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The rotating spiral waves that emerge in diverse natural and man-made systems typically exhibit a

particle-like behaviour since their adjoint critical eigenmodes (response functions) are often seen to

be localised around the spiral core. We present a simple method to numerically compute response

functions for circular-core and meandering spirals by recording their drift response to many ele-

mentary perturbations. Although our method is computationally more expensive than solving the

adjoint system, our technique is fully parallellisable, does not suffer from memory limitations and

can be applied to experiments. For a cardiac tissue model with the linear spiral core, we find that

the response functions are localised near the turning points of the trajectory. VC 2017 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4999606]

Spiral waves of electrical activity have been observed in

the heart muscle during cardiac arrhythmias and are

nowadays targeted by surgical ablation in order to cure

certain heart rhythm disorders. Although mathematical

models of cardiac arrhythmias may consist of a large

number of coupled differential equations, it is possible to

predict certain types of spiral wave drift (e.g., due to

myocardial wall thickness, anisotropy, or parameter gra-

dients) once their “response functions” are known. Here,

we provide a method to experimentally measure spiral

wave response functions and illustrate it for rigidly rotat-

ing and quasi-periodic (meandering) spiral waves. We

test the measurement method in silico on three reaction-

diffusion models. For a cardiac tissue model that sup-

ports a linear-core spiral wave, we find that the sensitiv-

ity of the system to external stimuli is concentrated near

the turning points of the tip trajectory. This result sug-

gests that methods to control the linear-core spiral waves

are most effective when targeted to the position of

upcoming turning points.

I. INTRODUCTION

Spiral waves are a prime example of self-organisation and

have been observed in diverse systems, including catalytic oxi-

dation1 and oscillating chemical reactions.2 Moreover, they

seem to be ubiquitous in biological systems, where they orga-

nise rhythmic activity from the macroscopic scale (e.g.,

amoeba morphogenesis3) down to intracellular kinetics (e.g.,

intracellular calcium waves4). Interestingly, at the tissue scale,

they have been observed in neural5 and cardiac tissue,6–8

where they are thought to underlie cardiac arrhythmias.

The observation that the electrical activity in the heart

during arrhythmias can be organised as spiral waves has

motivated their study for decades, and in the medical com-

munity, they are known as “rotors.” Recent clinical results

suggest that ablating the tissue at rotor locations may cure

fibrillation of the cardiac atria.9 However, if the rotors occur

in the cardiac ventricles, the pumping of blood is quickly

lost, and an electrical defibrillating shock needs to be admin-

istered within minutes. These examples show that a better

knowledge of cardiac rotors and their dynamics may lead to

better treatment or defibrillation techniques.

It was noted in some of the systems above and numeri-

cal simulations thereof that spiral waves can be remarkably

stable structures. One explanation to this observation is that

spiral waves are “topologically protected” structures, in the

sense that when the activation phase is defined, they exhibit

a phase singularity close to their rotation center, i.e., in their

core region.8,10 Another possible explanation is that the tail

of the spiral wave sweeps the surrounding space, resetting

the medium properties to its resting values when it is passed.

This way, external disturbances are strongly attenuated

before they can affect the dynamics at the spiral wave core.

When the spiral wave is a dynamical attractor of the sys-

tem in a two-dimensional planar geometry, its instantaneous

state can be well approximated by a small set of collective

coordinates, which tell how the Euclidean symmetries of the

system are broken by the spiral wave solution. For a rigidly

rotating spiral, we can track the spiral wave tip by computing

the intersection of two isolines of variables.11 Thereby, one

obtains the spiral wave tip position ðXðtÞ; YðtÞÞ in a

Cartesian frame and its rotation phase UðtÞ. If the spiral

wave solution is quasi-periodic (meandering), the solution

is only periodic modulo a Euclidean transformation. For

non-resonant meander, this Euclidean transformation can be

taken to be a rotation over the rotation phase / around the

centre of the meander flower. In the new frame of reference

(i.e., in the quotient system of the dynamical system), the

spiral solution becomes time-periodic, which can be con-

verted to a meander phase WðtÞ ¼ X0tþW0, such that the

solution becomes 2p-periodic in W. The meander phase WðtÞ
tells how far the solution has gone through the meander

period. Below, we will group the collective coordinates as

Xl ¼ ðX; Y;U;WÞ and W is only included for meandering

spirals.

For definiteness, we work with spiral wave solutions

uð~r; tÞ : X�R! RN , i.e., the state u at every point of the
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domain X is represented as a N-variable state vector. If one

waits long enough after applying small external stimulus h at

time t¼ 0, the only persisting effect will be a net shift in the

spiral’s collective coordinates, i.e.

DXl ¼ lim
t!1
ðXlðtÞ � Xl

0ðtÞÞ ¼ Wl hð~rÞ½ � (1)

for some linear functional Wl. When working in the contin-

uum approximation of the medium (i.e., X � R2, the linear

functional acts as an inner product

Wl hðx; yÞ½ � ¼ hWljhi (2)

with hfjgi ¼
Ð

R2 fHgdxdy and :H the Hermitian transpose. The

functions Wl are known as the “response functions” (RFs) of

the spiral wave solution.12 In essence, every point of a

response function for a given state variable records the spiral

wave’s drift response to a perfectly localized stimulus applied

to the same state variable. Using hj to denote the j-th state

variable component of h, we have

hj ¼ �dk
j dðx� x0; y� y0Þ ) DXl ¼ �Wl

k ðx0; y0Þ: (3)

In that sense, spiral wave RFs are similar to the impulse

response in engineering or Green functions in physics.

Moreover, the phase component WW is the spatial generalisa-

tion of the phase response curve (PRC) for oscillating systems.

Knowledge of the spiral wave response functions ena-

bles predicting the spiral wave drift in the perturbative

regime. Overlap integrals of spiral wave RFs thus appear in

the equations of motion for three-dimensional scroll wave

filaments,13–16 or in the theory of 2D spiral waves drifting

due to a constant external field,17 surface curvature,18 or

mechano-electrical feedback.19 In one spatial dimension, the

translational RF of the wave front determines the velocity-

curvature relation20,21 and the shape of the RF itself can be

used to shape reaction-diffusion patterns.22

If the underlying model equations are known (e.g., for a

cardiac tissue model), the response functions for a (meander-

ing) spiral can be found by linearising the system around its

relative equilibrium (periodic orbit). The critical adjoint

eigenfunctions to the associated linear operator are precisely

the response functions; see e.g., Refs. 23–25 for details. This

way, spiral wave RFs have been numerically computed, first

for simple phenomenological models with few state varia-

bles12,26,27 and later with increasing accuracy,28 up to the

Beeler-Reuter cardiac tissue model.29 In all cases, the spiral

wave response functions turned out to be exponentially

localised in the core region, and in the view of Eq. (3), this

property grants spiral waves their so-called “particle-wave

dualism.”12 Only for the complex Ginzburg-Landau equa-

tion, some asymptotic expressions were found.26

For meandering spiral waves, the first RFs have only

been computed very recently by Marcotte and Grigoriev30

by solving the adjoint linear system. In the case of meander,

the spiral wave solution and its response functions are peri-

odic in the meander phase W in a slowly rotating frame. A

challenge that was surmounted in the numerical computation

of Ref. 30 was that the full spiral solution (with period

300 ms) and typical discretisation time step (0.1 ms) do not

fit into 8 GB of RAM memory and the solution needs to be

iterated many times from the initial condition ðW ¼ 0Þ over

the meander period to compute the response function. For a

3-variable atrial model, the RFs as well as the first tens of

leading eigenfunctions were computed in 72 h, using graphi-

cal processing units to accelerate the time stepping in the for-

ward problem.

In this work, we present an alternative approach to eval-

uate spiral wave RFs. The idea is to use Eq. (3) directly and

perturb an initial condition in different simulations with a set

of elementary responses and record the resulting shifts in the

collective coordinates.

Section II describes the numerical methods and models

used in the forward evolution, and subsequent RF recon-

struction. In Sec. III, we present the RFs for a circular-core

and meandering spiral in Barkley’s model, and a linear core

spiral in the Fenton-Karma (FK) model.

II. METHODS

A. Theory

We consider spiral waves as particular solutions of a

non-linear dynamical system in 2 spatial dimensions x, y
with N state variables

_uðx; y; tÞ ¼ Q̂ uðx; y; tÞ½ � þ hðx; y; tÞ; (4)

where uðx; y; tÞ : R2 �Rþ ! RN . The operator Q̂ is taken

to be space and time invariant (disregarding boundary condi-

tions at a large distance). A common choice to model oscilla-

tory and excitable media is to take a reaction-diffusion

system, i.e.

Q̂ u½ � ¼ P̂ð@2
x þ @2

y Þuþ FðuÞ: (5)

A spiral wave solution solves (4) in a suitable co-

moving frame of reference, with drift speeds VxðW;UÞ;
VyðW;UÞ, rotation speed x0 � VhðWÞ, while its meander

phase varies as _W ¼ VW � X0. The unperturbed spiral wave

solution u0ðx; y; t; XlðtÞÞ thus satisfies

0 ¼ Q̂ u0½ � þ
X

l¼x;y;h;W

Vl@lu0; (6)

_X
l ¼ Vl: (7)

The second equation describes the unperturbed spiral tip

trajectory.

Ideally, one could subject the system to a stimulus (3)

that is localised at a single grid point, but for small stimulus

amplitude �, the resulting shifts DXl will be below the mea-

surement threshold in the discretised system. Therefore, we

take a broader stimulus whose profile is a Gaussian kernel

function, in the k-th state variable

hj ¼ �dðtÞdk
j Gðx� x0; y� y0Þ; (8)

Gðx; yÞ ¼ exp �ðx2 þ y2Þ=r2
� �

: (9)

We choose � to be equal to 0:02� 0:05 times the wave

amplitude, and then choose r large enough to make the
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coordinate shifts measurable in the system. Typically, r was

between 2 and 10 times the simulation grid resolution, see

Table I. We are also free to choose the locations of where the

external stimuli are centered, and took them on a rectangular

grid of spacing r and size Nx;stim � Ny;stim around the position

of the spiral wave tip at the time of stimulus delivery. The

instantaneous delivery of a stimulus, i.e., dðtÞ was implemented

by adding the stimulus at one time step in the simulation.

As a result, when the perturbation amplitude is large

enough to dominate discretisation effects of the lattice, the

shifts Dl will be the spatial convolution of the response func-

tion with the Gaussian kernel

DXl ¼ �
ð ð

R2
Gðx� x0; y� y0ÞWl

k ðx0; y0Þdx0dy0: (10)

Here, k is the index to the state variable for which the RF is

currently probed. However, if the kernel G (in simulations)

or an estimate to it (in experiments) is known, one can per-

form a deconvolution to the measured shifts in order to

reconstruct the RF.

To allow the possibility of an unstructured grid of

measurement points, we deconvolve using Tikhonov regu-

larisation31 rather than a Fourier-based method. Subject

the system in M experiments to M perturbations centered at

the positions ðxi
0; y

i
0Þ and record the shifts bi ¼ ðDXlÞi=�.

We zero-padded the grid of responses bi with 5 rows in x
and y directions.

When reconstructing the RFs in N points ðxj
r; y

j
rÞ, this

leads to a M�N linear system

Aw ¼ b (11)

with Aij ¼ Gðxi
0 � xj

r; y
i
0 � yj

rÞ. Here, we choose the recon-

struction grid equal to the stimulation grid. We make A

sparse by rounding an element to zero if its value lies

below 0.001. As a regularizing term, we take the 5-point

Laplacian stencil of the set of reconstruction points,

denoted by a matrix C. Thereafter, we find the response

function using

w � ðATAþ kCTCÞ�1
ATb: (12)

We manually choose the lowest possible k which still sup-

presses noise outside the spiral core region, see values in

Table I. The inversion is performed by the mldivide com-

mand in matlab32 using Cholesky factorization.

B. Reaction-diffusion models

For definiteness, we illustrate the method for spiral

waves in a reaction-diffusion finite-difference model. It can

also be applied in other systems supporting spiral waves (or,

more general, relative periodic orbits), as long as Euclidean

symmetry of the system is well enough preserved. Factors

that may break this symmetry are the underlying discrete

nature of the medium (e.g., biological cells or a computa-

tional grid), spatially varying anisotropy, and inhomogenei-

ties in an experimental preparation or tissue.

In this work, we illustrate our methods using numerical

simulations only. First, we use a reaction-diffusion model

with Barkley’s kinetics,33 i.e., u ¼ ½u v�T , P̂ ¼ diagð1; 0Þ and

F uð Þ ¼ c�1u 1� uð Þ u� vþ b

a

� �

u� v

0
B@

1
CA: (13)

We will take the following parameters sets:

BA1 : fa ¼ 1:3; b ¼ 0:19; c ¼ 0:025g; (14)

BA2 : fa ¼ 0:58; b ¼ 0:05; c ¼ 0:02g; (15)

which, respectively, produce a circular-core spiral wave and

a meander spiral wave with flower-like tip trajectory, see

Fig. 1. We found the tip position every 0.1 time units as the

intersection of the isolines u¼ 0.5 and v ¼ 0:5a� b.

Secondly, we will determine the RFs for a cardiac tissue

model with a star-like tip trajectory, which is sometimes

called a “linear core.” Hereto, we take the three variable

Fenton-Karma (FK) model with guinea pig (GP) parame-

ters.11 It has u ¼ ½u v w�T and P̂ ¼ diagð0:1; 0; 0Þmm2=ms.

While u is the normalized transmembrane potential, v and

w are fast and slow recovery variables. The details of the

phenomenological electrical currents in the model can be

found in Ref. 11. The model produces a spiral wave with

meander period 75 ms, as shown in Fig. 1(e). We determined

the tip position as the intersection of the isoline u¼ 0.5 with

the same curve 1 ms before.

The reaction-diffusion models were numerically inte-

grated with the explicit Euler scheme one a Cartesian grid

with Neumann boundary conditions, see Table I.

C. Measurement of the shifts in collective coordinates

From Eq. (1), the response function values can be

inferred from shifts in the collective coordinates, i.e., the cen-

ter, rotation angle, and time phase of the meander tip trajecto-

ries. It is thus necessary to determine accurately those shifts,

at a resolution that is finer than the lattice size in simulations.

Let us first treat the circular core case, see Fig. 2(a).

After applying a perturbation to a spiral wave solution at

time t¼ 0, we let the system evolve for several periods, and

during a time interval ½tstart; tend�, we sample the tip trajectory

TABLE I. Parameters used in numerical methods for the different models.

Model BA1 BA2 FK

dx 0.1 0.1 0.15 mm

Nx 400 400 600

dt 0.0023 0.0023 0.004 ms

Au 0.05 0.02 0.05

Av 0.05 0.02 0.05

Aw … … 0.05

ru=dx 2 2 10

rv=dx 2 2 10

rw=dx … … 10

Nx;stim 100 21 23

Ny;stim 100 21 21

dttip 0.1 0.1 1 ms

tstart 40 40 3s

tend 80 80 6s

k 10 500 10
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every dttip. The i-th measurement is taken at time

ti 2 ½tstart; tend�, yielding corresponding tip positions (xi, yi).

These points will lie approximately on a circle (see Fig. 2

left), whose center (X, Y) and radius r can be found by linear

regression.34 Thereafter, the instantaneous rotation phase Ui

can be found as the polar angle corresponding to (xi, yi).

Finally, we perform a least squares linear regression Ui

¼ x0ðti � tref Þ þ U0 to obtain x0 and the absolute rotation

phase U0. We take tref ¼ ðtstart þ tendÞ=2 to obtain a more

robust estimate of U0.

FIG. 1. Spiral waves and tip trajectories for the three reaction-diffusion models used, in Barkley’s model with circular core [BA1, panel (a)] and meandering

core [BA2, panel (c)] and the FK-GP model [FK, panel (e)]. Panels (b), (d), and (f) show how the collective coordinates X; Y;U;W were fitted using fiducial

points (red dots) within a meander or rotation cycle.
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The case of meander requires more fine-tuning to the

given tip trajectory, as shown in Figs. 2(c) and 2(d). For the

BA2 model with the chosen, we first list all self-intersections

of the tip trajectory. From this list, we remove self-

intersections for which the time between the first and second

visit is longer than 10 time units. We exclude longer time

intervals, since the tip trajectory shown in Fig. 2(b) will

reach again the same region after the completion of the

meander flower. Such intersection points are not useful to

determine the meander phase.

Since the motion is quasi-periodic, the time difference

between subsequent intersection points will repeat itself

after Nrep points, with Nrep an integer that is small if one is

far from the onset of meander. To find Nrep, we looped over

the possible number of classes Nrep between 1 and 10, and

computed the standard deviation at times between occur-

rence of a point, and found that it nearly vanished for

Nrep¼ 6 classes of intersection points. In Fig. 2(b), it can be

seen that there are 3 classes of intersection points when

looking at the trajectory as a whole, but they are all visited

twice, and we find Nrep¼ 6. As each class of points lies on a

circle, we estimate the centre and radius of those circles and

then choose the class with smallest radius to be the set of

fiducial points to determine the collective coordinates, see

Figs. 1(b) and 2(b). On this circle of fiducial points, we

repeat the procedure for circular-core spiral waves to find

X; Y;U0 and x0. At the j-th fiducial point, we also take Wj ¼
j2p and then fit Wj ¼ X0ðt� tref Þ þW0 to determine X0 and

W0.

Thirdly, we consider the linear-core example with FK

kinetics, as shown in Fig. 2(c). As the fiducial points, we

will take the turning points of the trajectory, which also lie

on a circle if the meander pattern is quasi-periodic. First,

we smooth the tip trajectory between t1 and t2 using a

Gaussian window of size 25. Then, we take the average of

the lists xi, yi as the first estimate of X, Y. Next, we deter-

mine the points where the distance to (X, Y) reaches a max-

imum and fit a circle through them; the centre of this circle

is an update estimate of (X,Y). After repeating this itera-

tive process twice, (X, Y) remained constant and were

taken as the meander centre position. Thereafter, the turn-

ing points were taken as fiducial points and the procedure

for flower-like meander described above was used to deter-

mine U0;W0;x0, and X0.

III. RESULTS

A. Circular-core spiral with Barkley kinetics

For the BA1 model, we computed the three RFs using

(12) and compare them to the results of solving the adjoint

method in Fig. 3. For the latter, we used the publicly avail-

able software dxspiral,28,35 which was developed to compute

the RFs for reaction-diffusion models that support rigidly

rotating spiral waves. From Fig. 3, it can be noted that the

final result using our method closely matches the result

obtained using dxspiral in amplitude and shape of the pro-

files. For the RF measurement, we sampled the Gaussian

center every two grid points of the computation grid, i.e.,

with spatial resolution 0.2, to obtain the RF in a set of

101� 101 points. As every forward run of 80 time units took

22 s on our system (cþþ program using MPI domain split-

ting on 16 CPUs), the total computation time amounted to

10.3 h per variable, which is two orders of magnitude slower

FIG. 2. Measurement of collective coordinates in the BA1 model (a), BA2

model (b), and FK model (c). For the circular-core case [panel (a)], points

on the tip trajectory itself lie on a circle from which the rotation phase can

be regressed. For the meander cases (b) and (c), a circle is fitted to the fidu-

cial points (red) in the tip trajectory in order to find the position of the mean-

der centre (X, Y) (leftmost panels, indicated byþ). The polar angles Ui of

the fiducial points with respect to (X, Y) are regressed vs. time (top right pan-

els) to find U0 and x0. For meandering spiral waves (BA2, FK), the times at

which the fiducial points are visited are used to compute the absolute mean-

der phase W0 and meander period T0 ¼ 2p=X0 (bottom right panels).
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than the time of 5–10 min. that is needed using dxspiral.

Nevertheless, by this comparison we show that the measure-

ment method can be used to compute RFs in detail. The dif-

ference between both methods is displayed in Fig. 4.

B. Flower-like meander with Barkley kinetics

For the BA2 model parameters, the obtained RFs are

shown in Figs. 5 and 6. Note that in a frame of reference

with rotation frequency x0, the RFs would be periodic in W.

FIG. 3. Comparison of computed RFs using the adjoint method (columns 1–2) and measurement method (columns 3–4) for a counter-clockwise circular-core

spiral wave with Barkley kinetics BA1. The black line is the isoline u¼ 0.5; the spiral wave tip is situated in the top-left quadrant. Results in columns 1–2

were computed with dxspiral on a polar grid Nr¼ 120, R¼ 12, Nh ¼ 128. Results in columns 3–4 were found using the measurement method with dx¼ 0.1,

Nx ¼ Ny ¼ 240, dt¼ 0.002375, tip trajectory fitting for t 2 ½40; 80�, tip calculation every 0.1 t.u., A¼ 0.05, k ¼ 1=ð2dxÞ, k ¼ 10.
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FIG. 4. Difference between the computed RFs using the adjoint method (dxspiral) and measurement method for the spiral wave from Fig. 3.

FIG. 5. Measured RFs for a meandering spiral wave with Barkley kinetics (BA2), with dx¼ 0.1, Nx ¼ Ny ¼ 400, dt¼ 0.002375, tip trajectory fitting for

t 2 ½40; 80�, tip calculation every 0.1 t.u., A¼ 0.02, r ¼ 2dx, k ¼ 500. Results are shown for the meander phase corresponding to the spiral tip position at the

red dot. The green square marks the meander center and the black line is the isoline u¼ 0.5, showing the position of the wave front and wave back. The red

trace is the tip trajectory during one meander cycle.

FIG. 6. Same as Fig. 5, at a different phase of the meander cycle, i.e., 2.5 t.u. or 0.5 meander periods later.
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We show two cases of W in Figs. 5 and 6. Here too, the four

RFs are strongly localized in the tip region.

C. Linear-core meander with Fenton-Karma kinetics

Applying the measurement procedure to the FK-GP

model delivers the RFs shown in Figs. 7 and 8. For these two

frames in the meander cycle, one can see that for all state

variables, the RFs are localised near the turning points of the

tip trajectory. If this holds for all times during the meander

cycle, it is an important finding, since it means that external

stimuli cannot change the rotor’s path if they are not applied

at locations where the few next turning points will occur.

The FK model was created to represent fast and slow

recovery processes by the v and w variables, respectively.

From the RF structure, we note that the Wl
v are solely peaked

at the next turning point, which can be understood since a

stimulus in v will have decayed when the second turning

point is reached after 2T0 ¼ 150 ms. Contrarily, perturbing

w will affect significantly the spiral wave dynamics at the 4

upcoming points, as is evident from the WW
w and WU

w compo-

nents. As expected, the effect on the phases W;U has the

same sign for all the turning points. This is not the case for

the Wx and Wy components, since they depend on the orienta-

tion (i.e., have a tensor index which needs to be trans-

formed). There, we also plot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðWxÞ2 þ ðWyÞ2

q
for all 3 state

variables in Fig. 9. For the rotational modes too, we note the

FIG. 7. Computed response functions for the FK cardiac tissue model, for a given meander phase denoted by spiral wave position (black line, u¼ 0.5) and tip

position (red dot). The white trace is the upcoming unperturbed tip trajectory.

FIG. 8. Same as Fig. 7, at a different phase of the meander cycle, i.e., 37 ms or 0.5 meander periods later.
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memory effect is longest for the w component. Moreover,

the maximal amplitude is only found at the second turning

point, probably since the tissue there is unexcited at the time

of stimulus, contrary to the location of the first turning point.

IV. DISCUSSION

We have developed and presented an “experimental”

method to probe spiral wave response functions, and vali-

dated it on a numerical simulation of a circular-core spiral

wave. In terms of numerical simulations, the method used

is rather inefficient compared with other existing methods,

but we nevertheless want to demonstrate three important

points.

First, if one has sufficient computational power at

one’s disposal, it is possible to compute spiral wave RFs

using minimal adaptation to the existing computer codes.

By performing runs sequentially or on a cluster, there are

no bigger memory limitations than for solving the original

system.

Second, we see most use of the presented method in a

truly experimental determination of spiral wave response

functions, e.g., in the BZ-reaction or cardiac monolayers

where Euclidean symmetry is more likely to be observed

than in cardiac tissue. Note that in real-life experiments, the

preparation only needs to be set up once. For, if the medium

properties are sufficiently homogeneous (e.g., in BZ-reac-

tion), one can perturb the spiral, let it rotate for 5–10 rota-

tions to measure the shifts, then perturb again and so on. As

a result, one may, e.g., infer 20 points of the RF from 100

spiral wave rotations. For cardiac tissue, pinning effects may

be pronounced and therefore one may turn to monolayers of

cultured tissue first.

Some future applications may lie outside the context of

reaction-diffusion systems. The location and timing of the

stimuli need not occur on a regular grid in time or space,

enabling to take a Monte-Carlo approach, and better deter-

mine the RF at every new experiment in the series.

Third, by computing the RF for the FK-GP cardiac tis-

sue model, we have demonstrated that the spiral wave RFs

are concentrated near the turning points of the tip trajectory.

Thus, the efforts to control or steer rotors in cardiac tissue,

even if delivered to the entire tissue, are only effective near

the turning points. Conversely, the interaction of a cardiac

rotor with ambient structure (inhomogeneities, anisotropy,

and tissue thickness) in quasi-2D and 3D tissue is also likely

to be dominated by the structures it encounters at the posi-

tion of its turning points.
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