group it is associated with the root system
of type AN−1.
Our initial attempts and computations for the case G = SN were not promising, and

the situation looked extremely complicated, particularly because the explicit actions
of the Dunkl derivatives Di are already very complex. Fortunately, at that moment we
followed the advice “if you cannot solve the problem, generalize it.” So we went back
to the general case, with arbitrary reflection group G, and no longer focused on the
explicit actions of the Dunkl derivatives Di, but on the algebraic relations among the
coordinate operators xi and the Di. Then we realized that we could still jump one level
higher in the generalization, and just work with coordinate operators xi and “momen-
tum operators” pi in the framework of a Wigner quantum system, by identifying the
pi with Di. As a consequence, we could forget about the actual meaning of the Dunkl
derivatives, and just work and perform our computations in the associative algebra A
(Definition 2.1). This general or “more abstract” setting enabled us to determine the ele-
ments (anti)commuting with ∆ or D, and to construct the algebraic relations satisfied
by these elements. The resulting symmetry algebra, obtained in the paper, is still quite
complicated. But we managed to determine it (for general G), going far beyond our
initial goal. For the general Laplace-Dunkl operator, the symmetries and the symmetry
algebra are described in Theorem 2.3 and Theorem 2.5. For the general Dirac-Dunkl
operator, the symmetries are determined in Theorem 3.6 and Theorem 3.7. The rela-
tions for these symmetries (i.e. the symmetry algebra) are established in Section 3.2,
and follow from Theorems 3.14, 3.15 and 3.16.
The results of this paper open the way to several new investigations. In particular, one

could now go back to the interesting case G = SN , and investigate how the symmetry
algebra specializes. One of the purposes is to study representations of the symmetry
algebra in that case, since this leads to null solutions of the Dirac operator. As in the case
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of G = ZN
2 [6, 13], one can expect that interesting families of orthogonal polynomials

should arise. Furthermore, note that for the case of G = Z3
2 a superintegrable model

on the two-sphere was obtained [4]. It is definitely worthwhile to investigate possible
superintegrable systems for other groups G.
In a different direction, one can examine whether the context of Wigner quantum sys-

tems, as used here for rational Dunkl operators, is still of use for other types of operators.
Possible examples are trigonometric Dunkl operators, or the Dunkl operators appearing
in discrete function theory.
Finally, it is known that solutions of Wigner quantum systems with a Hamiltonian of

type (1.1) can be described in terms of unitary representations of the Lie superalgebra
osp(1|2N) [24, 26]. The action and restriction of the coordinate operators xi and the
Dunkl operators Di in these representations should be studied further.

A appendix

This appendix contains the proofs of Theorem 3.15 and Theorem 3.16, which were
omitted from the main text due to their length.

Proof of Theorem 3.15. We systematically go over every term appearing in ⟦OA, OB⟧−,
using now the form (3.14) for OA and OB, that is
⟦(
ε
|A| − 1

2
+ ε

∑
a∈A

Oaea −
∑
{i, j}⊂A

Li jeiej
)
eA,

(
ε
|B| − 1

2
+ ε

∑
b∈B

Obeb −
∑
{k, l}⊂B

Lklekel
)
eB
⟧

−
.

Starting with the terms which contain no Oi or Li j, we have using property (3.17) and
A ⊂ B

|A| − 1
2
|B| − 1

2
(eAeB − (−1) |A | |B |− |A∩B |eBeA)=

|A| − 1
2
|B| − 1

2
(eAeB − eAeB)= 0.

Next, using property (3.17) and Lemma 3.10 we have
⟦

eA,
∑
b∈B

ObebeB

⟧

−

=
∑
b∈B

eAeBebOb − (−1) |A | |B |− |A∩B |
∑
b∈B

ObebeBeA

=
∑
b∈B

eAeBebOb −
∑
b∈B

ObebeAeB

=
∑
b∈A

eAeBebOb +
∑

b∈B\A

eAeBebOb −
∑

b∈B\A

eAeBebOb −
∑
b∈A

ObebeAeB

=
∑
b∈A

eAeBebOb −
∑
b∈A

ObebeAeB,

while
⟦∑

a∈A

OaeaeA, eB

⟧

−

=
∑
a∈A

OaeaeAeB − (−1) |A | |B |− |A∩B |
∑
a∈A

eBeAeaOa
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=
∑
a∈A

OaeaeAeB −
∑
a∈A

eAeBeaOa.

Hence, we have

|A| − 1
2

⟦

eA,
∑
b∈B

ObebeB

⟧

−

+
|B| − 1

2

⟦∑
a∈A

OaeaeA, eB

⟧

−

=
|B| − 1 − (|A| − 1)

2

(∑
a∈A

OaeaeAeB −
∑
a∈A

eAeBeaOa

)
=
|B| − |A| + 1 − 1

2

∑
a∈A

(
OaeaeAeB − (−1) |B |− |A |eaeAeBOa

)
=

∑
a∈A

⟦

Oa,
|B| − |A| + 1 − 1

2
eaeAeB

⟧

−
.

For the next part, using the notation A′ = A \ {a}, we find
⟦∑

a∈A

OaeaeA,
∑
b∈B

ObebeB

⟧

−

=
∑
a∈A

∑
b∈B

(OaeaeAeBebOb − (−1) |A | |B |− |A∩B |ObebeBeAeaOa)

=
∑
a∈A

∑
b∈B

(OaeaeAeBebOb − ObebeAeBeaOa)

=
∑
a∈A

⟦

Oa,
∑

b∈B\A′
ObebeaeAeB

⟧

−

+
∑
a∈A

∑
b∈A′

OaeaeAeBebOb −
∑
a∈A

∑
b∈A′

ObebeAeBeaOa.

One easily sees that the summations in the last line cancel out.
Now, for the parts containing “Li j-terms”, we have

⟦ ∑
{i, j}⊂A

Li jeiejeA, eB

⟧

−

=
∑
{i, j}⊂A

Li j
(
eiejeAeB − (−1) |A | |B |− |A∩B |eBeiejeA

)
= 0,

as, using property (3.17) and A ⊂ B,

(−1) |A | |B |− |A∩B |eBeiejeA = (−1) |A | |B |− |A∩B |+ |A\{i, j} | |B |− |(A\{i, j})∩B |eiejeAeB
= eiejeAeB.

Moreover, using Lemma 3.10 and property (3.17) while denoting A′ = A \ {a}, we
have

⟦

ε
∑
a∈A

OaeaeA, −
∑
{k, l}⊂B

LklekeleB
⟧

−
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= − ε
∑
a∈A

Oa

∑
{k, l}⊂B\A′

LklekeleaeAeB + ε
∑
a∈A

∑
{k, l}⊂B\A′

LklekeleAeBeaOa

− ε
∑
a∈A

Oa

∑
{k, l}⊂A′

LklekeleaeAeB + ε
∑
a∈A

∑
{k, l}⊂A′

LklekeleAeBeaOa

+ ε
∑
a∈A

Oa

∑
k∈A′

∑
l∈B\A′

LklekeleaeAeB + ε
∑
a∈A

∑
k∈A′

∑
l∈B\A′

LklekeleAeBeaOa

= − ε
∑
a∈A

⟦

Oa,
∑

{k, l}⊂B\A′
LklekeleaeAeB

⟧

−

− ε
∑
a∈A

Oa

∑
{k, l}⊂A′

LklekeleaeAeB + (−1) |B |− |A |ε
∑
a∈A

∑
{k, l}⊂A′

LklekeleaeAeBOa (A.1)

+ ε
∑
a∈A

Oa

∑
k∈A′

∑
l∈B\A′

LklekeleaeAeB + (−1) |B |− |A |ε
∑
a∈A

∑
k∈A′

∑
l∈B\A′

LklekeleaeAeBOa.

(A.2)

We see that the final part to make ε
∑

a∈A⟦Oa, Oa4A4B⟧− appears here. To complete the
proof we show that the last two lines, (A.1) and (A.2), cancel out with the remaining
terms of ⟦OA, OB⟧−.
Hereto, we use Lemma 3.10, to find (denoting again A′ = A \ {a})

⟦

−
∑
{i, j}⊂A

Li jeiejeA, ε
∑
b∈B

ObebeB
⟧

−

= − ε
∑
{i, j}⊂A

Li jeiejeAeB
∑

a∈A\{i, j}

eaOa − ε
∑
{i, j}⊂A

Li jeiejeAeB
∑

b∈B\(A\{i, j})

ebOb

+ (−1) |A | |B |− |A∩B |ε
∑
{i, j}⊂A

∑
a∈A\{i, j}

OaLi jeaeiejeBeA

+ (−1) |A | |B |− |A∩B |ε
∑
{i, j}⊂A

∑
b∈B\(A\{i, j})

ObLi jebeiejeBeA

= − (−1) |B |− |A |ε
∑
a∈A

∑
{i, j}⊂A′

Li jeiejeaeAeBOa + ε
∑
a∈A

∑
{i, j}⊂A′

OaLi jeiejeaeAeB

− ε
∑
{i, j}⊂A

Li j
∑

b∈B\(A\{i, j})

ObebeiejeAeB + ε
∑
{i, j}⊂A

∑
b∈B\(A\{i, j})

ObLi jebeiejeAeB

= ε
∑
a∈A

Oa

∑
{i, j}⊂A′

Li jeiejeaeAeB − (−1) |B |− |A |ε
∑
a∈A

∑
{i, j}⊂A′

Li jeiejeaeAeBOa

− ε
∑
{i, j}⊂A

∑
b∈B\(A\{i, j})

[Li j, Ob]ebeiejeAeB. (A.3)

This already causes (A.1) to vanish, so (A.2) and (A.3) remain.
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Next, we look at∑
{i, j}⊂A

∑
{k, l}⊂B

Li jLkleiejeAekeleB − (−1) |A | |B |− |A∩B |LklLi jekeleBeiejeA. (A.4)

According to the sign of

(−1) |A | |B |− |A∩B |ekeleBeiejeA
= (−1) |A | |B |− |A∩B |+ |A\{i, j} | |B\{k, l} |−|(A\{i, j})∩(B\{k, l}) |eiejeAekeleB
= (−1) |A∩B |− |(A\{i, j})∩(B\{k, l}) |eiejeAekeleB,

the summation (A.4) reduces to a combination of commutators and anti-commutators
involving Li j and Lkl. We first treat the anti-commutators

−
∑
k∈A

∑
{i, j}⊂A\{k}

∑
l∈B\A

{Li j, Lkl}eiejekeleAeB

−
∑
i∈A

∑
{ j,k}⊂A\{i}

ε({Lik, Lji}ekejeAeB + {Li j, Lki}ejekeAeB).

The last line reduces to∑
i∈A

∑
{ j,k}⊂A\{i}

ε({Lik, Lji} − {Li j, Lki})ekejeAeB = 0,

while the first line vanishes by Theorem 2.5 as it can be rewritten as∑
{k, i, j}⊂A

∑
l∈B\A

({Li j, Lkl}eiejekeleAeB + {Lkj, Lil}ekejeieleAeB + {Lik, Ljl}eiekejeleAeB)

=
∑

{k, i, j}⊂A

∑
l∈B\A

({Li j, Lkl} + {Ljk, Lil} + {Lki, Ljl})eiejekeleAeB.

Next, we treat the remaining terms of the summation (A.4) which reduce to four
different summations of commutators∑

{i, j}⊂A

∑
{k, l}⊂B\A

[Li j, Lkl]eiejekeleAeB +
∑
{i, j}⊂A

∑
{k, l}⊂(B∩A)\{i, j}

[Li j, Lkl]eiejekeleAeB

−
∑
i∈A

∑
j∈A\{i}

∑
l∈B\A

[Li j, Ljl]eiejejeleAeB +
∑
{i, j}⊂A

[Li j, Li j]eiejeiejeAeB.

(A.5)
Note that while the last summation obviously vanishes, the second one does also as∑
{i, j}⊂A∩B

∑
{k, l}⊂(B∩A)\{i, j}

[Li j, Lkl]eiejekeleAeB

=
∑

{i, j,k, l}⊂A∩B

([Li j, Lkl] + [Lik, Ll j] + [Lil, Ljk] + [Ljk, Lil] + [Ljl, Lki] + [Lkl, Li j])eiejekeleAeB.
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By Theorem 2.5 and using {ei, Oj} = [pi, x j] − δi j, the summand of the first summation
of (A.5) can be written as

Ljk{ei, Ol}ejekeieleAeB + Lil{ej, Ok}eielejekeAeB
Ll j{ek, Oi}elejeiekeAeB + Lki{el, Oj}ekeiejeleAeB.

Using {ej, Ok} = {ek, Oj} and {ei, Ol} = {el, Oi} each term is altered to one containing
Ob where b ∈ B \ A. In this way, we find

ε(LjkOlejekeleAeB + Ll jOkelejekeAeB + LilOkeielekeAeB + LkiOlekeieleAeB)
+ LjkeiOlejekeieleAeB + Ll jeiOkelejeiekeAeB + LilejOkeielejekeAeB + LkiejOlekeiejeleAeB.

The summation, as in (A.5), of the first line reduces to

ε
∑
j∈A

∑
k∈B\A

∑
l∈(B\A)\{k}

∑
i∈A\{ j}

LjkOlejekeleAeB

= ε(|A| − 1)
∑
j∈A

∑
k∈B\A

∑
l∈(B\A)\{k}

LjkOlejekeleAeB,

while, using Lemma 3.10 for the last line, we find

−
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

∑
l∈(B\A)\{k}

LjkeiOleleiejekeAeB

=
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

LjkeiOieieiejekeAeB +
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

LjkeiOjejeiejekeAeB

−
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

∑
l∈{i, j}∪(B\A)\{k}

LjkeieiejekeAeBelOl

= ε
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

Ljkei(Oiej − Ojei)ekeAeB − ε
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

LjkejekeAeBeiOi

− ε(|A| − 1)
∑
j∈A

∑
k∈B\A

∑
l∈{ j}∪(B\A)\{k}

LjkOlelejekeAeB

= − ε
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

LjkeiejOiekeAeB − ε(−1) |B |− |A |
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

LjkejekeieAeBOi

− ε(|A| − 1)
∑
j∈A

∑
k∈B\A

∑
l∈(B\A)\{k}

LjkOlelejekeAeB.

In total, the first summation of (A.5) thus yields

−ε
∑
j∈A

∑
k∈B\A

∑
i∈A\{ j}

LjkeiejOiekeAeB−(−1) |B |− |A |ε
∑
j∈A

∑
k∈B

∑
i∈A\{ j}

LjkejekeieAeBOi. (A.6)

The final result is obtained following essentially the same strategy as used in the proof
of Theorem 3.12 and Theorem 3.14, now applied to the third summation of (A.5):

− ε
∑
i∈A

∑
j∈A\{i}

∑
l∈B\A

[Li j, Ljl]eieleAeB.
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By Theorem 2.5, and using {ei, Oj} = [pi, x j] − δi j, the summand of this can be written
as

− εLileieleAeB − εLil{ej, Oj}eieleAeB + εLi j{ej, Ol}eieleAeB − εLl j{ei, Oj}eieleAeB. (A.7)

Here, the summation of the first term cancels out with
⟦

ε
|A| − 1

2
eA, −

∑
{k, l}⊂B

LklekeleB

⟧

−

= ε(|A| − 1)
∑
k∈A

∑
l∈B\A

LklekeleAeB,

which, using property (3.17) and A ⊂ B, follows from

(−1) |A | |B |− |A∩B |ekeleBeA = (−1) |A | |B |− |A |+ |A | |B\{k, l} |−|A∩(B\{k, l}) |eAekeleB
= (−1) |A |− |A∩(B\{k, l}) |eAekeleB.

For the summation of the second and the fourth term of (A.7), using Oiej − Ojei =
eiOj − ejOi, we have

−
∑
i∈A

∑
j∈A\{i}

∑
l∈B\A

(εLilOjejei + Ll jOj)eleAeB − ε
∑
i∈A

∑
j∈A\{i}

∑
l∈B\A

(Lilej + Ll jei)OjeieleAeB

= −
∑
{i, j}∈A

∑
l∈B\A

(εLilOjejei + Ll jOj + εLjlOieiej + LliOi)eleAeB

− ε
∑
{i, j}∈A

∑
l∈B\A

(Lilej + Ll jei)(Ojei − Oiej)eleAeB.

= − ε
∑
{i, j}∈A

∑
l∈B\A

(LilOjejei − Ll jOieiej − LilejeiOj + Ll jeiejOi)eleAeB

= ε
∑
i∈A

∑
j∈A\{i}

∑
l∈B\A

Ll j(Oieiej − eiejOi)eleAeB. (A.8)

When summed over l in B \ A, the third term of (A.7) yields, using Lemma 3.10,

− ε
∑
l∈B\A

Li jejOleleieAeB + ε
∑
l∈B\A

Li jOlelejeieAeB

= εLi jejOieieieAeB − ε
∑

l∈B\A∪{i}

Li jejeieAeBelOl

− εLi jOieiejeieAeB − εLi jOjejejeieAeB + ε
∑

l∈B\A∪{i, j}

Li jejeieAeBelOl

= Li jeiOjeAeB + (−1) |B |− |A |+1Li jeieAeBOj.

Summing this over i in A and j in A \ {i} and combined with (A.2), (A.3), (A.6), and
(A.8), one observes that all terms cancel out.
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Proof of Theorem 3.16. By definition, plugging in (3.10), the left-hand side expands to

⟦OA, OB⟧+ = OAOB + (−1) |A | |B |− |A∩B |OBOA

=
1
4
(
D xAeA − eAxAD − εeA

) (
D xBeB − eBxBD − εeB

)
+ (−1) |A | |B |− |A∩B |

1
4
(
D xBeB − eBxBD − εeB

) (
D xAeA − eAxAD − εeA

)
.

The idea of the proof is now as follows. We split up xA and xB into xA = xA\B+ xA∩B and
xB = xB\A + xA∩B. We then combine the appropriate terms to make xA4B = xA\B + xB\A
and xA∪B = xA\B + xB\A + xA∩B, and in turn all terms that make up the right-hand side.
In doing so, we continually make use of the following facts: by property (3.18) we have
(eA∩B)4= 1, hence (eA∩B)2 is just a sign;

DeA − (−1) |A |eAD =
∑
a∈A

2paeaeA ;

and for integer n one has (−1)n= (−1)n
2
and (−1)n(n+1)= 1.

For the terms of ⟦OA, OB⟧+ which do not contain D, we have

1
4
eAeB + (−1) |A | |B |− |A∩B |

1
4
eBeA =

1
2
eAeB = −

1
2
eAeB +

1
2
(eA∩B)4eAeB +

1
2
(eA∩B)4eAeB.

Next, for the terms of ⟦OA, OB⟧+ containing two occurrences of D, we have(
D xAeA − eAxAD

) (
D xBeB − eBxBD

)
+ (−1) |A | |B |− |A∩B |

(
D xBeB − eBxBD

) (
D xAeA − eAxAD

)
= D xAeAD xBeB − eAxADD xBeB − D xAeAeBxBD + eAxADeBxBD

+ (−1) |A | |B |− |A∩B |
(
D xBeBD xAeA − eBxBDD xAeA − D xBeBeAxAD + eBxBDeAxAD

)
.

We first look at the terms having DD in the middle:

− eAxADD xBeB − (−1) |A | |B |− |A∩B |eBxBDD xAeA
= − eA(xA\B + xA∩B)DD (xB\A + xA∩B)eB

− (−1) |A | |B |− |A∩B |eB(xB\A + xA∩B)DD (xA\B + xA∩B)eA

= − (eA∩B)2 (eAeA∩BxA\BDD xB\AeA∩BeB

− (−1) |A | |B |− |A∩B |+ |A∩B |( |A |+ |B |)eA∩BeBxB\ADD xA\BeAeA∩B

− (−1)1+ |A∩B |( |A |+ |B |−2 |A∩B |+1)+ |A∩B |−1eA∩BeAeBxA\BDD xA∩BeA∩B
− eA∩BxA∩BDD xB\AeA∩BeAeB − eA∩BxA∩BDD xA∩BeA∩BeAeB

− (−1)1+ |A∩B |( |A |+ |B |−2 |A∩B |+1)+ |A∩B |−1eA∩BeAeBxB\ADD xA∩BeA∩B
− eA∩BxA∩BDD xA\BeA∩BeAeB
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− (−1) |A∩B |( |A |+ |B |−2 |A∩B |)eA∩BeAeBxA∩BDD xA∩BeA∩B
)

= − (eA∩B)2 (eAeA∩BxA\BDD xB\AeA∩BeB

− (−1)( |A |− |A∩B |)( |B |− |A∩B |)eA∩BeBxB\ADD xA\BeAeA∩B
− eA∩BxA∩BDD xA∪BeA∩BeAeB
− (−1) |A∩B |( |A |+ |B |− |A∩B |)−|A∩B |eA∩BeAeBxA∪BDD xA∩BeA∩B

)
.

In exactly the same manner, we have

D xAeAeBxBD + (−1) |A | |B |− |A∩B |D xBeBeAxAD
= D (xA\B + xA∩B)eAeB(xB\A + xA∩B)D

+ (−1) |A | |B |− |A∩B |D (xB\A + xA∩B)eBeA(xA\B + xA∩B)D

= (eA∩B)2 (D xA\BeA(eA∩B)
2eBxB\AD − D xA∩B(eA∩B)

2eAeBxA∪BD

− (−1)( |A |− |A∩B |)( |B |− |A∩B |)D xB\AeA∩BeBeAeA∩BxA\BD

− (−1) |A∩B |( |A |+ |B |− |A∩B |)−|A∩B |D xA∪BeA∩BeAeBeA∩BxA∩BD
)
.

Next, for the remaining terms with two occurrences of D, we first have

D xAeAD xBeB + (−1) |A | |B |− |A∩B |D xBeBD xAeA
= D (xA\B + xA∩B)eAD (xB\A + xA∩B)eB

+ (−1) |A | |B |− |A∩B |D (xB\A + xA∩B)eBD (xA\B + xA∩B)eA

= (eA∩B)2 (D xA\BeAeA∩BD xB\AeA∩BeB

+ (−1) |A∩B |( |A |+ |B |− |A∩B |−1)D xA\BeA∩BeAeBD xA∩BeA∩B
+ D xA∩BeA∩BD xB\AeA∩BeAeB + D xA∩BeA∩BD xA∩BeA∩BeAeB

+ (−1) |A | |B |− |A∩B |+ |A∩B |( |B |+ |A |)D xB\AeA∩BeBD xA\BeAeA∩B

+ (−1) |A∩B |( |A |+ |B |)D xB\AeA∩BeAeBD xA∩BeA∩B + D xA∩BeA∩BD xA\BeA∩BeAeB

+ (−1) |A∩B |( |A |+ |B |)D xA∩BeA∩BeAeBD xA∩BeA∩B
)

− D xA\B

∑
l∈A∩B

2plel xB\AeAeB − D xA\B

∑
l∈B\A

2plel xA∩BeAeB

− D xA∩B

∑
l∈A\B

2plel xB\AeAeB + D xA∩B

∑
l∈A\B

2plel xA∩BeAeB

− D xB\A
∑

l∈A∩B

2plel xA\BeAeB − D xB\A
∑
l∈A\B

2plel xA∩BeAeB

− D xA∩B

∑
l∈B\A

2plel xA\BeAeB − D xA∩B

∑
l∈A\B

2plel xA∩BeAeB

= (eA∩B)2 (D xA\BeAeA∩BD xB\AeA∩BeB + D xA∩BeA∩BD xA∪BeA∩BeAeB
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+ (−1)( |A |− |A∩B |)( |B |− |A∩B |)D xB\AeA∩BeBD xA\BeAeA∩B

+ (−1) |A∩B |( |A |+ |B |− |A∩B |)−|A∩B |D xA∪BeA∩BeAeBD xA∩BeA∩B
)

− 2D
∑

a∈A\B

∑
c∈A∩B

∑
b∈B\A

(
xb(pcxa − paxc)+xc(paxb − pbxa)−xa(pcxb − pbxc)

)
eaebeceAeB

where the last line vanishes using Li j = xipj − x jpi = pjxi − pix j.
Similarly one finds

eAxADeBxBD + (−1) |A | |B |− |A∩B |eBxBDeAxAD
= eA(xA\B + xA∩B)D eB(xB\A + xA∩B)D

+ (−1) |A | |B |− |A∩B |eB(xB\A + xA∩B)D eA(xA\B + xA∩B)D

= (eA∩B)2 (eAeA∩BxA\BD eA∩BeBxB\AD + eA∩BxA∩BD eA∩BeAeBxA∪BD

+ (−1)( |A |− |A∩B |)( |B |− |A∩B |)eA∩BeBxB\AD eAeA∩BxA\BD

+ (−1) |A∩B |( |A |+ |B |− |A∩B |)−|A∩B |eA∩BeAeBxA∪BD eA∩BxA∩BD
)
.

Finally, for the terms with a single occurrence of D, we have (up to a factor −ε)(
D xAeA − eAxAD

)
eB + (−1) |A | |B |− |A∩B |eB

(
D xAeA − eAxAD

)
+ eA

(
D xBeB − eBxBD

)
+ (−1) |A | |B |− |A∩B |

(
D xBeB − eBxBD

)
eA

= − D xA\BeAeB − D xB\AeAeB + eAeBxA\BD + eAeBxB\AD + (eA∩B)2 (D xA\BeA(eA∩B)
2eB

+ (−1) |A∩B |( |A |+ |B |)D xA\BeA∩BeAeBeA∩B + D xA∩B(eA∩B)
2eAeB − eAeA∩BxA\BDeA∩BeB

− eA∩BxA∩BDeA∩BeAeB + (−1) |A | |B |+ |A∩B |( |B |+ |A |−1)eA∩BeBD xA\BeAeA∩B

+ (−1) |A∩B |( |A |+ |B |)eA∩BeAeBD xA∩BeA∩B − (−1) |A∩B |( |A |+ |B |)eA∩BeAeBxA\BD eA∩B

− (−1) |A | |B |+ |A∩B |( |B |+ |A |−1)eA∩BeBeAeA∩BxA\BD − (eA∩B)2eAeBxA∩BD

+ eAeA∩BD xB\AeA∩BeB + eA∩BD xA∩BeA∩BeAeB − eA(eA∩B)2eBxB\AD

− (−1) |A∩B |( |A |+ |B |)eA∩BeAeBeA∩BxA∩BD − (−1) |A∩B |( |A |+ |B |)eA∩BeAeBxA∩BDeA∩B
+ (−1) |A∩B |( |A |+ |B |)D xB\AeA∩BeAeBeA∩B + (−1) |A∩B |( |A |+ |B |)D xA∩BeA∩BeAeBeA∩B

− (eA∩B)2eAeBxB\AD + (−1) |A | |B |+ |A∩B |( |A |+ |B |−1)D xB\AeA∩BeBeAeA∩B

− (−1) |A | |B |+ |A∩B |( |B |+ |A |−1)eA∩BeBxB\ADeAeA∩B
)

where, for instance, we made use of the following computation

− eAxA∩BDeB − (−1) |A | |B |− |A∩B |eBxA∩BDeA
= − (eA∩B)2 ((eA∩B)2eAxA∩BDeB + (−1) |A | |B |− |A∩B |eBxA∩BD(eA∩B)

2eA
)

= − (eA∩B)2 ((−1) |A |− |A∩B |eA∩BxA∩BeA∩BeADeB
+ (−1) |A | |B |+ |A∩B | |A |eBxA∩BDeA∩BeAeA∩B

)
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= − (eA∩B)2 (eA∩BxA∩BDeA∩BeAeB + (−1) |A | |B |+ |A∩B | |A |+ |A |− |A∩B |eBxA∩BeA∩BeADeA∩B

− eA∩BxA∩B

∑
l∈A\B

2pleleA∩BeAeB + (−1) |A | |B |+ |A∩B | |A |eBxA∩B

∑
l∈A\B

2pleleA∩BeAeA∩B
)

= (eA∩B)2 ( − eA∩BxA∩BDeA∩BeAeB − (−1) |A∩B |( |A |+ |B |)eA∩BeAeBxA∩BDeA∩B
)
.

Putting everything together and comparing with

OA,B =
1
2
(
D xA4BeAeB − eAeBxA4BD − εeAeB

)
,

and

⟦OA,(A∩B), O(A∩B),B⟧+ =
1
4
(
D xA\BeAeA∩B − eAeA∩BxA\BD − εeAeA∩B

)
×

(
D xB\AeA∩BeB − eA∩BeBxB\AD − εeA∩BeB

)
+ (−1)( |A |− |A∩B |)( |B |− |A∩B |)

1
4
(
D xB\AeA∩BeB − eA∩BeBxB\AD − εeA∩BeB

)
×

(
D xA\BeAeA∩B − eAeA∩BxA\BD − εeAeA∩B

)
,

and

⟦OA∩B, O(A∩B), A,B⟧+ =
1
4
(
D xA∩BeA∩B − eA∩BxA∩BD − εeA∩B

)
×

(
D xA∪BeA∩BeAeB − eA∩BeAeBxA∪BD − εeA∩BeAeB

)
+ (−1) |A∩B |( |A |+ |B |− |A∩B |)−|A∩B |

1
4
(
D xA∪BeA∩BeAeB − eA∩BeAeBxA∪BD − εeA∩BeAeB

)
×

(
D xA∩BeA∩B − eA∩BxA∩BD − εeA∩B

)
,

the proof is completed.
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abstract

In recent work, we obtained the symmetry algebra for a class of Dirac operators, contain-
ing in particular the Dirac-Dunkl operator for arbitrary root system. We now consider
the three-dimensional case of the Dirac-Dunkl operator associated to the root system
A2, and the associated Dirac equation. The corresponding Weyl group is S3, the symme-
tric group on three elements. The explicit form of the symmetry algebra in this case is
a one-parameter deformation of the classical angular momentum algebra so(3) incor-
porating elements of S3. For this algebra, we classify all finite-dimensional, irreducible
representations and determine the conditions for the representations to be unitarizable.
The eigenfunctions of the Dirac-Dunkl operator on the two-sphere form a realization of
the unitary irreducible representation of the symmetry algebra, as realized in the fra-
mework of Dunkl operators. Using a Cauchy-Kowalevsky extension theorem we obtain
explicit expressions for these eigenfunctions in terms of Jacobi polynomials.

1 introduction

It is a classical result that the three-dimensional Dirac operator on Euclidean space is in-
variant under a realization of the angular momentum algebra, the Lie algebra so(3). The
setting changes when one considers generalizations of the Dirac operator containing, in-
stead of regular partial derivatives, more advanced expressions. A specific example of
this is the Dirac-Dunkl operator, defined in terms of Dunkl operators. These operators
retain a desirable commutative property but allow for non-local effects through reflec-
tion terms. In N-dimensional Euclidean space, the system of Dunkl operators (and thus
the reflection terms) depend on the choice of the (reduced) root system, or explicitly on
the generators of the underlying reflection group G.
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In recent work [3], the symmetry algebra of the Dirac-Dunkl operator for N = 3 and
G = (Z2)3 (and of the associated Dirac equation on the two-sphere) was identified as
the so-called Bannai-Ito algebra [22]. This led to the construction of representations of
the Bannai-Ito algebra using the actions of the Dunkl operators. Moreover, by moving
up in dimension a higher rank version of the Bannai-Ito algebra was postulated as the
symmetry algebra of the (Z2)N Dirac-Dunkl operator [4]. For a recent overview of the
Bannai-Ito algebra and its applications, we refer the reader to [13].
This interaction inspired our investigation into the Dunkl version of the Dirac operator

for another reflection group, the symmetric group on three elements S3, associated to
the root system A2. Doing so, this provided a stepping stone towards the determination
of the symmetry algebra for a bigger class of generalized Laplace and Dirac operators
in general dimension N, in the framework of Wigner systems [5]. These results contain
in particular the Dunkl versions for arbitrary root system (that is, for arbitrary N and
general G). Armed with these new tools we now return to the three-dimensional case
with the objective of finding representations, and explicit realizations, of these abstract
symmetry algebras.
In three dimensions, the symmetry algebra of the generalized Dirac operator D forms

an extension of the classical angular momentum algebra, the Lie algebra so(3). The
algebraic relations were obtained in abstract form in [5] and are given by

[O23, O12] = O31 + {O123, O2} + [O3, O1]

[O31, O23] = O12 + {O123, O3} + [O1, O2] (1.1)
[O12, O31] = O23 + {O123, O1} + [O2, O3]

where [A, B] = AB − BA and {A, B} = AB + BA are respectively the commutator
and the anti-commutator of A and B. This algebra, which we will denote by O3, is
generated by seven generally non-trivial elements: O1, O2, O3, O12, O23, O31, O123. The
general expressions of these symmetries are given in [5, formulas (3.8) and (3.10)].
For the classical Dirac operator in terms of the standard partial derivatives, the one-
index symmetries O1, O2, O3 were seen to be identically zero and thus in this case the
commutation relations (1.1) indeed reduce to those of the Lie algebra so(3). For other
types of Dirac operators, the relations (1.1) form an extension of so(3) whose nature
depends on the explicit form of the one-index symmetries O1, O2, O3 in particular.
The aforementioned generalized Dirac operator D contains as a specific case the Dunkl

version of the Dirac operator, which has appeared also in another context, e.g. [2, 17].
Here, the Dunkl operators [7, 19] are a generalization of partial derivatives in the form
of differential-difference operators associated to a root system and invariant under its
Weyl group G. These operators have seen numerous applications since their introduction
in for instance physical models involving reflections [11–15, 18–20]. When dealing with
Dunkl operators, the choice of root system and associated reflection group G is what
determines the structure and the explicit form of the one-index symmetries O1, O2, O3
and as a consequence also of the symmetry algebra, as seen from the right-hand side of
the algebraic relations (1.1).
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For the current paper, this is the root system A2 with Weyl group G = S3, the symme-
tric group on three elements. We will use the notation OS3 to denote the specific form
the abstract algebra O3 takes on in the case of the S3 Dirac-Dunkl operator. The explicit
relations of the algebra generators are given in (3.5). From these expressions it is clear
that one can speak of a one-parameter deformation of the angular momentum algebra
so(3) incorporating the symmetric group S3. When the deformation parameter κ is set
to zero, one recovers the ordinary so(3) algebra, as the Dunkl operators then reduce
to regular partial derivatives. For non-zero κ, the algebra relations (3.5) provide an in-
teresting and exciting new structure: a deformation of so(3) by means of elements of
the S3 group algebra. This algebra OS3 is the main object of study in this paper. In par-
ticular, we shall classify (finite-dimensional irreducible) representations of this algebra,
and provide an explicit realization of a class of representations in terms of orthogonal
polynomials.
We briefly elaborate upon other cases which have been considered. For the case of

(Z2)3 Dirac-Dunkl operator, the commutators in the left-hand side of the algebraic rela-
tions (1.1) become anti-commutators through the use of commuting involutions present
in the reflection group. This yields the Bannai-Ito algebra as the symmetry algebra [3].
In more recent work [13], the root system of type B3 was also considered to define
extensions of the Bannai-Ito algebra. A crucial ingredient in this paper is again the ex-
istence of commuting involutions in the reflection group. The lack of such involutions
characterizes the case at hand of the symmetric group, and its importance as a reference
work for future investigations in higher dimensions.
In the subsequent section, we go over the definitions and notions required to intro-

duce the Dirac-Dunkl operator related to S3. In section 3, we elaborate on the explicit
expressions of the symmetries of this operator and give the algebraic relations (1.1) for
this specific case. In section 4, we construct a form of ladder operators and use them
to classify all finite-dimensional irreducible representations of the symmetry algebra in
abstract form. In the last section we determine explicit expressions for wavefunctions
which form a unitary irreducible representation of the symmetry algebra, as realized in
the framework of Dunkl operators.

2 the S3 dirac-dunkl operator

We consider three-dimensional space R3 with coordinates x1, x2, x3. The symmetric
group S3 is generated by the transpositions g12, g23, g31 which act on functions on R3

in the following way:

g12 f (x1, x2, x3) = f (x2, x1, x3) ,
g23 f (x1, x2, x3) = f (x1, x3, x2) ,
g31 f (x1, x2, x3) = f (x3, x2, x1) .

Denoting the two even elements by g123 = g12g23 = g31g12 = g23g31 and g321 =

g23g12 = g12g31 = g31g23, the six elements of S3 are {1, g12, g23, g31, g123, g321}. For
convenience we give the multiplication table of S3 in Table 1.
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table 1: Multiplication table of S3.

↗ 1 g12 g23 g31 g123 g321

1 1 g12 g23 g31 g123 g321

g12 g12 1 g123 g321 g23 g31

g23 g23 g321 1 g123 g31 g12

g31 g31 g123 g321 1 g12 g23

g123 g123 g31 g12 g23 g321 1
g321 g321 g23 g31 g12 1 g123

The symmetric group S3 arises as theWeyl group of the root system A2. The associated
Dunkl operators are explicitly given by [7, 19]

D1 = ∂x1 + κ

(
1 − g12

x1 − x2
+

1 − g13

x1 − x3

)
, D2 = ∂x2 + κ

(
1 − g12

x2 − x1
+

1 − g23

x2 − x3

)
,

D3 = ∂x3 + κ

(
1 − g31

x3 − x1
+

1 − g23

x3 − x2

)
.

(2.1)

Here the parameter κ denotes the value of the multiplicity function on the single con-
jugacy class all transpositions of the symmetric group share. This multiplicity function
is usually taken to be real and non-negative, in order to have favorable properties such
as intertwining operators [8]. Now, the property that makes these generalizations of
partial derivatives so special is that they commute with one another, [Di, Dj] = 0 for
i, j ∈ {1, 2, 3}. Moreover, for i, j, k a cyclic permutation of 1, 2, 3, the action of S3 on
the Dunkl operators is simply given by

gi jDi = Djgi j, gi jDj = Digi j, gi jDk = Dkgi j .

The commutation relations with the coordinate variables are easily shown to be

[Di, x j] = Dix j − x jDi =


1 + κ

∑
k,i

gik i = j

−κgi j i , j
(2.2)

for i, j, k ∈ {1, 2, 3}. Note that when κ = 0 these reduce to the standard relations as
the Dunkl operators then reduce to ordinary partial derivatives.
The Laplace-Dunkl operator is given by

∆ = (D1)2+(D2)2+(D3)2, (2.3)

which is obviously invariant under the action of S3. In this setting, the Dirac-Dunkl
operator D is defined as a square root of the Dunkl Laplacian as follows:

D = e1D1 + e2D2 + e3D3,
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where e1, e2, e3 generate the three-dimensional Euclidean Clifford algebra and hence sa-
tisfy the anti-commutation relations {ei, ej} = 2δi j for i, j ∈ {1, 2, 3}. (This corresponds
to the positive choice of sign, ε = +1 in the notation of [5]. The other choice of sign is
readily obtained by making the appropriate substitutions.) The three-dimensional Eu-
clidean Clifford algebra can be realized by means of the well-known Pauli matrices. For
the first part of this paper, we can work with abstract Clifford elements e1, e2, e3. We will
use the Pauli matrices for the explicit construction of representation spaces in Section 5.
Together with the vector variable x = e1x1 + e2x2 + e3x3, the operator D generates a

realization of the osp(1|2) Lie superalgebra [2, 10], since

[{D, x}, D] = −2D, [{D, x}, x] = 2x. (2.4)

Here, the anti-commutator {D, x} can be written in terms of the Euler operator E as
follows

{D, x} = 2E + 3 + 6κ , E = x1∂x1 + x2∂x2 + x3∂x3 . (2.5)

The angular Dirac-Dunkl operator, which we denote by Γ, appears when the Dirac-
Dunkl operator D is restricted to the two-sphere S2. The operator Γ is up to an additive
constant equal to the so-called Scasimir operator of the osp(1|2) realization above [10],

Γ + 1 =
1
2

(
[D, x] − 1

)
, (2.6)

satisfying {Γ + 1, D} = 0 and {Γ + 1, x} = 0, while commuting with the even elements
of osp(1|2). Working out the commutator in the right-hand side of (2.6) using (2.2) we
obtain

Γ + 1 = 1 + κ(g12 + g23 + g31)−e1e2L12 − e2e3L23 − e3e1L31 . (2.7)

Here the Dunkl versions of the angular momentum operators are defined as

L12 = x1D2 − x2D1, L23 = x2D3 − x3D2, L31 = x3D1 − x1D3,

and are easily shown to commute with the Dunkl Laplacian ∆.
The space of homogeneous polynomials in the kernel of the Dirac-Dunkl operator are

the solutions to the massless Dirac equation Dψ = 0. Furthermore, this space forms an
eigenspace of the angular Dirac-Dunkl operator Γ. This is easily shown as follows. Let
Pn(RN) denote the space of homogeneous polynomials of degree n in N variables. The
Dunkl monogenics of degree n are homogeneous spinor-valued polynomials of degree n
in the kernel of the Dirac-Dunkl operator, which we will denote byMn(RN, S)= ker D∩
(Pn(RN)⊗S). Here S is a spinor representation of the Clifford algebra. For the three-
dimensional Clifford algebra realized by the Pauli matrices a two-dimensional Dirac
spinor representation is simply S � C2, with basis spinors χ+ = (1, 0)T and χ− =
(0, 1)T . Now, for ψn ∈Mn(R3, S) we have using Dψn = 0 and (2.5)

(Γ + 1)ψn =
1
2
([D, x] − 1)ψn =

1
2
(D x − 1)ψn

=
1
2
({D, x} − 1)ψn =

1
2
(2E + 3 + 6κ − 1)ψn .
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As Eψn = nψn, this gives the following Dirac equation on the two-sphere

(Γ + 1)ψn = (n + 1 + 3κ)ψn . (2.8)

We will construct explicit expressions for ψn in section 5.1.

3 symmetry algebra of the S3 dirac-dunkl operator

In general, the symmetry algebra O3 is governed by the relations (1.1). It consists of
three one-index symmetries O1, O2, O3, three two-index symmetries O12, O23, O31 and
a three-index symmetry O123. We will elaborate upon the explicit form these symme-
tries and the relations (1.1) take on for the S3 case of the Dirac-Dunkl operator, with
symmetry algebra denoted by OS3.
Following [5, Theorem 3.6] the one-index symmetries anti-commute with the Dirac-

Dunkl operator. For the S3 case they are explicitly given by

O1 =
κ
√

2
(G12 − G31) , O2 =

κ
√

2
(G23 − G12) , O3 =

κ
√

2
(G31 − G23) , (3.1)

where

G12 =
1
√

2
g12(e1 − e2) , G23 =

1
√

2
g23(e2 − e3) , G31 =

1
√

2
g31(e3 − e1) .

Note that the three one-index symmetries are not independent as O3 = −O1 − O2, and
moreover O1O2O1 = (3κ2/2)O3.
The operators G12, G23, G31 appearing here consist of a transposition of S3 appended

with the Clifford element corresponding to the normed vector in the root system associ-
ated to the reflection in question (which is an element of the Pin group of the Clifford
algebra). It was observed already in [5] that they also anti-commute with D (one easily
verifies this by direct computation)

{D, G12} = 0, {D, G23} = 0, {D, G31} = 0.

The symmetries G12, G23, G31 in fact generate a new copy of the symmetric group S3,
which extends its action to affect also Clifford algebra elements but with an extra minus
sign. Indeed, we have

(Gi j)2 = 1, Gi jeiGi j = −ej, Gi jejGi j = −ei, Gi jekGi j = −ek

where i, j, k is a cyclic permutation of 1, 2, 3. Moreover, G12G23G12 = G31 with analo-
gous relations for conjugation with G23 and G31. The symmetries corresponding to the
two even elements of S3 are

G123 = G12G23 =
1
2
g123(e1e2 + e2e3 + e3e1 − 1)= G23G31 = G31G12,

G321 = G23G12 =
1
2
g321(e2e1 + e3e2 + e1e3 − 1)= G31G23 = G12G31,



3 symmetry algebra of the S3 dirac-dunkl operator 121

which both commute with the S3 Dirac-Dunkl operator.
The individual symmetries G12, G23, G31 are not contained in the algebra OS3. How-

ever, the one-index symmetries O1, O2, O3 are built up from G12, G23, G31, so it is useful
to extend the symmetry algebra to contain also this realization of S3. We will denote
this extension by OSt3.
The two-index symmetries are analogues of the Dunkl angular momentum operators

that commute with the S3 Dirac-Dunkl operator. They are explicitly given by [5, Example
4.2.2]

Oi j = Li j +
1
2
eiej + Oiej − Ojei

= Li j +
1
2
eiej +

κ
√

2
(Gi jei − G jkei + Gi jej − Gkiej) (3.2)

= Li j +
1
2
eiej + κ(g12 + g23 + g31)eiej − Oke1e2e3

where i, j, k is a cyclic permutation of 1, 2, 3 and the last line follows by means of the
identity

O1e1 + O2e2 + O3e3 = κ(g12 + g23 + g31) .

The one-index and two-index symmetries together satisfy the relation [5, Theorem
3.11]

[Oi j, Ok] + [Ojk, Oi] + [Oki, Oj] = 0 (i, j, k ∈ {1, 2, 3}).

The final symmetry is the three-index symmetry

O123 = e1e2e3 + O1e2e3 + O2e3e1 + O3e1e2 + L12e3 + L23e1 + L31e2

which anti-commutes with the S3 Dirac-Dunkl operator. It was obtained in [5] that this
symmetry is equal to the Scasimir of osp(1|2) given by (2.6), multiplied by the pseudo-
scalar e1e2e3 (a symmetry of D inherent to the Clifford algebra):

O123 =
1
2

(
[D, x] − 1

)
e1e2e3 = (Γ + 1) e1e2e3

Using the anticommutation relations of e1, e2, e3, one immediately has [D, e1e2e3] = 0
and moreover (e1e2e3)2= −1. In fact, in the realization by means of the Pauli matrices,
e1e2e3 is just i times the identity matrix. As Γ is the restriction of the Dirac operator to
the sphere, one readily shows that all the elements ofOSt3 commute with the symmetry
O123. Moreover, it can be written in terms of the other symmetries as follows

O123 = −
1
2
e1e2e3 − O1e2e3 − O2e3e1 − O3e1e2 + O12e3 + O31e2 + O23e1,

and by direct computation one finds

(O123)2= −
1
4
+ O2

1 + O2
2 + O2

3 + O2
12 + O2

23 + O2
31 (3.3)
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= O2
12 + O2

23 + O2
31 −

3
2
κ2(G123 + G321)+3κ2 −

1
4
.

In this framework, the algebraic relations (1.1) of the general algebra O3 translate to
the following result.

theorem 3.1: The algebra OSt3 generated by the symmetries G12, G23, G31 and O12,
O23, O31, O123 is governed by the following relations:

• O123 commutes with the other symmetries,

• G12, G23, G31 generate a copy of S3 and act on the indices of O12, O23, O31 by an S3
action with minus sign, i.e.

G12O12 = −O12G12, G12O23 = −O31G12, G12O31 = −O23G12, (3.4)

and analogous actions of G23 and G31,

• the commutation relations

[O12, O31] = O23 +
√

2κO123(G12 − G31)+
3
2
κ2(G123 − G321)

[O23, O12] = O31 +
√

2κO123(G23 − G12)+
3
2
κ2(G123 − G321) (3.5)

[O31, O23] = O12 +
√

2κO123(G31 − G23)+
3
2
κ2(G123 − G321).

where κ is a scalar factor.

Proof. This follows immediately from (1.1), the explicit expressions (3.1) and

[O1, O2] =
3
2
κ2(G123 − G321)= [O2, O3] = [O3, O1] .

Note that for κ = 0 the commutation relations (3.5) reduce to the well-known re-
lations of the Lie algebra so(3), which is isomorphic to su(2). For the sequel we will
consider κ to be non-zero.

4 representations

Both from a purely mathematical point of view and because of their use in construct-
ing eigenfunctions of the Dirac operator (2.8), we are interested in determining all
finite dimensional irreducible representations of the algebra OSt3 in abstract form, in
particular the unitary representations. From (3.4), we see that the linear combination
O12 + O23 + O31 anti-commutes with G12, G23, G31 and thus commutes with the even
elements G123 and G321 of S3. We will build up irreducible representations starting from
a mutual eigenvector of these commuting symmetries. In order to do this we construct
a form of ladder operators. We start by defining some auxiliary operators.
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definition 4.1: Say ω = e2πi/3, so

ω = −
1
2
+ i
√

3
2
, ω2 = −

1
2
− i
√

3
2
= ω = ω−1 , ω3 = 1 .

We define the following linear combinations in the algebra OSt3, with inverse relations on
the right,

O0 =
−i
√

3
(O12 + O23 + O31), O12 =

i
√

6
(
√

2O0 + O+ + O−),

O+ = −i

√
2
3
(O12 + ωO23 + ω

2O31), O23 =
i
√

6
(
√

2O0 + ω
2O+ + ωO−), (4.1)

O− = −i

√
2
3
(O12 + ω

2O23 + ωO31), O31 =
i
√

6
(
√

2O0 + ωO+ + ω2O−) .

We also define a set of linear combinations of G12, G23, G31

N+ = G12 + ωG23 + ω
2G31 , N− = G12 + ω

2G23 + ωG31 . (4.2)

Note that N+ and N− generate the same subset of the group algebra CS3 as O1, O2, O3
do. The addition of G12 yields the full S3 realization.

proposition 4.2: The elements of the algebra OSt3 defined in Definition 4.1 satisfy the
relations

[O0, O±] = ± O± + 2κO123N± (4.3)

[O+, O−] = 2O0 + κ
2[N+, N−] (4.4)

where [N+, N−] = −i 3
√

3(G123 − G321).
Moreover, the elements N± are nilpotent, that is N2

± = 0, and satisfy

(N±N∓)2= 9N±N∓ . (4.5)

The interaction with O0, O+, O− is as follows

N±O0 = −O0N± , N±O± = −O∓N∓ , N±O∓ = −O±N∓ . (4.6)

Finally, the square (3.3) can be rewritten in the following forms

(O123)2= − O2
0 −

1
2
{O+, O−} + κ2 1

2
{N+, N−} −

1
4

= − O2
0 − O+O− + O0 + κ

2N+N− −
1
4

(4.7)

= − O2
0 − O−O+ − O0 + κ

2N−N+ −
1
4
.
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Proof. The relations (4.3) and (4.4) are proved by straightforward computations using
the commutation relations (3.5). For the commutator of N+ and N− we have

N+N− = (G12 + ωG23 + ω
2G31)(G12 + ω

2G23 + ωG31)= 3 + 3ω2G123 + 3ωG321 ,(4.8)

while similarly

N−N+ = (G12 + ω
2G23 + ωG31)(G12 + ωG23 + ω

2G31)= 3 + 3ωG123 + 3ω2G321 ,(4.9)

which leads to [N+, N−] = −i 3
√

3(G123−G321), and also {N+, N−} = 6−3(G123+G321).
We illustrate the nilpotency of N+, the result for N− is similar,

N2
+ =

(
G12 + ωG23 + ω

2G31
)2

= 1 + ωG12G23 + ω
2G12G31 + ωG23G12 + ω

2 + G23G31 + ω
2G31G12 + G31G23 + ω

= 1 + ω + ω2 + (1 + ω + ω2)G123 + (1 + ω + ω2)G321 = 0.

In the same way, starting now from the expressions (4.8) and (4.9), we obtain (4.5).
The interactions in (4.6) follow immediately from

G12O0 = −O0G12 G23O0 = −O0G23 G31O0 = −O0G31

G12O+ = −O−G12 G23O+ = −ω2O−G23 G31O+ = −ωO−G31 (4.10)

G12O− = −O+G12 G23O− = −ωO+G23 G31O− = −ω2O+G31 ,

which are direct consequences of (3.4) and the definitions (4.1), (4.2).
Finally, the square (3.3) is rewritten using the inverse relations (4.1). We find

− 6(O2
12 + O2

23 + O2
31)

= (
√

2O0 + O+ + O−)2+(
√

2O0 + ω
2O+ + ωO−)2+(

√
2O0 + ωO+ + ω2O−)2

= (2 + 2 + 2)O2
0 + (1 + ω + ω2)O2

+ + (1 + ω2 + ω)O2
−

+ (1 + ω2 + ω){
√

2O0, O+} + (1 + ω + ω2){
√

2O0, O−} + (1 + 1 + 1){O+, O−}.

The results now follow using the expression for {N+, N−} and (4.3).

An essential ingredient for the construction and classification of representation spaces
is the existence of a couple of ladder operators.

proposition 4.3: The elements in the algebra OSt3

K+ =
1
2
{O0, O+} K− =

1
2
{O0, O−} (4.11)

satisfy the relation

[O0, K±] = ± K± . (4.12)

Moreover, we have the factorization

K+K− = −
(
O2

123 + (O0 − 1/2)2) ((O0 − 1/2)2−κ2N+N−
)

(4.13)

K−K+ = −
(
O2

123 + (O0 + 1/2)2) ((O0 + 1/2)2−κ2N−N+
)
. (4.14)



4 representations 125

Proof. We immediately find that

[O0, K±] =
1
2
[O0, {O0, O±}] =

1
2
{O0, [O0, O±]} = ±

1
2
{O0, O±}+κ{O0, O123N±} = ±K±

as O123 commutes with O0 and N±, and N± anti-commutes with O0, see (4.6).
The factorization of K+K− and K−K+ follows by long and tedious, but otherwise

straightforward computations starting from the definitions (4.11), and using the rela-
tions (4.3), (4.6), and the expression (4.7).

From (4.10) we find the interaction of the S3 realization with K± to be as follows

G12K+ = K−G12 , G123K+ = ω2K+G123 , G321K+ = ωK+G321 ,

G23K+ = ω2K−G23 , G123K− = ωK−G123 , G321K− = ω2K−G321 , (4.15)
G31K+ = ωK−G31 .

Our aim is now to determine all finite-dimensional irreducible representations ofOSt3.
Hereto, let (V, ρV) be a representation ofOSt3. From here on, we consider V as anOSt3
module by setting G · v = ρV(G)v for G ∈ OSt3 and v ∈ V.
The element O123 commutes with all of the algebra OSt3 so its action on an invariant

subspace V0 of the representation V will be multiplication by a constantΛ. The constant
Λ will later be determined in terms of other parameters characterizing the representa-
tion.
Following the results obtained in Proposition 4.2, our starting point will be the ele-

ment O0, given by (4.1), which commutes with the even S3 elements G123 and G321.
Hence, without loss of generality, we can consider a mutual eigenvector for all these ele-
ments. Take v0 ∈ V to be such an eigenvector with eigenvalue λ for O0. The eigenvalue
for G123 is restricted to the set {1, ω, ω2} as G3

123 = G123G321 = 1 and if G123v0 = αv0
then G321v0 = α

−1v0.
We will construct the OSt3 invariant subspace containing v0. If V is irreducible this

space must be either V or trivial. The trivial case results from v0 being the zero vector,
so from now on we assume that v0 is not the zero vector.
IfO0v0 = λv0, then for a positive integer k, the vector (K±)kv0 is also an eigenvector of

O0. Indeed, using [O0, (K±)k] = ±k(K±)k, which follows directly from (4.12), we have

O0(K±)kv0 =
(
(K±)kO0 + [O0, (K±)k]

)
v0 = K±O0v0 ± k(K±)kK±v0 = (λ ± k)(K±)kv0 .

(4.16)
The set of vectors {(K+)kv0 | k ∈ N} must be linearly independent because they have
distinct eigenvalues as eigenvectors of O0. If we impose V to be finite-dimensional, then
(K+)kv0 = 0 for some k ∈ N. Without loss of generality we may assume that K+v0 = 0.
Following the same reasoning, the sequence {(K−)kv0 | k ∈ N} must also be linearly
independent and thus must terminate. Hence K−(Kn

−v0)= 0 for some n ∈ N and we may
assume without loss of generality that n is minimal in this aspect, i.e. Kn

−v0 , 0.
So far, we have obtained the following vectors of the representation V:

{vk := (K−)kv0 | k = 0, . . . , n} . (4.17)
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The space spanned by these vectors is invariant under the action of O0, G123, G321, O123
and K−, with O0vk = (λ − k)vk. Recall that G123v0 = αv0 for α ∈ {1, ω, ω2}, or thus
α = ω` for some integer `. By (4.15), we then have

G123vk = G123(K−)kv0 = ω
k(K−)kG123v0 = ω

`+kvk, G321vk = ω−`−kvk .

The transpositions G12, G23, G31 all square to the identity and anti-commute with O0.
Let v−k = G12vk, then G12v−k = vk and O0v−k = O0G12vk = −G12O0vk = −(λ − k)v−k .
Moreover, G23vk and G31vk must both be proportional to v−k since the compositions G123
and G321 act diagonally on vk, and in turn also on v−k . Indeed, we have

G123v−k = G123G12vk = G12G321vk = ω−`−kv−k , G321v−k = ω
`+kv−k .

It follows from G12K− = K+G12 that v−k = G12(K−)kv0 = (K+)kG12v0 = (K+)kv−0 or thus
K+v−k = v−k+1. In this way, we arrive at the following set of vectors of V:

B = {v+k := vk = (K−)kv0 | k = 0, . . . , n} ∪ {v−k := G12v+k = (K+)kG12v0 | k = 0, . . . , n} .
(4.18)

All these vectors are eigenvectors of the mutually commuting elements O0 and G123:

O0v±k = ±(λ − k)v±k , (4.19)

for k ∈ {0, . . . , n}, while

G123v±k = ω
±(`+k)v±k , G321v±k = ω

∓(`+k)v±k . (4.20)

Note that the representation V is characterized or labeled by (λ, n, `) where n is a non-
negative integer and ` ∈ Z3 = Z/3Z with 3Z = {3z | z ∈ Z} the set of multiples of
3.
We will show that the set B spans theOSt3 invariant subspace containing v0, which if

V is irreducible must be all of V. Moreover, in case theO0 eigenvalues are all distinct then
B forms a basis for the irreducible representation V. Hereto, we determine the action of
all elements on B.
The explicit action of G23 and G31 follows from (4.20) as

G23v±k = G12G123v±k = ω
±(`+k)G12v±k = ω

±(`+k)v∓k , G31v±k = G12G321v±k = ω
∓(`+k)v∓k ,

(4.21)
and in turn the action of N± as defined by (4.2),

N+v±k = (G12 + ωG23 + ω
2G31)v±k = (1 + ω1±`±k + ω−1∓`∓k)v∓k = 3 13Z(` + k ± 1)v∓k .

(4.22)
where we employ the notation,

13Z(k)=
1 + ωk + ω−k

3
=


1 if k ≡ 0 (mod 3)⇐⇒ k ∈ 3Z

0 if k ≡ 1, 2 (mod 3)⇐⇒ k < 3Z .
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Similarly, we have
N−v±k = 3 13Z(` + k ∓ 1)v∓k . (4.23)

By (4.5), we find that the linear combinations of G123 and G321 denoted by N+N− and
N−N+, see (4.8) and (4.9), satisfy the polynomial equation X2 − 9X = 0. Consequently
their eigenvalues are 0 and 9. Following (4.22) and (4.23), we obtain the diagonal
actions

N+N−v±k = 9 13Z(` + k ∓ 1)v±k , and N−N+v±k = 9 13Z(` + k ± 1)v±k . (4.24)

We already know that K−v+k = v+k+1 and K+v−k = v−k+1 with v±l = 0 for l > n. Using
(4.13) we find the action of K+ and K− on the rest of the basis B:

K+v+k = K+K−v+k−1 = −
(
O2

123 + (O0 − 1/2)2) ((O0 − 1/2)2−κ2N+N−
)
v+k−1

= −
(
Λ

2 + (λ − k + 1/2)2) ((λ − k + 1/2)2−9κ213Z(` + k − 2)
)
v+k−1 , (4.25)

and similarly

K−v−k = K−K+v−k−1 = −
(
O2

123 + (O0 + 1/2)2) ((O0 + 1/2)2−κ2N−N+
)
v−k−1

= −
(
Λ

2 + (λ − k + 1/2)2) ((λ − k + 1/2)2−9κ213Z(` + k − 2)
)
v−k−1 . (4.26)

For ease of notation, we define the expression A(k) to denote these actions, that is

A(k)= −
(
Λ

2 + (λ − k + 1/2)2) ((λ − k + 1/2)2−9κ213Z(` + k + 1)
)
, (4.27)

such that

K+v+k = A(k)v+k−1 = K+K−v+k−1 , K−v−k = A(k)v−k−1 = K−K+v−k−1

K+K−v−k = A(k)K+v−k−1 = A(k)v−k , K−K+v+k = A(k)K−v+k−1 = A(k)v+k .
(4.28)

For the action of O+ and O− on B, we set out as follows. Using (4.3) we have

K± =
1
2
{O0, O±} = O±O0 +

1
2
[O0, O±] = O±O0 ±

1
2
O± + κO123N± . (4.29)

As K−v+k = v+k+1 for k ≤ n − 1, we find

v+k+1 = K−v+k = O−
(
O0 −

1
2

)
v+k + κO123N−v+k

= (λ − k − 1/2)O−v+k + 3κΛ13Z(` + k − 1)v−k .

Hence, for λ − k− 1/2 , 0 (we will handle the zero case after determining the possible
values for λ)

O−v+k =
1

λ − k − 1/2
v+k+1 −

3κΛ
λ − k − 1/2

13Z(` + k − 1)v−k . (4.30)
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The action of O− on v+n is consistent with (4.30) by letting v+n+1 = 0 as by

0 = K−v+n = O−
(
O0 −

1
2

)
v+n + κO123N−v+n = (λ − n − 1/2)O−v+n + 3κΛ13Z(` + n − 1)v−n

we have, for λ − n − 1/2 , 0

O−v+n = −
3κΛ

λ − n − 1/2
13Z(` + n − 1)v−n .

The action (4.26) together with (4.29) yields the action of O− on v−k . On the one hand

K−v−k = O−
(
O0 −

1
2

)
v−k + κO123N−v−k = −(λ − k + 1/2)O−v−k + 3κΛ13Z(` + k + 1)v+k ,

while on the other hand for k ≥ 1 we have K−v−k = K−K+v−k−1 = A(k)v−k−1, so for
λ − k + 1/2 , 0

O−v−k =
−A(k)

λ − k + 1/2
v−k−1 +

3κΛ
λ − k + 1/2

13Z(` + k + 1)v+k . (4.31)

For λ , 1/2, this is consistent with the action of O− on v−0 by letting v−
−1 = 0 as

0 = K−v−0 = O−
(
O0 −

1
2

)
v−0 + κO123N−v−0 =

(
− λ −

1
2

)
O−v−0 + 3κΛ13Z(` + 1)v+0 .

In a similar way we obtain the action of O+ to be given by

O+v−k =
−1

λ − k − 1/2
v−k+1 +

3κΛ
λ − k − 1/2

13Z(` + k − 1)v+k (4.32)

and since K+v+k = K+K−v+k−1 = A(k)v+k−1

O+v+k =
A(k)

λ − k + 1/2
v+k−1 −

3κΛ
λ − k + 1/2

13Z(` + k + 1)v−k . (4.33)

The actions of all elements of the algebraOSt3 are fixed by the four constants n, λ, Λ,
`, where ` is integer and n is a positive integer. We will now examine all possible values
which lead to finite irreducible representations. The conditions for the dimension to be
finite, K+v+0 = 0 and K−v+n = 0 can be combined with the results (4.13) and (4.14) of
Proposition 4.11 to find

K−K+v+0 = 0

K+K−v+n = 0
⇐⇒


−
(
O2

123 + (O0 + 1/2)2) ((O0 + 1/2)2−κ2N−N+
)
v+0 = 0 ,

−
(
O2

123 + (O0 − 1/2)2) ((O0 − 1/2)2−κ2N+N−
)
v+n = 0 .

When plugging in the appropriate actions, (4.19) and (4.24), this yields the system of
equations

−
(
Λ2 + (λ + 1/2)2) ((λ + 1/2)2−9κ213Z(` + 1)

)
= 0

−
(
Λ2 + (λ − n − 1/2)2) ((λ − n − 1/2)2−9κ213Z(` + n − 1)

)
= 0

(4.34)
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to be satisfied for every set of valid values for n, λ, Λ, `. We distinguish three distinct
classes of solutions of (4.34) depending on which pair of factors are zero and on the
value of `, which decides whether the function 13Z is 0 or 1.

(a) Λ2 + (λ + 1/2)2= 0 and (λ − n− 1/2)2−9κ2 = 0, that is when 13Z(` + n− 1)= 1

(b) Λ2 + (λ + 1/2)2= 0 and (λ − n − 1/2)2= 0, that is when 13Z(` + n − 1)= 0

(c) Λ2 + (λ + 1/2)2= 0 and Λ2 + (λ − n − 1/2)2= 0

Note that there are two more cases we have omitted from our classification. We briefly
expand on this before continuing. First, we have the case where Λ2 + (λ − n−1/2)2= 0
and (λ+1/2)2−9κ2 = 0, that is when 13Z(`+1)= 1. This will turn out to be equivalent
to case (a) after renaming v−k to v+n−k and vice versa, as seen from the action of O0.
Similarly, the case where Λ2 + (λ − n− 1/2)2= 0 and (λ + 1/2)2= 0 will be equivalent
with case (b).
We continue with the classification of all finite-dimensional irreducible representa-

tions. Note that in all three cases Λ2 + (λ + 1/2)2= 0 which fixes the value Λ =
ε i (λ + 1/2), up to a sign ε = ±1, and thus the action of O123 in function of λ. This
leaves a freedom in the choice of sign of Λ. In the algebra relations (3.5), and (4.3)–
(4.4) by extension, the central element O123 is always accompanied by a single factor κ.
We note that when one permits also negative values for κ, the sign of Λ can always be
chosen such that the product κO123 has a positive action.
For each case we need to check whether the vectors (4.18) are independent. Since v0

is a generating vector of V, irreducibility can be checked by verifying that for each v±k
there is an algebra element X±k such that X±k v

±
k = v0. Note that (K+)kv+k = A(k)A(k −

1)· · · A(1)v0 by (4.28), while G12(K−)kv−k = A(k)A(k − 1)· · · A(1)G12v−0 and G12v−0 =
v+0 = v0. Hence, in order to have an irreducible representation, the expression A(k),
given by (4.27), must be non-zero for k ∈ {1, . . . , n}. Plugging in Λ2 = −(λ + 1/2)2,
we find

A(k) = −
(
− (λ + 1/2)2+(λ − k + 1/2)2) ((λ − k + 1/2)2−9κ213Z(` + k + 1)

)
= k(2λ + 1 − k)

(
(λ − k + 1/2)2−9κ213Z(` + k + 1)

)
. (4.35)

We now work out the explicit value of λ and ` for the three cases.

4.1 Case (a)

For the case (a) we have 13Z(` + n − 1)= 1 or thus ` ≡ 2n + 1 (mod 3) which fixes
the eigenvalues of the reflections, e.g. G123v±k = ω±(2n+1+k)v±k , see (4.20) and (4.21).
Moreover, from (λ − n − 1/2)2−9κ2 = 0 we find λ = n ± 3κ + 1/2. With unitary
representations in mind, we first handle the case λ = n+ 3κ + 1/2. The action of O0 on
B is now given by

O0v±k = ±(n − k + 3κ + 1/2)v±k , k ∈ {0, . . . , n} . (4.36)
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We see that for a positive parameter κ every vector of the set B has a distinct eigenvalue
for O0, so the elements of B are independent. Note that λ − k ± 1/2 , 0 for κ > 0
and k ∈ {0, 1, . . . , n} so the previously determined actions of the elements of OSt3
on B, see e.g. (4.30), are all well-defined. Moreover, the expression (4.35) is readily
seen to be non-zero for all positive values κ and k ∈ {1, . . . , n}. This shows that, for
positive κ, the set B forms a basis for the OSt3 invariant subspace containing v0, which
if V is irreducible must be all of V. The actions of the other generators of OSt3 are given
by (4.30),(4.31),(4.32),(4.33).
Next, we consider the other choice λ = n − 3κ + 1/2. The O0-eigenvalues (4.19) are

not necessarily all distinct when 6κ ∈ {1, 2, . . . , 2n + 1}. Moreover, the condition for
irreducibility now leads to disallowed values for κ, namely 6κ < {n+ 2, n+ 3, . . . , 2n+
1} ∪ ({1, . . . , n} ∩ 3Z), while also 3κ − 1 < {0, 1, . . . , n − 1} ∩ 3Z, and 3κ − 2 <
{0, 1, . . . , n−2}∩3Z. HenceBwould form a basis for an irreducibleOSt3 representation
if and only if κ is not allowed to take on these specific values. As a consequence this
choice will not lead to unitary representations for general values of κ.
Finally, note that the choice λ = n − 3κ + 1/2 with κ positive is equivalent to consid-

ering negative values for κ when λ = n + 3κ + 1/2. For a given real value of κ, the sign
accompanying κ in λ = n ± 3κ + 1/2 can thus always be chosen such that λ is positive.
For negative κ, the disallowed values follow immediately by replacing κ by −κ in the
previously obtained conditions. These values correspond in fact to those of the S3 Dunkl
operator singular parameter set for which no intertwining operators exist [6, 8, 19].

4.2 Case (b)

For the case (b) we have 13Z(` + n − 1)= 0 or thus ` . 2n + 1 (mod 3). This gives
two distinct options for the eigenvalues of G123 and in turn for the actions of the other
reflections. The condition (λ − n − 1/2)2= 0 implies that λ = n + 1/2, which again
yields 2n + 2 distinct O0 eigenvalues

O0v±k = ±(n − k + 1/2)v±k , k ∈ {0, . . . , n} .

For the case at hand the acquired actions (4.30),(4.31),(4.32),(4.33) do not lead to the
full action ofO− orO+, as we would have to divide by zero. Indeed, we haveO0v+n =

1
2v
+
n

and O0v−n = −
1
2v
−
n so the denominator in (4.30) would become zero for k = n. We

determine the action ofO− onv+n andO+ onv−n in another way. Bymeans of relation (4.3)
acting on v+n we find

(O0O− − O−O0)v+n = −O−v
+
n + 2κO123N−v+n

⇐⇒ O0O−v+n −
1
2
O−v+n = −O−v

+
n

⇐⇒ O0O−v+n = −
1
2
O−v+n ,
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which implies O−v+n = β−v−n for some constant β−. In the same manner we find O+v−n =
β+v+n for some constant β+. Using the interaction of G12 and O±, see (4.10), we find

β−v−n = O−v+n = O−G12v−n = −G12O+v−n = −G12 β+v+n = −β+v
−
n ,

while by (4.7) we have

β+ β−v+n = O+O−v+n =
(
− (O123)2−

(
O0 −

1
2

)2
+ κ2N+N−

)
v+n = −Λ

2v+n .

Hence β− = −β+ = ±Λ = ±i(n + 1). Note that we have an extra freedom in the choice
of sign, besides the one present for the sign of Λ.
Finally, we check whether the expression (4.35) is non-zero for k ∈ {1, . . . , n}. For

λ = n+1/2, only the factor (n−k+1)2−9κ213Z(`+k+1) could become zero. Hereto, we
distinguish between the two options for `. For ` ≡ 2n ( mod 3) this gives the conditions

(k + 2)2−9κ2 , 0 for k ∈ {0, . . . , n − 1} ∩ 3Z ,

while ` ≡ 2n + 2 (mod 3) leads to

(k + 1)2−9κ2 , 0 for k ∈ {0, . . . , n} ∩ 3Z .

This shows that B forms a basis for an irreducible OSt3 representation if and only if κ
is not allowed to take on some specific values.

4.3 Case (c)

As n is positive, the conditions Λ2 + (λ + 1/2)2= 0 and Λ2 + (λ − n − 1/2)2= 0 lead to
λ = n/2 and Λ2 = −(n+ 1)2/4. In this scenario, the vectors v±k and v∓n−k have the same
O0 eigenvalue:

O0v±k = ±
(n
2
− k

)
v±k , O0v∓n−k = ∓

(n
2
− (n − k)

)
v∓n−k = ±

(n
2
− k

)
v∓n−k .

The G123 eigenvalues (4.20) for v±k and v∓n−k are given by

G123v±k = ω
±(`+k)v±k , G123v∓n−k = ω

∓(`+n−k)v∓n−k = ω
∓(n−`)ω±(`+k)v∓n−k .

Two different scenarios now occur depending on the value of `, that is whether ` ≡
n (mod 3) or not. We distinguish in the first place with respect to the parity of n.

4.3.1 Even n

For n an even integer, λ = n/2 is an integer so the previously determined actions of
the elements of OSt3 on B are all well-defined. When ` ≡ n (mod 3), the space ge-
nerated by v0 is comprised of two irreducible components and decomposes as follows.
The vectors v+λ and v−λ both have 0 as O0 eigenvalue and G12v+λ = v−λ . Hence, defining
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u+0 = v+λ + v−λ and u−0 = v+λ − v−λ , we have G12u+0 = u+0 and G12u−0 = −u
−
0 , while

O0u±0 = 0 and furthermore G123u±0 = ω
n+λu±0 = u±0 . If we now define u±

−k = (K−)ku±0
and u±k = (K+)ku±0 for k ∈ {1, . . . , λ}, then the sets

B+ = {u+k | k = −λ, . . . , 0, . . . , λ} B− = {u−k | k = −λ, . . . , 0, . . . , λ}

each form the basis for an OSt3 invariant subspace of dimension n + 1. We go over
the actions on these spaces. We have O0u±k = k u±k and G123u±k = ω−ku±k . Moreover,
G12u±k = ±u

±
−k, while G23u±k = ±ω

−ku±
−k and G31u±k = ±ω

ku±
−k. For positive k, we have

by definition K+u±k = u±k+1 and K−u±−k = u±
−k−1. The other actions are found as follows.

Note that for positive k,

u±k = (K+)ku±0 = (K+)k(v+λ ± v
−
λ )=

k−1∏
l=0

A(λ − l)v+λ−k ± v
−
λ+k

and similarly

u±−k = (K−)ku±0 = (K−)k(v+λ ± v
−
λ )= v+λ+k ±

k−1∏
l=0

A(λ − l)v−λ−k .

Again for positive k, we then find

K+u±−k = K+K−u±−k+1 = A(λ + k)u±−k+1 , K−u±k = K−K+u±k−1 = A(λ + k)u±k−1 .

Here we used A(λ+k)= A(λ−k+1), which is readily verified from (4.35) with λ = n/2
and ` ≡ n (mod 3).
We check whether the expression (4.35) is non-zero for k ∈ {1, . . . , n}. For λ = n/2,

the only factor of (4.35) with ` ≡ n (mod 3) that could become zero is(n + 1
2
− k

)2
− 9κ213Z(n + k + 1) .

This leads to the conditions(
k +

3
2

)2
− 9κ2 , 0 for k ∈ {−λ + 2, . . . , λ + 1} ∩ 3Z ,

which shows that, except for specific κ values, B+ and B− each form the basis for an
OSt3 invariant space.
If ` . n (mod 3), then v±k and v∓n−k have different eigenvalues for G123. We check

whether the expression (4.35) is non-zero for k ∈ {1, . . . , n}. For λ = n/2, the only
factor of (4.35) that could become zero is(n + 1

2
− k

)2
− 9κ213Z(` + k + 1) .
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Hereto, we distinguish between the two options for `. For ` ≡ n+ 1 (mod 3) this gives
the conditions (

k +
1
2

)2
− 9κ2 , 0 for k ∈ {−λ, . . . , λ − 1} ∩ 3Z ,

while ` ≡ n − 1 (mod 3) also leads to(
k +

1
2

)2
− 9κ2 , 0 for k ∈ {−λ, . . . , λ − 1} ∩ 3Z .

This shows that B forms a basis for an irreducible OSt3 representation if and only if κ
is not allowed to take on some specific values.

4.3.2 Odd n

Next, we consider the case where n is an odd integer. As λ = n/2 is a half-integer now
there exists an integer value k0 = λ − 1/2 = (n − 1)/2 such that

O0v+k0
=

1
2
v+k0
, O0v−k0+1 =

1
2
v−k0+1, O0v+k0+1 = −

1
2
v+k0+1, O0v−k0

= −
1
2
v−k0
,

These specific eigenvalues have as a consequence that the previously acquired actions
(4.30), (4.31), (4.32), (4.33) do not lead to the full action of O− or O+, as we would
have to divide by zero. Using (4.29), however, we find

v+k0+1 = K−v+k0
= O−

(
O0 −

1
2

)
v+k0
+ κO123N−v+k0

= 3κΛ13Z(` + k0 − 1)v−k0
.

Since k0 < n, the action K−v+k0
may not result in zero by the assumption of minimality

on n, so we must have 13Z(` + k0 − 1)= 1 or thus ` ≡ 2k0 + 1 ≡ n (mod 3). It follows
that the vectors v+k0+1 and v−k0

, which have the same O0 eigenvalue, are not linearly
independent as now v+k0+1 = 3κΛv−k0

. In the same way, we find v−k0+1 = 3κΛv+k0
. By

means of these results and the actions (4.25) and (4.26) of K± we obtain that the vector
v−k is proportional to v+n−k for every k ∈ {0, 1, . . . , n}. Indeed, by (4.26) we have for
instance

v+k0+2 = K−v+k0+1 = 3κΛ K−v−k0
= −3κΛ

(
Λ

2 + 1
)
v−k0−1 .

However, acting on v+k0
with [O0, O−], see relation (4.3), we find an equation which can

never be satisfied unless v+k0+1 = 0. Hence, we have no representations for odd n in case
(c).

4.4 Unitary representations

To find irreducible unitary representations we check which of the irreducible represen-
tations admit an invariant positive definite Hermitian form. Hereto, we introduce an
anti-linear anti-multiplicative involution X 7→ X† compatible with the algebraic rela-
tions (3.5) of the algebraOSt3. This involution has the properties (aX+bY)†= aX†+bY†

and (XY)†= Y†X† for X, Y ∈ OSt3 and a, b ∈ C, where a denotes complex conjugation.
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For real κ, the algebraic relations (3.5) are compatible with the star conditions

O†12 = −O12 O†23 = −O23 O†31 = −O31 O†123 = −O123 .

and
G†12 = G12 G†23 = G23 G†31 = G31 G†123 = G321 .

remark 4.4: Note that in the setting of [5] these conditions correspond precisely to
the coordinate and momentum operators being self-adjoint, x̂†j = x̂ j and p̂†j = p̂j.

In terms of Definition 4.1, this leads to the relations (4.3)–(4.4) being compatible
with the star conditions

O†123 = −O123 O†0 = O0, O†± = O∓, K†± = K∓, N†± = N∓ . (4.37)

We show that if the value of κ is suitably restricted, the representation V is unitary
under (4.37). Hereto, we introduce a sesquilinear form 〈·, ·〉 : V × V → C such that for
X ∈ OSt3 and v,w ∈ V

〈Xv,w〉 = 〈v, X†w〉 .

The conditionO†0 = O0 implies that vectors with differentO0 eigenvalues are orthogonal,
so the previously determined bases are in fact orthogonal. Hence, we may define the
form 〈·, ·〉 by putting

〈v+k , v
+
l 〉 = hk δk, l , 〈v+k , v

−
l 〉 = 0 ,

where we can freely let h0 = 1 or 〈v+0 , v
+
0 〉 = 1. Note that

〈v−k , v
−
l 〉 = 〈G12v+k , G12v+l 〉 = 〈G12G12v+k , v

+
l 〉 = 〈v

+
k , v

+
l 〉 = hk δk, l .

In order to be an inner product we need hk > 0 for k ≥ 0. Using the star condition
K†− = K+ and using K+v+k = A(k)v+k−1 with (4.27), we have for k ≥ 1

hk = 〈v+k , v
+
k 〉 = 〈K−v

+
k−1, v

+
k 〉 = 〈v

+
k−1, K+v

+
k 〉 = A(k)〈v+k−1, v

+
k−1〉 = A(k)hk−1 . (4.38)

In this way we arrive at the condition A(k)> 0 for 1 ≤ k ≤ n, which is obviously satisfied
for the case (a) with the choice λ = n + 3κ + 1/2. This will constitute the only class
of unitary representations without further restrictions on the non-negative parameter κ.
For the other choice of case (a), λ = n−3κ+1/2, this only holds when κ is restricted to
|κ | < 1/3. For the case (b), we have two options for `, leading to different restrictions
on the value of κ in order for A(k)> 0 to hold for 1 ≤ k ≤ n. If ` ≡ 2n (mod 3), then
κ must satisfy |κ | < 2/3, while ` ≡ 2n + 2 (mod 3) implies the condition |κ | < 1/3.
For the case (c) with n even we have |κ | < 1/2 if ` ≡ n (mod 3) and |κ | < 1/6 if
` . n (mod 3).
Given an inner product we can introduce the orthonormal basis

w±k =
v±n−k
‖v±n−k‖

(k = 0, 1, . . . , n − 1, n)
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where ‖v±n−k‖ =
√
〈v±n−k, v

±
n−k〉 =

√
hn−k. We find using (4.38)

K−w+k = K−
v+n−k
‖v+n−k‖

=
v+n−k+1
√
hn−k

=
√
A(n − k + 1)w+k−1

and by (4.28)

K+w+k = K+
v+n−k
‖v+n−k‖

= A(n − k)
v+n−k−1
√
hn−k

=
√
A(n − k)w+k+1 ,

while similarly

K−w−k = K−
v−n−k
‖v−n−k‖

= A(n − k)
v−n−k−1
√
hn−k

=
√
A(n − k)w−k+1

and

K+w−k = K+
v−n−k
‖v−n−k‖

=
v−n−k+1
√
hn−k

=
√
A(n − k + 1)w−k−1 .

Returning to the case (a), the right-hand side follows from

A(k)= k(2n + 6κ + 2 − k)
(
(n + 3κ − k + 1)2−9κ213Z(2n + k + 2)

)
.

We summarize all actions for the case (a) in the following proposition.

proposition 4.5: For a given positive parameter κ and a choice of sign ε = ±1, we have
an irreducible representation of OSt3 of dimension 2n + 2 for every non-negative integer
n. This representation is unitary, corresponding to the star conditions (4.37). The actions
of the OSt3 operators on a set of basis vectors w+0 , w

+
1 , . . ., w

+
n and w−0 , w

−
1 , . . ., w

−
n are

given by:

O0w±k = ±
(
k +

1
2
+ 3κ

)
w±k (4.39)

O123w±k = ε i (n + 1 + 3κ)w±k (4.40)

K+w+k =

√
(k + 1)(n − k)(n + k + 2 + 6κ)(k + 1 + 6κ)w+k+1 if k ≡ 2 (mod 3)

(k + 1 + 3κ)
√
(n − k)(n + k + 2 + 6κ)w+k+1 if k . 2 (mod 3)

(4.41)

K+w−k =

√
k(n − k + 1)(n + k + 1 + 6κ)(k + 6κ)w+k−1 if k ≡ 0 (mod 3)

(k + 3κ)
√
(n − k + 1)(n + k + 1 + 6κ)w+k−1 if k . 0 (mod 3)

(4.42)

K−w+k =

√
k(n − k + 1)(n + k + 1 + 6κ)(k + 6κ)w+k−1 if k ≡ 0 (mod 3)

(k + 3κ)
√
(n − k + 1)(n + k + 1 + 6κ)w+k−1 if k . 0 (mod 3)

(4.43)
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K−w−k =

√
(k + 1)(n − k)(n + k + 2 + 6κ)(k + 1 + 6κ)w−k+1 if k ≡ 2 (mod 3)

(k + 1 + 3κ)
√
(n − k)(n + k + 2 + 6κ)w−k+1 if k . 2 (mod 3)

(4.44)

while for O+ and O− we have the following actions. If k ≡ 0 (mod 3) then

O+w+k =
√
(n − k)(n + k + 2 + 6κ)w+k+1 (4.45)

O+w−k = −
√
k(n − k + 1)(n + k + 1 + 6κ)(k + 6κ)

k + 3κ
w−k−1 + ε i

3κ(n + 1 + 3κ)
k + 3κ

w+k
(4.46)

O−w+k =
√
k(n − k + 1)(n + k + 1 + 6κ)(k + 6κ)

k + 3κ
w+k−1 − ε i

3κ(n + 1 + 3κ)
k + 3κ

w−k (4.47)

O−w−k = −
√
(n − k)(n + k + 2 + 6κ)w−k+1 (4.48)

else if k ≡ 1 (mod 3) then

O+w+k =
√
(n − k)(n + k + 2 + 6κ)w+k+1 (4.49)

O+w−k = −
√
(n − k + 1)(n + k + 1 + 6κ)w−k−1 (4.50)

O−w+k =
√
(n − k + 1)(n + k + 1 + 6κ)w+k−1 (4.51)

O−w−k = −
√
(n − k)(n + k + 2 + 6κ)w−k+1 (4.52)

while if k ≡ 2 (mod 3) then

O+w+k =
√
(k + 1)(n − k)(n + k + 2 + 6κ)(k + 1 + 6κ)

k + 1 + 3κ
w+k+1 − ε i

3κ(n + 1 + 3κ)
k + 1 + 3κ

w−k
(4.53)

O+w−k = −
√
(n − k + 1)(n + k + 1 + 6κ)w−k−1 (4.54)

O−w+k =
√
(n − k + 1)(n + k + 1 + 6κ)w+k−1 (4.55)

O−w−k = −
√
(k + 1)(n − k)(n + k + 2 + 6κ)(k + 1 + 6κ)

k + 1 + 3κ
w−k+1 + ε i

3κ(n + 1 + 3κ)
k + 1 + 3κ

w+k .

(4.56)

For the realization of S3 within OSt3 we have the actions

G12w±k = w∓k G23w±k = ω
±(1−k) w∓k G31w±k = ω

±(k−1) w∓k (4.57)

G123w±k = ω
±(1−k) w±k G321w±k = ω

±(k−1) w±k . (4.58)

We thought it to be instructive to include a diagram depicting the basis vectors and
actions of Proposition 4.5 according to their eigenvalues for O0 and G123, see Figure 1.
Using the notation O0w±k = ±λkw±k , the distance between λ0 and −λ0 on the horizontal
axis is 6κ + 1, which depends on the value of the parameter κ.
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5 eigenfunctions of the spherical dirac-dunkl operator

The irreducible unitary representations of case (a) as classified above have an explicit re-
alization in the framework of Dunkl operators (2.1). Indeed, in the original construction
of the algebra the symmetries O12, O23, O31 consist of Dunkl angular momentum oper-
ators with added reflection terms, see (3.2). When acting on an element in the kernel
of the Dirac-Dunkl operator, the result is again in this kernel as the symmetries (anti-
)commute with the Dirac-Dunkl operator. Furthermore, as the symmetries O12, O23, O31
are grade-preserving, it is no surprise that homogeneous polynomials of fixed degree in
ker D will form the desired representation spaces.
We set out to construct a basis for the space of Dunkl monogenics. Hereto, it is useful

to emulate a setting similar to that of Definition 4.1 and Proposition 4.2 by means of a
coordinate change:

©«
u
v
w

ª®®¬ =
©«

1√
2

−1√
2

0
1√
6

1√
6

−2√
6

1√
3

1√
3

1√
3

ª®®®¬
©«
x1

x2

x3

ª®®¬ ,
©«
x1

x2

x3

ª®®¬ =
©«

1√
2

1√
6

1√
3

−1√
2

1√
6

1√
3

0 −2√
6

1√
3

ª®®®¬
©«
u
v
w

ª®®¬ . (5.1)

The action of g12 on functions of (u, v,w) becomes very simple, flipping only the sign of
u, g12 f (u, v,w)= f (−u, v,w), while the other transpositions g23 and g31 act as follows

g23 f (u, v,w)= f
(1
2
u +
√

3
2
v,
√

3
2

u −
1
2
v,w

)
,

g31 f (u, v,w)= f
(1
2
u −
√

3
2
v, −
√

3
2

u −
1
2
v,w

)
.

For the Dunkl operators associated to this new coordinate basis we find the following
explicit expressions: we have Dw = ∂w , while

Du = ∂u + κ

(
1 − g12

u
+

1 − g23

u −
√

3v
+

1 − g31

u +
√

3v

)
,

Dv = ∂v + κ

(
√

3
1 − g23

−u +
√

3v
+
√

3
1 − g31

u +
√

3v

)
.

The commutation relations of Du, Dv, Dw and u, v,w are given in Table 2. We see that
in the coordinate frame of u, v,w the action of the reflection group is restricted to the
(u, v)-plane.

As u, v,w form again an orthonormal basis of R3, the Laplace-Dunkl operator (2.3)
can also be written as

∆ = D2
u + D2

v + D2
w .

By applying the same coordinate change (5.1) to the Clifford generators e1, e2, e3, that
is

eu =
1
√

2
(e1 − e2), ev =

1
√

6
(e1 + e2 − 2e3), ew =

1
√

3
(e1 + e2 + e3) ,
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the Dirac-Dunkl operator can now be written as

D = euDu + evDv + ewDw .

Similarly, in these new coordinates the vector variable becomes x = ueu+vev+wew which
squares to x2 = u2+v2+w2 and the Euler operator is given by E = u∂u+v∂v +w∂w . The
triple eu, ev, ew forms another basis of the Euclidean Clifford algebra since one readily
verifies by means of the anti-commutation relations of e1, e2, e3 that also

e2
u = e2

v = e2
w = 1, {eu, ev } = {ev, ew } = {ew, eu} = 0 .

For practical purposes, we will realize eu, ev, ew by the Pauli matrices

eu =

(
0 1
1 0

)
, ev =

(
0 −i
i 0

)
, ew =

(
1 0
0 −1

)
. (5.2)

The generators of the realization of S3 within OSt3 in this framework become

G12 = g12eu , G23 = g23
1
2
(−eu +

√
3ev ) , G31 = g31

1
2
(−eu −

√
3ev ) ,

all of which anti-commute with D. In terms of the Pauli matrices, we have

G12 = g12

(
0 1
1 0

)
, G23 = g23

(
0 ω2

ω 0

)
, G31 = g31

(
0 ω

ω2 0

)
. (5.3)

Similar to (3.2), in the u, v,w coordinates we obtain the following symmetries commu-
ting with D:

Ouv = uDv − vDu +
1
2
euev + κeuev (g12 + g23 + g31) , (5.4)

Ovw = vDw −wDv +
1
2
ev ew + κ

3
4
ev ew (g23 + g31)+κ

√
3

4
ew eu(g23 − g31) , (5.5)

Owu =wDu − uDw +
1
2
ew eu + κew eug12 + κ

1
4
euev (g23 + g31)+κ

√
3

4
ev ew (g23 − g31) .

(5.6)

table 2: Commutation relations Du, Dv , Dw and u, v,w .

[↓,→] u v w
Du 1 + κ(2g12 +

1
2g23 +

1
2g31) −κ

√
3

2 (g23 − g31) 0
Dv −κ

√
3

2 (g23 − g31) 1 + κ( 3
2g23 +

3
2g31) 0

Dw 0 0 1
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By direct verification after applying the coordinate change (5.1), the operators of Defi-
nition 4.1 now turn out to be

O0 = −iOuv, O+ = iOwu + Ovw, O− = iOwu − Ovw ,

and N± follows from the new expressions for the transpositions (5.3), while

O123 = −
1
2
euev ew − κ(g12 + g23 + g31)euev ew + Ouv ew + Ovw eu + Owuev .

The spherical Dirac-Dunkl operator Γ is again related to O123, we have O123 = (Γ +
1)euev ew .

5.1 A basis for the space of Dunkl monogenics

Next, we construct the vectors upon which these operators act. As already alluded to,
the representation space will consist of Dunkl monogenics, homogeneous polynomials in
the kernel of D. Finding explicit expressions for a basis of the space of Dunkl monogenics
is far from trivial, except for the lowest degree or dimension. For an abelian reflection
group, as in [3], one can single out coordinates and, starting from polynomials on R,
gradually work up in dimension by means of Cauchy-Kowalevsky extension maps. For
a non-abelian reflection group G, however, one is not able to single out coordinates at
will, as the orbits of the action, or the conjugacy classes, of G are not singleton sets.
The advantage of the coordinate change (5.1) is that the coordinate w does become
invariant under all reflections. This means that for the coordinatew we do in fact have
a Cauchy-Kowalevsky extension map (see Proposition 5.3) which allows us to move from
two-dimensional space to three dimensions. On R2, Dunkl monogenics follow from the
expressions for the Dunkl harmonics which were determined already in [7].
When working inR2 spanned by the coordinates u andv , it is useful to have a separate

notation for the two-dimensional analogues of the Dirac-Dunkl operator, vector variable
and Laplace-Dunkl operator:

D̃ = euDu+ evDv , x̃ = euu+ evv , ∆̃ = D2
u +D2

v = D̃2
, x̃2 = u2+v2 . (5.7)

They satisfy the (anti-)commutation relations, readily verified by means of the relations
in Table 2,

[D̃, x̃2] = 2x̃, {D̃, x̃} = 2(Ẽ + 1 + 3κ), Ẽ = u∂u + v∂v , (5.8)

where the Euler operator Ẽ when acting on a polynomial measures the degree in u and
v .

Finally, for the following proposition, the hypergeometric series [1, 21] is defined as

2F1

(
a, b
c

; z
)
=

∞∑
k=0

(a)k(b)k
(c)k

zk

k!
, (5.9)

where we use the common notation for Pochhammer symbols [1, 21]: (a)0= 1 and
(a)k= a(a + 1)· · · (a + k − 1) for k = 1, 2, . . . .
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proposition 5.1: For a non-negative integer k, the polynomials φ+k and φ−k defined as

φ±k (u, v)= (u ± iv)k
(κ + 1)n

n! 2F1

(
−n, κ
−n − κ

;
(−u ± iv)3

(u ± iv)3

)
, n = bk/3c (5.10)

form a basis for the space of Dunkl harmonics Hk(R2)= ker ∆̃ ∩ Pk(R2).

Proof. On two dimensional space R2 the Laplace-Dunkl operator ∆̃ can be factorized as

∆̃ = D2
u + D2

v = (Du + iDv )(Du − iDv ) .

For reflection groups on R2, the analogues of harmonic polynomials for the Dunkl La-
placian were determined explicitly already in [7]. The expression (5.10) is the hyper-
geometric form of polynomials satisfying (see [7])

(Du + iDv )φ+k (u, v)= 0, (Du − iDv )φ−k (u, v)= 0 ,

and hence ∆̃φ±k (u, v)= 0. For k ≥ 1 the dimension of Hk(R2) is 2 so φ+k and φ−k form a
basis, while the dimension of H0(R2) is 1 in accordance with φ+0 = 1 = φ−0 .

Note that the polynomial φ−k is simply the complex conjugate of φ+k . These polynomials
can also be written in terms of the Jacobi polynomials [16], which are defined in terms
of the hypergeometric series as

Pα, βn (x)=
(α + 1)n

n! 2F1

(
−n, n + α + β + 1

α + 1
;

1 − x
2

)
. (5.11)

By means of the identity

(x + y)nP(α, β)n

( x − y
x + y

)
=

(α + 1)n
n!

xn 2F1

(
−n, −n − β
α + 1

;−
y
x

)
, (5.12)

we can write (5.10), denoting z = u + iv and z = u − iv , as

φ+k (u, v)= (−1)nzk−3n(z3 + z3)nP(−n−κ−1,−n−κ)
n

(
z3 − z3

z3 + z3

)
, n = bk/3c . (5.13)

We use the previous result to obtain spinor-valued polynomials in the kernel of the
two-dimensional Dirac-Dunkl operator D̃ = euDu + evDv . Recall that for the three-
dimensional Clifford algebra realized by the Pauli matrices, a two-dimensional Dirac
spinor representation is S � C2, with basis spinors χ+ = (1, 0)T and χ− = (0, 1)T .

proposition 5.2: For a non-negative integer k, the polynomials

ϕ+k (u, v)= φ
+
k (u, v)χ+ and ϕ−k (u, v)= φ

−
k (u, v)χ− (5.14)

form a basis for the space Mk(R2, C2).
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Proof. Acting with D̃ = euDu + evDv on ϕ+k we find using the Pauli matrices (5.2)

D̃ϕ+k (u, v) =

(
0 1
1 0

)
Duφ

+
k (u, v)

(
1
0

)
+

(
0 −i
i 0

)
Dvφ

+
k (u, v)

(
1
0

)
= (Du + iDv )φ+k (u, v)

(
0
1

)
which vanishes by definition of φ+k . In the same way, we find D̃ϕ−k (u, v)= 0. As the
dimension of Mk(R2, C2) is 2, ϕ+k and ϕ−k form a basis.

For non-negative κ, there exists a Fischer decomposition for Dunkl monogenics in the
sense of the following direct sum decomposition

Pn(R2)⊗C2 =

n⊕
k=0

x̃n−kMn(R2, C2) .

Every spinor-valued polynomial onR2 can thus be written in terms of Dunkl monogenics
on R2, for which a basis is given in Proposition 5.2. The next step consists of moving
from R2 to Dunkl monogenics on R3 by means of a Cauchy-Kowalevski isomorphism.

proposition 5.3: For a non-negative integer n, a basis for the space Mn(R3, C2) is
given by the 2n + 2 polynomials

ψ±n,k(u, v,w)= CKw [x̃n−kϕ±k (u, v)], k ∈ {0, 1, . . . , n} (5.15)

where the Cauchy-Kowalevski isomorphism is given by

CKw : Pn(R2)⊗C2 →Mn(R3, C2) : pn(u, v)7→ exp(−wew D̃)pn(u, v) . (5.16)

Note that as pn(u, v) is a polynomial of degree n, this reduces to the finite sum

CKw [pn(u, v)] = exp(−wew D̃)pn(u, v)=
n∑

a=0

(−1)a

a!
w a(ew D̃)apn(u, v) .

Proof. We show that the Cauchy-Kowalevski extension CKw maps Pn(R2)⊗C2 into
Mn(R3, C2). Let pn(u, v)∈ Pn(R2)⊗C2. Using Dw = ∂w and the commutation relations
in Table 2 we obtain

D CKw [pn(u, v)] = (D̃ + ew∂w )
n∑

a=0

(−1)a

a!
w a(ew D̃)apn(u, v)

=

n−1∑
a=0

(−1)a

a!
w aew (ew D̃)a+1pn(u, v)+

n∑
a=1

(−1)a

(a − 1)!
w a−1ew (ew D̃)apn(u, v)
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which clearly vanishes. Hence, as the map (5.16) preserves the degree of a polynomial
we have CKw [pn(u, v)] ∈Mn(R3, C2).
The inverse of the isomorphism CKw is given by the map which evaluates a function

in w = 0. As the degree of a polynomial in Mn(R3, C2) is fixed, this inverse is clearly
injective.

Note that ψ±n,k given by (5.15) can also be written in terms of Jacobi polynomials
defined in (5.11) by working out the explicit action of the map (5.16). To achieve this,
we first state a result, which follows from the commutation relations (5.8). For Mk ∈

Mk(R2, C2) and non-negative integers a, b,

D̃a x̃bMk = dk
a,b x̃

b−aMk , (5.17)

where dk
a,b = 0 for a > b, and otherwise distinguishing between even and odd a, b one

has

dk
2α,2β = 22α(−β)α(−β − k − 3κ)α ,

dk
2α+1,2β = −22α+1(−β)α+1(−β − k − 3κ)α ,

dk
2α,2β+1 = 22α(−β)α(−β − k − 1 − 3κ)α ,

dk
2α+1,2β+1 = −22α+1(−β)α(−β − k − 1 − 3κ)α+1 .

Using now in turn the identity (5.17), D̃ew = −ew D̃ , (2α)! = 22α(1)α(1/2)α and the
identity (5.12), we obtain

ψ±n,k(u, v,w)= Ψn−k(x̃,w)ϕ±k (u, v) (5.18)

with ϕ±k given by (5.14) (see also (5.13)), and

Ψn−k(x̃,w)=
β!

( 1
2)β

(u2 + v2 +w2)β (5.19)

×


P(−

1
2 ,k+3κ)

β

(
u2+v2−w2

u2+v2+w2

)
−

ewwx̃
u2+v2+w2 P

( 1
2 ,k+1+3κ)
β−1

(
u2+v2−w2

u2+v2+w2

)
if n − k = 2β ,

x̃ P(−
1
2 ,k+1+3κ)

β

(
u2+v2−w2

u2+v2+w2

)
− eww

β+k+1+3κ
β+ 1

2
P(

1
2 ,k+3κ)
β

(
u2+v2−w2

u2+v2+w2

)
if n − k = 2β + 1 .

5.2 Representations

Given a non-negative integer n, we show that the basis vectors ψ±n,k for k ∈ {0, 1, . . . , n}
transform irreducibly under the action of the algebra OSt3. As the elements of OSt3
(anti-)commute with the Dirac-Dunkl operator, the kernel of the Dirac-Dunkl operator
is invariant under the action of OSt3. Furthermore, the elements of OSt3 are grade-
preserving so the space Mn(R3, C2) is invariant under the action of OSt3.
The spinor ψ±n,k corresponds, up to rescaling, precisely to the basis vectorw

±
k of Propo-

sition 4.5. We establish this as follows. The two-dimensional vector variable and Dirac-
Dunkl operator (5.7) generate another realization of the Lie superalgebra osp(1|2).
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When restricted to the one-sphere, similar to (2.6), the angular part Γ̃ of the Dirac-
Dunkl operator D̃ equals, up to an additive constant, the osp(1|2) Scasimir given by

Γ̃ + 1 =
1
2
[D̃, x̃] −

1
2
=

1
2
[Du, u] +

1
2
[Dv, v ] + euev (vDu − uDv +

1
2
[Du, v ] −

1
2
[Dv, u]) .

By means of the commutation relations in Table 2 we find the explicit form

Γ̃ + 1 =
1
2
+ κ(g12 + g23 + g31)−euev (uDv − vDu) .

Comparing with expression (5.4) we observe that Γ̃ + 1 = −euevOuv and hence, we also
have O0 = −ieuev (Γ̃ + 1). Similar to (2.8), now using (5.8) and ϕ±k ∈ ker D̃ we find

(Γ̃ + 1)ϕ±k (u, v) =
1
2
([D̃, x̃] − 1)ϕ±k (u, v) =

1
2
(D̃ x̃ − 1)ϕ±k (u, v)

=
1
2
({D̃, x̃} − 1)ϕ±k (u, v)=

1
2
(2Ẽ + 2 + 6κ − 1)ϕ±k (u, v)

which gives

(Γ̃ + 1)ϕ±k (u, v)=
(
k +

1
2
+ 3κ

)
ϕ±k (u, v)

as the Euler operator Ẽ = u∂u + v∂v measures the degree of a polynomial in u and v .
Using −ieuev χ± = ±χ±, which is readily verified using the Pauli matrices (5.2), the
action of O0 on ϕ±k then follows to be

O0ϕ
±
k (u, v)= ±

(
k +

1
2
+ 3κ

)
ϕ±k (u, v) .

Since O0 commutes with D̃, x̃ and eww we also have, by definition of ψ±n,k,

O0ψ
±
n,k = ±

(
k +

1
2
+ 3κ

)
ψ±n,k .

Finally, as O123 = (Γ + 1)euev ew and ψ±n,k ∈Mn(R3, C2), by (2.8) we find the action

O123ψ
±
n,k = i(n + 1 + 3κ)ψ±n,k .

To conclude, we consider the action of the S3 realization on a spinor ψ±n,k. Using
G12ϕ

±
k = (−1)kϕ±k , the expressions (5.3) and the fact that G12 anti-commutes with x̃

and D̃, we find
G12ψ

±
n,k = (−1)n−k(−1)kψ∓n,k = (−1)nψ∓n,k .

Similarly, using now G23ϕ
+
k = (−1)kω±(1−k)ϕ+k we have

G23ψ
±
n,k = (−1)nω±(1−k)ψ∓n,k .
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This shows, up to rescaling, the correspondence of ψ±n,k with the vector w±k of Proposi-
tion 4.5.
The abstract inner product on the unitary representation (see section 4.4) can now

also be realized explicitly. An integral formulation follows by combining the inner pro-
duct on the spinor space C2 with the inner product on the unit sphere for Dunkl har-
monics [9]

〈Φ1, Φ2〉 =

∫
S2
(Φ†1 · Φ2) h2

κ(u, v,w) dudvdw ,

where hκ(u, v,w) is the S3 invariant weight function [9]

hκ(u, v,w)= |u|κ |(u2 − 3v2)/4|κ .

Using this inner product, the polynomial ψ±n,k given by (5.19) can be normalized to
a wavefunction corresponding precisely to the normed vector w±k of Proposition 4.5.
The orthogonality can be verified by means of the orthogonality relation of the Jacobi
polynomials [16].

6 conclusion

We considered the three-dimensional case of the Dirac-Dunkl operator associated to the
root system A2 with non-abelian reflection group S3. In previous work, the algebra gene-
rated by the symmetries of this Dirac operator was already shown to be a one-parameter
extension of the classical angular momentum algebra. In the current paper, we have clas-
sified all finite-dimensional irreducible representations of this symmetry algebra and we
have determined the conditions for the representations to be unitarizable. Among the ob-
tained classes of irreducible representations of the symmetry algebra, there is one class
of unitary representations for arbitrary positive value of the parameter. This last class ad-
mits a natural realization by means of Dunkl monogenics, for which we constructed an
explicit basis. This basis consists of eigenfunctions of the spherical Dirac-Dunkl operator
and thus form solutions to a Dirac equation on the two-sphere.
In future work we aim to elevate the setting of the current paper in two directions.

On the one hand, one can consider the N-dimensional case where the reflection group
associated to the Dunkl operator is the symmetric group SN . On the other hand, it would
be interesting to consider more involved root systems (as was done for the type B3 in
[13]), first in three dimensions and then also in higher dimensions. We look forward to
tackle these problems using the insights obtained here.
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figure 1: Graphical representation of the basis vectors according to their eigenvalues for O0
and G123. On the horizontal axis, the shorthand notation O0w±k = ±λkw

±
k is used, and on the

vertical axis the three values 1, ω, ω−1 are repeated periodically. There are two main actions: 1)
The arrows represent the actions of K+ and K− through which one moves between the vectors in
one half of the vector space. 2) In this picture, the action of an odd element of S3 corresponds to
a reflection through the origin, as illustrated forw+0 andw−0 by the dashed line. The action of O±
is a combination of the two main actions.
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abstract

We classify all pairs of recurrence relations in which two Hahn or dual Hahn polynomials
with different parameters appear. Such couples are referred to as (dual) Hahn doubles.
The idea and interest comes from an example appearing in a finite oscillator model by
Jafarov, Stoilova and Van der Jeugt [14]. Our classification shows there exist three dual
Hahn doubles and four Hahn doubles. The same technique is then applied to Racah
polynomials, yielding also four doubles. Each dual Hahn (Hahn, Racah) double gives
rise to an explicit new set of symmetric orthogonal polynomials related to the Christoffel
and Geronimus transformations. For each case, we also have an interesting class of two-
diagonal matrices with closed form expressions for the eigenvalues. This extends the
class of Sylvester-Kac matrices by remarkable new test matrices. We examine also the
algebraic relations underlying the dual Hahn doubles, and discuss their usefulness for
the construction of new finite oscillator models.

1 introduction

The tridiagonal (N + 1)×(N + 1) matrix of the following form

CN+1 =

©«

0 1
N 0 2

N − 1 0 3
. . .

. . .
. . .

2 0 N
1 0

ª®®®®®®®®®®¬
(1.1)

appears in the literature under several names: the Sylvester-Kac matrix, the Kac matrix,
the Clement matrix, . . .. It was already considered by Sylvester [28], used by M. Kac
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in some of his seminal work [17], by Clement as a test matrix for eigenvalue computa-
tions [9], and continues to attract attention [6, 7, 29]. The main property of the matrix
CN+1 is that its eigenvalues are given explicitly by

− N, −N + 2, −N + 4, · · · , N − 2, N. (1.2)

Because of this simple property, CN+1 is a standard test matrix for numerical eigenvalue
computations, and part of some standard test matrix toolboxes (e.g. [12]).
One of the outcomes of the current paper implies that the matrix CN+1 has appealing

two-parameter extensions. For odd dimensions, let us consider the following tridiagonal
matrix:

C2N+1(γ, δ)=

©«

0 2γ + 2
2N 0 2

2δ + 2N 0 2γ + 4
2N − 2 0 4

. . .
. . .

. . .

2δ + 4 0 2γ + 2N
2 0 2N

2δ + 2 0

ª®®®®®®®®®®®®®®®¬

.

(1.3)
In the following, we shall sometimes use the term “two-diagonal” [10] for tridiagonal
matrices with zero entries on the diagonal (not to be confused with a bidiagonal matrix,
which has also two non-zero diagonals, but for a bidiagonal matrix the non-zero entries
are on the main diagonal and either superdiagonal or the subdiagonal). So, just as C2N+1
the matrix (1.3) is two-diagonal, but the superdiagonal of C2N+1,

[1, 2, 3, 4, . . . , 2N − 1, 2N]

is replaced by
[2γ + 2, 2, 2γ + 4, 4, . . . , 2γ + 2N, 2N],

and in the subdiagonal of C2N+1,

[2N, 2N − 1, 2N − 2, . . . , 3, 2, 1]

the odd entries are replaced, leading to

[2N, 2δ + 2N, 2N − 2, . . . , 2δ + 4, 2, 2δ + 2].

Clearly, for γ = δ = − 1
2 the matrix C2N+1(γ, δ) just reduces to C2N+1. One of our results

is that C2N+1(γ, δ) has simple eigenvalues for general γ and δ, given by

0, ±2
√

1(γ + δ + 2), ±2
√

2(γ + δ + 3), ±2
√

3(γ + δ + 4), . . . , ±2
√
N(γ + δ + N + 1).

(1.4)
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This spectrum simplifies even further for δ = −γ − 1; in this case one gets back the
eigenvalues (1.2).
For even dimensions, we have a similar result. Let C2N(γ, δ) be the (2N)×(2N) tri-

diagonal matrix with zero diagonal, with superdiagonal

[2γ + 2, 2, 2γ + 4, 4, . . . , 2N − 2, 2γ + 2N]

and with subdiagonal

[2δ + 2N, 2N − 2, 2δ + 2N − 2, . . . , 4, 2δ + 4, 2, 2δ + 2].

Then C2N(γ, δ) has simple eigenvalues for general γ and δ, given by

± 2
√
(γ + 1)(δ + 1), ±2

√
(γ + 2)(δ + 2), . . . , ±2

√
(γ + N)(δ + N). (1.5)

This spectrum simplifies for δ = γ, and obviously for γ = δ = − 1
2 one gets back the

eigenvalues (1.2) since in that case C2N(γ, δ) just reduces to C2N .
What is the context here for these new tridiagonal matrices with simple eigenvalue

properties?Well, remember thatCN+1 also appears as the simplest example of a family of
Leonard pairs [24, 30]. In that context, this matrix is related to symmetric Krawtchouk
polynomials [13, 19, 23]. Indeed, let Kn(x)≡ Kn(x; 1

2, N), where Kn(x; p, N) are the
Krawtchouk polynomials [13, 19, 23]. Then their recurrence relation [19, (9.11.3)]
yields

nKn−1(x)+(N − n)Kn+1(x)= (N − 2x)Kn(x) (n = 0, 1, . . . , N). (1.6)

Writing this down for x = 0, 1, . . . , N, and putting this in matrix form, shows indeed
that the eigenvalues of CN+1 (or rather, of its transpose CT

N+1) are indeed given by (1.2).
Moreover, it shows that the components of the kth eigenvector of CT

N+1 are given by
Kn(k).
So we can identify the matrix CN+1 with the Jacobi matrix of symmetric Krawtchouk

polynomials, one of the families of finite and discrete hypergeometric orthogonal po-
lynomials. The other matrices CN(γ, δ) appearing in this introduction are not directly
related to Jacobi matrices of a simple set of finite orthogonal polynomials. In this paper,
however, we show how two sets of distinct dual Hahn polynomials [13, 19, 23] can be
combined in an appropriate way such that the eigenvalues of matrices like CN(γ, δ) be-
come apparent, and such that the eigenvector components are given in terms of these
two dual Hahn polynomials. This process of combining two distinct sets is called “dou-
bling”. We examine this not only for the case related to the matrix CN(γ, δ), but stronger:
we classify all possible ways in which two sets of dual Hahn polynomials can be combi-
ned in order to yield a two-diagonal “Jacobi matrix”. It turns out that there are exactly
three ways in which dual Hahn polynomials can be “doubled” (for a precise formula-
tion, see later). By the doubling procedure, one automatically gets the eigenvalues (and
eigenvectors) of the corresponding two-diagonal matrix in explicit form.
This process of doubling and investigating the corresponding two-diagonal Jacobi ma-

trix can be applied to other classes of orthogonal polynomials (with a finite and discrete
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support) as well. In this paper, we turn our attention also to Hahn and to Racah po-
lynomials. The classification process becomes rather technical, however. Therefore, we
have decided to present the proof of the complete classification only for dual Hahn po-
lynomials (section 3). For Hahn polynomials (section 4) we give the final classification
and corresponding two-diagonal matrices (but omit the proof), and for Racah polyno-
mials we give the final classification and some examples of two-diagonal matrices in the
Appendix.
We should also note that the two-diagonal matrices appearing as a result of the dou-

bling process are symmetric. So matrices like (1.3) do not appear directly but in their
symmetrized form. Of course, as far as eigenvalues are concerned, this makes no diffe-
rence (see section 6).
The doubling process of the polynomials considered here also gives rise to “new” sets

of orthogonal polynomials. One could argue whether the term “new” is appropriate,
since they arise by combining two known sets. The peculiar property is however that
the combined set has a common unique weight function. Moreover, we shall see that the
support set of these doubled polynomials is interesting, see the examples in section 5.
In this section, we also interpret the doubling process in the framework of Christoffel-
Geronimus transforms. It will be clear that from our doubling process, one can deduce
for which Christoffel parameter the Christoffel transform of a Hahn, dual Hahn or Racah
polynomial is again a Hahn, dual Hahn or Racah polynomial with shifted parameters.
In section 6 we reconsider the two-diagonal matrices that have appeared in the pre-

vious sections. It should be clear that we get several classes of two-diagonal matrices
(with parameters) for which the eigenvalues (and eigenvectors) have an explicit and ra-
ther simple form. This section reviews such matrices as new and potentially interesting
examples of eigenvalue test matrices.
In section 7 we explore relations with other structures. Recall that in finite-dimension-

al representations of the Lie algebra su(2), with common generators J+, J− and J0, the
matrix of J+ + J− also has a symmetric two-diagonal form. The new two-diagonal ma-
trices appearing in this paper can be seen as representation matrices of deformations or
extensions of su(2). We give the algebraic relations that follow from the “representation
matrices” obtained here. The algebras are not studied in detail, but it is clear that they
could be of interest on their own. The general algebras have two parameters, and we in-
dicate how special cases with only one parameter are of importance for the construction
of finite oscillator models.

2 introductory example

We start our analysis by the explanation of a known example taken from [27]. For this
example, we first recall the definition of Hahn and dual Hahn polynomials and some of
the classical notations and properties.
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The Hahn polynomial Qn(x; α, β, N) [13, 19, 23] of degree n (n = 0, 1, . . . , N) in
the variable x, with parameters α > −1 and β > −1 (or α < −N and β < −N) is
defined by [13, 19, 23]:

Qn(x; α, β, N)= 3F2

(
−n, n + α + β + 1, −x

α + 1, −N
; 1

)
. (2.1)

Herein, the function 3F2 is the generalized hypergeometric series [4, 26]:

3F2

(
a, b, c
d, e

; z
)
=

∞∑
k=0

(a)k(b)k(c)k
(d)k(e)k

zk

k!
. (2.2)

In (2.1), the series is terminating because of the appearance of the negative integer−n as
a numerator parameter. Note that in (2.2) we use the common notation for Pochhammer
symbols [4, 26] (a)k= a(a + 1)· · · (a + k − 1) for k = 1, 2, . . . and (a)0= 1. Hahn
polynomials satisfy a (discrete) orthogonality relation [13, 19]:

N∑
x=0

w(x; α, β, N)Qn(x; α, β, N)Qn′(x; α, β, N)= hn(α, β, N) δn,n′, (2.3)

where

w(x; α, β, N)=
(
α + x
x

) (
N + β − x
N − x

)
(x = 0, 1, . . . , N);

hn(α, β, N)=
(−1)n(n + α + β + 1)N+1(β + 1)nn!
(2n + α + β + 1)(α + 1)n(−N)nN!

.

We denote the orthonormal Hahn functions as follows:

Q̃n(x; α, β, N)≡
√
w(x; α, β, N)Qn(x; α, β, N)√

hn(α, β, N)
. (2.4)

The Hahn polynomials satisfy the following recurrence relation [19, (9.5.3)]

Λ(x)yn(x)= A(n)yn+1(x)−
(
A(n)+C(n)

)
yn(x)+C(n)yn−1(x) (2.5)

with

yn(x)= Qn(x; α, β, N), Λ(x)= −x,

A(n)=
(n + α + 1)(n + α + β + 1)(N − n)
(2n + α + β + 1)(2n + α + β + 2)

, C(n)=
n(n + α + β + N + 1)(n + β)
(2n + α + β)(2n + α + β + 1)

.

(2.6)

Related to the Hahn polynomials are the dual Hahn polynomials: Rn(λ(x); γ, δ, N)
of degree n (n = 0, 1, . . . , N) in the variable λ(x)= x(x + γ + δ + 1), with parameters
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γ > −1 and δ > −1 (or γ < −N and δ < −N) which are defined similarly to (2.1) [13,
19, 23]

Rn(λ(x); γ, δ, N)= 3F2

(
−x, x + γ + δ + 1, −n

γ + 1, −N
; 1

)
. (2.7)

As is well known, the (discrete) orthogonality relation of the dual Hahn polynomials is
just the “dual” of (2.3):

N∑
x=0

w(x; γ, δ, N)Rn(λ(x); γ, δ, N)Rn′(λ(x); γ, δ, N)= hn(γ, δ, N) δn,n′, (2.8)

where

w(x; γ, δ, N)=
(2x + γ + δ + 1)(γ + 1)x(−N)xN!
(−1)x(x + γ + δ + 1)N+1(δ + 1)xx!

,

hn(γ, δ, N)=
[(
γ + n
n

) (
N + δ − n
N − n

)]−1

.

Orthonormal dual Hahn functions are defined by:

R̃n(λ(x); γ, δ, N)≡

√
w(x; γ, δ, N) Rn(λ(x); γ, δ, N)√

hn(γ, δ, N)
. (2.9)

Dual Hahn polynomials also satisfy a recurrence relation of the form (2.5), with [19,
(9.6.3)]

yn(x)= Rn(λ(x); γ, δ, N), Λ(x)= λ(x)= x(x + γ + δ + 1),
A(n)= (n + γ + 1)(n − N), C(n)= n(n − δ − N − 1). (2.10)

In [27], the following difference equations involving two sets of Hahn polynomials
were derived (for convenience we use the notation Qn(x)≡ Qn(x; α, β + 1, N) and
Q̂n(x)≡ Qn(x; α + 1, β, N)):

(N + β + 1 − x)Qn(x)−(N − x)Qn(x + 1)=
(n + α + 1)(n + β + 1)

α + 1
Q̂n(x), (2.11)

(x + 1)Q̂n(x)−(α + x + 2)Q̂n(x + 1)= −(α + 1)Qn(x + 1). (2.12)

Writing out these difference equations for x = 0, 1, . . . , N, the resulting set of equations
can easily be written in matrix form. For this matrix form, let us use the normalized
version of the polynomials, and construct the following (2N + 2)×(2N + 2) matrix U
with elements

U2x,N−n = U2x,N+n+1 =
(−1)x
√

2
Q̃n(x; α, β + 1, N), (2.13)

U2x+1,N−n = −U2x+1,N+n+1 = −
(−1)x
√

2
Q̃n(x; α + 1, β, N), (2.14)
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where x, n ∈ {0, 1, . . . , N}. By construction, this matrix is orthogonal [27]: the fact that
the columns of U are orthonormal follows from the orthogonality relation of the Hahn
polynomials, and from the signs in the matrix U. Thus UTU = UUT = I, the identity
matrix.
The normalized difference equations (2.11)–(2.12) for x = 0, 1, . . . , N can then be

cast in matrix form. The coefficients in the left hand sides of (2.11)–(2.12) give rise to
a tridiagonal (2N + 2)×(2N + 2)-matrix of the form

M =

©«

0 M0 0

M0 0 M1
. . .

0 M1 0
. . . 0

. . .
. . .

. . . M2N

0 M2N 0

ª®®®®®®®®®¬
. (2.15)

with

M2k =
√
(k + α + 1)(N + β + 1 − k), M2k+1 =

√
(k + 1)(N − k). (2.16)

Suppose α > −1, β > −1 or α < −N − 1, β < −N − 1 and let U be the orthogonal
matrix determined in (2.13)–(2.14). Then [27] the columns of U are the eigenvectors
of M, i.e.

MU = UD, (2.17)

where D is a diagonal matrix containing the eigenvalues of M:

D = diag(−εN, . . . , −ε1, −ε0, ε0, ε1, . . . , εN),

εk =
√
(α + k + 1)(β + k + 1) (k = 0, 1, . . . , N). (2.18)

Note that the eigenvalues of the matrix M are (up to a factor 2) the same as those
of the matrix C2N+2(α, β), the two-parameter extension of the Sylvester-Kac matrix.
As we will further discuss in section 6, the above result proves that the eigenvalues of
C2N+2(α, β) are indeed given by (1.5). Even more: the orthonormal eigenvectors of M
are just the columns of U.
Another way of looking at (2.17) is in terms of the dual Hahn polynomials. Interchan-

ging x and n in the expressions (2.13)–(2.14), we have

U2n,N−x = U2n,N+x+1 =
(−1)n
√

2
R̃n(λ(x); α, β + 1, N), (2.19)

U2n+1,N−x = −U2n+1,N+x+1 = −
(−1)n
√

2
R̃n(λ(x); α + 1, β, N), (2.20)

where x, n ∈ {0, 1, . . . , N}. In this way, each row of the matrixU consists of a dual Hahn
polynomial of a certain degree, having different parameter values for even and odd rows.
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Now, the relation (2.17) can be interpreted as a three-term recurrence relation with M
being the Jacobi matrix. Two sets of (dual) Hahn polynomials (with different parame-
ters) are thus combined into a new set of polynomials such that the Jacobi matrix for this
new set has a simple two-diagonal form, with simple eigenvalues. The pair of difference
equations (2.11)–(2.12) involving two sets of Hahn polynomials then corresponds to the
following relations involving the dual Hahn polynomials Rn(x)≡ Rn(λ(x); γ, δ + 1, N)
and R̂n(x)≡ Rn(λ(x); γ + 1, δ, N):

(N + δ + 1 − n)Rn(x)−(N − n)Rn+1(x)=
(x + γ + 1)(x + δ + 1)

(γ + 1)
R̂n(x), (2.21)

(n + 1)R̂n(x)−(n + γ + 2)R̂n+1(x)= −(γ + 1)Rn+1(x). (2.22)

This is in fact a special case of the so-called Christoffel transform of a dual Hahn poly-
nomial with its transformation parameter chosen specifically so that the result is again
a dual Hahn polynomial (with different parameters). We will further elaborate on this
in section 5.
This introductory example, taken from [27], opens the following question: in how

many ways can two sets of (dual) Hahn polynomials be combined such that the Jacobi
matrix is two-diagonal? This will be answered in the following section.

3 doubling dual hahn polynomials: classification

The essential relation in the previous example is the existence of a pair of “recurrence
relations” (2.21)–(2.22) intertwining two types of dual Hahn polynomials (or equiva-
lently a couple of difference equations (2.11)–(2.12) for two types of their duals, the
Hahn polynomials). Let us therefore examine the existence of such relations in general.
Say we have two types of dual Hahn polynomials with different parameter values for
γ and δ (and possibly N) denoted by Rn(λ(x); γ, δ, N) and Rn(λ(x̂); γ̂, δ̂, N̂), that are
related in the following manner:

a(n) Rn(λ(x); γ, δ, N)+b(n) Rn+1(λ(x); γ, δ, N) = d̂(x) Rn(λ(x̂); γ̂, δ̂, N̂) (3.1)

â(n) Rn(λ(x̂); γ̂, δ̂, N̂)+b̂(n) Rn+1(λ(x̂); γ̂, δ̂, N̂) = d(x) Rn+1(λ(x); γ, δ, N). (3.2)

If we want these relations to correspond to a matrix identity like (2.17), then it is indeed
necessary that the (unknown) functions a(n), â(n), b(n) and b̂(n) are functions of n
and not of x, and that d(x) and d̂(x) are functions of x and not of n. Of course, the
parameters γ, δ, N, γ̂, δ̂, N̂ can appear in these functions.
In order to lift this technique also to other polynomials than just the dual Hahn polyno-

mials, say we have the following relations between two sets of orthogonal polynomials
of the same class, denoted by yn and ŷn, but with different parameter values:

a(n) yn + b(n) yn+1 = d̂(x) ŷn, (3.3)

â(n) ŷn + b̂(n) ŷn+1 = d(x) yn+1, (3.4)
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where a, â, b, b̂ are independent of x and d, d̂ are independent of n. Although (3.3)–
(3.4) are not actual recurrence relations since they involve both yn and ŷn, we will refer
to a couple of such relations intertwining two types of orthogonal polynomials as “a pair
of recurrence relations”.
When substituting (3.4) in (3.3), we arrive at the following recurrence relation for

ŷn:

a(n) [â(n − 1) ŷn−1 + b̂(n − 1) ŷn] + b(n) [â(n) ŷn + b̂(n) ŷn+1] = d(x) d̂(x) ŷn . (3.5)

In the same manner, ŷn can be eliminated to find a recurrence relation for yn:

â(n−1) [a(n−1) yn−1+b(n−1) yn]+b̂(n−1) [a(n) yn+b(n) yn+1] = d̂(x) d(x) yn. (3.6)

Of course, the orthogonal polynomials yn already satisfy a three-term recurrence re-
lation of the form (2.5). A comparison of the coefficients of yn+1, yn, yn−1 in (3.5)–(3.6)
with the known coefficients given in (2.10) leads to the following set of requirements
for a, â, b, b̂, d, d̂

a(n) â(n − 1)= Ĉ(n) (3.7)
a(n − 1) â(n − 1)= C(n) (3.8)

a(n) b̂(n − 1)+â(n) b(n)−d(x) d̂(x)= −[Λ̂(x)+Â(n)+Ĉ(n)] (3.9)

a(n) b̂(n − 1)+â(n − 1) b(n − 1)−d̂(x) d(x)= −[Λ(x)+A(n)+C(n)] (3.10)

b(n) b̂(n)= Â(n) (3.11)

b(n) b̂(n − 1)= A(n) (3.12)

After a slight rearrangement of terms in the requirements (3.9) and (3.10), we arrive
at two new equations where the left hand side is independent of x while the right hand
side is independent of n, namely

a(n) b̂(n − 1)+â(n) b(n)+Â(n)+Ĉ(n)= d(x) d̂(x)−Λ̂(x) (3.13)

a(n) b̂(n − 1)+â(n − 1) b(n − 1)+A(n)+C(n)= d̂(x) d(x)−Λ(x). (3.14)

Hence, the two sides must be independent of both n and x. By means of (3.7)–(3.12)
we can eliminate A, Â, C, Ĉ to find

a(n)[â(n − 1)+b̂(n − 1)] + b(n)[â(n)+b̂(n)] = d(x) d̂(x)−Λ̂(x) (3.15)

â(n − 1)[a(n − 1)+b(n − 1)] + b̂(n − 1)[a(n)+b(n)] = d̂(x) d(x)−Λ(x). (3.16)

Moreover, subtracting one from the other yields

Λ(x)−Λ̂(x)= â(n − 1)[a(n)−a(n − 1)−b(n − 1)] + b(n)[â(n)+b̂(n)−b̂(n − 1)].
(3.17)

Now, for a given class of orthogonal polynomials with recurrence relation of the form
(2.5), we determine all possible functions a, â, b, b̂, d, d̂ satisfying the list of require-
ments (3.7)–(3.12). Hereto, we proceed as follows:
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• From (3.7) and (3.8) we observe that, up to a multiplicative factor, C(n) is split
into two functions, a(n − 1) and â(n − 1). When a(n − 1) is shifted by 1 in n and
multiplied again by â(n− 1) we must arrive at Ĉ(n). Hence, C and Ĉ consist of an
identical part, and a part which differs by a shift of 1 in n. This observation gives
a first list of possibilities for a and â.

• Similarly we find a list for b and b̂ by means of (3.11)–(3.12).

• These possibilities are then to be compared with requirements (3.9) and (3.10).
From (3.13), (3.14) and (3.17) we get an expression for the product d(x) d̂(x).
Finally, the set of remaining choices for a, â, b, b̂ are to be plugged in (3.4) and
(3.3) in order to get d, d̂ and to verify if these relations indeed hold.

The actual performance of the procedure just described is still quite long and tedious,
when carried out for a fixed class of polynomials. In what follows we achieve this for the
dual Hahn polynomials, which have the easiest recurrence relation, and it takes about
three pages to present this. The reader who wishes to skip the details can advance to
Theorem 7.
For dual Hahn polynomials, the data is given by (2.10):

yn = Rn(λ(x); γ, δ, N), ŷn = Rn(λ(x̂); γ̂, δ̂, N̂), Λ(x)= λ(x)= x(x + γ + δ + 1)

A(n)= (n + γ + 1)(n − N), C(n)= n(n − δ − N − 1),

with similar expressions for Λ̂(x), Â(n) and Ĉ(n) (with x, γ, δ, N replaced by x̂, γ̂, δ̂, N̂).
From (3.17), the following expression must be independent of x:

Λ(x)−Λ̂(x)= x(x + γ + δ + 1)−x̂(x̂ + γ̂ + δ̂ + 1). (3.18)

In order for the term in x2 to disappear, we must have x̂ = x + ξ which gives

x(x + γ + δ + 1)−(x + ξ)(x + ξ + γ̂ + δ̂ + 1)= (γ + δ − γ̂ − δ̂ − 2ξ)x − ξ(ξ + γ̂ + δ̂ + 1)

and as we require the coefficient of x to be zero we find the following condition for ξ:

γ + δ − (γ̂ + δ̂)= 2ξ. (3.19)

From (3.8) we see that we have four distinct possible combinations for a(n − 1) and
â(n − 1):

a(n − 1) = 1 ca and â(n − 1) = n(n − δ − N − 1) c−1
a (a1)

a(n − 1) = n ca and â(n − 1) = (n − δ − N − 1) c−1
a (a2)

a(n − 1) = (n − δ − N − 1) ca and â(n − 1) = n c−1
a (a3)

a(n − 1) = n(n − δ − N − 1) ca and â(n − 1) = 1 c−1
a (a4)

with ca a factor. Combining this with (3.7) we must have

a(n) â(n − 1)= Ĉ(n)= n(n − δ̂ − N̂ − 1).
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This immediately implies that ca is independent of n, and (a1)–(a4) yield the following
possibilities:

n(n − δ − N − 1)= n(n − δ̂ − N̂ − 1) =⇒ δ + N = δ̂ + N̂ (a1’)

(n + 1)(n − δ − N − 1)= n(n − δ̂ − N̂ − 1) =⇒ δ + N + 1 = 0 ∧ δ̂ + N̂ + 2 = 0
(a2’)

(n − δ − N)n = n(n − δ̂ − N̂ − 1) =⇒ δ + N = δ̂ + N̂ + 1 (a3’)

(n + 1)(n − δ − N)= n(n − δ̂ − N̂ − 1) =⇒ δ + N = 0 ∧ δ̂ + N̂ + 2 = 0 (a4’)

Because of the restriction on δ the option (a4’) is ineligible, leaving (a1’)–(a3’) as only
viable options.
In a similar way, from (3.12) we see that we have four possible combinations for b(n)

and b̂(n),

b(n) = 1 cb and b̂(n − 1) = (n + γ + 1)(n − N) c−1
b (b1)

b(n) = (n + γ + 1) cb and b̂(n − 1) = (n − N) c−1
b (b2)

b(n) = (n − N) cb and b̂(n − 1) = (n + γ + 1) c−1
b (b3)

b(n) = (n + γ + 1)(n − N) cb and b̂(n − 1) = 1 c−1
b (b4)

Combining this with (3.11) we must have

b(n) b̂(n)= Â(n)= (n + γ̂ + 1)(n − N̂)

This implies that cb is independent of n and moreover for (b1)–(b4) yields:

(n + γ + 2)(n − N + 1)= (n + γ̂ + 1)(n − N̂) =⇒ γ + 1 = γ̂ ∧ N − 1 = N̂ (b1’)

(n + γ + 1)(n − N + 1)= (n + γ̂ + 1)(n − N̂) =⇒ γ = γ̂ ∧ N − 1 = N̂ (b2’)

(n + γ + 2)(n − N)= (n + γ̂ + 1)(n − N̂) =⇒ γ + 1 = γ̂ ∧ N = N̂ (b3’)

(n + γ + 1)(n − N)= (n + γ̂ + 1)(n − N̂) =⇒ γ = γ̂ ∧ N = N̂ (b4’)

We thus have four viable options for b, b̂ and three for a, â, giving a total of 12 possible
combinations, which we will systematically consider and treat.

Case (b1). Plugging (b1) in (3.14), we get

a(n)(n+γ+1)(n−N)c−1
b +â(n−1)cb+(n+γ+1)(n−N)+n(n−δ−N−1)= d̂(x)d(x)−Λ(x) .

As the right hand side is independent of n, so must be the left hand side. This eliminates
options (a2) and (a3) for a, â as that would result in a third order term in n which
cannot vanish. On the other hand, (a1) yields

(n + γ + 1)(n − N)
ca
cb
+ n(n − δ − N − 1)

cb
ca
+ (n + γ + 1)(n − N)+n(n − δ − N − 1)

= d̂(x) d(x)−Λ(x) .
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This must be independent of n, so the coefficient of n2 in the left hand side must vanish,
hence ca/cb + cb/ca +2 = 0 or thus ca/cb = −1. For this value of ca/cb the left hand side
equals zero and is indeed independent of n. Note that this leaves one degree of freedom
as only the ratio ca/cb is fixed. This is just a global scalar factor for (3.3) and (3.4), also
present in (2.5). Henceforth, for convenience, we set ca = 1 and cb = −1.
The combined options (b1) and (a1) thus give a valid set of equations of the form

(3.3) and (3.4), and they correspond to the parameter values

γ̂ = γ + 1, δ̂ = δ + 1, N̂ = N − 1.

Moreover, by means of (3.19) we find ξ = −1 and so x̂ = x − 1. Finally, plugging these
a, â, b, b̂ in (3.3) and (3.4), and putting n = 0 we find

R0(λ(x); γ, δ, N)−R1(λ(x); γ, δ, N)=
x(x + γ + δ + 1)

N(γ + 1)
= d̂(x)

and similarly d(x)= N(γ + 1). Hence, for Rn(x)≡ Rn(λ(x); γ, δ, N) and R̂n(x)≡ Rn(
λ(x − 1); γ + 1, δ + 1, N − 1) we have the relations

Rn(x)−Rn+1(x)=
x(x + γ + δ + 1)

N(γ + 1)
R̂n(x),

− (n + 1)(N − n + δ)R̂n(x)+(N − n − 1)(n + γ + 2)R̂n+1(x)= N(γ + 1)Rn+1(x).

Interchanging x and n, these recurrence relations for dual Hahn polynomials are pre-
cisely the known actions of the forward and backward shift operator for Hahn polyno-
mials [19, (9.5.6),(9.5.8)].

Case (b2). Next, we consider the option (b2) for b, b̂. Plugging (b2) in (3.14), we get

a(n) (n−N) c−1
b +â(n−1) (n+γ) cb+(n+γ+1)(n−N)+n(n−δ−N−1)= d̂(x) d(x)−Λ(x).

Since the left hand side must be independent of n, option (a1) is ruled out. Also option
(a2) is ruled out: using (a2) and δ + N + 1 = 0 (from (a2’)), the left hand side again
cannot be independent of n. Only (a3) remains, giving

(n−δ−N) (n−N)
ca
cb
+n (n+γ)

cb
ca
+(n+γ+1)(n−N)+n(n−δ−N−1)= d̂(x) d(x)−Λ(x).

In order for n2 in the left hand side to vanish, we again require ca/cb = −1. This gives

−N(N + γ + δ + 1)= d̂(x) d(x)−Λ(x),

and we see that both sides are indeed independent of n.
The combined options (b2) and (a3) also give a valid set of equations of the form

(3.3) and (3.4), now corresponding to the parameter values

γ̂ = γ, δ̂ = δ, N̂ = N − 1.
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Moreover, by means of (3.19) we find ξ = 0 and so x̂ = x. Putting again n = 0 in (3.3)
and (3.4) for these a, â, b, b̂ we find

(−δ − N)R0(λ(x); γ, δ, N)−(γ + 1)R1(λ(x); γ, δ, N) = −
(N − x)(x + γ + δ + N + 1)

N
= d̂(x)

and similarly d(x)= N. The relations in question are then, for Rn(x)≡ Rn(λ(x); γ, δ, N)
and R̂n(x)≡ Rn(λ(x); γ, δ, N − 1):

(n − δ − N)Rn(x)−(n + γ + 1)Rn+1(x)= −
(N − x)(x + γ + δ + N + 1)

N
R̂n(x),

(n + 1)R̂n(x)−(n − N + 1)R̂n+1(x)= NRn+1(x),

which can be verified algebraically or by means of a computer algebra package.

Case (b3). The next option to consider is (b3), for which (3.14) becomes

a(n) (n + γ + 1) c−1
b + â(n − 1) (n − N − 1)cb + (n + γ + 1)(n − N)+n(n − δ − N − 1)

= d̂(x)d(x)−Λ(x).

The independence of n in the left hand side again rules out options (a1) and (a2), while
(a3) gives

(n − δ − N) (n + γ + 1)
ca
cb
+ n (n − N − 1)

cb
ca
+ (n + γ + 1)(n − N)+n(n − δ − N − 1)

= d̂(x) d(x)−Λ(x).

Also here, we require ca/cb = −1 to arrive at a left hand side independent of n, namely

(γ + 1)δ = d̂(x) d(x)−Λ(x).

The combined options (b3) and (a3) thus give a valid set of equations of the form (3.3)
and (3.4), and they correspond to the parameter values

γ̂ = γ + 1, δ̂ = δ − 1, N̂ = N;

by means of (3.19) we find ξ = 0 and so x̂ = x. Finally, plugging these a, â, b, b̂ in (3.3)
and (3.4) and putting n = 0 we find

(−δ − N)R0(λ(x); γ, δ, N)+N R1(λ(x); γ, δ, N)= −
(x + γ + 1)(x + δ)

(γ + 1)
= d̂(x)

and similarly d(x)= γ + 1.
Hence we have the relations, for Rn(x)≡ Rn(λ(x); γ, δ, N) and R̂n(x)≡ Rn(λ(x); γ +

1, δ − 1, N):

− (n − δ − N)Rn(x)+(n − N)Rn+1(x)=
(x + γ + 1)(x + δ)

(γ + 1)
R̂n(x),
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− (n + 1)R̂n(x)+(n + γ + 2)R̂n+1(x)= (γ + 1)Rn+1(x).

These can again be verified algebraically or by means of a computer algebra package.
Note that these relations coincide with (2.21)–(2.22) from the previous section (up to
a shift δ→ δ + 1).

Case (b4). The final option (b4) for b, b̂ does not correspond to a valid set of equations
of the form (3.3) and (3.4) as the left hand side of (3.14) can never be independent of
n for either options (a1), (a2) or (a3).
This completes the analysis in the case of dual Hahn polynomials, and we have the

following result:

theorem 7: The only way to double dual Hahn polynomials, i.e. to combine two sets
of dual Hahn polynomials such that they satisfy a pair of recurrence relations of the form
(3.1)–(3.2) is one of the three cases:
dual Hahn I, Rn(x)≡ Rn(λ(x); γ, δ, N) and R̂n(x)≡ Rn(λ(x − 1); γ + 1, δ + 1, N − 1):

Rn(x)−Rn+1(x)=
x(x + γ + δ + 1)

N(γ + 1)
R̂n(x),

− (n + 1)(N − n + δ)R̂n(x)+(N − n − 1)(n + γ + 2)R̂n+1(x)= N(γ + 1)Rn+1(x).

dual Hahn II, Rn(x)≡ Rn(λ(x); γ, δ, N) and R̂n(x)≡ Rn(λ(x); γ, δ, N − 1):

(n − δ − N)Rn(x)−(n + γ + 1)Rn+1(x)= −
(N − x)(x + γ + δ + N + 1)

N
R̂n(x),

(n + 1)R̂n(x)−(n − N + 1)R̂n+1(x)= NRn+1(x).

dual Hahn III, Rn(x)≡ Rn(λ(x); γ, δ, N) and R̂n(x)≡ Rn(λ(x); γ + 1, δ − 1, N):

− (n − δ − N)Rn(x)+(n − N)Rn+1(x)=
(x + γ + 1)(x + δ)

(γ + 1)
R̂n(x),

− (n + 1)R̂n(x)+(n + γ + 2)R̂n+1(x)= (γ + 1)Rn+1(x).

By interchanging x and n, each of the recurrence relations for dual Hahn polynomials
in the previous theorem gives rise to a set of forward and backward shift operators for
regular Hahn polynomials. The case dual Hahn I corresponds just to the known forward
and backward shift operators for Hahn polynomials [19]: Qn(x)≡ Qn(x; α, β, N) and
Q̂n(x)≡ Qn(x; α + 1, β + 1, N − 1):

Qn(x)−Qn(x + 1)=
n(n + α + β + 1)

N(α + 1)
Q̂n−1(x),

− (x + 1)(N − x + β)Q̂n−1(x)+(N − x − 1)(x + α + 2)Q̂n−1(x + 1)
= N(α + 1)Qn(x + 1).

The case dual Hahn III corresponds to our introductory example (2.11)–(2.12) (up to
a shift β → β+1), and appears already in [27]. The case dual Hahn II yields a new set



3 doubling dual hahn polynomials: classification 161

of relations (encountered recently in [16, (16)–(17)]), namely Qn(x)≡ Qn(x; α, β, N)
and Q̂n(x)≡ Qn(x; α, β, N − 1):

(x − β − N)Qn(x)−(x + α + 1)Qn(x + 1)= −
(N − n)(n + α + β + N + 1)

N
Q̂n(x),

(x + 1)Q̂n(x)−(x − N + 1)Q̂n(x + 1)= NQn(x + 1).

The most important thing is, however, that we have classified the possible cases.
Because the sets of recurrence relations are of the form (3.1)–(3.2), they can be cast in

matrix form, like in (2.17), with a simple two-diagonal matrix. For the case dual Hahn I,
note that the N-values of Rn(x) and R̂n(x) differ by 1, so the definition of the matrix U
(again in terms of the normalized version of the polynomials) requires a little bit more
attention. The matrix U is now of order (2N + 1)×(2N + 1) with matrix elements

U2n,N−x = U2n,N+x =
(−1)n
√

2
R̃n(λ(x); γ, δ, N), (x = 1, . . . , N)

U2n+1,N−x = −U2n+1,N+x = −
(−1)n
√

2
R̃n(λ(x − 1); γ + 1, δ + 1, N − 1), (x = 1, . . . , N)

U2n,N = (−1)nR̃n(λ(0); γ, δ, N), U2n+1,N = 0, (3.20)

where the row index of the matrix U (denoted here by 2n or 2n + 1, depending on
the parity of the index) also runs over the integers from 0 up to 2N. This matrix U
is orthogonal: the orthogonality relation of the dual Hahn polynomials (2.8) and the
signs in the matrix U imply that its rows are orthonormal. Thus UTU = UUT = I, the
identity matrix. Then the recurrence relations for dual Hahn I of Theorem 7 are now
reformulated in terms of a two-diagonal (2N + 1)×(2N + 1)-matrix of the form

M =

©«

0 M0 0

M0 0 M1
. . .

0 M1 0
. . . 0

. . .
. . .

. . . M2N−1

0 M2N−1 0

ª®®®®®®®®®¬
. (3.21)

Explicitly:

proposition 8 (dual Hahn I): Suppose γ > −1, δ > −1. Let M be the two-diagonal
matrix (3.21) with

M2k =
√
(k + γ + 1)(N − k), M2k+1 =

√
(k + 1)(N + δ − k), (3.22)

and U the orthogonal matrix determined in (3.20). Then the columns of U are the eigen-
vectors of M, i.e. MU = UD, where D is a diagonal matrix containing the eigenvalues of
M:

D = diag(−εN, . . . , −ε1, 0, ε1, . . . , εN); εk =
√
k(k + γ + δ + 1) (k = 1, . . . , N).

(3.23)
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Note that we have kept only the conditions under which thematrixM is real. The other
conditions for which the dual Hahn polynomials in (3.20) can be normalized (namely
γ < −N, δ < −N) would give rise to imaginary values in (3.22). In such a case, the
relation MU = UD remains valid, and also D would have imaginary values.
For the case dual Hahn II, the matrix U is again of order (2N + 1)×(2N + 1) with

matrix elements

U2n, x = U2n,2N−x =
1
√

2
R̃n(λ(x); γ, δ, N), (x = 0, . . . , N − 1)

U2n+1, x = −U2n+1,2N−x = −
1
√

2
R̃n(λ(x); γ, δ, N − 1), (x = 0, . . . , N − 1) (3.24)

U2n,N = R̃n(λ(N); γ, δ, N), U2n+1,N = 0,

where the row indices are as in (3.20). The orthogonality relation of the dual Hahn
polynomials and the signs in the matrixU imply that its rows are orthonormal, soUTU =
UUT = I. The pair of recurrence relations for dual Hahn II of Theorem 7 yield:

proposition 9 (dual Hahn II): Suppose γ > −1, δ > −1. Let M be a tridiagonal
(2N + 1)×(2N + 1)-matrix of the form (3.21) with

M2k =
√
(N + δ − k)(N − k), M2k+1 =

√
(k + 1)(k + γ + 1), (3.25)

and U the orthogonal matrix determined in (3.24). Then the columns of U are the eigen-
vectors of M, i.e. MU = UD, where D is a diagonal matrix containing the eigenvalues of
M:

D = diag(−εN, . . . , −ε1, 0, ε1, . . . , εN);

εk =
√
k(γ + δ + 1 + 2N − k) (k = 1, . . . , N).

Note that the order in which the normalized dual Hahn polynomials appear in the ma-
trix U is different for (3.20) and (3.24). This is related to the indices of the polynomials
in the relations of Theorem 7.
Finally, for the case dual Hahn III, the matrix U is given by (2.19)–(2.20) and we

recapitulate the results given at the end of the previous section, now in terms of the
dual Hahn parameters γ and δ.

proposition 10 (dual Hahn III): Suppose γ > −1, δ > −1 or γ < −N−1, δ < −N−1.
Let M be the tridiagonal matrix (2.15) with

M2k =
√
(k + γ + 1)(N + δ + 1 − k), M2k+1 =

√
(k + 1)(N − k), (3.26)

and U the orthogonal matrix determined in (2.19)–(2.20). Then the columns of U are the
eigenvectors of M, i.e. MU = UD, where D is a diagonal matrix containing the eigenvalues
of M:

D = diag(−εN, . . . , −ε1, −ε0, ε0, ε1, . . . , εN);

εk =
√
(k + γ + 1)(k + δ + 1) (k = 0, 1, . . . , N).
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To conclude for dual Hahn polynomials: there are three sets of recurrence relations
of the form (3.1)–(3.2). Each of the three cases gives rise to a two-diagonal matrix with
simple and explicit eigenvalues, and eigenvectors given in terms of two sets of dual Hahn
polynomials.

4 doubling hahn polynomials

The technique presented in the previous section can be applied to other types of discrete
orthogonal polynomials with a finite spectrum. We have done this for Hahn polynomials.
One level up in the hierarchy of orthogonal polynomials of hypergeometric type are the
Racah polynomials. Also for Racah polynomials we have applied the technique, but here
the description of the results becomes very technical. So we shall leave the results for
Racah polynomials for the Appendix.
For Hahn polynomials the analysis is again straightforward but tedious, so let us skip

the details of the computation and present just the final outcome here. Applying the
technique described in (3.3)–(3.17), with yn = Qn(x; α, β, N) and ŷn = Qn(x̂; α̂, β̂, N̂)
yields the following result.

theorem 11: The only way to combine two sets of Hahn polynomials such that they satisfy
a pair of recurrence relations of the form (3.3)–(3.4) is one of the four cases:
Hahn I, Qn(x)≡ Qn(x; α, β, N) and Q̂n(x)≡ Qn(x; α + 1, β, N):

(n + α + β + N + 2)
(2n + α + β + 2)

Qn(x)−
(N − n)

(2n + α + β + 2)
Qn+1(x)=

(α + x + 1)
(α + 1)

Q̂n(x),

−
(n + 1)(n + β + 1)
(2n + α + β + 3)

Q̂n(x)+
(n + α + β + 2)(n + α + 2)

(2n + α + β + 3)
Q̂n+1(x)= (α + 1)Qn+1(x).

Hahn II, Qn(x)≡ Qn(x; α, β, N) and Q̂n(x)≡ Qn(x − 1; α + 1, β, N − 1):

1
(2n + α + β + 2)

Qn(x)−
1

(2n + α + β + 2)
Qn+1(x)=

x
N(α + 1)

Q̂n(x),

−
(n + 1)(n + β + 1)(n + α + β + N + 2)

(2n + α + β + 3)
Q̂n(x)

+
(n + α + β + 2)(N − n − 1)(n + α + 2)

(2n + α + β + 3)
Q̂n+1(x)= N(α + 1)Qn+1(x).

Hahn III, Qn(x)≡ Qn(x; α, β, N) and Q̂n(x)≡ Qn(x; α, β + 1, N):

(n + β + 1)(n + N + 2 + α + β)
(2n + α + β + 2)

Qn(x)+
(N − n)(n + α + 1)
(2n + α + β + 2)

Qn+1(x)

= (β + 1 + N − x)Q̂n(x),
(n + 1)

(2n + α + β + 3)
Q̂n(x)+

(n + α + β + 2)
(2n + α + β + 3)

Q̂n+1(x)= Qn+1(x).



164 chapter 4

Hahn IV, Qn(x)≡ Qn(x; α, β, N) and Q̂n(x)≡ Qn(x; α, β + 1, N − 1):

(n + β + 1)
(2n + α + β + 2)

Qn(x)+
(n + α + 1)

(2n + α + β + 2)
Qn+1(x)=

(N − x)
N

Q̂n(x),

(n + 1)(n + α + β + N + 2)
(2n + α + β + 3)

Q̂n(x)+
(N − n − 1)(n + α + β + 2)

(2n + α + β + 3)
Q̂n+1(x)= NQn+1(x).

Note that when interchanging x and n the relations in Hahn II coincide with the
known forward and backward shift operator relations for dual Hahn polynomials [19,
(9.6.6), (9.6.8)]. In the same way, the other cases yield new forward and backward shift
operator relations for dual Hahn polynomials.
Since the recurrence relations are of the form (3.3)–(3.4), they can be cast in matrix

form with a two-diagonal matrix. We shall write the matrix elements again in terms of
normalized polynomials. For the case Hahn I, the matrix U of order (2N +2)×(2N +2),
with elements

U2n,N−x = U2n,N+x+1 =
(−1)n
√

2
Q̃n(x; α, β, N),

U2n+1,N−x = −U2n+1,N+x+1 = −
(−1)n
√

2
Q̃n(x; α + 1, β, N) (4.1)

where x, n ∈ {0, 1, . . . , N}, is orthogonal, and the recurrence relations yield:

proposition 12 (Hahn I): Suppose that γ, δ > −1. Let M be a tridiagonal (2N +
2)×(2N + 2)-matrix of the form (2.15) with

M2k =

√
(k + α + 1)(k + α + β + 1)(k + α + β + 2 + N)

(2k + α + β + 1)(2k + α + β + 2)
,

M2k+1 =

√
(k + β + 1)(k + 1)(N − k)

(2k + α + β + 2)(2k + α + β + 3)
, (4.2)

and U the orthogonal matrix determined in (4.1). Then the columns of U are the eigen-
vectors of M, i.e. MU = UD, where D is a diagonal matrix containing the eigenvalues of
M:

D = diag(−εN, . . . , −ε1, −ε0, ε0, ε1, . . . , εN); εk =
√
k + α + 1 (k = 0, 1, . . . , N).

(4.3)

For the case Hahn II, the orthogonal matrix U is of order (2N + 1)×(2N + 1), with
elements

U2n,N−x = U2n,N+x =
(−1)n
√

2
Q̃n(x; α, β, N), (x = 1, . . . , N)

U2n+1,N−x = −U2n+1,N+x = −
(−1)n
√

2
Q̃n(x − 1; α + 1, β, N − 1), (x = 1, . . . , N)

(4.4)
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U2n,N = (−1)nQ̃n(0; α, β, N), U2n+1,N = 0,

where the row indices are as in (3.20). The recurrence relations for Hahn II yield:

proposition 13 (Hahn II): Suppose that α, β > −1 or α, β < −N. Let M be a tridia-
gonal (2N + 1)×(2N + 1)-matrix of the form (3.21) with

M2k =

√
(k + α + 1)(k + α + β + 1)(N − k)
(2k + α + β + 1)(2k + α + β + 2)

,

M2k+1 =

√
(k + β + 1)(k + α + β + 2 + N)(k + 1)

(2k + α + β + 2)(2k + α + β + 3)
, (4.5)

and U the orthogonal matrix determined in (4.4). Then the columns of U are the eigen-
vectors of M, i.e. MU = UD, where D is a diagonal matrix containing the eigenvalues of
M:

D = diag(−εN, . . . , −ε1, 0, ε1, . . . , εN); εk =
√
k (k = 1, . . . , N). (4.6)

Note that for both cases, the two-diagonal matrix M becomes more complicated com-
pared to the cases for dual Hahn polynomials, but the matrix D of eigenvalues becomes
simpler.
For the two remaining cases we need not give all details: the matrix M for the case

Hahn III is equal to the matrix M for the case Hahn I with the replacement α ↔ β,
and so its eigenvalues are ±

√
k + β + 1 (k = 0, 1, . . . , N). And the matrix M for the

case Hahn IV is equal to the matrix M for the case Hahn II with the same replacement
α ↔ β, so its eigenvalues are 0 and ±

√
k (k = 1, . . . , N).

5 polynomial systems, christoffel and geronimus transforms

So far, we have only partially explained why the technique in the previous sections
is referred to as “doubling” polynomials. It is indeed a fact that the combination of
two sets of polynomials, each with different parameters, yields a new set of orthogonal
polynomials. This can be compared to the well known situation of combining two sets
of generalized Laguerre polynomials (both with different parameters α and α − 1) into
the set of “generalized Hermite polynomials” [8]. There, for α > 0, one defines

P2n(x)=
√

n!
(α)n

L(α−1)
n (x2), P2n+1(x)=

√
n!

(α)n+1
xL(α)n (x2). (5.1)

Then the orthogonality relation of Laguerre polynomials leads to the orthogonality of
the polynomials (5.1): ∫ +∞

−∞

w(x)Pn(x)Pn′(x)dx = Γ(α)δn,n′, (5.2)
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where
w(x)= e−x

2
|x |2α−1. (5.3)

Note that the even polynomials are Laguerre polynomials in x2 (for parameter α − 1),
and the odd polynomials are Laguerre polynomials in x2 (for parameter α) multiplied
by a factor x. The weight function (5.3) is common for both types of polynomials. It is
this phenomenon that appears here too in our doubling process of Hahn or dual Hahn
polynomials.
From a more general point of view, this fits in the context of obtaining a new family

of orthogonal polynomials starting from a set of orthogonal polynomials and its kernel
partner related by a Christoffel transform [8, 22, 32]. In a way, our classification de-
termines for which Christoffel parameter ν (see [32] for the notation) the Christoffel
transform of a Hahn, dual Hahn or Racah polynomial is again a Hahn, dual Hahn or
Racah polynomial with possibly different parameters. This determines moreover quite
explicitly the common weight function.
For a dual Hahn polynomial Rn(x)≡ Rn(λ(x); γ, δ, N), with data given in (2.10), and

a Christoffel parameter ν the kernel partner is given by the transform

Pn(x)=
Rn+1(x)−anRn(x)
Λ(x)−Λ(ν)

, an =
Rn+1(ν)
Rn(ν)

. (5.4)

Because of the recurrence relation (2.5) and what is called the Geronimus transform
the original polynomials can also be expressed in terms of the kernel partners. This is
usually done for monic polynomials(see [32, (3.2)-(3.3)]), but it can be extended to
non-monic dual Hahn polynomials as follows

Rn(x)= A(n)Pn(x)−bnPn−1(x) (5.5)

where the coefficients bn are related to the recurrence relation (2.5) as follows

bnan−1 = C(n), A(n)an + bn = A(n)+C(n)+Λ(ν). (5.6)

Our classification now shows that only for ν equal to one of the values 0, N or −δ, the
kernel partner Pn(x) will again be a dual Hahn polynomial. Indeed, taking for example
ν = 0 in (5.4) we have Rn(0)= 1 and

Pn(x)=
Rn+1(x)−Rn(x)

Λ(x)
=

−1
N(γ + 1)

Rn(λ(x − 1); γ + 1, δ + 1, N − 1),

where we used the first relation of dual Hahn I to obtain again a dual Hahn polyno-
mial. The reverse transform (5.5) follows immediately from the second relation of dual
Hahn I. Similarly, taking ν = N in (5.4) we have Rn(N)= (−N − δ)n/(γ + 1)n and

Pn(x) =
Rn+1(x)−Rn(x)(n − δ − N)/(n + γ + 1)

(x − N)(x + N + γ + δ + 1)

=
−1

N(n + γ + 1)
Rn(λ(x); γ, δ, N − 1),
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which we obtained using the first relation of dual Hahn II. For the reverse transform
(5.5) we find, using the second relation of dual Hahn II with shifted n 7→ n − 1,

A(n)Pn(x)−bnPn−1(x) =
−(n − N)

N
Rn(λ(x); γ, δ, N − 1)+

n
N
Rn−1(λ(x); γ, δ, N − 1)

= Rn(x).

For the last case, taking ν = −δ in (5.4) we have Rn(−δ)= (−N − δ)n/(−N)n and

Pn(x) =
Rn+1(x)−Rn(x)(n − δ − N)/(n − N)

(x + γ + 1)(x + δ)

=
1

(γ + 1)(n − N)
Rn(λ(x); γ + 1, δ − 1, N),

which we obtained using the first relation of dual Hahn III. For the transform (5.5) we
have,

A(n)Pn(x)−bnPn−1(x)

=
n + γ + 1
γ + 1

Rn(λ(x); γ + 1, δ − 1, N − 1)−
n

γ + 1
Rn−1(λ(x); γ + 1, δ − 1, N),

which equals Rn(x) by the second relation of dual Hahn III.
In a similar way, for the Hahn polynomials, putting Qn(x)≡ Qn(x; a, b, N), using the

data (2.6) in

Pn(x)=
Qn+1(x)−anQn(x)
Λ(x)−Λ(ν)

, an =
Qn+1(ν)
Qn(ν)

,

and in (5.5)–(5.6), the cases Hahn I, II, III, V correspond respectively to the choices
−α − 1, 0, N + β + 1 and N for ν.
The task of determining for which Christoffel parameter ν the kernel partner of a dual

Hahn polynomial is again of the same family is not trivial. It comes down to finding a
pair of recurrence relations of the form (3.1)–(3.2) with coefficients related to ν as
in (5.4). We have classified these for general coefficients, without a relation to ν, and
we observe that each solution indeed corresponds to a specific choice for ν.
The transforms (5.4)–(5.5) give rise to new orthogonal systems, but in general there

is no way of writing the common weight function. However, since here both sets are of
the same family, we can actually do this. Let us begin with the dual Hahn polynomials, in
particular the case dual Hahn I, for which the corresponding matrixU is given in (3.20).
They give rise to a new family of discrete orthogonal polynomials with the relation
MU = UD corresponding to their three term recurrence relation with Jacobi matrix
M (3.22). In general the support of the weight function is equal to the spectrum of the
Jacobi matrix [5, 18, 20, 21]. After simplifying with the normalization factors (2.9), this
leads to a discrete orthogonality of polynomials, with support equal to the eigenvalues
of M (so in this case, the support follows from (3.23)). Concretely, for the case under
consideration, we have:
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proposition 14: Let γ > −1, δ > −1, and consider the 2N + 1 polynomials:

P2n(q)=
(−1)n
√

2
Rn(q2; γ, δ, N), (n = 0, 1, . . . , N)

P2n+1(q)= −
(−1)n
√

2

√
(n + γ + 1)(N − n)

(γ + 1)N
q Rn(q2 − γ − δ − 2; γ + 1, δ + 1, N − 1)

(n = 0, 1, . . . , N − 1). (5.7)

These polynomials satisfy the discrete orthogonality relation∑
q∈S

(−1)k(2k + γ + δ + 1)(γ + 1)k(−N)kN!
(k + γ + δ + 1)N+1(δ + 1)kk!

(1 + δq,0)Pn(q)Pn′(q)

=

[(
γ + bn/2c
bn/2c

) (
δ + N − bn/2c
N − bn/2c

)]−1

δn,n′ (5.8)

with
S = {0, ±

√
k(k + γ + δ + 1) (k = 1, 2, . . . , N)}.

Note that for q ∈ S, q2 = k(k + γ + δ + 1)≡ λ(k), and the polynomial P2n(q) is of the
form Rn(λ(k); γ, δ, N). In that case, q2−γ−δ−2 = (k−1)((k−1)+(γ+1)+(δ+1)+1)≡
λ(k−1), so the polynomial P2n+1(q) is of the form Rn(λ̂(k−1); γ+1, δ+1, N −1). The
interpretation of the weight function in the left hand side of (5.8) is as follows: each q
in the support S is mapped to a k-value belonging to {0, 1, . . . , N}, and then the weight
depends on this k-value.
Now we turn to the classification of section 4, where the corresponding orthogonal

matrices U are given in terms of (normalized) Hahn polynomials. for the case Hahn I,
the matrix U is given in (4.1), and the spectrum of the matrix M is given by (4.3). After
simplifying the normalization factors, the orthogonality of the rows of U gives rise to:

proposition 15: Let α > −1, β > −1, and consider the 2N + 2 polynomials (n =
0, 1, . . . , N):

P2n(q)=
(−1)n
√

2
Qn(q2 − α − 1; α, β, N),

P2n+1(q)= −
(−1)n
√

2

1
(α + 1)

√
(n + α + 1)(n + α + β + 1)(2n + 2 + α + β)

(n + N + α + β + 2)(2n + α + β + 1)

× q Qn(q2 − α − 1; α + 1, β, N). (5.9)

These polynomials satisfy the discrete orthogonality relation∑
q∈S

(
q2 − 1

q2 − α − 1

) (
N − q2 + α + β + 1
N − q2 + α + 1

)
Pn(q)Pn′(q)= h bn/2c(α, β, N)βn,n′
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with

S = {−
√
N + α + 1, −

√
N + α, . . . , −

√
α + 1,

√
α + 1, . . . ,

√
N + α,

√
N + α + 1}

and
hn(α, β, N)=

(−1)n(n + α + β + 1)N+1(β + 1)nn!
(2n + α + β + 1)(α + 1)n(−N)nN!

.

So Pn(q) is a polynomial of degree n in the variable q, of different type (with different
parameters when expressed as a Hahn polynomial) depending on whether n is even or
n is odd. The support points of the discrete orthogonality are given by

q = ±
√
k + α + 1 k = 0, . . . , N.

In the same way, the dual orthogonality for the case Hahn II gives rise to:

proposition 16: Let α > −1, β > −1, and consider the 2N + 1 polynomials:

P2n(q)=
(−1)n
√

2
Qn(q2; α, β, N), (n = 0, 1, . . . , N)

P2n+1(q)= −
(−1)n
√

2

1
(α + 1)N

√
(N − n)(n + α + 1)(n + α + β + 1)(2n + α + β + 2)

(2n + α + β + 1)

× q Qn(q2 − 1; α + 1, β, N − 1) (n = 0, 1, . . . , N − 1). (5.10)

These polynomials satisfy the discrete orthogonality relation∑
q∈S

(
q2 + α

q2

) (
N − q2 + β

N − q2

)
(1 + δq,0)Pn(q)Pn′(q)= h bn/2c(α, β, N)βn,n′

with
S = {−

√
N, −
√
N − 1, . . . , −1, 0, 1, . . . ,

√
N − 1,

√
N}

and
hn(α, β, N)=

(−1)n(n + α + β + 1)N+1(β + 1)nn!
(2n + α + β + 1)(α + 1)n(−N)nN!

.

The ideas described in the three propositions of this section should be clear. It would
lead us too far to give also the explicit forms corresponding to the remaining cases. Let
us just mention that also for these cases the support of the new polynomials coincides
with the spectrum of the corresponding two-diagonal matrix M.
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6 first application: eigenvalue test matrices

In sections 3 and 4 we have encountered a number of symmetric two-diagonal matri-
ces M with explicit expressions for the eigenvectors and eigenvalues. In general, if one
considers a two-diagonal matrix A of size (m + 2)×(m + 2),

A =

©«

0 b0 0

c0 0 b1
. . .

0 c1 0
. . . 0

. . .
. . .

. . . bm
0 cm 0

ª®®®®®®®®®¬
, (6.1)

then it is clear that the characteristic polynomial depends on the products bici (i = 0,
. . . , m) only, and not on bi and ci separately. So the same holds for the eigenvalues.
Therefore, if all matrix elements bi and ci are positive, the eigenvalues of A or of the
related symmetric matrix

A′ =

©«

0
√
b0c0 0

√
b0c0 0

√
b1c1

. . .

0
√
b1c1 0

. . . 0
. . .

. . .
. . .

√
bmcm

0
√
bmcm 0

ª®®®®®®®®®¬
(6.2)

are the same. The eigenvectors of A′ are those of A after multiplication by a diagonal
matrix (the diagonal matrix that is used in the similarity transformation from A to A′).
For matrices of type (6.1), it is sufficient to denote them by their superdiagonal [b] =
[b0, . . . , bm] and their subdiagonal [c] = [c0, . . . , cm]. So the Sylvester-Kac matrix from
the introduction is denoted by

[b] = [1, 2, . . . , N], [c] = [N, . . . , 2, 1],

with eigenvalues given by (1.2).
The importance of the Sylvester-Kac matrix as a test matrix for numerical eigenvalue

routines has already been emphasized in the Introduction. In this context, it is also
significant that the matrix itself has integer entries only (so there is no rounding error
when represented on a digital computer), and that also the eigenvalues are integers. Of
course, matrices with rational numbers as entries suffice as well, since one can always
multiply the matrix by an appropriate integer factor.
Let us now systematically consider the two-diagonal matrices encountered in the clas-

sification process of doubling Hahn or dual Hahn polynomials. For the matrix (3.21) of
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the dual Hahn I case, the corresponding non-symmetric form can be chosen as the two-
diagonal matrix with

[b] = [γ + 1, 1, γ + 2, 2, . . . , γ + N, N],
[c] = [N, N + δ, N − 1, N − 1 + δ, . . . , 1, δ + 1]. (6.3)

The eigenvalues are determined by Proposition 8 and given by 0, ±
√
k(k + γ + δ + 1)

(k = 1, . . . , N). This is (up to a factor 2) the matrix (1.3) mentioned in the Introduction.
As test matrix, the choice γ + δ + 1 = 0 (leaving one free parameter) is interesting as it
gives rise to integer eigenvalues. In Proposition 8 there is the initial condition γ > −1,
δ > −1. Clearly, if one is only dealing with eigenvalues, the condition for (6.3) is just
γ + δ + 2 ≥ 0. And when one substitutes δ = −γ − 1 in (6.3), there is no condition at
all for the one-parameter family of matrices of the form (6.3).
For the dual Hahn II case, the matrix (3.25) is given in Proposition 9, and its non-

symmetric form can be taken as

[b] = [γ + N, 1, γ + N − 1, 2, . . . , γ + 1, N],
[c] = [N, δ + 1, N − 1, δ + 2, . . . , 1, δ + N]. (6.4)

The eigenvalues are given by 0, ±
√
k(γ + δ + 1 + 2N − k) (k = 1, . . . , N). There is no

simple substitution that reduces these eigenvalues to integers.
For the dual Hahn III case, the matrix (2.16) is given in Proposition 10, and its sim-

plest non-symmetric form is

[b] = [γ + 1, 1, γ + 2, 2, . . . , γ + N, N, γ + N + 1],
[c] = [δ + N + 1, N, δ + N, N − 1, . . . , δ + 2, 1, δ + 1]. (6.5)

The eigenvalues are given by (2.18), i.e. ±
√
(γ + k + 1)(δ + k + 1) (k = 0, . . . , N). Up

to a factor 2, this is the third matrix mentioned in the Introduction. The substitution δ =
γ leads to a one-parameter family of two-diagonal matrices with square-free eigenvalues.
And in particular when moreover γ is integer, all matrix entries and all eigenvalues are
integers.
The two-diagonal matrices arising from the Hahn doubles or the Racah doubles can

also be written in a square-free form of type (6.1). However, for these cases the entries in
the two-diagonal matrices M are already quite involved (see e.g. Propositions 12, 13, 18
or 19), and we shall not discuss them further in this context. The three examples given
here, (6.3)–(6.5), are already sufficiently interesting as extensions of the Sylvester-Kac
matrix as potential eigenvalue test matrices.

7 further applications: related algebraic structures and
finite oscillator models

The original example of a (dual) Hahn double, described here in section 2, was en-
countered in the context of a finite oscillator model [14]. In that context, there is also a
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related algebraic structure. In particular, the two-diagonal matricesM of the form (2.15)
or (3.21) are interpreted as representation matrices of an algebra, which can be seen as
a deformation of the Lie algebra su(2). Once an algebraic formulation is clear, this struc-
ture can be used to model a finite oscillator. The close relationship comes from the fact
that for the corresponding finite oscillator model the spectrum of the position operator
coincides with the spectrum of the matrix M.
Therefore, it is worthwhile to examine the algebraic structures behind the current

matrices M. We shall do this explicitly for the three double dual Hahn cases.
For the case dual Hahn I, we return to the form of the matrix M given in (3.21)

or (3.22). For any positive integer N, let J+ denote the lower-triangular tridiagonal
(2N + 1)×(2N + 1) matrix given below, and let J− be its transpose:

J+ = 2

©«

0 0
M0 0 0
0 M1 0 0

0 M2 0
. . .

. . .
. . .

. . .

ª®®®®®®®®¬
, J− = J†+. (7.1)

Let us also define the common diagonal matrix

J0 = diag(−N, −N + 1, . . . , N), (7.2)

and the “parity matrix”
P = diag(1, −1, 1, −1, . . . ). (7.3)

Then it is easy to check that these matrices satisfy the following relations (as usual, I
denotes the identity matrix):

P2 = 1, PJ0 = J0P, PJ± = −J±P,
[J0, J±] = ±J±,
[J+, J−] = 2J0 + 2(γ + δ + 1)J0P − (2N + 1)(γ − δ)P + (γ − δ)I. (7.4)

Especially the last equation is interesting. From the algebraic point of view, it introduces
some two-parameter deformation or extension of su(2). When γ = δ = −1/2, the
equations coincide with the su(2) relations. Another important case is when δ = −γ−1,
leaving a one-parameter extension of su(2) without quadratic terms.
For the case dual Hahn II, the corresponding expressions of J+, J−, J0 and P are the

same as above in (7.1)–(7.3), but with Mk-values given by (3.25). As far as the algebraic
relations are concerned, they are also given by (7.4) but with the last relation replaced
by

[J+, J−] = −2J0 + 2(γ + δ + 2N + 1)J0P + (2N + 1)(γ − δ)P − (γ − δ)I. (7.5)
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For the case dual Hahn III, the size of the matrices changes to (2N + 2)×(2N +
2). For J+ and J− one can use (7.1), with Mk-values given by (3.26). P has the same
expression (7.3), but for J0 we need to take

J0 = diag(−N −
1
2
, −N +

1
2
, . . . , N +

1
2
). (7.6)

With these expressions, the algebraic relations are given by (7.4) but with the last rela-
tion replaced by

[J+, J−] = 2J0+2(γ−δ)J0P−((2N+2)(γ+δ+1)+(2γ+1)(2δ+1))P+(γ−δ)I. (7.7)

The structure of these algebras is related to the structure of the so-called algebra H
of the dual −1 Hahn polynomials, see [11, 31]. It is not hard to verify that the algebra
H, determined by [11, Eqs. (3.4)–(3.6)] or [11, Eqs. (6.2)–(6.4)] , can be cast in the
form (7.4) (or vice versa). Indeed, starting from the form [11, Eqs. (6.2)–(6.4)] coming
from dual −1 Hahn polynomials, we can take

J0 = K̃1 −
ρ

4
, J+ = K̃2 + K̃3, J− = K̃2 − K̃3,

to get the same form as (7.4)

P2 = 1, PJ0 = J0P, PJ± = −J±P,
[J0, J±] = ±J±,

[J+, J−] = 2J0 + 2νJ0P +
σ

2
P +

ρ

2
I, (7.8)

where ν, σ, ρ depend on the parameters of the dual −1 Hahn polynomials α, β, N
through [11, Eqs. (3.4)–(3.6)]. In our case, the algebraic relations are the same, but
the dependence of the “structure constants” in (7.8) on the parameters γ, δ, N of the
dual Hahn polynomials is different.
As far as we can see, the doubling of dual Hahn polynomials as classified in this paper

gives a set of polynomials that is similar but in general not the same as a set of dual −1
Hahn polynomials [31] (except for specific values of parameters, e.g. δ = −γ − 1 does
coincide with a specific dual −1 Hahn polynomial). For general parameters, the support
of the weight function is different, the recurrence relations (or difference relations) are
different, and the hypergeometric series expression is different.
The algebraic structures obtained here (or special cases thereof) can be of interest for

the construction of finite oscillator models [3, 1, 2, 14]. Two familiar finite oscillator
models fall within this framework: the model discussed in [14] corresponds to (7.7)
with δ = γ, and the one analysed in [15] to (7.4) with δ = γ. Observe that there are
some other interesting special values. For example, the case (7.4) with δ = −γ−1 gives
rise to an interesting algebra, and in particular also to a very simple spectrum (3.23). We
intend to study the finite oscillator that is modeled by this case, and study in particular
the corresponding finite Fourier transform; but this will be the topic of a separate paper.
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8 conclusion

We have classified all pairs of recurrence relations for two types of dual Hahn polyno-
mials (i.e. dual Hahn polynomials with different parameters), and refer to these as dual
Hahn doubles. The analysis is quite straightforward, and the result is given in Theo-
rem 7, yielding three cases. For each case, we have given the corresponding symmetric
two-diagonal matrix M, its matrix of orthonormal eigenvectors U and its eigenvalues
in explicit form. The same classification has been obtained for Hahn polynomials and
Racah polynomials.
The orthogonality of the matrix U gives rise to new sets of orthogonal polynomials.

These sets could in principle also be obtained from, for example, a set of dual Hahn
polynomials and a certain Christoffel transform. In our approach, the possible cases
where such a transform gives rise to a polynomial of the same type follow naturally, and
also the explicit polynomials and their orthogonality relations arise automatically.
As an interesting secondary outcome, we obtain nice one-parameter and two-param-

eter extensions of the Sylvester-Kac matrix with explicit eigenvalue expressions. Such
matrices can be of interest for testing numerical eigenvalue routines.
The first example of a (dual) Hahn double appeared in a finite oscillator model [14].

For this model, the Hahn polynomials (or their duals) describe the discrete position
wavefunction of the oscillator, and the two-diagonal matrix M lies behind an underlying
algebraic structure. Here, we have examined the algebraic relations corresponding to the
three dual Hahn cases. It is clear that the analysis of finite oscillators for some of these
cases is worth pursuing.

A appendix: doubling racah polynomials

The technique presented in sections 3–4 is applied here for Racah polynomials.
Racah polynomials Rn(λ(x); α, β, γ, δ) of degree n (n = 0, 1, . . . , N) in the variable

λ(x)= x(x + γ + δ + 1) are defined by [13, 19, 23]

Rn(λ(x); α, β, γ, δ)= 4F3

(
−n, n + α + β + 1, −x, x + γ + δ + 1

α + 1, β + δ + 1, γ + 1
; 1

)
, (A.1)

where one of the denominator parameters should be −N:

α + 1 = −N or β + δ + 1 = −N or γ + 1 = −N. (A.2)

For the (discrete) orthogonality relation (depending on the choice of which parameter
relates to −N) we refer to [19, (9.2.2)] or [25, Section 18.25]
Racah polynomials satisfy a recurrence relation of the form (2.5) with

yn(x)= Rn(λ(x); α, β, γ, δ), Λ(x)= λ(x)= x(x + γ + δ + 1),

A(n)=
(n + α + 1)(n + α + β + 1)(n + γ + 1)(n + β + δ + 1)

(2n + α + β + 1)(2n + α + β + 2)
,
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C(n)=
n(n + α + β − γ)(n + α − δ)(n + β)

(2n + α + β)(2n + α + β + 1)
. (A.3)

We have applied the technique described in (3.3)–(3.17), with yn = Rn(λ(x); α, β,
γ, δ) and ŷn = Rn(λ(x̂); α̂, β̂, γ̂, δ̂). The analysis is again straightforward but tedious,
and the final outcome is:

theorem 17: The only way to combine two sets of Racah polynomials such that they
satisfy difference relations of the form (3.3)–(3.4) is one of the four cases:
Racah I, Rn(x)≡ Rn(λ(x); α, β, γ, δ) and R̂n(x)≡ Rn(λ(x); α, β + 1, γ + 1, δ − 1):

(n + β + δ + 1)(n + α + 1)
(2n + α + β + 2)

Rn+1(x)−
(n − δ + α + 1)(n + β + 1)

(2n + α + β + 2)
Rn(x)

=
(x + δ)(x + γ + 1)

γ + 1
R̂n(x),

(n + α + β + 2)(n + γ + 2)
(2n + α + β + 3)

R̂n+1(x)−
(n + 1)(n − γ + α + β + 1)

(2n + α + β + 3)
R̂n(x)

= (γ + 1)Rn+1(x) .

Racah II, Rn(x)≡ Rn(λ(x); α, β, γ, δ) and R̂n(x)≡ Rn(λ(x); α, β + 1, γ, δ):

(n + γ + 1)(n + α + 1)
(2n + α + β + 2)

Rn+1(x)−
(n − γ + α + β + 1)(n + β + 1)

(2n + α + β + 2)
Rn(x)

=
(x + β + δ + 1)(x + γ − β)

β + δ + 1
R̂n(x),

(n + β + δ + 2)(n + α + β + 2)
(2n + α + β + 3)

R̂n+1(x)−
(n + 1)(n − δ + α + 1)

(2n + α + β + 3)
R̂n(x)

= (β + δ + 1)Rn+1(x) .

Racah III, Rn(x)≡ Rn(λ(x); α, β, γ, δ) and R̂n(x)≡ Rn(λ(x − 1); α + 1, β, γ+ 1, δ+ 1):

1
(2n + α + β + 2)

Rn+1(x)−
1

(2n + α + β + 2)
Rn(x)=

x(x + γ + δ + 1)
(γ + 1)(β + δ + 1)(α + 1)

R̂n(x),

(n + γ + 2)(n + β + δ + 2)(n + α + 2)(n + α + β + 2)
(2n + α + β + 3)

R̂n+1(x)

−
(n + 1)(n − γ + α + β + 1)(n − δ + α + 1)(n + β + 1)

(2n + α + β + 3)
R̂n(x)

= (γ + 1)(β + δ + 1)(α + 1)Rn+1(x) .

Racah IV, Rn(x)≡ Rn(λ(x); α, β, γ, δ) and R̂n(x)≡ Rn(λ(x); α + 1, β, γ, δ):

(n + γ + 1)(n + β + δ + 1)
(2n + α + β + 2)

Rn+1(x)−
(n − γ + α + β + 1)(x − δ + α + 1)

(2n + α + β + 2)
Rn(x)

=
(x + γ + δ − α)(x + α + 1)

(α + 1)
R̂n(x),



176 chapter 4

(n + α + 2)(n + α + β + 2)
(2n + α + β + 3)

R̂n+1(x)−
(n + 1)(n + β + 1)
(2n + α + β + 3)

R̂n(x)

= (α + 1)Rn+1(x) .

Note that after interchanging n and x, and α ↔ γ and β ↔ δ, the relations in
Racah III coincide with the known forward and backward shift operator relations [19,
(9.2.6), (9.2.8)]. The relations in Racah I were already found in [16, (5)–(6)].

In the context of Section 5 it is worth noting that the above relations also corres-
pond to Christoffel-Genonimus transforms. Taking Rn(x)≡ Rn(λ(x); α, β, γ, δ) in the
relations (5.4)–(5.6), with data given by (A.3), the above cases Racah I, II, III, IV cor-
respond respectively to the choices ν = −δ, ν = β − γ, ν = 0 and ν = −α − 1.
For each of the four cases, one can translate the set of difference relations to a matrix

identity of the formMU = UD. In fact, for each of the four cases, there are three subcases
depending on the choice of −N in (A.2). We shall not give all of these cases: they should
be easy to construct for the reader who needs one. Let us just give an example or two.
Consider the case Racah I with α + 1 = −N. It is convenient to perform the shift

δ→ δ + 1 in the two difference relations of Theorem 17. The orthogonal matrix U is of
order (2N + 2)×(2N + 2), with elements

U2n,N−x = U2n,N+x+1 =
(−1)n
√

2
R̃n(λ(x); α, β, γ, δ + 1),

U2n+1,N−x = −U2n+1,N+x+1 = −
(−1)n
√

2
R̃n(λ(x); α, β + 1, γ + 1, δ), (A.4)

where R̃n is the notation for a normalized Racah polynomial. Then, one has

proposition 18: Suppose that γ, δ > −1 and β > N + γ or β < −N − δ − 1. Let M
be a tridiagonal (2N + 2)×(2N + 2)-matrix of the form (2.15) with

M2k =

√
(N − β − k)(γ + 1 + k)(N + δ + 1 − k)(k + β + 1)

(N − β − 2k)(2k − N + 1 + β)
,

M2k+1 =

√
(γ + N − β − k)(k + 1)(N − k)(k + β + δ + 2)

(N − β − 2k − 2)(2k − N + 1 + β)
, (A.5)

and U the orthogonal matrix determined in (A.4). Then the columns of U are the eigen-
vectors of M, i.e. MU = UD, where D is a diagonal matrix containing the eigenvalues of
M:

D = diag(−εN, . . . , −ε1, −ε0, ε0, ε1, . . . , εN),

εk =
√
(k + γ + 1)(k + δ + 1) (k = 0, 1, . . . , N). (A.6)

As a second example, consider the case Racah III with α + 1 = −N. The orthogonal
matrix U is now of order (2N + 1)×(2N + 1), with elements

U2n,N−x = U2n,N+x =
(−1)n
√

2
R̃n(λ(x); α, β, γ, δ), (n = 1, . . . , N)
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U2n+1,N−x−1 = −U2n+1,N+x+1 = −
(−1)n
√

2
R̃n(λ(x); α + 1, β, γ + 1, δ + 1),

(n = 0, . . . , N − 1)

U2n,N = (−1)nR̃n(λ(0); α, β, γ, δ), U2n+1,N = 0. (A.7)

Then, one has

proposition 19: Suppose that γ, δ > −1 and β > N + γ or β < −N − δ. Let M be a
tridiagonal (2N + 1)×(2N + 1)-matrix of the form (3.21) with

M2k =

√
(k + γ + 1)(−N + β + k)(N − k)(k + β + δ + 1)

(N − β − 2k)(N − β − 2k − 1)
,

M2k+1 =

√
(γ + N − β − k)(k + 1)(k + β + 1)(k − δ − N)

(N − β − 2k − 2)(N − β − 2k − 1)
, (A.8)

and U the orthogonal matrix determined in (A.7). Then the columns of U are the eigen-
vectors of M, i.e. MU = UD, where D is a diagonal matrix containing the eigenvalues of
M:

D = diag(−εN, . . . , −ε1, 0, ε1, . . . , εN), εk =
√
k(k + γ + δ + 1) (k = 1, . . . , N).

(A.9)
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abstract

We consider an extension of the real Lie algebra su(2) by introducing a parity operator
P and a parameter c. This extended algebra is isomorphic to the Bannai-Ito algebra with
two parameters equal to zero. For this algebra we classify all unitary finite-dimensional
representations and show their relation with known representations of su(2). Moreover,
we present a model for a one-dimensional finite oscillator based on the odd-dimensional
representations of this algebra. For this model, the spectrum of the position operator is
equidistant and coincides with the spectrum of the known su(2) oscillator. In particular
the spectrum is independent of the parameter c while the discrete position wavefunc-
tions, which are given in terms of certain dual Hahn polynomials, do depend on this
parameter.

1 introduction

Finite oscillator models were introduced and investigated in a number of papers, see
e.g. [5–7, 1, 19, 20]. The standard and well-recognized example is the su(2) oscillator
model [5, 1]. In brief, this model is based on the su(2) algebra with basis elements
J0 = Jz, J± = Jx ± Jy satisfying

[J0, J±] = ±J±, [J+, J−] = 2J0, (1.1)

with unitary representations of dimension 2j + 1 (where j is integer or half-integer).
Recall that the oscillator Lie algebra can be considered as an associative algebra (with
unit element 1) with three generators Ĥ, q̂ and p̂ (the Hamiltonian, the position and
the momentum operator) subject to

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, [q̂, p̂] = i, (1.2)

in units with mass and frequency both equal to 1, and ~ = 1. The first two are the
Hamilton-Lie equations; the third the canonical commutation relation. The canonical
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commutation relation is not compatible with a finite-dimensional Hilbert space. Fol-
lowing this, one speaks of a finite oscillator model if Ĥ, q̂ and p̂ belong to some algebra
such that the Hamilton-Lie equations are satisfied and such that the spectrum of Ĥ in
representations of that algebra is equidistant [5, 19].
In the su(2) model, one chooses

Ĥ = J0 + j +
1
2
, q̂ =

1
2
(J+ + J−), p̂ =

i
2
(J+ − J−). (1.3)

These indeed satisfy [Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, and in the representation (j) labeled by
j the spectrum of Ĥ is equidistant (and given by n + 1

2 ; n = 0, 1, . . . , 2j). Clearly, for
this model the position operator q̂ = 1

2(J+ + J−) also has a finite spectrum in the repre-
sentation (j) given by q ∈ {−j, −j+1, . . . , +j}. In terms of the standard J0-eigenvectors
| j, m〉, the eigenvectors of q̂ can be written as

| j, q)=
j∑

m=−j

Φj+m(q)| j, m〉. (1.4)

The coefficientsΦn(q) are the position wavefunctions, and in this model [5, 1] they turn
out to be (normalized) symmetric Krawtchouk polynomials, Φn(q)∼ Kn(j + q; 1

2, 2j).
The shape of the these wavefunctions is reminiscent of those of the canonical oscillator:
under the limit j → ∞ they coincide with the canonical wavefunctions in terms of
Hermite polynomials.
Following the ideas of the seminal papers on the su(2) oscillator model, some alter-

native finite oscillator models were introduced [19–21]. The interest in these different
models stems from several facts: in these new models additional parameters could be
introduced, leading to wavefunctions with potentially more applications; the underlying
algebras have a richer structure than su(2); the wavefunctions are related to other clas-
ses of discrete orthogonal polynomials, and to new properties of these polynomials. In
particular, we observed that in our models the wavefunctions were related to some “dou-
bling process” of known orthogonal polynomials. A peculiar property of the wavefunc-
tions in the new models of Refs. [19–21], which could be considered as a disadvantage,
is that the support of the discrete position wavefunctions (which is the spectrum of the
position operator) is no longer equidistant.
So far, the introduction of new finite oscillator models looked rather arbitrarily. The

mentioned relation to a “doubling process” for orthogonal polynomials, however, raised
the question in howmany ways the classical discrete orthogonal polynomials can be dou-
bled, and whether these give rise to interesting models. In a recent paper [24], we inves-
tigated and classified all doubles for Hahn, dual Hahn and Racah polynomials, which are
the standard discrete orthogonal polynomials one level up from the Krawtchouk polyno-
mials in the Askey scheme [22]. We not only classified all possible doubles; additionally
we showed that each double is essentially a Christoffel-Geronimus pair [24].
Following the classification of [24], it is worthwhile to investigate the oscillatormodels

corresponding to Hahn or dual Hahn doubles that have not yet been studied before. We
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are in particular interested in models in which also the position operator spectrum is
equidistant. This is how the present paper originated: from our classification [24] it is
clear that there is one case (referred to as “Dual Hahn I” in [24]) giving rise to a natural
equidistant position spectrum. The model related to this case is the subject here.
Rather than introducing this new model via the dual Hahn double, it is – in the fi-

nite oscillator context – more natural to start from the underlying algebra. This is the
line followed here: in section 2 we introduce the algebra su(2)P , an extension of su(2)
by a parity operator P. The extension is close to a “central extension”, with parameter
c, but P is not a central element (it commutes with J0 but anticommutes with J+ and
J−). This algebra is interesting on its own, and we also classify all irreducible unitary
finite-dimensional representations of su(2)P . These representations can be understood
as deformations of the common su(2) representations of dimension 2j + 1, except that
not all of these can be deformed (which representations appear depends on the value of
c, the parameter of the extension). In section 3 we discuss the finite oscillator model re-
lated to su(2)P . In particular, we show that (for odd dimensions) the spectral problem
for the position operator is of type dual Hahn I (according to the classification [24]),
and we construct the orthonormal eigenvectors of the position and momentum oper-
ator. The following section deals with some properties of the corresponding position
wavefunctions. The expressions of the wavefunctions are quite simple dual Hahn poly-
nomials. We also discuss some plots of the wavefunctions, and state some natural limits
(in particular to the canonical quantum oscillator). The paper ends with some conclu-
ding remarks: in particular, we clarify the connection/difference between the algebra
su(2)P and previously used extended algebras u(2)α [19] and su(2)α [20] in the con-
text of “Hahn oscillators”, and we discuss a reflection differential operator realization
of su(2)P .

2 an extension of su(2) and its representations

The real Lie algebra su(2) [17, 29] can be defined by three basis elements J0, J+, J− with
commutators [J0, J±] = ±J± and [J+, J−] = 2J0. The non-trivial unitary representations
of su(2), corresponding to the star relations J†0 = J0, J

†
± = J∓, are labelled [17, 29] by

a positive integer or half-integer j. These representations have dimension 2j + 1, and
the action on a set of basis vectors | j, m〉 (with m = −j, −j + 1, . . . , +j) is given by

J0 | j, m〉 = m | j, m〉, J± | j, m〉 =
√
(j ∓ m)(j ± m + 1) | j, m ± 1〉.

The Lie algebra su(2) can be extended by a parity operator or involution P, whose
action in these representations is given by P | j, m〉 = (−1)j+m | j, m〉. On the algebraic
level, this means that we extend the universal enveloping algebra of su(2) by an operator
P that commutes with J0, that anticommutes with J+ and J−, and for which P2 = 1.
Moreover, by means of this operator P the standard su(2) relations can be deformed
introducing a real parameter c. This gives rise to an extension of the Lie algebra of su(2)
which itself is not a Lie algebra (nor a Lie superalgebra). This extension will be denoted
by su(2)P and is defined as follows.
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definition 1: Let c be a parameter. The algebra su(2)P is a unital algebra with basis
elements J0, J+, J− and P subject to the following relations:

P2 = 1, [P, J0] = PJ0 − J0P = 0, {P, J±} = PJ± + J±P = 0, (2.1)

and the su(2) relations which are deformed as follows:

[J0, J±] = ±J± (2.2)
[J+, J−] = 2J0 + cP . (2.3)

The star relation for this algebra is determined by:

P† = P, J†0 = J0, J†± = J∓. (2.4)

For c = 0 the deformed relation (2.3) reduces to the regular su(2) relation. Note that
this extension is very similar to a central extension; the only relation that violates this
is the anticommutator in (2.1).
The appearance of both a commutator and an anticommutator in (2.1) also implies

that one is not dealing with a Lie algebra nor with a Lie superalgebra. The algebraic
structure defined here is not new, however. The algebra su(2)P is in fact isomorphic to a
special case of the Bannai-Ito algebra where two parameters are equal to zero[10, 11].
Indeed, putting

K1 =
1
2
(J+ + J−), K2 = −

1
2
(J+ − J−)P, K3 = J0P (2.5)

we have
{K1, K2} = K3 +

c
2
, {K2, K3} = K1 {K3, K1} = K2 .

The star relations (2.4) correspond to K†i = Ki for i = 1, 2, 3. Moreover, this algebra can
also be seen as a special case of the so-called algebraH of the dual −1 Hahn polynomials,
see [15, 28], where one of the parameters equals zero.
Using (2.2) and (2.3), one easily shows that the Casimir element of su(2), given by

Ω = 2J2
0 + J+J− + J−J+, remains central for the universal enveloping algebra of su(2)P .

By means of (2.3), the Casimir element can also be written as

Ω = 2J+J− + 2J2
0 − 2J0 − cP = 2J−J+ + 2J2

0 + 2J0 + cP . (2.6)

Our purpose is now to determine all finite-dimensional unitary representations of
su(2)P , corresponding to the star conditions (2.4).
Let (W, ρW) be a representation of su(2)P . We consider W as an su(2)P module by

setting G · v = ρW(G)v for G ∈ su(2)P and v ∈ W. Take v0 ∈ W to be an eigenvector
of J0 with eigenvalue λ. We will construct the su(2)P invariant subspace containing v0.
IfW is irreducible this space must be eitherW or trivial. The trivial case results from v0
being the zero vector, so from now on we assume that v0 is not the zero vector.
From (2.1) follows that J0Pv0 = PJ0v0 = λPv0, hence Pv0 is also an eigenvector of J0

with eigenvalue λ. We distinguish between two cases, Pv0 is either a multiple of v0 or
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not. If Pv0 is linearly independent of v0 and also has λ as eigenvalue for J0, the vectors
v+0 = v0 + Pv0 and v−0 = v0 − Pv0 are also eigenvectors of J0 and we have Pv+0 = v+0 and
Pv−0 = −v

−
0 . The vectors v

+
0 and v−0 will then generate two different invariant subspaces,

hence the representation W is not irreducible. We may thus assume that v0 is also an
eigenvector of P.
If J0v0 = λv0, then for a positive integer k, the vector (J±)kv0 is also an eigenvector

of J0. Indeed, using [J0, (J±)k] = ±k(J±)k, which follows from (2.2), we have

J0(J±)kv0 =
(
(J±)kJ0 + [J0, (J±)k]

)
v0 = J±J0v0 ± k(J±)kJ±v0 = (λ ± k)(J±)kv0 . (2.7)

Moreover, the vectors {(J+)kv0 | k ∈ N} must be linearly independent because they
have distinct eigenvalues as eigenvectors of J0. If we imposeW to be finite-dimensional,
then (J+)kv0 = 0 for some k ∈ N. Without loss of generality we may assume that
J+v0 = 0, making v0 the highest weight vector, i.e. the eigenvector of J0 with the highest
eigenvalue, with corresponding highest weight λ.
Following the same reasoning, the sequence {(J−)kv0 | k ∈ N} is also linearly inde-

pendent and must terminate. We thus have J−(Jn−v0)= 0 for some n ∈ N and we may
assume without loss of generality that n is minimal in this aspect, i.e. Jn−v0 , 0. We will
now show that the set

{vk = (J−)kv0 | k = 0, . . . , n} (2.8)

forms a basis for the su(2)P invariant subspace containing v0. If W is irreducible this
space must be all ofW. So far, we have (2.8) being invariant under the action of J0 and
J−, with J0vk = (λ − k)vk. We now look at the action of P and J+ on (2.8).
As v0 is an eigenvector of P and P2 = 1, we necessarily have Pv0 = ε v0 with ε = ±1.

Moreover, as P anti-commutes with J− (2.1), we find the action of P on (2.8) to be

Pvk = ε(−1)kvk . (2.9)

For the action of J+, we have J+v0 = 0, while for k ≥ 0 we can write

J+vk+1 = J+J−vk =
(
1
2
Ω − J2

0 + J0 +
c
2
P
)
vk

where Ω is the Casimir element (2.6) whose action is constant on W. Using J+v0 = 0
the action of Ω on v0 is given by

Ωv0 = (2J−J+ + 2J2
0 + 2J0 + cP)v0 = (2λ2 + 2λ + cε)v0

We thus find

J+vk+1 =

(
(k + 1)(2λ − k)+c ε

1 + (−1)k

2

)
vk ≡ A(k)vk , (2.10)

so (2.8) forms the basis for a su(2)P invariant subspace.
Now, the value of the highest weight λ follows from the action of J0 and P on the

basis (2.8). Indeed, taking the trace of both sides of (2.3) acting onW, we get

0 = tr
(
[J+, J−]

)
= 2 tr(J0)+ tr(cP)= 2(n + 1)λ − n(n + 1)+c ε

1 + (−1)n

2
. (2.11)
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From which we find
λ =

n
2
−

c ε
2(n + 1)

1 + (−1)n

2
. (2.12)

Note that the deformation parameter c appears in the value of the highest weight only
when n is even, that is for odd-dimensional representations.
Substituting (2.12) for λ in (2.10) we arrive at

A(k)= (k + 1)(n − k)+c ε
(
1 + (−1)k

2
−

1 + (−1)n

2
(k + 1)
(n + 1)

)
. (2.13)

For n even, this reduces to

A(k)=

(k + 1)

(
n − k − c ε

n+1

)
, if k is odd;(

k + 1 + c ε
n+1

)
(n − k), if k is even,

(2.14)

while for n odd

A(k)=

(k + 1)(n − k), if k is odd;

(k + 1)(n − k)+c ε, if k is even.
(2.15)

Next, we require that the representationW is unitary under the star conditions (2.4).
Hereto, we introduce a sesquilinear form 〈·, ·〉 : W ×W → C such that

〈vk, v`〉 = hk δk, ` ,

where we can put h0 = 1 or 〈v0, v0〉 = 1. In order to be an inner product we need hk > 0
for k ≥ 0. For k ≥ 1 we have, imposing the star condition J†− = J+,

hk = 〈vk, vk〉 = 〈J−vk−1, vk〉 = 〈vk−1, J+vk〉 = A(k − 1)〈vk−1, vk−1〉 = A(k − 1)hk−1 .
(2.16)

This is strictly positive if A(k)> 0 for 0 ≤ k ≤ n−1. Distinguishing between n even and
odd, we find that (2.14) is strictly positive for −(n + 1)< c ε < n + 1, while (2.15) is
strictly positive if c ε > −n.
The star conditions P† = P, J†0 = J0 are satisfied as P and J0 have real eigenvalues

on vk. Putting j = n/2 and introducing the orthonormal basis

| j, m〉 =
v j−m
‖v j−m‖

(m = −j, −j + 1, . . . , j − 1, j)

where ‖vk‖ =
√
〈vk, vk〉 =

√
hk, we find using (2.16)

J− | j, m〉 = J−
v j−m
‖v j−m‖

=
v j−m+1√
hj−m

=
√
A(j − m)| j, m − 1〉

and

J+ | j, m〉 = J+
v j−m
‖v j−m‖

= A(j − m − 1)
v j−m−1√
hj−m

=
√
A(j − m − 1)| j, m + 1〉 .

We summarize this in the following result:
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proposition 2: For a given real parameter c and choice of ε = ±1, we have the following
irreducible unitary finite-dimensional representations of su(2)P , corresponding to the star
conditions (2.4):
For every positive integer j such that 2j + 1 > |c|, we have an odd-dimensional repre-

sentation of dimension 2j + 1. The action of the su(2)P operators on a set of basis vectors
| j, −j〉, | j, −j + 1〉, . . ., | j, j〉 is given by:

P | j, m〉 = ε(−1)j+m | j, m〉, (2.17)
J0 | j, m〉 = (m − c̃/2) | j, m〉, (2.18)

J+ | j, m〉 =

√
(j − m + c̃)(j + m + 1) | j, m + 1〉, if j + m is odd;
√
(j − m)(j + m + 1 − c̃) | j, m + 1〉, if j + m is even.

(2.19)

J− | j, m〉 =

√
(j + m − c̃)(j − m + 1) | j, m − 1〉, if j + m is odd;
√
(j + m)(j − m + 1 + c̃) | j, m − 1〉, if j + m is even.

(2.20)

where c̃ = c ε/(2j + 1). Note that 2j + 1 > |c| is equivalent to | c̃| < 1.
For every positive half-integer j such that 2j > −c ε, we have an even-dimensional repre-

sentation of dimension 2j + 1. The action of the su(2)P operators on a set of basis vectors
| j, −j〉, | j, −j + 1〉, . . ., | j, j〉 is given by:

P | j, m〉 = ε(−1)j+m+1 | j, m〉, (2.21)
J0 | j, m〉 = m | j, m〉, (2.22)

J+ | j, m〉 =

√
(j − m)(j + m + 1) | j, m + 1〉, if j + m is odd;
√
(j − m)(j + m + 1)+c ε | j, m + 1〉, if j + m is even.

(2.23)

J− | j, m〉 =

√
(j + m)(j − m + 1)+c ε | j, m − 1〉, if j + m is odd;
√
(j + m)(j − m + 1) | j, m − 1〉, if j + m is even.

(2.24)

We can write the actions of J+ and J− in the above result more compactly. For j an
integer

J± | j, m〉 =

√
(j ∓ m ± c̃)(j ± m + 1) | j, m ± 1〉, if j + m is odd;
√
(j ∓ m)(j ± m + 1 ∓ c̃) | j, m ± 1〉, if j + m is even;

while for j a half-integer

J± | j, m〉 =

√
(j ∓ m)(j ± m + 1) | j, m ± 1〉, if j ± m is odd;
√
(j ∓ m)(j ± m + 1)+c ε | j, m ± 1〉, if j ± m is even.
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The action of the Casimir (2.6) is indeed scalar on these representations, and given by

(
2J2

0 + J+J− + J−J+
)
| j, m〉 =


2j(j + 1)+c ε if j is a half-integer;

2j(j + 1)+ c̃2

2 if j is an integer,

again with c̃ = c ε/(2j + 1).

remark 3: For j a half-integer, these representations correspond precisely to those of
the unital algebra u(2)α [19], which contains moreover an extra central operator C with
diagonal action C | j, m〉 = (2j + 1)| j, m〉. Indeed, substituting c ε = (2α + 1)2+(2α +
1)(2j + 1) we find the same action as in [19]:

(j − m)(j + m + 1)+(2α + 1)2+(2α + 1)(2j + 1)= (j − m + 2α + 1)(j + m + 2α + 2),

(j + m)(j − m + 1)+(2α + 1)2+(2α + 1)(2j + 1)= (j − m + 2α + 2)(j + m + 2α + 1).

For this reason, only the representations with j integer are new in the context of finite
oscillator models. And therefore, only the odd-dimensional representations will play a
role in the following sections.

remark 4: In [11] the finite-dimensional unitary representations of the Bannai-Ito al-
gebra [13, 14] corresponding to a realization in terms of Dirac-Dunkl operators were
determined (see also [16] for a more general approach). Since the algebra su(2)P is iso-
morphic to a special case of the Bannai-Ito algebra, we should observe a correspondence
between the representations in Proposition 2 and those of [11]. One difference, how-
ever, is that in our case the parameter c is the basic parameter, and its value determines
the existence of representations of certain dimensions.
Returning to [11], the general Bannai-Ito algebra with three parameters ω1, ω2, ω3

is characterized by three real numbers µ1, µ2, µ3 appearing in the Dunkl operators, and
a positive integer N (with N + 1 the dimension of the representation). For even N, i.e.
N = 2j with j integer, the following choice for µi:

µ1 = µ2 = −
N + 1 + c̃

4
, µ3 = −

N + 1 − c̃
4

(2.25)

in [11, eq. (48)] leads to the same (matrix) representation for K1, K2, K3 as our repre-
sentation (2.17)–(2.20) used in (2.5). Note that with | c̃| < 1, the above µi-values are
negative. Strictly speaking, only nonnegative values for µi were considered in [11]. It
is clear, however, that for the values (2.25) the matrix elements Uk appearing in [11,
eq. (48)] are still positive and thus these values are also allowed.
For odd N, i.e. N = 2jwith j half-integer, the correspondence is not so simple. For that

case, the basis vectors |N, k〉 of [11] are not the same as our basis vectors | j, m〉 for a par-
ticular choice of µ1, µ2, µ3. So the correspondence between the matrix representations
becomes complicated and we do not include it here.
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3 a one-dimensional oscillator model

We now consider a model for a one-dimensional finite oscillator based on the odd-
dimensional representations of the algebra su(2)P , that is for j an integer. We will see
that for this model the spectrum of the position operator is independent of the para-
meter c, equidistant and coincides with the spectrum of the su(2) oscillator [5]. The
eigenvectors (and thus also the position wavefunctions) do depend on the additional
parameter c.
Following the notation and ideas of section 1, we have to choose a position, momen-

tum and Hamiltonian operator (q̂, p̂, Ĥ) from the algebra su(2)P such that the Hamilton-
Lie equations are satisfied, and such that the spectrum of Ĥ in a representation is equi-
distant. Given su(2)P with parameter c, and the representation of dimension 2j + 1 (j
integer) determined in Proposition 2, with 2j + 1 > |c| and ε = 1, the following choice
is natural and follows [19, 20]:

q̂ =
1
2
(J+ + J−), p̂ =

i
2
(J+ − J−), Ĥ = J0 + j +

c̃
2
+

1
2
, (3.1)

where c̃ = c/(2j + 1) and thus the parameter c̃ satisfies −1 < c̃ < +1.
It is easy to verify that the first two equations of (1.2) are satisfied and moreover from

(2.18) it follows that on | j, m〉 the spectrum of Ĥ is indeed linear and given by

n +
1
2

(n = 0, 1, . . . , 2j). (3.2)

From the actions (2.19)–(2.20), one finds for even j + m

2q̂| j, m〉 =
√
(j + m)(j − m + 1 + c̃) | j, m − 1〉 +

√
(j − m)(j + m + 1 − c̃) | j, m + 1〉 ,

while for odd j + m

2q̂| j, m〉 =
√
(j + m − c̃)(j − m + 1) | j, m − 1〉 +

√
(j − m + c̃)(j + m + 1) | j, m + 1〉 .

The action of 2ip̂ is similar. For the representation space, denoted here byWj, we choose
the following (ordered) basis:

{| j, −j〉, | j, −j + 1〉, . . . , | j, j − 1〉, | j, j〉}, (3.3)

and then the operators 2q̂, 2ip̂ take the matrix forms

2q̂ =

©«

0 M0 0 · · · 0
M0 0 M1 · · · 0

0 M1 0
. . .

...
...
. . .

. . . M2j−1

0 0 M2j−1 0

ª®®®®®®®®¬
≡ Mq, (3.4)
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2ip̂ =

©«

0 M0 0 · · · 0
−M0 0 M1 · · · 0

0 −M1 0
. . .

...
...

. . .
. . . M2j−1

0 0 −M2j−1 0

ª®®®®®®®®¬
≡ Mp, (3.5)

with

Mk =


√
(k + 1 − c̃)(2j − k), if k is even;√
(k + 1)(2j − k + c̃), if k is odd.

(3.6)

For these matrices, the eigenvalues and eigenvectors are known explicitly: the system is
of type “dual Hahn I” [24, Proposition 2] (with γ + δ + 1 = 0 in the notation of [24]).
The expressions of the eigenvectors involve dual Hahn polynomials, so let us first recall
some notation.
For a positive integer N, the dual Hahn polynomial of degree n (n = 0, 1, . . . , N) in

the variable λ(x)= x(x + γ + δ + 1), with parameters γ > −1 and δ > −1 (or γ < −N
and δ < −N) is defined by [18, 22, 23]:

Rn(λ(x); γ, δ, N)= 3F2

(
−x, x + γ + δ + 1, −n

γ + 1, −N
; 1

)
(3.7)

in terms of the generalized hypergeometric series 3F2 of unit argument [8, 25]. Dual
Hahn polynomials satisfy a (discrete) orthogonality relation [22]:

N∑
x=0

w(x; γ, δ, N)Rn(λ(x); γ, δ, N)Rn′(λ(x); γ, δ, N)= hn(γ, δ, N) δn,n′, (3.8)

where

w(x; γ, δ, N)=
(2x + γ + δ + 1)(γ + 1)x(N − x + 1)xN!

(x + γ + δ + 1)N+1(δ + 1)xx!
(x = 0, 1, . . . , N),

hn(γ, δ, N)=
[(
γ + n
n

) (
N + δ − n
N − n

)]−1

. (3.9)

We have used here the common notation for Pochhammer symbols [8, 25] (a)k= a(a+
1)· · · (a+k−1) for k = 1, 2, . . . and (a)0= 1. Asw is the weight function and hn(γ, δ, N)
the “squared norm”, orthonormal dual Hahn functions R̃ are determined by:

R̃n(λ(x); γ, δ, N)≡
√
w(x; γ, δ, N) Rn(λ(x); γ, δ, N)√

hn(γ, δ, N)
. (3.10)

From [24, Proposition 2], using the substitution γ = (−c̃ − 1)/2 and δ = (c̃ − 1)/2 =
−γ − 1, we have:
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proposition 5: The 2j + 1 eigenvalues of the position operator q̂ in the representation
Wj are given by

− j, −j + 1, . . . , −1, 0, 1, . . . , j − 1, j . (3.11)

The orthonormal eigenvector of the position operator q̂ inWj for the eigenvalue q, denoted
by | j, q), is given in terms of the basis (3.3) by

| j, q)=
j∑

m=−j

U j+m, j+q | j, m〉. (3.12)

Herein, U = (Ukl)0≤k, l≤2j is the (2j + 1)×(2j + 1) matrix with elements

U2r, j = (−1)r R̃r(λ(0); (−c̃ − 1)/2, (c̃ − 1)/2, j), (r ∈ {0, . . . , j}), (3.13)

U2r, j−s = U2r, j+s =
(−1)r
√

2
R̃r(λ(s); (−c̃ − 1)/2, (c̃ − 1)/2, j), (s ∈ {1, . . . , j});

U2r+1, j−s−1 = −U2r+1, j+s+1 = −
(−1)r
√

2
R̃r(λ(s); (1 − c̃)/2, (c̃ + 1)/2, j − 1),

U2r+1, j = 0, (r, s ∈ {0, . . . , j − 1}) (3.14)

where the functions R̃ are normalized dual Hahn polynomials (3.10).
The matrix U is an orthogonal matrix, UUT = UTU = I, hence the q̂ eigenvectors are

orthonormal:
(j, q| j, q′)= δq,q′ .

Moreover,
MqU = UDq,

where Dq is a diagonal matrix containing the eigenvalues (3.11).

This is the same spectrum as that of q̂ in the su(2) oscillator model [5]. For the latter
model the eigenvectors could be expressed in terms of the Krawtchouk orthogonal poly-
nomials. Now, the eigenvectors of the position operator have components proportional
to dual Hahn polynomials with parameters (−c̃ − 1)/2 and (c̃ − 1)/2 when the compo-
nent has even index, and with parameters (1− c̃)/2 and (1+ c̃)/2 when the component
has odd index. With the condition | c̃| < 1 (see Proposition 2), the weight functions of
the dual Hahn polynomials are positive.
The matrix Mp of the momentum operator p̂ is up to signs the same as the matrix Mq.

It has the same spectrum (3.11) and for the eigenvectors we have the following result.

proposition 6: The orthonormal eigenvector of the momentum operator p̂ inWj for the
eigenvalue p, denoted by | j, p), is given in terms of the basis (3.3) by

| j, p)=
j∑

m=−j

Vj+m, j+p | j, m〉. (3.15)
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Herein, V = (Vrs)0≤r, s≤2j is the unitary (2j+ 1)×(2j+ 1)-matrix, VV† = V†V = I, defined
by

V = JU,

where J = −i diag(i0, i1, i2, . . . , i2j) and U is the matrix determined in Proposition 5.

remark 7: The recurrence relation for the pair of polynomials appearing in (3.13)
and (3.14) comes from MqU = UDq. By the form (3.4), this recurrence relation has
zero diagonal term. This is because the corresponding polynomials can be seen as an
example of Chihara’s construction [9, Section 8] of symmetric orthogonal polynomials,
but applied to discrete orthogonal polynomials.

4 oscillator wavefunctions and their properties

The position (resp. momentum) wavefunctions are the overlaps between the normali-
zed eigenstates of the position operator q̂ (resp. the momentum operator p̂) and the
eigenstates of the Hamiltonian. So the wavefunctions of the su(2)P finite oscillator are
the overlaps between the q̂-eigenvectors and the Ĥ-eigenvectors (or equivalently, the
J0-eigenvectors | j, m〉). We will denote the position wavefunctions by φ(c)j+m(q) and the

momentum wavefunctions by φ(c)j+m(q), where m, q and p assume one of the discrete
values −j, −j + 1, . . . , +j. Concretely, following the notation of the previous section:

φ(c)j+m(q) = 〈j, m| j, q)= U j+m, j+q, (4.1)

ψ(c)
j+m(p) = 〈j, m| j, p)= Vj+m, j+p. (4.2)

Let us examine the explicit form of these functions in more detail, first for the position
variable. The index j +m ranges from 0 to 2j. For j +m even, say j +m = 2n, φ(c)2n (q) is
by (3.13) an even function of the position variable q. For q = −j, −j + 1, . . . , j we have

φ(c)2n (q)=
(−1)n√
2 − δq,0

√
W(n, q; c̃, j) 3F2

(
−q, q, −n

(1 − c̃)/2, −j
; 1

)
(4.3)

where
W(n, q; c̃, j)=

w(|q|; (−c̃ − 1)/2, (c̃ − 1)/2, j)
hn((−c̃ − 1)/2, (c̃ − 1)/2, j)

,

with w and hn as in (3.9). For j + m odd, say j + m = 2n + 1, it is by (3.14) an odd
function of the variable q. For q = −j, −j + 1, . . . , j we have

φ(c)2n+1(q)= (−1)nq
√
(2n + 1 − c̃)(j − n)

(1 − c̃)j

√
W(n, q; c̃, j) 3F2

(
−q + 1, q + 1, −n
(3 − c̃)/2, −j + 1

; 1
)
,

(4.4)
where we used

w(|q|; (1 − c̃)/2, (c̃ + 1)/2, j − 1)
hn((1 − c̃)/2, (c̃ + 1)/2, j − 1)

= q2 2(2n + 1 − c̃)(j − n)
(1 − c̃)2 j2

W(n, q; c̃, j) .
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For the momentum wavefunctions we find in exactly the same manner

ψ(c)
2n (p)=

−i√
2 − δp,0

√
W(n, p; c̃, j) 3F2

(
−p, p, −n

(1 − c̃)/2, −j
; 1

)
(4.5)

ψ(c)
2n+1(p)= p

√
(2n + 1 − c̃)(j − n)

(1 − c̃)j

√
W(n, p; c̃, j) 3F2

(
−p + 1, p + 1, −n
(3 − c̃)/2, −j + 1

; 1
)
. (4.6)

remark 8: Before we examine the behaviour of these discrete wavefunctions, let us
comment on the distinction with the closely related dual −1 Hahn polynomials consid-
ered in [28]. For this purpose, let us compare the polynomial expressions in (4.3)–(4.4),
i.e.

3F2

(
−q, q, −n

(1 − c̃)/2, −j
; 1

)
, q × 3F2

(
−q + 1, q + 1, −n
(3 − c̃)/2, −j + 1

; 1
)

with equations (4.6) and (4.7) from [28], in which one puts N = 2j, i.e.

3F2

(
− x

4 + η,
x
4 + η, −n

1 − α
2 , −j

; 1

)
, (

x
4
− j − η) 3F2

(
− x

4 + η,
x
4 + η, −n

1 − α
2 , −j + 1

; 1

)
.

For a particular choice of η and α, the even polynomials coincide, but the odd poly-
nomials do not. The reason is that the dual Hahn double of this paper corresponds to
a Christoffel-Geronimus pair with parameter ν = 0 (see [24, Section 5]) and are of
type “dual Hahn I” in the terminology of [24], whereas the dual −1 Hahn polynomials
seem to correspond to a Christoffel transform for dual Hahn polynomials with a different
parameter ν = j, and are of type “dual Hahn II” in the terminology of [24].

It is interesting to study these discrete wavefunctions for varying values of c̃, −1 <
c̃ < 1. For the special value c̃ = 0, the algebra su(2)P reduces to su(2) and it is known
that in this case, the wavefunctions φ(0)n (q) are in fact Krawtchouk functions. Indeed,
when c̃ = 0 the dual Hahn polynomials, which are 3F2 series appearing in (4.3)–(4.4),
reduce to 2F1 series according to

3F2

(
−q, q, −n
1/2, −j

; 1
)
= (−1)n

(2j
2n

)( j
n

) 2F1

(
−2n, −j − q
−2j

; 2
)
, (4.7)

3F2

(
−q + 1, q + 1, −n

3/2, −j + 1
; 1

)
= −

(−1)n

2q

( 2j
2n+1

)( j−1
n

) 2F1

(
−2n − 1, −j − q

−2j
; 2

)
. (4.8)

These reductions have been given in [26] and can be obtained, e.g., from [7, (48)]. The
2F1 series in the right hand side correspond to symmetric Krawtchouk polynomials (i.e.
Krawtchouk polynomials with p = 1/2 [22]). When j tends to infinity, they yield the
canonical oscillator wavefunctions [7] in terms of Hermite polynomials.
To investigate what happens for other values of c̃ we now choose a fixed value of j,

namely j = 32, and plot some of the wavefunctions φ(c)n (q) for various values of c̃. Recall
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(Proposition 2) that −1 < c̃ < 1 in order to have a unitary irreducible representation.
In Figure 1 we take the following values for c̃, respectively,

−0.999, −0.8, −0.3, 0, 0.3, 0.8, 0.999 .

We also plot in each case the ground state φ(c)0 (q) (left column), some low energy states
φ(c)1 (q) and φ(c)2 (q) (2nd and 3rd column), and the highest energy state φ(c)64 (q) (4th
column).
Particularly interesting behaviour is observed when c̃ approaches the boundary values
−1 or 1. These bounds correspond to the disallowed value −1 for one of the parameters
γ or δ in the dual Hahn polynomial (3.7). When c̃ tends to −1, the components of the
highest energy state all tend to zero except for q = 0 which tends to 1. For all the other
states, the value at q = 0 tends to 0. When c̃ tends to +1, it is for the lowest energy state
that all components tend to zero and the component at q = 0 goes to 1. Similarly as for
the other limit, for all the other states, the value at q = 0 tends to 0. It can be verified
that in these limits for non-zero q the wavefunctions become up to signs those of the
oscillator model based on the even-dimensional representations of u(2)α, see [19], for
a specific parameter value in dimension 2j. Recall that these correspond precisely to the
even-dimensional representations of su(2)P obtained in Proposition 2.
The described behaviour happens according to the following relations (q = 1, . . . , j):

lim
γ→−1

R̃n(λ(q); γ, 0, j)= −R̃n−1(λ(q − 1); 1, 0, j − 1)

lim
δ→−1

R̃n(λ(q); 0, δ, j)= R̃n(λ(q − 1); 0, 1, j − 1)

We now look what happens to φ(c)n (q) for general c̃ when j tends to infinity. This is
done by putting q = j1/2x to pass from a discrete position variable q to a continuous
position variable x and taking the limit j → ∞ of j1/4φ(c)n (q). The actual computation
is similar to the one performed in [19, 20], so we shall not give all details. The limit of
the 3F2 function in (4.3) and (4.4) is quite easy:

lim
j→∞

3F2

(
−j1/2x, j1/2x, −n
(1 − c̃)/2, −j

; 1
)
= 1F1

(
−n

(1 − c̃)/2
; x2

)
=

n!
(a)n

L(a−1)
n (x2), (4.9)

lim
j→∞

3F2

(
−j1/2x + 1, j1/2x + 1, −n

(3 − c̃)/2, −j + 1
; 1

)
= 1F1

(
−n

(3 − c̃)/2
; x2

)
=

n!
(a + 1)n

L(a)n (x2),

(4.10)
where a = (1 − c̃)/2 and L(α)n is a Laguerre polynomial [22, 27].
The final result is:

lim
j→∞

j1/4φ(c)2n (j
1/2x)= (−1)n

√
n!

Γ(a + n)
|x |a−1/2e−x

2/2L(a−1)
n (x2), (4.11)

lim
j→∞

j1/4φ(c)2n+1(j
1/2x)= (−1)n

√
n!

Γ(a + n + 1)
x |x |a−1/2e−x

2/2L(a)n (x2). (4.12)
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Note that for c̃ = 0 or a = 1/2, one indeed finds the canonical oscillator wavefunctions

lim
j→∞

j1/4φ(0)n (j1/2x)=
1

2n/2
√
n!π1/4

Hn(x)e−x
2/2, (4.13)

where Hn(x) are the common Hermite polynomials [22, 27].
The functions in (4.11) and (4.12) are familiar: they are in fact the wavefunctions

Ψ
(a)
n (x) of the parabose oscillator with parameter a > 0 (see the appendix of [19] for a

summary). So we have:

lim
j→∞

j1/4φ(c)n (j1/2x)= Ψ(a)
n (x) (a =

1 − c̃
2

). (4.14)

So the current model is an appealing model for a finite one-dimensional parabose os-
cillator with equidistant position spectrum. This also explains the shape of the discrete
wavefunctions plotted in Figure 1. For −1 < c̃ < 0, the shape typically reproduces the
continuous wavefunctions of the parabose oscillator with 1

2 < a < 1: see the plots for
c̃ = −0.8 and those for a = 0.9 in Figure 2. For 0 < c̃ < 1, the shape of the wavefunc-
tions is similar to those of the parabose oscillator with 0 < a < 1

2 : compare the plots for
c̃ = 0.8 with those for a = 0.1 in Figure 2.

5 concluding remarks

Deformations or extensions of su(2) or u(2) as algebras underlying finite oscillator mo-
dels have already been considered by one of us [19, 20], so let us explain the difference
with the algebra su(2)P appearing here. For this, it is best to return to the classification
of so-called dual Hahn doubles in [24], where it is shown that three such doubles or pairs
exist. From [24, Propositions 1–3] one can see that only the cases “dual Hahn I” and
“dual Hahn III” can give rise to an equidistant position spectrum when used in a finite os-
cillator model. The case “dual Hahn I” involves the pair of polynomials Rn(λ(x); γ, δ, N)
and Rn(λ(x−1); γ+1, δ+1, N−1), and the corresponding algebra constructed from the
related tridiagonal matrices was determined in [24, eq. (7.4)]. Comparing with su(2)P ,
the relations (2.1)–(2.2) remain the same, and (2.3) is of the form

[J+, J−] = 2J0 + 2(γ + δ + 1)J0P − (2N + 1)(γ − δ)P + (γ − δ)I. (5.1)

Because of the appearance of N and N −1 in the double, the matrices (and thus also the
representations) exist in odd dimension 2N + 1 only; furthermore the spectrum of the
position operator consists of the values 0, ±

√
k(k + γ + δ + 1) (k = 1, . . . , N). For γ =

δ ≡ α, (5.1) coincides with [20, eq. (5)], so this is what was called the su(2)α extension
in [20]. The position spectrum is not equidistant. Moreover, due to the combination of
terms in J0 and J0P in the commutator of J+ and J−, this algebra cannot be rewritten
as a special case of the Bannai-Ito algebra.
For δ = −γ − 1, (5.1) becomes

[J+, J−] = 2J0 + (2γ + 1)I − (2N + 1)(2γ + 1)P
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and after performing a shift for J0, this relation is of the form (2.3). So this is su(2)P
(isomorphic to a special case of Bannai-Ito), the position spectrum is equidistant and
this is the case (with odd dimensional representations) that was treated in the current
paper.
The case “dual Hahn III” involves the pair of polynomials Rn(λ(x); γ, δ, N) and Rn(

λ(x); γ + 1, δ − 1, N), and the corresponding algebra constructed from the related
tridiagonal matrices was determined in [24, eq. (7.5)], with relation

[J+, J−] = 2J0+2(γ−δ)J0P−((2N+2)(γ+δ+1)+(2γ+1)(2δ+1))P+(γ−δ)I. (5.2)

Because of the appearance of N and N in the polynomials of the double, the matrices
(and representations) exist in even dimension 2N +2 only; the spectrum of the position
operator consists of the values ±

√
(k + γ + 1)(k + δ + 1) (k = 0, . . . , N). So – apart

from a gap in the middle – it is equidistant for γ = δ ≡ α, and then the above relation
becomes

[J+, J−] = 2J0 − ((2N + 2)(2α + 1)+(2α + 1)2)P = 2J0 − (2α + 1)2P − (2α + 1)CP,

for some central element C. This was called the u(2)α algebra in [19]. But since C is a
constant in a representation of the algebra, it can be considered as the su(2)P algebra
with −c = (2N + 2)(2α + 1)+(2α + 1)2 in (2.3). So su(2)P and u(2)α are essentially
the same, and the even dimensional representations of this algebra are the ones studied
in [19].

For the Lie algebra su(2), there is of course the well known Schwinger boson realiza-
tion. In this realization, for a positive integer or half-integer j, the 2j + 1 basis vectors
can be expressed as follows

| j, m〉 =
x j+my j−m

√
(j + m)!(j − m)!

, (5.3)

and the su(2) operators take the form

J0 =
1
2
(x∂x − y∂y), J+ = x∂y, J− = y∂x . (5.4)

For the algebra su(2)P , there exist similar reflection/differential operator realizations,
one of which follows from the Bannai-Ito algebra realization and can be found in [10].
Since our basis elements (2.1)–(2.3) of su(2)P are closely related to the standard basis
of su(2), it is natural to expect other operator realizations. These do indeed exist.
As a first possibility, consider the following operators, acting on functions f (x, y) of

two variables x and y:

Tx = ∂x +
µ

x
(1 − Rx)

Ty = ∂y −
µ

y
(1 − Rx). (5.5)
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Herein, Rx f (x, y)= f (−x, y). Note that Tx is a Dunkl operator, but Ty is not. Putting

J0 =
1
2
(x∂x − y∂y + 2µ), J+ = xTy, J− = yTx, P = Rx, (5.6)

it is easy to verify that the defining relations (2.1) and (2.2) are satisfied. For (2.3), one
finds:

[J+, J−] = 2J0 − 2µP(1 + x∂x + y∂y). (5.7)

So when acting on homogeneous polynomials in x and y, like on the basis vectors (5.3),
the last relation coincides with (2.3) for µ = −c̃/2. For a proper action on homogeneous
polynomials, one should take care of the factor 1/y in (5.5): the action of Ty on x2j

should vanish. This is the case only for integer j-values, thanks to the factor (1 − Rx)
in (5.5). Thus, the realization (5.5)–(5.6) is consistent with the basis realization (5.3)
for j integer only. Note that on the space of homogeneous polynomials of degree 2j,
spanned by (5.3), the action of Ty does coincide with the action of a Dunkl operator
∂y −

µ
y (1 − Ry), where Ry f (x, y)= f (x, −y).

As a second possibility, let us take

Tx = ∂x +
µ

x
(1 − Rx)

Ty = ∂y +
µ

y
(1 + Rx). (5.8)

and
J0 =

1
2
(x∂x − y∂y), J+ = xTy, J− = yTx, P = −Rx . (5.9)

Once again, (2.1) and (2.2) are satisfied, and for (2.3) one finds:

[J+, J−] = 2J0 + P
(
(2µ)2+2µ(1 + x∂x + y∂y)

)
. (5.10)

In this case, acting on homogeneous polynomials in x and y like on the basis vec-
tors (5.3), the last relation coincides with (2.3) for c = (2µ)2+2µ(2j+1) (in agreement
with Remark 3). Also here, one should take care of the factor 1/y in (5.8), and the action
of Ty on x2j should vanish. This is now the case only for half-integer j-values, due to the
factor (1+Rx) in (5.5). The conclusion is similar: the realization (5.8)–(5.9) is consistent
with the basis realization (5.3) for j half-integer only. For more fundamental examples
in which such realizations with Dunkl operators play a role, see the Schwinger-Dunkl
algebra sd(2) in [12].

To summarize, in this paper we have developed a new and interesting model for a fi-
nite quantum oscillator. This model preserves all the nice and essential properties of the
original su(2) model, in particular the equidistance of the position spectrum. It has, how-
ever, an extra parameter c̃ that can be used to modify the shape of the discrete position
(and momentum) wavefunctions. The original interest in finite oscillator models comes
mainly from optical image processing and signal analysis [7]. In signal analysis on a fi-
nite number of discrete sensors or data points, one-dimensional finite oscillator models
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have been used in [2–4]. For such purposes, it is an advantage if the “sensor points”
of the grid are uniformly distributed, according to the equidistant position spectrum of
the model. For our original Hahn oscillator in even dimensions [19] or in odd dimen-
sions [20], this equidistance did not hold. In the current model, based on a dual Hahn
double, we do recover this important property of the spectrum (in odd dimensions). We
hope that the extra parameter c̃ opens the way to more sophisticated techniques in the
analysis of signals.
The model presented here has the algebra su(2)P as underlying structure. This alge-

bra is an extension of su(2) by cP, where P which is not central but satisfies P2 = 1 and
either commutes or anticommutes with the standard basis elements of su(2). We have
shown that su(2)P is a special case of the general Bannai-Ito algebra. For su(2)P , we
have classified all unitary finite-dimensional irreducible representations. These depend
on the central element c. Once the algebra and its representations have been analysed,
the construction of the corresponding finite oscillator model is similar to that of [19].
The position wavefunctions are expressed in terms of dual Hahn polynomials (with dif-
ferent parameters for even and odd wavefunctions), and depend on the dimension of
the representation (2j + 1) and the parameter c̃ with | c̃| < 1. For c̃ = 0, the model
and its wavefunctions coincide with the standard su(2) finite oscillator model in terms
of symmetric Krawtchouk polynomials [7]. Symmetric Krawtchouk wavefunctions can
interpreted as a finite-dimensional version of the canonical Hermite wavefunctions, to
which they tend when the dimension paramater j goes to infinity. There is a similar
interpretation here. For c̃ , 0, the wavefunctions can be seen as a finite-dimensional
version (with equidistant spectrum) of the parabose wavefunctions.
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figure 1: Plots of the discrete wavefunctions φ(c)n (q) in the representation with j = 32 for the
values c̃ = −0.999, c̃ = −0.8, c̃ = −0.3, c̃ = 0, c̃ = 0.3, c̃ = 0.8, c̃ = 0.999 from top to bottom.
The wavefunctions are plotted for n = 0, 1, 2 and n = 64.
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figure 2: Comparing the plots of the discrete wavefunctions φ(c)n (q) with the continuous wave-
functions Ψ(a)

n (x) of the parabose oscillator, for n = 0 (left column), n = 1 (middle column) and
n = 2 (right column). In the top row one finds φ(c)n (q) for c̃ = −0.8, to be compared to the plots
of Ψ(a)

n (x) in the second row for a = 0.9. In the third row one finds φ(c)n (q) for c̃ = 0.8, to be
compared to the plots of Ψ(a)

n (x) in the fourth row for a = 0.1.
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abstract

In Oste and Van der Jeugt, SIGMA, 12 (2016) [12] we classified all pairs of recurrence
relations in which two (dual) Hahn polynomials with different parameters appear. Such
pairs are referred to as (dual) Hahn doubles, and the same technique was then applied
to obtain all Racah doubles. We now consider a special case concerning the doubles
related to Racah polynomials. This gives rise to an interesting class of two-diagonal
matrices with closed form expressions for the eigenvalues. Just as it was the case for
(dual) Hahn doubles, the resulting two-diagonal matrix can be used to construct a finite
oscillator model. We discuss some properties of this oscillator model, give its (discrete)
position wavefunctions explicitly, and illustrate their behaviour by means of some plots.

1 introduction

In a recent paper [12] all pairs of recurrence relations in which two Hahn, dual Hahn or
Racah polynomials with different parameters appear were classified. We used the term
(dual) Hahn doubles or Racah doubles for such pairs. They were shown to correspond
to Christoffel-Geronimus pairs of (dual) Hahn or Racah polynomials [12].
In the present paper, we shall consider a special case of a Racah double. This special

case is chosen in such a way that the related two-diagonal (Jacobi) matrix M has a very
simple spectrum. The eigenvectors of M can then be written in terms of the correspon-
ding Racah polynomials.
The main reason to study the special case considered here is because it is particularly

interesting in the framework of finite oscillator models. Finite oscillator models were
introduced and investigated in a number of papers, see e.g. [4, 1–3, 7, 8]. The standard
example is the su(2) oscillator model [1, 2]. In brief, this model is based on the su(2)
algebra with basis elements J0 = Jz, J± = Jx ± Jy satisfying

[J0, J±] = ±J±, [J+, J−] = 2J0, (1.1)
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with unitary representations of dimension 2j + 1 (where j is integer or half-integer).
Recall that the oscillator Lie algebra can be considered as an associative algebra (with
unit element 1) with three generators Ĥ, q̂ and p̂ (the Hamiltonian, the position and
the momentum operator) subject to

[Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, [q̂, p̂] = i, (1.2)

in units with mass and frequency both equal to 1, and ~ = 1. The first two are the
Hamilton-Lie equations; the third the canonical commutation relation. The canonical
commutation relation is not compatible with a finite-dimensional Hilbert space. Fol-
lowing this, one speaks of a finite oscillator model if Ĥ, q̂ and p̂ belong to some algebra
such that the Hamilton-Lie equations are satisfied and such that the spectrum of Ĥ in
representations of that algebra is equidistant [2, 7].
In the su(2) model, one chooses

Ĥ = J0 + j +
1
2
, q̂ =

1
2
(J+ + J−), p̂ =

i
2
(J+ − J−). (1.3)

These indeed satisfy [Ĥ, q̂] = −ip̂, [Ĥ, p̂] = iq̂, and the spectrum of Ĥ is equidistant in
the representation (j) labeled by j (and given by n + 1

2 ; n = 0, 1, . . . , 2j). Clearly, for
this model the position operator q̂ = 1

2(J+ + J−) also has a finite spectrum in the repre-
sentation (j) given by q ∈ {−j, −j+1, . . . , +j}. In terms of the standard J0-eigenvectors
| j, m〉, the eigenvectors of q̂ can be written as

| j, q)=
j∑

m=−j

Φj+m(q)| j, m〉. (1.4)

The coefficientsΦn(q) are the position wavefunctions, and in this model [1, 2] they turn
out to be (normalized) symmetric Krawtchouk polynomials, Φn(q)∼ Kn(j + q; 1

2, 2j).
The shape of the these wavefunctions is reminiscent of those of the canonical oscillator:
under the limit j → ∞ they coincide with the canonical wavefunctions in terms of
Hermite polynomials.
In the present paper we develop a related but new finite oscillator model, following

the ideas of [7] where a dual Hahn double was used to extend the su(2) model. The
recent classification [12] of all (dual) Hahn doubles and Racah doubles opens the way
to investigate such new models. The basic ingredient is a special Racah double from
this classification, that is explained and analysed in Section 2. In Section 3 we study
the related finite oscillator model, and in particular we focus on some properties of the
discrete position wavefunctions.

2 racah polynomials and two racah doubles

Racah polynomials Rn(λ(x); α, β, γ, δ) of degree n (n = 0, 1, . . . , N) in the variable
λ(x)= x(x + γ + δ + 1) are defined by [6, 9, 10]

Rn(λ(x); α, β, γ, δ)= 4F3

(
−n, n + α + β + 1, −x, x + γ + δ + 1

α + 1, β + δ + 1, γ + 1
; 1

)
, (2.1)
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where one of the denominator parameters should be −N:

α + 1 = −N or β + δ + 1 = −N or γ + 1 = −N. (2.2)

Herein, the function 4F3 is the generalized hypergeometric series [5, 13]:

pFq

(
a1, . . . , ap
b1, . . . , bq

; z
)
=

∞∑
k=0

(a1)k. . . (ap)k
(b1)k. . . (bq)k

zk

k!
, (2.3)

where we use the common notation for Pochhammer symbols [5, 13] (a)k= a(a+1)
· · · (a+ k− 1) for k = 1, 2, . . . and (a)0= 1. Note that in (2.1), the series is terminating
because of the appearance of the negative integer −n as a numerator parameter.
Racah polynomials satisfy a (discrete) orthogonality relation (which depends on the

choice of which parameter relates to −N) [9, 11]. For the choice α + 1 = −N we have

N∑
x=0

w(x; α, β, γ, δ)Rn(λ(x); α, β, γ, δ)Rn′(λ(x); α, β, γ, δ)= hn(α, β, γ, δ) δn,n′,

(2.4)
where

w(x; α, β, γ, δ)=
(α + 1)x(β + δ + 1)x(γ + 1)x(γ + δ + 1)x((γ + δ + 3)/2)x
(−α + γ + δ + 1)x(−β + γ + 1)x((γ + δ + 1)/2)x(δ + 1)xx!

,

hn(α, β, γ, δ)=
(−β)N(γ + δ + 2)N

(−β + γ + 1)N(δ + 1)N
(2.5)

×
(n + α + β + 1)n(α + β − γ + 1)n(α − δ + 1)n(β + 1)nn!

(α + β + 2)2n(α + 1)n(β + δ + 1)n(γ + 1)n
.

Under certain restrictions such as γ, δ > −1 and β > N + γ or β < −N − δ − 1, which
ensure positivity of the functionsw and h, we can define orthonormal Racah functions
as follows:

R̃n(λ(x); α, β, γ, δ)≡
√
w(x; α, β, γ, δ) Rn(λ(x); α, β, γ, δ)√

hn(α, β, γ, δ)
. (2.6)

After settling this notation, let us turn to a result from [12]. The matrices appearing
here will always be of a special tridiagonal form, namely

M =

©«

0 M0 0
M0 0 M1 0

0 M1 0 M2
. . .

0 M2 0
. . .

. . .
. . .

. . .

ª®®®®®®®®®¬
, (2.7)

and such matrices will be referred to as two-diagonal. The following two propositions
were obtained in [12, Appendix]:
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proposition 1: Let α + 1 = −N, and suppose that γ, δ > −1 and β > N + γ or
β < −N − δ − 1. Consider two (2N + 2)×(2N + 2) matrices U and M, defined as follows.
U has elements (n, x ∈ {0, 1, . . . , N}):

U2n,N−x = U2n,N+x+1 =
(−1)n
√

2
R̃n(λ(x); α, β, γ, δ + 1),

U2n+1,N−x = −U2n+1,N+x+1 = −
(−1)n
√

2
R̃n(λ(x); α, β + 1, γ + 1, δ); (2.8)

M is the two-diagonal (2N + 2)×(2N + 2)-matrix of the form (2.7) with

M2k = 2

√
(N − β − k)(γ + 1 + k)(N + δ + 1 − k)(k + β + 1)

(N − β − 2k)(2k − N + 1 + β)
,

M2k+1 = 2

√
(γ + N − β − k)(k + 1)(N − k)(k + δ + β + 2)

(N − β − 2k − 2)(2k − N + 1 + β)
. (2.9)

ThenU is orthogonal, and the columns ofU are the eigenvectors of M, i.e. MU = UD, where
D is a diagonal matrix containing the eigenvalues of M:

D = diag(−εN, . . . , −ε1, −ε0, ε0, ε1, . . . , εN),

εk = 2
√
(k + γ + 1)(k + δ + 1) (k = 0, 1, . . . , N). (2.10)

In short, the pair of polynomials Rn(λ(x); α, β, γ, δ + 1) and Rn(λ(x); α, β + 1, γ +
1, δ) form a “Racah double”, and the relation MU = UD governs the corresponding
recurrence relations with M taking the role of a Jacobi matrix [12].

proposition 2: Let α + 1 = −N, and suppose that γ, δ > −1 and β > N + γ or
β < −N − δ. Consider two (2N + 1)×(2N + 1) matrices U and M, defined as follows.

U2n,N−x = U2n,N+x =
(−1)n
√

2
R̃n(λ(x); α, β, γ, δ), (n = 0, . . . , N; x = 1, . . . , N)

U2n+1,N−x−1 = −U2n+1,N+x+1 = −
(−1)n
√

2
R̃n(λ(x); α + 1, β, γ + 1, δ + 1), (2.11)

(n, x ∈ {0, . . . , N − 1})

U2n,N = (−1)nR̃n(λ(0); α, β, γ, δ), U2n+1,N = 0.

M is the two-diagonal (2N + 1)×(2N + 1)-matrix of the form (2.7) with

M2k = 2

√
(γ + k + 1)(−N + β + k)(N − k)(k + δ + β + 1)

(N − β − 2k)(N − β − 2k − 1)
,

M2k+1 = 2

√
(γ + N − β − k)(k + 1)(k + β + 1)(k − δ − N)

(N − β − 2k − 2)(N − β − 2k − 1)
. (2.12)
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ThenU is orthogonal, and the columns ofU are the eigenvectors of M, i.e. MU = UD, where
D is a diagonal matrix containing the eigenvalues of M:

D = diag(−εN, . . . , −ε1, 0, ε1, . . . , εN),

εk = 2
√
k(k + γ + δ + 1) (k = 1, . . . , N). (2.13)

The special case considered in this paper is for γ = δ = −1/2. The reason for this will
be clear in the following, but at this point one can already observe that for these values
the eigenvalues of D (both in even dimensions, (2.10), as in odd dimensions, (2.13))
take a simple form. For these special values, the matrix elements of M in the case of
Proposition 1 become:

M2k = 2

√
(k − N + β)(k + 1/2)(N − k + 1/2)(k + β + 1)

(2k − N + β)(2k − N + 1 + β)
,

M2k+1 = 2

√
(k − N + β + 1/2)(k + 1)(N − k)(k + β + 3/2)

(2k − N + β + 2)(2k − N + 1 + β)
.

We see that in this case the expressions for coefficients with even and odd indices coin-
cide and can be written as a single expression, namely

Mk =

√
(k + 1)(2N + 1 − k)(k − 2N + 2β)(k + 2β + 2)

(2k − 2N + 2β)(2k − 2N + 2β + 2)
, (2.14)

with k ∈ {0, . . . , 2N}. Suppose we are in the case β > N + γ, i.e. β > N − 1/2. It will
be useful to rewrite 2β = 2N − 1 + c, with c > 0, and then the matrix elements take
the form

Mk =

√
(k + 1)(2N + 1 − k)(k − 1 + c)(k + 2N + 1 + c)

(2k − 1 + c)(2k + 1 + c)
, k ∈ {0, . . . , 2N}.

(2.15)
Also in the case of Proposition 2 the matrix elements of M simplify for the special

values γ = δ = −1/2. They can also be written as a single expression, and after writing
2β = 2N − 1 + c (c > 0) they read:

Mk =

√
(k + 1)(2N − k)(k − 1 + c)(k + 2N + c)

(2k − 1 + c)(2k + 1 + c)
, k ∈ {0, . . . , 2N − 1}. (2.16)

Taking into account the size of the matrices in both cases, the results from Proposi-
tion 1 and Proposition 2 can be unified in the following:

proposition 3: For d a positive integer, k ∈ {0, . . . , d − 1} and a parameter c > 0, let

Mk =

√
(k + 1)(d − k)(k − 1 + c)(k + d + c)

(2k − 1 + c)(2k + 1 + c)
. (2.17)
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The eigenvalues of the tridiagonal (d + 1)×(d + 1)-matrix of the form (2.7) are given by
the integers

− d, −d + 2, −d + 4, . . . , d − 4, d − 2, d (2.18)

which are equidistant, symmetric around zero, and range from −d to d. Hence for even
d = 2N, they are d + 1 consecutive even integers, while for odd d = 2N + 1 they are d + 1
consecutive odd integers.
For d = 2N even, the eigenvectors of M are the columns of the matrix U given by (2.11),
with α = −N − 1, β = N − 1/2 + c/2, γ = −1/2 and δ = −1/2.
For d = 2N + 1 odd, the eigenvectors of M are the columns of the matrix U given by (2.8),
again with α = −N − 1, β = N − 1/2 + c/2, γ = −1/2 and δ = −1/2.

Note in particular that the eigenvalues of M are independent of the value of the para-
meter c, but of course c appears in the expressions of the eigenvectors.

3 a quantum oscillator model based on racah polynomials

We now consider a one-dimensional quantum oscillator model based on the findings
of the previous section. Particularly interesting about this model is that it contains a
parameter c > 0. By construction, the spectrum of the position operator in this model
will be independent of the parameter c, equidistant and coincide with the spectrum of
the su(2) finite oscillator model [2].
Let us first return to the su(2) model, briefly introduced in Section 1. Working in a

representation (j) of dimension 2j + 1 (where j is integer or half-integer), and in the
standard basis | j, m〉 in which J0 is diagonal, it follows from (1.3) that the Hamiltonian
is a diagonal matrix,

Ĥ = diag(
1
2
,

3
2
,

5
2
, . . . , 2j +

1
2
). (3.1)

In this context, it is more common to rewrite the basis vectors | j, m〉 (m = −j, −j +
1, . . . , j) of this representation space as |n〉 ≡ | j, n − j〉 (n = 0, 1, . . . , 2j). Thus we can
write

Ĥ |n〉 =
(
n +

1
2

)
|n〉, (n = 0, 1, . . . , 2j). (3.2)

Also from (1.3), the matrix form of the position operator q̂ in this basis is given by

q̂ =
1
2

©«

0 µ0 0
µ0 0 µ1 0

0 µ1 0 µ2
. . .

0 µ2 0
. . .

. . .
. . .

. . .

ª®®®®®®®®®¬
, µk =

√
(k + 1)(2j − k), (3.3)
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and the momentum operator p̂ takes the form

p̂ =
i
2

©«

0 −µ0 0
µ0 0 −µ1 0

0 µ1 0 −µ2
. . .

0 µ2 0
. . .

. . .
. . .

. . .

ª®®®®®®®®®¬
, µk =

√
(k + 1)(2j − k). (3.4)

Clearly, these operators (and matrix representations) satisfy the Hamilton-Lie equations
from (1.2) (but not the canonical commutation relation).
Let us now turn to a new finite oscillator model based on the Racah polynomials

introduced in the previous section. For this purpose, observe that for any dimension
d + 1 = 2j + 1, there is a close relationship between the matrix elements of M, given
by (2.17), and those of the above matrix (3.3):

Mk =

√
(k + 1)(2j − k)

(c + k − 1)(c + k + 2j)
(c + 2k − 1)(c + 2k + 1)

, µk =
√
(k + 1)(2j − k).

(3.5)
Indeed, the positive parameter c appearing in Mk can be seen as a “deformation” of the
element µk. And clearly, in the limit c → +∞ one has that Mk → µk. Following this,
the elements of the new finite oscillator model – in any dimension 2j + 1 (j integer or
half-integer) – are defined as follows: the Hamiltonian Ĥ is the same operator as in (3.1)
or (3.2); the operators q̂ and p̂ are

q̂ =
1
2
M =

1
2

©«

0 M0 0
M0 0 M1 0

0 M1 0 M2
. . .

0 M2 0
. . .

. . .
. . .

. . .

ª®®®®®®®®®¬
, p̂ =

i
2

©«

0 −M0 0
M0 0 −M1 0

0 M1 0 −M2
. . .

0 M2 0
. . .

. . .
. . .

. . .

ª®®®®®®®®®¬
(3.6)

with Mk given by (2.17) or equivalently (3.5).
For this new model, the Hamiltonian-Lie equations are satisfied. So let us turn our

attention to the properties of the position operator q̂ (the properties of the momentum
operator p̂ are completely similar and will not be given explicitly). Following Proposi-
tion 3, the spectrum of q̂ = 1

2M is simply given by

− j, −j + 1, −j + 2, . . . , j − 2, j − 1, j. (3.7)

Quite surprisingly, this spectrum is independent of the parameter c appearing in the
matrix elements (3.6) of q̂; but of course this is a consequence of Proposition 3, and in
particular of the special choice of γ and δ earlier on in Section 2. So the spectrum of q̂
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in the new model is just the same as in the familiar su(2) model. For the eigenvectors
of q̂, however, things are different, as follows from the last part of Proposition 3. The
orthonormal eigenvector of the position operator q̂ for the eigenvalue q, denoted by |q),
is given in terms of the eigenstate basis of Ĥ by

|q)=
2j∑
n=0

Un, j+q |n〉, q ∈ {−j, −j + 1 . . . , j − 1, j}. (3.8)

Herein, U = (Ukl)0≤k, l≤2j is the (2j + 1)×(2j + 1) matrix with elements defined in
terms of normalized Racah polynomials (2.6) as in the previous section. Explicitly, for
j a half-integer, the elements of U follow from Proposition 1, with N = j − 1/2 and
n, x ∈ {0, . . . , N}:

U2n,N−x = U2n,N+x+1 =
(−1)n
√

2
R̃n(λ(x);−N − 1, N − 1/2 + c/2, −1/2, 1/2),

U2n+1,N−x = −U2n+1,N+x+1 = −
(−1)n
√

2
R̃n(λ(x);−N − 1, N + 1/2 + c/2, 1/2, −1/2).

(3.9)

For j an integer, they follow from Proposition 2, with N = j:

U2n, j−x = U2n, j+x =
(−1)n
√

2
R̃n(λ(x);−j − 1, j − 1/2 + c/2, −1/2, −1/2),

(n = 0, . . . , j; x = 1, . . . , j)

U2n+1, j−x−1 = −U2n+1, j+x+1 = −
(−1)n
√

2
R̃n(λ(x);−j, j − 1/2 + c/2, 1/2, 1/2), (3.10)

(n, x ∈ {0, . . . , j − 1})

U2n, j = (−1)nR̃n(λ(0);−j − 1, j − 1/2 + c/2, −1/2, −1/2), U2n+1, j = 0.

These expressions deserve further attention. Remember that, just as in (1.4) for the
su(2) model, quite generally the position (resp. momentum) wavefunctions are the over-
laps between the normalized eigenstates of the position operator q̂ (resp. themomentum
operator p̂) and the eigenstates of the Hamiltonian. Let us denote the position wavefunc-
tions for the new oscillator model by Φ(c)

n (q), in order to emphasize the dependence
upon the positive parameter c. We can thus write:

Φ
(c)
n (q)= 〈n|q)= Un, j+q, (3.11)

where n = 0, 1, . . . , 2j and q = −j, −j+ 1, . . . , j− 1, j. So Φ(c)
0 (q) is the “ground state”,

Φ
(c)
1 (q) the first excited state, and so on. All these expressions are real, and since we are

dealing with a finite oscillator model they satisfy a discrete orthogonality relation:

j∑
q=−j

Φ
(c)
n (q)Φ(c)

n′ (q)= δn,n′,
2j∑
n=0

Φ
(c)
n (q)Φ(c)

n (q′)= δq,q′ . (3.12)
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Let us examine the explicit form of these functions in more detail, for the case j half-
integer (the case j integer is similar, and will not be treated explicitly). The expressions
follow essentially from (3.9). The even wavefunctions are given by

Φ
(c)
2n (q)=

(−1)n
√

2

√
W(n, q; c, j) 4F3

(
−q + 1/2, q + 1/2, −n, n + (c − 1)/2

1/2, j + (c + 1)/2, −j + 1/2
; 1

)
,

(3.13)
where

W(n, q; c, j)=
w(|q| − 1/2;−j − 1/2, j − 1 + c/2, −1/2, 1/2)

hn(−j − 1/2, j − 1 + c/2, −1/2, 1/2)

is written in terms of the weight function and square norm (2.5) of the Racah polyno-
mials. Note that Φ(c)

2n (q) is indeed an even function of the position q, and depends on q2

only. The odd wavefunctions are given by

Φ
(c)
2n+1(q) = (−1)n

√
(4n + c + 1)(2n + c − 1)(2n + 1)
(4n + c − 1)(2n + c + 2j)(j − n)

×
√
W(n, q; c, j) · q · 4F3

(
−q + 1/2, q + 1/2, −n, n + (c + 1)/2

3/2, j + (c + 1)/2, −j + 1/2
; 1

)
.

(3.14)

Clearly, because of the factor q, Φ(c)
2n+1(q) is an odd function of q. The overall factor

in (3.14) arises from

w(|q| − 1/2;−j − 1/2, j + c/2, 1/2, −1/2)
hn(−j − 1/2, j + c/2, 1/2, −1/2)

=
2q2(4n + c + 1)(2n + c − 1)(2n + 1)
(4n + c − 1)(2n + c + 2j)(j − n)

×
w(|q| − 1/2;−j − 1/2, j − 1 + c/2, −1/2, 1/2)

hn(−j − 1/2, j − 1 + c/2, −1/2, 1/2)
.

It is interesting to study these discrete wavefunctions for varying values of c. We know
already that in the limit c→ +∞ the position operator q̂ tends to the position operator
of the su(2) model, so also the wavefunctions should have this behavior. When c tends
to infinity, the wavefunctions Φ(c)

n (q) are indeed Krawtchouk functions. Clearly, the 4F3
series in (3.13) and (3.14) reduce to 3F2 series, which in turn reduce to 2F1 series
according to

3F2

(
−q + 1/2, q + 1/2, −n

1/2, −j + 1/2
; 1

)
= (−1)n

(2j
2n

)( j−1/2
n

) 2F1

(
−2n, −j − q
−2j

; 2
)
, (3.15)

3F2

(
−q + 1/2, q + 1/2, −n

3/2, −j + 1/2
; 1

)
= −

(−1)n

2q

( 2j
2n+1

)( j−1/2
n

) 2F1

(
−2n − 1, −j − q

−2j
; 2

)
. (3.16)

These reductions have been given in [14] and can be obtained, e.g., from [4, (48)]. The
2F1 series in the right hand side correspond to symmetric Krawtchouk polynomials (i.e.
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Krawtchouk polynomials with p = 1/2 [9]). When j tends to infinity, they yield the
ordinary oscillator wavefunctions [4].
For other values of c, let us examine some plots of the discrete wavefunctions. In

Figure 1, we give the plots of Φ(c)
n (q) for n = 0, n = 1 and n = 2, and for some fixed

j-value j = 33/2. The purpose is to observe the behavior of the wavefunctions as the
positive parameter c varies. With this in mind, we have plotted these functions for the
following c-values:

c = 10−6, c = 0.5, c = 1.5, c = 2, c = 4, c = 8, c = 32.

For large values of c, the discrete wavefunctions take indeed the shape of those of the
su(2) model (which, in turn, tend to the canonical oscillator wavefunctions when j tends
to infinity). The case c = 0 is ruled out, but we have examined a c-value close to 0, for
which the behavior is somewhat ‘degenerate’. To our surprise, the value c = 2 is a kind
of transition value for the ground state. Just looking at the ground state (n = 0), one
observes that for c < 2 the shape is like a cup, whereas for c > 2 it is like a cap. In order
to explain this transition value, recall from (3.13) that

Φ
(c)
0 (q)=

1
√

2

√
W(0, q; c, j) =

1
√

2

(
w(|q| − 1/2;−j − 1/2, j − 1 + c/2, −1/2, 1/2)

h0(−j − 1/2, j − 1 + c/2, −1/2, 1/2)

)1/2

.

(3.17)
Using (2.5),

w(|q| −1/2;−j−1/2, j−1+ c/2, −1/2, 1/2)=
(−j + 1/2) |q |−1/2(j + c/2 + 1/2) |q |−1/2

(j + 3/2) |q |−1/2(−j − c/2 + 3/2) |q |−1/2
,

(3.18)
and thus for c = 2 one findsw(|q| − 1/2;−j − 1/2, j − 1 + c/2, −1/2, 1/2)= 1. In other
words, for this special transition value c = 2, the ground state wavefunction Φ(c)

0 (q) is
a constant function.
To conclude, in the field of finite quantum oscillators the original su(2) model re-

mains an interesting model because of two reasons: the simple equidistant spectrum
of the position (and momentum) operator, and the behavior of the position wavefunc-
tions (which really look like discrete versions of the canonical oscillator wavefunctions,
and tend to them when j is sufficiently large). The new model introduced in this pa-
per deforms the su(2) model by a parameter c > 0. The spectrum of the position (and
momentum) operator is the same and thus remains simple and equidistant. The wave-
functions are deformed by the parameter c, and tend to those of the su(2) model when
c goes to infinity. The wavefunctions themselves are written in terms of Racah polyno-
mials, and originate from a Racah double [12]. The shape of the wavefunctions could
open applications beyond those of the su(2) model.
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figure 1: Plots of the discrete wavefunctions Φ(c)
n (q) in the representation with j = 33/2, for

n = 0 (left column), for n = 1 (middle column) and for n = 2 (right column). The wavefunctions
are plotted for the following values of c (from top to bottom): 10−6, 0.5, 1.5, 2, 4, 8, 32.
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abstract

The Clement or Sylvester-Kac matrix is a tridiagonal matrix with zero diagonal and sim-
ple integer entries. Its spectrum is known explicitly and consists of integers which makes
it a useful test matrix for numerical eigenvalue computations. We consider a new class
of appealing two-parameter extensions of this matrix which have the same simple struc-
ture and whose eigenvalues are also given explicitly by a simple closed form expression.
The aim of this paper is to present in an accessible form these new matrices and exa-
mine some numerical results regarding the use of these extensions as test matrices for
numerical eigenvalue computations.

1 introduction

For a positive integer n, consider the (n+ 1)×(n+ 1) matrix Cn whose non-zero entries
are given by

ck,k+1 = cn+2−k,n+1−k = k for k ∈ {1, . . . , n}, (1.1)

or explicitly, the matrix

Cn =

©«

0 1
n 0 2

n − 1 0 3
. . .

. . .
. . .

3 0 n − 1
2 0 n

1 0

ª®®®®®®®®®®®®¬
. (1.2)

This matrix appears in the literature under several names: the Sylvester-Kac matrix, the
Kac matrix, the Clement matrix, etc. It was already considered by Sylvester [19], used
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by M. Kac in some of his seminal work [13], proposed by Clement as a test matrix for
eigenvalue computations [5], and it continues to attract attention [2, 3, 7, 20].
The matrix Cn has a simple structure, it is tridiagonal with zero diagonal and has

integer entries. The main property of Cn is that its spectrum is known explicitly and is
remarkably simple; the eigenvalues of Cn are the integers

− n, −n + 2, −n + 4, . . . , n − 2, n. (1.3)

The n + 1 distinct eigenvalues are symmetric around zero, equidistant and range from
−n to n. Hence for even n, they are n+1 consecutive even integers, while for odd n they
are n + 1 consecutive odd integers.

remark 1: The eigenvectors of the matrix Cn are also known, they can be expressed in
terms of the Krawtchouk orthogonal polynomials [16].

As the eigenvalues of (1.2) are known explicitly and because of the elegant and sim-
ple structure of both matrix and spectrum, Cn is a standard test matrix for numerical
eigenvalue computations (see e.g. example 7.10 in [9]), and part of some standard test
matrix toolboxes (e.g. [10]). In MATLAB, Cn can be produced from the gallery of test
matrices using gallery(‘clement’,n+1). The Clement matrix also appears in several
applications, e.g. as the transition matrix of a Markov chain [1], or in biogeography
[11].

General tridiagonal matrices with closed form eigenvalues are rare, most examples
being just variations of the tridiagonal matrix with fixed constants a, b and c on the
subdiagonal, diagonal and superdiagonal respectively [6, 21]. In this paper we present
appealing two-parameter extensions of Cn with closed form eigenvalues. These exten-
sions first appeared in a different form in the paper [18] as a special case of a class
of matrices related to orthogonal polynomials. Special cases of these matrices were ori-
ginally encountered in the context of finite quantum oscillator models (e.g. [12]) and
their classification led to the construction of new interesting models [17]. Here, we fea-
ture them in a simpler, more accessible form which immediately illustrates their relation
with Cn. Moreover, we consider some specific parameter values which yield interesting
special cases.
Another purpose of this paper is to demonstrate by means of some numerical experi-

ments the use of these extensions of Cn as test matrices for numerical eigenvalue com-
putations. Hereto, we examine how accurately the inherent MATLAB function eig() is
able to compute the eigenvalues of our test matrices compared to the exact known ei-
genvalues. An interesting feature of the new class of test matrices is that they include
matrices with double eigenvalues for specific parameter values.
In section 2 we present in an accessible form the two-parameter extensions of the

Clement matrix. We state the explicit and rather simple form of their eigenvalues which
makes them potentially interesting examples of eigenvalue test matrices. In section 3 we
consider some specific parameter values for the new classes of test matrices which yield
interesting special cases. In section 4 we display some numerical results regarding the
use of these extensions as test matrices for numerical eigenvalue computations. This is
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done by looking at the relative error when the exact known eigenvalues are compared
with those computed using the inherent MATLAB function eig().matlab

2 new test matrices

Now, we consider the following extension of the matrix (1.2), by generalizing its entries
(1.1) to:

hk,k+1 =


k if k even

k + a if k odd
and hn+2−k,n+1−k =


k if k even

k + b if k odd
(2.1)

where we introduce two parameters a and b (having a priori no restrictions). We will
denote this extension by Hn(a, b). For n even, the matrix Hn(a, b) is given by (2.2). Note
in particular that the first entry of the second row is h2,1 = n and contains no parameter,
and the same for hn,n+1 = n. For odd n, the matrix (2.4) has entries h2,1 = n + b and
hn,n+1 = n + a which now do contain parameters, contrary to the even case.
The reason for considering this extension is that, similar to (1.3) for Cn, we also have

an explicit expression for the spectrum of Hn(a, b), namely:

theorem 2: For n even, say n = 2m, the 2m + 1 eigenvalues of

Hn(a, b)=

©«

0 1 + a
n 0 2

n − 1 + b 0 3 + a
. . .

. . .
. . .

3 + b 0 n − 1 + a
2 0 n

1 + b 0

ª®®®®®®®®®®®®¬
(2.2)

are given by
0, ±

√
(2k)(2k + a + b) for k ∈ {1, . . . , m}. (2.3)

theorem 3: For n odd, say n = 2m + 1, the 2m + 2 eigenvalues of

Hn(a, b)=

©«

0 1 + a
n + b 0 2

n − 1 0 3 + a
. . .

. . .
. . .

3 + b 0 n − 1
2 0 n + a

1 + b 0

ª®®®®®®®®®®®®¬
(2.4)
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are given by
±

√
(2k + 1 + a)(2k + 1 + b) for k ∈ {0, . . . , m} (2.5)

We will prove the results for the symmetrized form of these matrices. We briefly ela-
borate on this. Consider a (n + 1)×(n + 1) tridiagonal matrix with zero diagonal

A =

©«

0 b1 0

c1 0 b2
. . .

0 c2 0
. . . 0

. . .
. . .

. . . bn
0 cn 0

ª®®®®®®®®®¬
. (2.6)

It is clear that the characteristic polynomial of A depends on the products bici (i = 1, . . . ,
n) only, and not on bi and ci separately. Therefore, if all the products bici are positive,
the eigenvalues of A or of its symmetrized form

A′ =

©«

0
√
b1c1 0

√
b1c1 0

√
b2c2

. . .

0
√
b2c2 0

. . . 0
. . .

. . .
. . .

√
bncn

0
√
bncn 0

ª®®®®®®®®®¬
(2.7)

are the same. The eigenvectors of A′ are those of A after multiplication by a diagonal
matrix (the diagonal matrix that is used in the similarity transformation from A to A′).
Using this procedure, the aforementioned matrices can be made symmetric. For Cn

the entries (1.1) can be symmetrized to

c̃k,k+1 = c̃k+1,k =
√
k(n + 1 − k) for k ∈ {1, . . . , n}.

This matrix is also implemented in MATLAB, namely as gallery(’clement’,n+1,1).
For the extension Hn(a, b), the entries of its symmetric form H̃n(a, b) are

h̃ek,k+1 = h̃ek+1,k =


√
k(n + 1 − k + b) if k even
√
(k + a)(n + 1 − k) if k odd

for n even and k ∈ {1, . . . , n}, while for n odd we have

h̃ok,k+1 = h̃ok+1,k =


√
k(n + 1 − k) if k even
√
(k + a)(n + 1 − k + b) if k odd

for k ∈ {1, . . . , n}.
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The above theorems are now proved using a property of the dual Hahn polynomials,
which are defined in terms of the generalized hypergeometric series as follows [14]

Rn(λ(x); γ, δ, N)= 3F2

(
−x, x + γ + δ + 1, −n

γ + 1, −N
; 1

)
. (2.8)

The dual Hahn polynomials satisfy a discrete orthogonality relation, see [18, (2.7)], and
we denote the related orthonormal functions as R̃n(λ(x); γ, δ, N).

lemma 2.4: The orthonormal dual Hahn functions satisfy the following pairs of recurrence
relations:√

(n + 1 + γ)(N − n)R̃n(λ(x); γ, δ, N)−
√
(n + 1)(N − n + δ)R̃n+1(λ(x); γ, δ, N)

=
√
x(x + γ + δ + 1)R̃n(λ(x − 1); γ + 1, δ + 1, N − 1), (2.9)

−
√
(n + 1)(N − n + δ)R̃n(λ(x − 1); γ + 1, δ + 1, N − 1)+

√
(n + 2 + γ)(N − n − 1)

× R̃n+1(λ(x − 1); γ + 1, δ + 1, N − 1)=
√
x(x + γ + δ + 1)R̃n+1(λ(x); γ, δ, N)

(2.10)

and√
(n + 1 + γ)(N − n + δ)R̃n(λ(x); γ, δ, N)−

√
(n + 1)(N − n)R̃n+1(λ(x); γ, δ, N)

=
√
(x + γ + 1)(x + δ)R̃n(λ(x); γ + 1, δ − 1, N), (2.11)

−
√
(n + 1)(N − n)R̃n(λ(x); γ + 1, δ − 1, N)+

√
(n + 2 + γ)(N − n + δ − 1)

× R̃n+1(λ(x); γ + 1, δ − 1, N)=
√
(x + γ + 1)(x + δ)R̃n+1(λ(x); γ, δ, N). (2.12)

Proof. The first two relations follow from the case dual Hahn I of [18, Theorem 1] mul-
tiplied by the square root of the weight function and norm squared, and similarly the
last two from the case dual Hahn III.

Proof of Theorem 2. Let n be an even integer, say n = 2m, and let a and b be real num-
bers greater than −1. Take k ∈ {1, . . . , m} and letU±k = (u1, . . . , un+1)T be the column
vector with entries

ul =

(−1)(l−1)/2R̃(l−1)/2(λ(k); a−1

2 ,
b−1

2 , m) if l odd

±(−1)l/2−1R̃l/2−1(λ(k − 1); a+1
2 ,

b+1
2 , m − 1) if l even.

We calculate the entries of the vector H̃n(a, b)U±k to be

(H̃n(a, b)U±k)l= h̃el, l−1ul−1 + h̃el, l+1ul+1.

For l even, using the recurrence relation (2.9) with the appropriate parameter values
substituted in the orthonormal dual Hahn functions, this becomes

(H̃n(a, b)U±k)l=
√
(l − 1 + a)(2m + 2 − l)(−1)l/2−1R̃l/2−1(λ(k); a−1

2 ,
b−1

2 , m)
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+
√
l(2m + 1 − l + b)(−1)l/2R̃l/2(λ(k); a−1

2 ,
b−1

2 , m)

= 2
√
k(k + a

2 +
b
2)(−1)l/2−1R̃l/2−1(λ(k − 1); a+1

2 ,
b+1

2 , m − 1)

= ±
√
(2k)(2k + a + b) ul .

Similarly, for l odd we have, using now the recurrence relation (2.10),

(H̃n(a, b)U±k)l

= ±
√
(l − 1)(2m + 2 − l + b)(−1)(l−3)/2R̃(l−3)/2(λ(k − 1); a+1

2 ,
b+1

2 , m − 1)

±
√
(l + a)(2m + 1 − l)(−1)(l−1)/2R̃(l−1)/2(λ(k − 1); a+1

2 ,
b+1

2 , m − 1)

= ± 2
√
k(k + a

2 +
b
2)(−1)(l−1)/2R̃(l−1)/2(λ(k); a−1

2 ,
b−1

2 , m)

= ±
√
(2k)(2k + a + b) ul .

Finally, define U0 = (u1, . . . , un+1)T as the column vector with entries

ul =

(−1)(l−1)/2R̃(l−1)/2(λ(0); a−1

2 ,
b−1

2 , m) if l odd

0 if l even.

Putting x = 0 on the right-hand side of (2.9), it is clear that the entries of the vector
H̃n(a, b)U0 are all zero.
This shows that the eigenvalues of H̃n(a, b) are given by (2.3), so its characteristic

polynomial must be

λ

m∏
k=1

(
λ2 − (2k)(2k + a + b)

)
,

which allows us to extend the result to arbitrary parameters a and b.

Theorem 3 is proved in the same way, using now relations (2.11) and (2.12).

3 special cases

We now consider some particular cases where the eigenvalues as given in Theorem 2
and Theorem 3 reduce to integers or have a special form.
For the specific values a = 0 and b = 0, it is clear that Hn(0, 0) reduces to Cn for both

even and odd values of n. As expected, the explicit formulas for the eigenvalues (2.3)
and (2.5) also reduce to (1.3).
Next, we look at n even. In (2.3), we see that the square roots cancel if we take

b = −a. For this choice of parameters, the eigenvalues of Hn(a, −a) are even integers,
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which are precisely the same eigenvalues as those of the Clement matrix (1.3). However,
the matrix

Hn(a, −a)=

©«

0 1 + a
n 0 2

n − 1 − a 0 3 + a
. . .

. . .
. . .

3 − a 0 n − 1 + a
2 0 n

1 − a 0

ª®®®®®®®®®®®®¬
(3.1)

still contains a parameter a which does not affect its eigenvalues. So for every even
integer n, (3.1) gives rise to a one-parameter family of tridiagonal matrices with zero
diagonal whose eigenvalues are given by (1.3). This property is used explicitly in [17]
to construct a finite oscillator model with equidistant position spectrum.
For n odd, say n = 2m + 1, the square roots in (2.5) cancel if we take b = a. Substi-

tuting a for b, the matrix (2.4) becomes

Hn(a, a)=

©«

0 1 + a
n + a 0 2

n − 1 0 3 + a
. . .

. . .
. . .

3 + a 0 n − 1
2 0 n + a

1 + a 0

ª®®®®®®®®®®®®¬
, (3.2)

while for the eigenvalues we get

± |2k + 1 + a| for k ∈ {0, . . . , m}. (3.3)

These are integers for integer a and real numbers for real a. We see that for a = 0, (3.3)
reduces to the eigenvalues (1.3), but then the matrix is precisely Cn. Non-zero values
for a induce a shift in the eigenvalues, away from zero for positive a and towards zero
for −1 < a < 0. However, for −n < a < −1 the positive and negative (when a > −1)
eigenvalues get mingled. Moreover, for a equal to a negative integer ranging from −1 to
−n, we see that there are double eigenvalues. A maximum number of double eigenvalues
occurs for a = −m − 1, then each of the values

2k − m for k ∈ {0, . . . , m},

is a double eigenvalue. By choosing a nearly equal to a negative integer, we can produce
a matrix with nearly, but not exactly, equal eigenvalues. For a < −n, all positive eigen-
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values (when a > −1) become negative and vice versa. Finally, for the special value
a = −n − 1, the eigenvalues (3.3) also reduce to (1.3) while the matrix becomes

Hn(−n − 1, −n − 1)=

©«

0 −n
−1 0 2

n − 1 0 2 − n
−3 0 4

. . .
. . .

. . .

4 0 −3
2 − n 0 n − 1

2 0 −1
−n 0

ª®®®®®®®®®®®®®®®®®¬

.

This is up to a similarity transformation, as explained at the end of section 2, the matrix
Cn.
Also for n odd, another peculiar case occurs when b = a = 1. Scaling by one half we

then have the matrix

1
2
H2m+1(1, 1)=

©«

0 1
m + 1 0 1

m 0 2
m 0 2
. . .

. . .
. . .

2 0 m
2 0 m

1 0 m + 1
1 0

ª®®®®®®®®®®®®®®®®®¬

. (3.4)

with eigenvalues, by (2.5),

±(k + 1) for k ∈ {0, . . . , m}.
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The even equivalent of this matrix,

1
2
H2m(1, 1)=

©«

0 1
m 0 1

m 0 2
m − 1 0 2

. . .
. . .

. . .

2 0 m − 1
2 0 m

1 0 m
1 0

ª®®®®®®®®®®®®®®®®®¬

, (3.5)

does not have integer spectrum, but instead, using the expression (2.3), has as eigenval-
ues

0, ±
√
k(k + 1) for k ∈ {1, . . . , m}.

We have reviewed the special cases where the explicit formulas for the eigenvalues
(2.3) and (2.5) which generally contain square roots, reduce to integers. In the following,
we will use the notation

Hn(a)=

Hn(a, −a) if n even

Hn(a, a) if n odd
(3.6)

to denote these special cases.

4 numerical results

We now examine some numerical results regarding the use of the extensions of the
previous sections as test matrices for numerical eigenvalue computations. This is done
by comparing the exact known eigenvalues of Hn(a, b) with those computed using the
inherent MATLAB function eig(). These numerical experiments are included merely to
illustrate the potential use of the matrices Hn(a, b) as eigenvalue test matrices, and to
examine the sensitivity of the computed eigenvalues on the new parameters.
A measure for the accuracy of the computed eigenvalues is the relative error

‖x − x∗‖∞
‖x‖∞

,

where x is the vector of eigenvalues as ordered list (by real part) and x∗ its approxima-
tion.
Recall that both for n odd and n even, for the special case Hn(a) the square roots in the

expressions for the eigenvalues cancel, yielding real eigenvalues for every real value of
the parameter a. In the general case, the eigenvalues (2.3) are real when a+b > −2 and
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those in (2.5) are real when a > −1 and b > −1 or a < −n and b < −n. A first remark
is that when we compute the spectrum of Cn using eig() in MATLAB, eigenvalues with
imaginary parts are found when n exceeds 116, but not for lower values of n. Therefore,
for the extensions, we have chosen n = 100 and n = 101 (for the even and the odd case
respectively) for most of our tests, as this gives reasonably large matrices but is below
the bound of 116. We will see that in this case for the extensions, the eig() function in
MATLAB does find eigenvalues with imaginary part for certain parameter values.
We first consider the special case (3.6). For n even, Hn(a) has the eigenvalues (1.3),

which are integers independent of the parameter a. In figure 1, we have depicted the
largest imaginary part of the computed eigenvalues for the matrix Hn(a) for n = 10 and
n = 100 at different values for the parameter a. We see that outside a central region
imaginary parts are found. For example, for H100(a), MATLAB finds eigenvalues with
imaginary parts when a > 21 or a < −2.5. Moreover, the relative error for the computed
eigenvalues, shown in figures 2, increases as a approaches the region where eigenvalues
with imaginary parts are found. In this latter region, the size of the relative error is of
course due to the presence of imaginary parts which do not occur in the theoretical exact
expression for the eigenvalues. As a reference, the relative error for C100 is 3.6612×10−5,
while that for H100(20) is 1.1471 × 10−3 and 4.9444 × 10−3 for H100(20.97).
For n odd, Hn(a) has the eigenvalues (3.3), which dependent on the parameter a

but are real for every real number a. Nevertheless, even for a small dimension such as
n = 11, eigenvalues with (small) imaginary parts are found when a equals −2, −4, −6
or −8. This produces a relative error of order 10−8, while for other values of a (and
for the Clement matrix) the relative error is of order 10−15, near machine precision. For
H101(a), the largest imaginary part of the computed eigenvalues is portrayed in figure 3,
together with the relative error. MATLAB finds eigenvalues with imaginary parts when
−100 ≤ a < −1.5. These findings correspond to the region where double eigenvalues
occur as mentioned in the previous section. The relative error is largest around this
region and is several orders smaller when moving away from this region. As a reference,
the relative error for C101 is 3.6881×10−5, while that for H101(−1.75) is 1.4840×10−3.
Finally, we note that eigenvalues with imaginary parts also appear when a is extremely
large, i.e. a > 1010 or a < −1010.
Next, we consider the general setting where we have two parameters a and b, starting

with the case where n is even. Although the two parameters a and b occur symmetric
in (2.3) and in the matrix (2.2) itself, there are some disparities in the numerical re-
sults. From the expression for the eigenvalues (2.3) we see that they are real when the
parameters satisfy a + b > −2. However,

• when a is a negative number less than −2, MATLAB finds eigenvalues with imagi-
nary parts for almost all values of b.

• for negative values of b, no imaginary parts are found as long as a + b > −2.

• For positive values of a, eigenvalues with imaginary parts are found when b gets
sufficiently large, as illustrated in figure 4.
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• For positive values of b the opposite holds: eigenvalues with imaginary parts are
found when a is comparatively small, see figure 5.

In the case where n is odd, similar results hold for positive parameter values for a and
b, as shown in figure 6 for example. For negative parameter values we have a different
situation, as the eigenvalues (2.5) can become imaginary if the two factors have opposite
sign. When a < −n and b < −n, the eigenvalues (2.5) are real again and the behavior
mimics that of the positive values of a and b. The picture we get is a mirror image of
figure 6.
The reason for this disparity between the seemingly symmetric parameters a and b is

that the QR algorithm wants to get rid of subdiagonal entries in the process of creating
an upper triangular matrix. As a consequence, the numerical computations are much
more sensitive to large values of b as it resides on the subdiagonal. This is showcased
in figures 4, 5 and 6. Most important is the sensitivity on the extra parameters (a or a
and b) which makes them appealing as test matrices.
It would be interesting future work if these new eigenvalue test matrices were to be

used to test also numerical algorithms for computing eigenvalues designed specifically
for matrices having multiple eigenvalues [8], being tridiagonal [15], or symmetric and
tridiagonal [4].
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figure 1: Plots of the largest imaginary part of the computed eigenvalues of Hn(a) (n even and
a = −b) for different values of a on horizontal axis. Left for n = 10 and right n = 100.
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figure 2: Plots of the relative error in the computed eigenvalues of Hn(a) (n even and a = −b)
for different values of a on horizontal axis. Left for n = 10 and right n = 100.
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figure 3: For different values of a as denoted on the horizontal axis, left a plot of the largest
imaginary part and right a plot of the relative error of the computed eigenvalues of H101(a).
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figure 4: Plots of the largest imaginary part (left) and the relative error (right) in the computed
eigenvalues of H100(a, b), horizontal axis varying values of b. Top row a = 0, middle row a = 1,
bottom row a = 20.
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figure 5: Plots of the largest imaginary part (left) and the relative error (right) in the computed
eigenvalues of H100(a, b), horizontal axis varying values of a. Top row b = 50, bottom row b =
100.
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figure 6: Plots of the largest imaginary part (left) and the relative error (right) in the computed
eigenvalues of H101(a, b), horizontal axis varying values of b. Top row a = 0, bottom row a = 25.



Part III

E P I LOGUE

The end is in( )sight.





CONCLUS ION AND OUTLOOK

In Chapter 1, we obtained a class of Fourier-like transforms on the space of rapidly
decreasing functions which intertwine the Laplace operator and the squared norm on
Rn. These transforms are described in two ways. First, as exponentials of elements in
the enveloping algebra of the related operator realization of sl(2). This first description
makes use of the Casimir element of sl(2) and integer-valued polynomials on squares of
integers or of half-integers, depending on the parity of the dimension. Second, for each
operator an equivalent formulation is given as an integral transform with a plane wave
decomposition of the integral kernel in terms of Bessel functions and Gegenbauer po-
lynomials. For a finite subset of transforms which closely resemble the classical Fourier
transform, the integral kernels could be reduced to closed formulas which are polyno-
mially bounded. Furthermore, we established uncertainty principles for these Fourier-
like transforms.
In the setting of functions taking values in a Clifford algebra, the same approach was

repeated to determine Fourier-like transforms intertwining the Dirac operator and its
dual, the vector variable. Similar results are obtained in this case. We also have equiva-
lent descriptions as operator exponentials, using now the osp(1|2) Casimir element, and
as integral transform, now with a Clifford algebra valued kernel. For a select set of trans-
forms we again find polynomially bounded formula for the kernel, which are of similar
nature as the kernel of the Clifford-Fourier transform [6].

In the second chapter, we considered generalizations of the Laplace and Dirac opera-
tor in the framework of an n-dimensional Wigner quantum system, involving n position
operators x1, . . . , xn and n momentum operators p1, . . . , pn. Here, we have a Laplace-
like operator ∆ which arises by replacing partial derivatives by (a prior abstract) mo-
mentum operators p1, . . . , pn in the expression of the regular n dimensional Laplace.
In the same way, a Dirac-like operator D is defined, which squares to ∆. For these two
abstract operators, our aim was to study the symmetry algebras generated by opera-
tors commuting or anti-commuting with ∆ or D. A specific case included in this study
is that of the Laplace-Dunkl and Dirac-Dunkl operator (for arbitrary root system), by
identifying the momentum operators with Dunkl operators.
For our Laplace-like operator ∆, we first obtained an embedding in an sl(2) realiza-

tion, a result known already for the classical as well as the Dunkl case. In the framework
of the Wigner quantum system, we described all symmetries commuting with ∆ and de-
termined the algebraic relations satisfied by these elements. In general, we have n2 basic
symmetries indexed by two coordinate labels. These basic symmetries are linear in both
position and momentum operators and form an analog of linear differential operators
preserving the degree of homogeneous polynomials. The resulting symmetry algebra
was seen to be an extension of the symmetry algbra in the classical case, namely the Lie
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algebra so(n). In the Dunkl case, this gives rise to a deformation of so(n) incorporating
reflections of the associated reflection group accompanied by parameters present also
in the Dunkl operators. This algebraic structure is in accordance with results on Dunkl
operators specifically for root systems of type An−1 [7].
For the Dirac operator D, we work in an extended framework including now also

Clifford algebra elements, akin to the gamma matrices in the original Dirac equation.
Herein, we obtained a realization of osp(1|2) and determined all operators that com-
mute or anti-commute with D. Working in this bigger framework, the class of basic
symmetries, indexed now by up to n coordinate labels, is of order 2n as opposed to
just n2 for the Laplace case. In particular, these symmetries consist of combinations of
the previously obtained Laplace symmetries accompanied by Clifford algebra elements.
The quadratic relations satisfied by these symmetries of the Dirac operator D were then
determined in abstract fashion. For the Dunkl case, these abstract relations reduce to
explicit expressions involving the associated reflection group. The relations obtained
in this way agree with other work [4, 5] where the underlying reflection group was
taken to be Zn

2, the simplest non-trivial case. Here, the symmetries and their algebraic
relations give rise to the so-called (higher rank) Bannai-Ito algebra. Our findings can be
considered as an extension of these relations to an arbitrary underlying reflection group,
in fact in an even more general context.
The results obtained here open the way to several new investigations. In particular,

they can be combined with the results of Chapter 1. On the one hand, the strategy
developed there can now be employed for these generalized Laplace and Dirac operators.
On the other hand, the classical case can be revisited using the symmetries obtained here.
For the Laplace operator we do not expect any substantial differences, as exponentials
of these symmetries generate rotations, or thus orthogonal transformations, which were
dismissed as trivial variations. However, it would be interesting to see what the effect is
of the symmetries containing Clifford algebra elements in the Dirac case.
In a different direction, one can examine whether other types of operators, besides

regular partial derivatives and Dunkl operators, pose valid candidates for the momen-
tum operators in a Wigner quantum systems. Possible examples are trigonometric Dunkl
operators, or discrete difference operators.
An immediate follow-up consists of studying in detail the symmetry algebras of the

Laplace-Dunkl and the Dirac-Dunkl operators for specific cases of root systems and as-
sociated reflection groups. The abstract symmetries and algebraic relations then take
on an explicit form determined by this choice of momentum operators. The area of par-
ticular interest is then the representation theory of this symmetry algebra. These could
lead to superintegrable models and relations with families of orthogonal polynomials,
as was already observed for the case of the reflection group (Z2)n.
In Chapter 3, we considered in detail such a specific type of Dirac-Dunkl operator,

namely for the root system A2 with Weyl group S3, the symmetric group on three ele-
ments. For this three-dimensional case the symmetry algebra was seen to be a one-
parameter deformation of the classical angular momentum algebra, the Lie algebra
so(3), incorporating elements of S3. We classified all finite-dimensional irreducible re-
presentations of this algebra in abstract fashion, by constructing a form of ladder opera-
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tors. Among the obtained classes of irreducible representations of the symmetry algebra,
there is one class of unitary representations for arbitrary positive value of the parameter.
This last class admits a natural realization by means of Dunkl monogenics, for which
we constructed an explicit basis. This basis consists of eigenfunctions of the spherical
Dirac-Dunkl operator and thus form solutions to a Dirac equation on the two-sphere.
Besides the finite-dimensional representations classified here, we can attempt to do

the same for infinite-dimensional representations. Moreover, in future work we aim to
elevate the setting of Chapter 3 in two other directions. On the one hand, one can consi-
der the n-dimensional case where the reflection group associated to the Dunkl operator
is the symmetric group Sn. On the other hand, it would be interesting to consider more
involved root systems (as was done for the type B3 [9]), first in three dimensions and
then also in higher dimensions.

In Chapter 4, we classified all pairs of recurrence relations that connect two sets of
discrete orthogonal polynomials of the same family, having different parameters. These
families include the Hahn, dual Hahn and Racah polynomials in the discrete side of
the Askey-scheme of hypergeometric orthogonal polynomials. In turn, this classification
gives all Christoffel-Geronimus transforms where the kernel partner of a given Hahn,
dual Hahn or Racah polynomial is again of this same family, with different parameters.
For each pair of recurrence relations, there is a corresponding symmetric tridiagonal ma-
trix M with zero diagonal, obtained by normalizing the discrete orthogonal polynomials
using the weight function. Explicit expressions for the eigenvalues of M and their ortho-
normal eigenvectors follow immediately from the recurrence relations and are given in
terms of the discrete orthogonal polynomials.
These new tridiagonal matrices could be seen as representation matrices of deforma-

tions or extensions of su(2). For the dual Hahn case, we determined all algebraic rela-
tions for these new algebras, which in general contain two parameters. Special cases of
these algebras, including still one parameter, could be used as the underlying algebraic
structure for the construction of finite oscillator models. In such a model, the discrete po-
sition wavefunction of the oscillator is then described by the related pair of orthogonal
polynomials. In Chapter 5, we considered in detail one of the arising special cases. The
algebra in question was seen to be an extension of su(2) by means of a parity operator
P and a parameter and was called su(2)P . For this algebra su(2)P , we have classified all
unitary finite-dimensional irreducible representations.
The rest of Chapter 5 and also Chapter 6 was devoted to the development of new

models for a finite quantum oscillator based on the previous results. These new models
preserve all the nice and essential properties of the original su(2) model, but include an
extra parameter which determines the shape of the discrete position (and momentum)
wavefunctions. With applications in mind, the most important property is the equidis-
tance of the position spectrum, independent of the value of the parameter.
The original Hahn oscillator models [11, 12] also included a parameter, which appe-

ared as well in the expressions for the position values and thus influenced the distance
between them. In those models, the position spectrum was only seen to be equidistant
for a specific parameter value, in which case the model reduces to the standard su(2)
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one. The latter model has been used in signal analysis on a finite number of discrete
sensors or data points [1–3], where it is an advantage if the sensor points of the grid
are uniformly distributed, according to the equidistant position spectrum of the model.
The presence of an extra parameter in our new models, while retaining the equidistant
position spectrum, could open up additional options in the analysis of signals.
In particular, image analysis using discrete orthogonal polynomials has received con-

siderable attention, with orthogonal moment functions being used in image reconstruc-
tion, pattern recognition and object identification [15–18]. The use of discrete as oppo-
sed to continuous orthogonal polynomials has the advantage that the computation of
the moments involves no numerical approximation of the orthogonality relation. Fur-
thermore, there is no need for a spatial domain renormalization as the polynomials are
defined on a discrete domain, as is an image. The currently proposed image analysis by
dual Hahn or Racah polynomials uses an intermediate, non-uniform (quadratic) lattice
instead of working directly on the image grid. The reason for this is that the orthogo-
nality of both dual Hahn and Racah polynomials holds on a set of points which are not
equidistant. This intermediate, non-uniform lattice can be omitted using the developed
models with equidistant position values.
Another path worth considering is that of q-analogues of hypergeometric orthogonal

polynomials and the related quantum algebras. These contain an additional parameter
q and reduce to their classical variants for q → 1−. We refer to Ref. [8, 10, 13, 14] for
precise definitions and properties. It could prove interesting to investigate the associated
algebraic structures appearing when the current results are repeated in the q-setting.
In the final chapter, we reviewed an interesting secondary outcome of the classification

above. We obtained matrices, containing parameters, with a well-defined tridiagonal
structure and explicit expressions for both eigenvalues and eigenvectors. Such matrices
are useful for testing the accuracy of numerical eigenvalue routines. For the dual Hahn
case, these matrices were shown to be two-parameter extensions of the Sylvester-Kac
matrix, a standard test matrix with simple integer entries and eigenvalues. In this regard,
the matrices are cast in a form with integer entries offset by a parameter, present also in
the expressions for eigenvalues. We showcased special cases where the parameters are
chosen such that the eigenvalues consist of simple equidistant integers, or double eigen-
values occur. Furthermore, we gave some numerical results regarding the use of these
extensions as test matrices for eigenvalue computations, using the inherent MATLAB
function eig().
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SUMMARY

A characteristic property of the Fourier transform is that it interchanges differentia-
tion and multiplication when moving between the time and frequency domain. As a
consequence, on n-dimensional Euclidean space, the Fourier transform intertwines the
Laplace operator and the squared norm. In the first chapter, we investigate which oper-
ators on the space of rapidly decreasing functions on Rn portray this same behavior. In
this way, we obtain a non-trivial class of such Fourier-like transforms which are described
in two ways.
The first description relies on a realization of the Lie algebra sl(2) generated by the

Laplace operator and the squared norm. This algebraic structure is naturally connected
with the classical Fourier transform. The desired operators are constructed as exponen-
tials of elements in the enveloping algebra of sl(2), using the Casimir element which
commutes with all elements of the algebra. The explicit exponents are given in terms of
integer-valued polynomials on squares of integers or of half-integers, depending on the
parity of the dimension.
Second, for each operator an equivalent formulation is given as an integral transform

with a plane wave decomposition of the integral kernel in terms of Bessel functions and
Gegenbauer polynomials. For a finite subset of transforms, which closely resemble the
classical Fourier transform, the integral kernels can be reduced to closed formulas which
are polynomially bounded. Furthermore, we establish uncertainty principles for these
Fourier-like transforms.
In the setting of functions taking values in a Clifford algebra, the Dirac operator is

defined as a square root of the Laplace operator. The underlying algebraic structure
is the Lie superalgebra osp(1|2). We repeat the same procedure and determine Fourier-
like transforms intertwining the Dirac operator and its dual, the vector variable. We also
obtain two equivalent descriptions for each such transform: as an operator exponential,
using now the osp(1|2) Casimir element, and as an integral transform with a Clifford
algebra-valued kernel. For a select set of transforms we again find polynomially bounded
formula for the kernel, which are of similar nature as those of other transforms in the
context of Clifford analysis.
In Chapter 2, we consider a generalization of the classical Laplace operator, where

we replace partial derivatives by abstract momentum operators. In particular, this gen-
eralization includes the Laplace-Dunkl operator when we identify the momentum oper-
ators with the so-called Dunkl operators. The latter are differential-difference operators
associated with a root system and the corresponding finite reflection group. For this
Laplace-like operator, we determine a set of symmetries commuting with it, and we pre-
sent the algebraic relations for the symmetry algebra. In the classical case, this forms a
realization of the Lie algebra so(n). We obtain novel extensions or deformations of so(n)
as the symmetry algebra of more general cases.
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In this context, the generalized Dirac operator is then defined as a square root of
our Laplace-like operator. We explicitly determine a family of graded operators which
commute or anti-commute with our Dirac-like operator depending on their degree. The
algebra generated by these symmetry operators is shown to be a generalization of the
standard angular momentum algebra in the three-dimensional case, and of the recently
defined higher rank Bannai-Ito algebra in higher dimensions.
In Chapter 3, we study a specific case of the abstract results obtained in the previ-

ous chapter. We consider the three-dimensional case of the Dirac-Dunkl operator associ-
ated to the root system A2, and the associated Dirac equation. The corresponding Weyl
group is the symmetric group on three elements, denoted by S3. The explicit form of
the symmetry algebra in this case is a one-parameter deformation of the classical angu-
lar momentum algebra so(3) incorporating elements of S3. For this algebraic structure
in abstract form, we classify all finite-dimensional, irreducible representations and we
determine the conditions for the representations to be unitarizable. A realization of the
natural class of unitary irreducible representations is given by the action of the sym-
metries on polynomials in the kernel of the Dirac-Dunkl operator. The representation
space consists of eigenfunctions of the Dirac-Dunkl operator on the two-sphere. Using
a Cauchy-Kowalevsky extension theorem we obtain explicit expressions for these eigen-
functions in terms of Jacobi polynomials.
The next part originated from the context of finite oscillator models. In earlier models,

the discrete position and momentum wavefunctions were seen to consist of a combina-
tion of dual Hahn polynomials with different parameters. The action of the position
operator on these wavefunctions boiled down to a pair of recurrence relations for these
sets of dual Hahn polynomials. To construct new models, in Chapter 4, we thus classify
all pairs of recurrence relations that connect two sets of discrete orthogonal polynomials
of the same family, having different parameters. These families include the Hahn, dual
Hahn and Racah polynomials in the discrete side of the Askey-scheme of hypergeomet-
ric orthogonal polynomials. In turn, this classification gives all Christoffel-Geronimus
transforms where the kernel partner of a dual Hahn polynomial is again of this same
family, with different parameters.
For each pair of recurrence relations, there is a corresponding symmetric tridiagonal

matrix M with zero diagonal, obtained by normalizing the discrete orthogonal poly-
nomials using the weight function. Explicit expressions for the eigenvalues of M and
their orthonormal eigenvectors follow immediately from the recurrence relations and
are given in terms of the discrete orthogonal polynomials. We examine also the under-
lying algebraic relations, and discuss their usefulness for the construction of new finite
oscillator models.
In Chapter 5, we investigate in particular a finite oscillator model which could have

equidistant position values. The latter is of interest for applications in optics and signal
analysis. The related algebraic structure, in this case, is an extension of the Lie algebra
su(2) by means of a parity operator P and a parameter, which we refer to as the algebra
su(2)P . Before getting to the oscillator model, we classify all irreducible unitary finite-
dimensional representations of this algebra.
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Next, the obtained odd-dimensional representations are used to construct a finite
oscillator model with equidistant position values related to the algebra su(2)P . The
orthonormal eigenvectors of the position and momentum operator form the correspon-
ding wavefunctions, which are given in terms of the previously determined pair of dual
Hahn polynomials. In particular the position spectrum is independent of the parame-
ter included in the model while the discrete position wavefunctions do depend on this
parameter, as pictured in plots pertaining to the lowest energy states.
Subsequently, in Chapter 6, we develop a finite oscillator model pertaining to a pair of

Racah polynomials. This pair was also obtained in the previous classification, where their
Jacobi matrix was observed to have equidistant eigenvalues for specific values of the
Racah polynomial parameters. We discuss some properties of this oscillator model, give
its (discrete) position wavefunctions explicitly, and illustrate their behavior by means of
some plots.
In the final chapter, as a spin-off of the previous results, the newly obtained matrices

are seen as two-parameter extensions of the Clement or Sylvester-Kac matrix. The latter
is a tridiagonal matrix with zero diagonal and simple integer entries, whose spectrum is
known explicitly and consists of integers. This makes it a useful test matrix for numerical
eigenvalue computations. Our new class of appealing two-parameter extensions of this
matrix have the same simple structure and their eigenvalues are also given explicitly by
a simple closed form expression. We consider special cases for specific parameter values
having integer eigenvalues or double eigenvalues, and we examine some numerical re-
sults regarding the use of these extensions as test matrices for eigenvalue computations.
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Een belangrijke eigenschap van de Fouriertransformatie is dat differentiëren in het tijds-
domein overeenkomt met vermenigvuldigen in het frequentiedomein en omgekeerd. Bij-
gevolg zal de Fouriertransformatie op een n-dimensionale Euclidische ruimte de Laplace-
operator ∆ omzetten in een vermenigvuldiging met de norm in het kwadraat. In het
eerste hoofdstuk onderzoeken we of er nog andere operatoren zijn die ook dit gedrag
vertonen. Het antwoord hierop is positief en we bekomen een niet-triviale klasse van
zulke transformaties die op twee manieren beschreven kunnen worden.
De eerste voorstelling steunt op een realisatie van de klassieke Lie-algebra sl(2) door

de Laplace-operator en de gekwadrateerde norm. Deze algebraïsche structuur hangt op
natuurlijke wijze samen met de klassieke Fouriertransformatie. Elk van de nieuwe trans-
formaties komt overeen met de exponent van een operator in de omhullende algebra
van de Lie-algebra sl(2). Het Casimir-element dat met alle andere elementen van de
algebra commuteert, speelt hierin een sleutelrol. Verder steunen we op de theorie van
veeltermen die enkel gehele waarden aannemen om de operatoren in de exponent op
te bouwen.
Als tweede equivalente voorstelling hebben we voor elke operator een formulering

als integraaltransformatie met een kern bestaande uit Besselfuncties en Gegenbauerpo-
lynomen. Voor een eindige deelverzameling van transformaties die sterk lijken op de
klassieke Fouriertransformatie, kunnen we de kernen reduceren tot gesloten formules
die polynomiaal begrensd zijn. Bovendien bepalen we onzekerheidsrelaties voor deze
transformaties.
In de context van de Cliffordanalyse, waar functies waarden aannemen in een Clif-

fordalgebra, herhalen we bovenstaande procedure. De Dirac-operator is hier zodanig ge-
definieerd dat het kwadraat ervan de Laplace-operator is. De focus ligt nu op operatoren
die de Dirac-operator en diens Fouriergetransformeerde — de vectorvariabele — in el-
kaar omzetten.We verkrijgen opnieuw twee equivalente formuleringen voor transforma-
ties die hieraan voldoen. De relevante algebraïsche structuur is nu de Lie-superalgebra
osp(1|2). Voor een bijzondere klasse van transformaties vinden we weer een polyno-
miaal begrensde formule voor de kern. Deze is gelijkaardig aan andere veralgemeende
Fouriertransformaties in het kader van Cliffordanalyse.
In hoofdstuk 2 beschouwen we een veralgemening van de klassieke Laplace-opera-

tor, waar we de partiële afgeleiden vervangen door abstracte impulsoperatoren. In het
bijzonder omvat deze veralgemening de Laplace-Dunkl-operator, wanneer we de im-
pulsoperatoren identificeren met Dunkl-operatoren. Laatstgenoemde zijn deformaties
van partiële afgeleiden door middel van differentietermen geassocieerd aan een ein-
dige reflectiegroep. Voor deze veralgemeende Laplace-operator bepalen we een reeks
symmetrieën die ermee commuteren, en we geven de algebraïsche relaties voor de sym-
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metriealgebra. In het klassieke geval is dit de Lie-algebra so(n), waarvoor we op deze
manier extensies of deformaties bekomen.
In deze context definiëren we ook een veralgemeende Dirac-operator als vierkants-

wortel van onze Laplace-operator. We bepalen expliciet een familie van gegradeerde
symmetrieën die, afhankelijk van hun graad, commuteren of anti-commuterenmet onze
Dirac-operator. De algebra die door deze symmetrieën wordt gegenereerd, blijkt in het
driedimensionale geval een veralgemening te zijn van de Lie-algebra so(3) en in hogere
dimensies van de recent gedefinieerde hogere rang Bannai-Ito-algebra.
In hoofdstuk 3 bestuderen we een speciaal voorbeeld uit de abstracte resultaten van

het vorige hoofdstuk. We beschouwen de driedimensionale Dirac-Dunkl-operator, en de
bijhorende Diracvergelijking, voor het wortelsysteem A2 met reflectiegroep S3, de sym-
metrische groep op drie elementen. De expliciete vorm van de symmetriealgebra is in
dit geval een één-parameter deformatie van de Lie-algebra so(3) die elementen van S3
bevat. Voor deze algebra classificeren we alle eindig-dimensionale, irreduciebele repre-
sentaties. Verder bepalen we de voorwaarden opdat de representaties unitair zijn. De
eigenfuncties van de sferische Dirac-Dunkl-operator vormen een realisatie van de uni-
taire, irreduciebele representatie van de symmetriealgebra. Met behulp van een Cauchy-
Kowalevsky extensie krijgen we expliciete uitdrukkingen voor deze eigenfuncties die we
kunnen schrijven als Jacobi-polynomen.
Vervolgens gaan we over naar de discrete wereld. We gaan op zoek naar nieuwe

discrete en eindige modellen voor de kwantum harmonische oscillator. In eerder be-
schouwde modellen bestonden de discrete golffuncties uit een combinatie van twee
discrete orthogonale veeltermen met verschillende parameterwaarden. Dat deze veel-
termen samenhoren, komt neer op het bestaan van twee recursierelaties. De vraag is
nu of we deze structuur voor de golffuncties kunnen gebruiken om nieuwe modellen
te bouwen. Hiertoe classificeren we in hoofdstuk 4 alle paren van zulke recursierela-
ties voor twee discrete orthogonale veeltermen van dezelfde familie, met verschillende
parameters. Deze families omvatten de Hahn-, duale Hahn- en Racah-polynomen uit
het Askey-schema van hypergeometrische orthogonale polynomen. Verder geeft deze
classificatie ook alle Christoffel-Geronimus transformaties waar de verkregen partner
opnieuw van dezelfde familie is als de oorspronkelijke veelterm.
Bij elk paar recursierelaties hoort een symmetrische tridiagonale matrix M met nul-

len op de diagonaal. Deze verkrijgen we door het normeren van de discrete orthogonale
veeltermen met behulp van de gewichtsfunctie. Expliciete uitdrukkingen voor de eigen-
waarden van M en hun eigenvectoren volgen onmiddellijk uit de recursierelaties. We
onderzoeken verder ook de onderliggende algebraïsche relaties en bespreken hun nut
voor de constructie van nieuwe eindige modellen.
Van de nieuwe kandidaat-modellen beschouwen we in hoofdstuk 5 een specifiek mo-

del met equidistante positiewaarden. Dit is van belang voor mogelijke toepassingen in
de optica en signaalanalyse. De bijhorende algebraïsche structuur van dit model is een
extensie van de Lie-algebra su(2) met een pariteitsoperator P en een parameter. We
noemen deze extensie verder de algebra su(2)P . Voordat we het oscillatormodel zelf be-
spreken, classificeren we alle irreduciebele unitaire eindige-dimensionale representaties
van de algebra su(2)P .
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Vervolgens gebruiken we de verkregen oneven-dimensionale representaties om een
eindig oscillatormodel op te stellen met equidistante positiewaarden. De orthonormale
eigenvectoren van de positie- en impulsoperator zijn dan de respectievelijke golffuncties,
gegeven in termen van de eerder bepaalde duale Hahn-polynomen. In het bijzonder is
het positiespectrum equidistant en onafhankelijk van de parameter in het model, terwijl
de discrete positiegolffuncties wel deze parameter bevatten, zoals duidelijk te zien is in
de gemaakte grafieken.
Ten slotte ontwikkelen we in Hoofdstuk 6 een eindig oscillatormodel met behulp van

een paar recursierelaties voor Racah-polynomen. Dit paar werd ook verkregen in de
classificatie van hoofdstuk 4. We constateerden dat voor specifieke waarden van de para-
meters in de Racah-polynomen de bijhorende Jacobi-matrix equidistante eigenwaarden
heeft. Dit leidt bijgevolg tot equidistante positiewaarden voor een oscillatormodel. We
bespreken de voornaamste eigenschappen van dit model, geven expliciete uitdrukkin-
gen voor de (discrete) positiegolffuncties en illustreren hun gedrag met enkele figuren.
Als een spin-off van de vorige resultaten, bekijken we in het laatste hoofdstuk de ver-

kregen matrices als twee-parameter extensies van de Clement- of Sylvester-Kac-matrix.
Deze laatste is een tridiagonale matrix met nullen op de diagonaal en eenvoudige na-
tuurlijke getallen als elementen, waarvan het spectrum expliciet gekend is en ook be-
staat uit natuurlijke getallen. Deze eigenschappen zijn nuttig als testmatrix voor nu-
merieke berekeningen van eigenwaarden. Onze nieuwe klasse van uitbreidingen van
deze matrix hebben dezelfde eenvoudige structuur en hun eigenwaarden zijn ook expli-
ciet gekend maar bevatten twee parameters. We beschouwen bijzondere gevallen voor
specifieke parameterwaarden die leiden tot natuurlijke getallen als eigenwaarden of
ontaarde eigenwaarden. Verder onderzoeken we enkele numerieke resultaten bij het
gebruik van deze extensies als testmatrices voor berekeningen van eigenwaarden.
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