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Summary 

Scope  

The chemical industry is facing several important challenges in the coming decade, mainly as a 

result of the tremendous impact of society on the environment, but also to maintain current living 

standards taking in to account the economic viability of chemical processes. These challenges 

entail the use of alternative feedstocks compared to the conventional fossil resources, and the 

design and optimization of chemical processes with a focus on a minimal use of energy and 

materials next to avoiding pollutant formation. An important methodology to solve these 

challenges are experimental measurements to search for optimal process parameters such as 

reactor configurations, reactor conditions and inlet concentrations. These experiments, however, 

are time consuming, costly and can only cover a limited range of the aforementioned parameters. 

Modeling of chemical processes can be a great aid to accelerate the understanding of these 

parameters on the process outcome and minimize the number of necessary experiments. These 

modeling methodologies rely on a very detailed knowledge of the underlying chemistry to the 

overall process. This requires the inclusion of all important elementary chemical reactions and 

their reactants and products. Even more importantly, the reaction rate coefficient of each reaction 

and the properties of each species are needed, constructing the so called kinetic model. When 

dealing with common chemical processes, the number of chemical reactions often exceeds a 

thousand, with hundreds of molecules and intermediates. The amount of data to construct these 

kinetic models is thus very large. This thesis focusses on the latter, i.e. on how a large number of 

accurate data can be retrieved automatically without the need for human interaction, which is part 

of a larger framework of automatic kinetic model generation. For the latter, many parameters, e.g. 

reaction rate coefficients or thermodynamic properties of molecules, are calculated using 

approximation methods such as group additivity or other quantitative structure-property 

relationships. Several of these methods have been proven to yield results of sufficient accuracy, 

given that they are not used outside their application range. The latter depends on the data used 

by the approximation model. These data originate from either experimental measurements or 

from high-level quantum chemical calculations. Today data from these high-level quantum 

chemical calculations are scarce due to the necessity of user involvement and expertise. 
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Therefore, in this work, methods are developed to allow automatic calculations of a large number 

of reaction rate coefficients and thermodynamic parameters using ab initio calculations. The 

results can then be used to develop new approximation schemes, to improve existing one or to 

extend their applicability range.  

State of the art 

Automatically performing ab initio calculations has already been implemented in several 

computer codes, with a different application in mind than the current work. These methods prove 

to be of great value and were used to investigate the state of the art. One of these computer codes 

is “KinBot”, developed at Sandia National Laboratories, which automatically searches for 

reactions on a potential energy surface. KinBot has been used to identify reactions during n-

pentanol pyrolysis and to calculate accurate rate coefficients for these reactions. They were 

implemented in a kinetic model which shows good agreement to experimental data.  

Methodology 

To automatically perform ab initio calculations, the framework of the kinetic model generator 

tool “Genesys” is used, providing a computational representation of molecules, intermediates and 

reactions. The representation entails information on the connectivity of atoms within a species or 

transition state, in the form of a mathematical graph or connectivity matrix. This information is 

insufficient to start ab initio calculations, for which three dimensional coordinates of all the 

atoms are needed. Using “distance geometry” and force field calculations, the connectivity of a 

species is translated to three dimensional coordinates. Although these methods have already been 

applied to molecules and radicals, in this work the application range has been extended to 

transition states. In several steps, the coordinates are optimized and the lowest energy conformer 

can be selected. For the latter, high-level ab initio calculations are done, e.g. using the CBS-QB3 

level of theory.  

From the CBS-QB3 calculations, species properties are calculated using statistical 

thermodynamics, for which the partition functions are calculated using the molecular frequencies. 

Internal modes resembling rotations around a chemical bond are treated as one dimensional 

hindered rotors, and the frequencies corresponding to these rotations need to be removed from the 

partition function calculations. This is automatically done by verifying if the normal mode of a 



Summary  xi 

frequency resembles an internal rotation. From the thermodynamic properties calculated for 

reactants, products and the transition state of a reaction, kinetic parameters can be easily 

calculated. These parameters are further improved by calculating tunneling corrections.  

Thermodynamics and kinetics 

The newly developed methodology has been tested by calculating the thermodynamic properties 

and rate coefficients of several species and reactions respectively, exhibiting a wide variety of 

functional groups and molecular structures. These values have been compared to literature data, 

both experimental as well as theoretic, and an excellent agreement is found, similar to the 

accuracy of the CBS-QB3 calculations themselves. Automatically performing the calculations 

has thus no impact on accuracy compared to the “manual” calculations, and can be done much 

faster and on a larger scale. 

Group additivity 

Using the newly developed methods to automatically perform ab initio calculations, reaction rate 

coefficients have been calculated for a large set of intramolecular hydrogen abstraction reactions 

in hydrocarbons, including abstractions by a carbon radical from a neighboring carbon atom up to 

abstractions by a carbon radical to another carbon atom with a carbon chain of five atoms in 

between. The influence of the ligands of the attacking and attacked carbon atom has been studied, 

as well as the influence of substituents on the carbon chain between both reactive atoms. This has 

led to a new group additivity model for intramolecular hydrogen abstractions, which is able to 

reproduce the ab initio calculations with sufficient accuracy.  

Heptane pyrolysis 

With the new group additivity model for intramolecular hydrogen abstractions, a kinetic model 

for the pyrolysis of n-heptane has been automatically constructed using “Genesys”. By 

accounting for the chemistry of small molecules and for the formation of aromatics through 

literature data, the new model was able to reproduce two datasets in a very wide range of 

pressures (400 – 1 10
5
 Pa) and temperatures (800 – 1800 K) without any adjustments to the 

kinetic model using the experiment data itself. A rate of production analysis has unraveled the 
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major reaction pathways, and has shown the necessity of including intramolecular hydrogen 

abstraction reactions for the correct prediction of several pyrolysis products.  
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Samenvatting 

Toepassingsgebied 

De chemische industrie staat op korte termijn voor verschillende belangrijke uitdagingen, vooral 

als gevolg van de enorme impact van de maatschappij op het milieu, maar evenals om de huidige 

levensstandaarden te behouden en om de economische rendabiliteit van chemische processen te 

waarborgen. Deze uitdagingen bevatten onder meer het gebruik van alternatieve grondstoffen in 

de plaats van de traditionele fossiele bronnen en de ontwikkeling en optimalisatie van chemische 

processen met als doel het gebruik van materialen en energie te minimaliseren en de productie 

van schadelijke producten te vermijden. Een belangrijk hulpmiddel bij het zoeken naar 

oplossingen voor deze uitdagingen zijn experimentele metingen om optimale procesparameters te 

verkrijgen, zoals reactor configuratie, condities en inlaatsamenstellingen. Deze experimentele 

technieken vergen echter veel tijd, zijn duur, en kunnen slechts een klein gedeelte van de 

parameterruimte bestuderen. Daarom wordt het modeleren van chemische processen steeds meer 

als alternatief gebruikt om een beter inzicht te verkrijgen in de invloed van de verschillende 

parameters, en om het aantal nodige experimenten sterk te verminderen. Modeleren van een 

chemisch proces steunt op een gedetailleerde beschrijving van de chemische reacties die erin 

plaatsvinden. Elke belangrijke reactie en zijn reactanten en producten moet in het model worden 

opgenomen en daarenboven moeten de snelheidscoëfficiënten van alle reacties en de 

thermodynamische eigenschappen van alle moleculen en intermediairen gekend zijn, wat vervat 

zit in een zogenaamd kinetisch model. In veel chemische processen zijn er meer dan duizend 

belangrijke reacties tussen enkele honderden species. Er is dus veel chemische data nodig om een 

kinetisch model op te stellen. Dit werk is gefocust op het laatste, namelijk op hoe een groot aantal 

accurate data automatisch kan worden berekend zonder dat hier manuele tussenkomst voor nodig 

is. Dit kadert in het automatisch genereren van kinetische modellen, waarvoor 

snelheidscoëfficiënten van chemische reacties en thermodynamische parameters van moleculen 

en intermediairen worden berekend aan de hand van benaderingsmethodes zoals groep 

additiviteit or andere kwantitatieve methodes die de eigenschappen van een molecule bepalen aan 

de hand van de moleculaire structuur. Het is aangetoond dat deze methodes accurate resultaten 

opleveren als ze in het juiste toepassingsdomein worden gebruikt, wat vooral afhangt van de 
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achterliggende data van de berekeningsmethodes. Deze data, die worden opgemeten uit 

experimentele technieken of worden bepaald door middel van kwantumchemische berekeningen, 

zijn schaars, onder andere door de nodige betrokkenheid en deskundigheid van de gebruiker. 

Daarom worden in dit werk methodes ontwikkeld om hier een oplossing voor te bieden door 

automatische ab initio berekeningen van een groot aantal reactie-snelheidscoëfficiënten en 

thermodynamische parameters van species toe te laten. De resultaten kunnen vervolgens gebruikt 

worden om benaderingsschema’s op te stellen, te verbeteren en hun toepassingsdomein uit te 

breiden.  

Stand van zaken 

Het automatisch uitvoeren van kwantumchemische berekeningen werd al in verschillende 

computer codes geïmplementeerd, telkens met een verschillend toepassingsgebied dan dit werk. 

De ontwikkelde methodes kunnen echter van grote waarde zijn en werden gebruikt om de huidige 

stand van zaken te onderzoeken. Eén van deze codes is “KinBot”, die automatisch naar reacties 

zoekt op een potentieel energie oppervlak. KinBot werd gebruikt om reacties te vinden die van 

belang zijn voor de pyrolyse van n-pentanol en om accurate snelheidscoëfficiënten te berekenen. 

Deze resultaten werden in een kinetisch model geïmplementeerd, dat goede overeenkomst 

vertoont met experimentele data.  

Methodes  

Om automatisch ab initio berekeningen uit te voeren werd “Genesys” gebruikt, dit is een 

computer code die automatisch kinetische modellen genereert, en die een computationele 

voorstelling van moleculen, intermediairen en reacties omvat. Deze voorstelling is de 

connectiviteit van de atomen in een species of transitietoestand opgesomd in een wiskundige 

graaf of een connectiviteitsmatrix, wat onvoldoende is om ab initio berekeningen te starten, 

waarvoor driedimensionale coördinaten van alle atomen nodig zijn. Gebruik makende van 

“distance geometry” en krachtveld berekeningen kan de connectiviteit van een species worden 

vertaald in driedimensionale coördinaten. Deze methodes worden al toegepast op moleculen en 

radicalen, en werden in dit werk uitgebreid naar transitietoestanden. In verschillende stappen 

worden de coördinaten geoptimaliseerd en wordt de laagste energie conformeer geselecteerd, 

waarvoor CBS-QB3 berekeningen worden uitgevoerd.  
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Uit deze resultaten worden de thermodynamische eigenschappen van de component berekend aan 

de hand van statistische thermodynamica, waarvoor de partitiefuncties worden behaald met de 

moleculaire frequenties. Interne modes die rotaties rond chemische bindingen voorstellen worden 

behandeld als eendimensionale hinderde rotoren, en de moleculair frequenties moeten worden 

weggelaten om de partitiefuncties te berekenen. Dit wordt automatisch gedaan door te 

controleren of de normale mode van een frequentie overeenkomt met een interne rotatie. Met de 

thermodynamische parameters van de reactanten, producten en transitietoestand van een reactie 

kunnen de snelheidscoëfficiënten berekend worden, die verder worden verbeterd met 

tunnelingsberekeningen.  

Thermodynamica en kinetiek 

De ontwikkelde methodes werden getest door het berekenen van thermodynamische parameters 

en snelheidscoëfficiënten van verschillen species en reacties respectievelijk, met een grote 

variatie aan functionele groepen en moleculaire structuren. De berekende waarden werden 

vergeleken met data uit de literatuur, zowel uit experimentele metingen als uit theoretische 

methodes, en een uitstekende overeenkomst werd verkregen, die vergelijkbaar is met de 

accuraatheid van CBS-QB3 berekeningen. Het automatisch uitvoeren van die berekeningen heeft 

dus geen invloed op de accuraatheid vergeleken met het “manueel” uitvoeren ervan, en meer 

berekeningen kunnen worden uitgevoerd in een kortere tijdspanne.  

Groep additiviteit 

Om het nut van automatische ab initio berekeningen aan te tonen werden snelheidscoëfficiënten 

van een grote set aan intramoleculaire waterstofabstractiereacties in koolwaterstoffen berekend, 

waarvan de abstractie plaatsvind tussen twee naburige koolstofatomen tot en met abstracties 

tussen twee koolstofatomen waartussen zich een keten van 5 andere koolstofatomen bevindt. The 

invloed van de liganden op het koolstofradicaal en op het koolstofatoom waarvan een waterstof 

wordt geabstraheerd werd onderzocht, evenals de invloed van substituenten op de koolstofketen 

tussen beide reactieve koolstofatomen. Dit heeft geleid tot een nieuw groep additief model for 

intramoleculaire waterstofabstractiereacties, die met voldoende accuraatheid de ab initio data kan 

reproduceren.  
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Heptaan pyrolyse 

Met het nieuw groep additief model voor intramoleculaire waterstofabstracties werd een kinetisch 

model automatisch opgesteld voor de pyrolyse van n-heptaan gebruik makende van “Genesys”. 

De reacties die de chemie van kleine componenten beschrijft en de reacties voor de vorming van 

aromaten werden uit de literatuur gehaald. Het uiteindelijke model was in staat om verschillende 

experimentele datasets goed te reproduceren in een grote druk (400 – 1 10
5
 Pa) en temperatuur 

(680 – 1800 K) bereiken, zonder enige parameter te fitten aan de experimenten. Met behulp van 

ren reactiepadanalyse werden de belangrijkste reacties geïdentificeerd, en werd het nut van de 

intramoleculaire waterstofabstractiereacties voor de correcte beschrijving van de vorming van 

verschillende pyrolyseproducten aangetoond. 
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Glossary 

Automatic kinetic model 

generation 

 Automatic kinetic model generation is an engineering 

methodology to build a kinetic model by making use of 

computers with only minor human interaction. 

Branching fraction  The branching fraction of a reaction is the relative rate 

coefficient of that reaction to the sum of the rate 

coefficients of the other reactions with the same 

reactant(s). 

Chemically activated reaction  A chemically activated reaction is a reaction that proceeds 

after the collision of the reactant(s) with a bath molecule, 

leading to the formation of an active complex which lies 

above the reaction barrier. This complex decomposes to 

the products of the reaction.  

Chemical significance  A structure of a species is chemical significant if the 

interatomic distances of two non-bonded atoms is smaller 

than 1.2 times the sum of the covalent radii of both atoms. 

Conformer  A conformer of a species is a structure belonging to that 

species, i.e. in which all the covalent bonds are identical 

as the ones from the topology of the species. 

Diastereomer  Stereoisomers that are not enantiomers are called 

diastereomers. They are not mirror images of each other 

and are not superimposable.  

Distance bounds matrix  Matrix containing the lower and upper distance limits 

between each pair of atoms in a species. 

Distance geometry  Distance geometry is a numerical method that generates 

3D coordinates of all the atoms in a species based on the 

connectivity of that species.  

Distance matrix  Matrix containing the distances between each pair of 

atoms in a species. 

Enantiomer  An enantiomer is one of two stereoisomers that are mirror 
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images of each other without being superimposable.  

Frobenius norm   The Frobenius norm of a matrix is a scalar obtained by 

the square root of the sum of the absolute squares of the 

elements of the matrix. 

Group additivity method  A group additivity method allows to calculate properties 

of molecules or reaction by summing contributions for 

each group the molecule or reaction exists of. A group is a 

submolecular pattern existing of a small number of atoms. 

Intrinsic reaction coordinate  Intrinsic reaction coordinate calculations are calculations 

in which starting from a saddle point, the two wells on 

each side of the saddle point are searched for, 

corresponding to the reactants and products of a reaction.  

Isodesmic reaction  An isodesmic reaction is a reaction of which the bonds 

that are broken in the reactant are of the same type as the 

bonds that are formed in the product.  

Level of theory  The level of theory of quantum chemical calculations 

describe the treatment of the electron correlations and 

defines the basis set.  

Potential energy surface  A potential energy surface describes the electronic energy 

of chemical species and intermediates as a function of the 

geometrical arrangement of the atoms.  

Rate rule  Rate coefficients belonging to a specific combination of 

reactants. 

Reactive atom  An atom that changes in connectivity through an 

elementary reaction.  

Reactive center  Collection of reactive atoms for one elementary reaction 

Residence time  The residence time in a tubular flow reactor is calculated 

by the volume of the reactor divided by the volumetric 

flow rate of the reactant at the reactor inlet.  

Rotamers  A rotamers are conformers of a species that are formed by 

rotating a part of the molecule along a single bond. 
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Structure  A structure is a set of 3D coordinates describing the 

geometrical arrangement of all the atoms of a chemical 

species. 

Template  3D coordinates of the reactive center supplied by the user 

to Genesys. 

Thermodynamic consistency  A reaction is thermodynamic consistent if the ratio of the 

forward and reverse rate coefficients equals the 

equilibrium coefficient of the reaction.  

Topology  Connectivity information of a chemical species, 

optionally augmented with the configuration of 

stereocenters.  

Well-skipping reaction  A well-skipping reaction is a reaction that proceeds 

between reactants and products in between which the 

energy of the lowest energy path crosses two or more 

local maxima, and at least one well. The actual energy of 

the activated complex lies above the highest energy along 

that path and the activated complex is not relaxed into one 

of the intermediate wells but directly in the final products. 
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Chapter 1: Introduction 
 

This chapter is based on the following paper:  

Van de Vijver R, Vandewiele NM, Bhoorasingh PL, Slakman BL, Seyedzadeh Khanshan F, 

Carstensen H-H, Reyniers M-F, Marin GB, West RH, Van Geem KM. Automatic Mechanism 

and Kinetic Model Generation for Gas- and Solution-Phase Processes: A Perspective on Best 

Practices, Recent Advances, and Future Challenges. International Journal of Chemical Kinetics. 

2015;47(4):199-231. 

1.1 Scope and objective 

Fully automated mechanism generation of detailed kinetic models is within reach in the coming 

decade. This is necessary to extend our fundamental understanding of chemical processes and 

resolve many of today’s society problems such as energy conversion, emission reduction, greener 

chemical production processes, etc. In this thesis, the focus is on the core of the automated 

mechanism generation for gas-phase processes i.e. on how the reaction kinetics and 

thermodynamic properties of species are calculated starting from the fundamental theory. One of 

the main challenges that still needs to be overcome deals with data scarcity. The combination of 

kinetic model generation with affordable computational chemistry calculations to provide new, 

reliable data seems the logical step forward. The ability to automatically perform quantum 
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chemical calculations for a large set of species or reactions would allow the fast generation of 

new calculation methods to obtain the necessary data fast and reliable. However, user knowledge 

and expertise are nowadays often required to obtain the necessary results. This thesis aims at 

minimizing the human interaction with computational chemistry and elaborates on automation 

procedures to calculate thermodynamic properties of species and reaction rate coefficients. The 

objective is fully automatic ab initio calculations that can be done in the framework of kinetic 

model generation to account for the data gaps and data uncertainties, with the applications of 

thermal decompositions, pyrolysis and combustion in mind. Therefore, the methods are restricted 

to gas-phase reactions.  

1.2 Automatic kinetic model generation 

Chemical kinetic models are extremely powerful and valuable. Many significant public policy 

and business decisions are made on the basis of kinetic model predictions. For example, the 

Montreal Protocol, which imposed a worldwide ban on certain halocarbons, was based on a 

fundamental knowledge of the ozone layer problem established by kinetic modeling.
1
 In the 

chemical industry kinetic models are widely applied, e.g. to simulate steam cracking
2-5

, refining
6
 

or vinyl chloride production
7
. However, for the majority of technologically important chemical 

processes, including combustion, pyrolysis, and oxidation of hetero-atomic mixtures, detailed 

kinetic models are not available. This is because constructing a reliable model remains very 

difficult and time consuming. One reason for this is that such models typically contain thousands 

of reactions, involving hundreds of intermediates, while only a small fraction of the reaction rate 

coefficients have been determined experimentally. Moreover, it is usually impossible to measure 

the concentrations of all the kinetically significant chemical species.
8
 Numerically solving these 

large systems of differential equations in a reasonable time also remains a challenge, in particular 

when these models need to be implemented in Computational Fluid Dynamics codes.
9
  

Ideally, kinetic models should capture the essential chemistry while maintaining a manageable 

size to enable relatively fast simulations. Figure 1 displays the size of selected kinetic models for 

thermal decomposition, oxidation, and combustion processes, with the outliers listed in Table 1.  
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Table 1 shows that, among the models generated recently, those that contain several thousands of 

reactions are generated automatically, such as the model of Herbinet et al. (n. 6 in Table 1), while 

the small models are either lumped or were constructed by hand. The figure also shows a 

remarkable trend that was first pointed out by Lu and Law
10

: The number of reactions increases 

linearly with the number of species in the model and not, as could be expected, exponentially. 

However, the model size increases exponentially as a function of the number of heavy (non-

hydrogen) atoms in the reactant molecule(s).  

 

Figure 1: Model sizes: number of reactions as a function of the number of species for gas phase kinetic models 

of pyrolysis, oxidation and combustion processes. The secondary axis is the number of heavy (non-hydrogen) 

atoms in the reactant molecule(s). The line through the graph has a slope of 1.  

Table 1: Outliers of Figure 1. 

Number on 

graph 
Year 

Number of 

species 

Number of 

reactions 
Compound Process Comments Ref. 

1 2005 33 28 Dimethyl ether Combustion 
Manual/ 

Lumped 
Zheng et al.11 

2 2007 46 30 1,3-butadiene Combustion 
Manual/ 

Lumped 
Zheng et al.12 

3 2013 220 6800 Ethylene/methane Combustion Automatic Cuoci et al.13 

4 2010 300 7000 Propanol Combustion Automatic 
Frassoldati et 

al.14 

5 2013 372 8732 Iso-butanol 
Pyrolysis and 

oxidation 
Automatic Merchant et al.15 

6 2011 4442 30425 Methyl palmitate Combustion Automatic Herbinet et al.16 

7 2011 6203 43444 Methyl stearate Combustion Automatic Herbinet et al.16 

1 2 

3 4 5 

6 
7 
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When considering the number of species and reactions in detailed kinetic models, it becomes 

obvious that the manual construction of such models is tedious and error-prone. This motivated 

the construction of automatic kinetic model generation codes in recent decades: NETGEN
17

 at the 

University of Delaware, RMG
18-21

 at MIT based on the earlier codes XMG and NETGEN, 

EXGAS
22,23

 at the Université de Nancy and CNRS, Genesys
24

 and PRIM
25,26

 at Ghent University, 

RING
27,28

 at the University of Minnesota, MAMOX
29,30

 at Politecnico di Milano, REACTION
31-

33
 at the Johannes Kepler University, COMGEN

34
 at the University of Utah, MECHGEN

35
 at the 

Hungarian Academy of Sciences, KING
36

 at the University of Calabria, RAIN
37,38

 at the 

Technische Universität München, CASB
39

 at the Mari State University, GRACE
40,41

 and 

KUCRS
42

 at the University of Tokyo, RNG
43

 at the Institute of Chemical Technology, Prague, 

etc.
44-48

 

A reaction mechanism entails the information of a chemical system via the list of molecules, 

intermediates, and the reactions between these species. A detailed kinetic model is the union of 

the chemical mechanism with thermodynamic and transport data of the species, and reaction rate 

coefficients of the reactions, translated into a mathematical model. The model equations describe 

the variation in species concentrations, temperature, and pressure via conservation laws.  

When constructing a kinetic model it is first important to know which species interact through 

which reactions, i.e. what the reaction mechanism is. Second, accurate values for the 

thermochemistry, optionally transport properties, and reaction kinetics are indispensable to allow 

reactor simulations. To solve the continuity equations during reactor simulations, the kinetic data 

is needed to formulate the corresponding source term. For each species, this source term 

describes how the species concentration changes due to chemical reactions. The energy equations 

also have a source term in which the generated thermal power is described as a function of the 

reaction rates and the reaction enthalpies.  

The need for thermochemistry is two-fold. First it is used in the construction of the energy 

balances in non-isothermal reactor models. To solve these equations, the enthalpy of formation 

and the heat capacity of all species are required. Secondly, if a reaction is implemented as a 

reversible reaction, the reverse rate coefficient is calculated based on the forward rate coefficient 

and the equilibrium coefficient, i.e. via so-called thermodynamic consistency, Eq. 1.1. 
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𝑘for(𝑇)

𝑘rev(𝑇)
= 𝐾𝑒𝑞(𝑇) = exp⁡(−

∆𝑟𝐺
0

𝑅 ∙ 𝑇
) ∙ (

𝑅 ∙ 𝑇

𝑝
)
−∆𝑛

 Eq. 1.1 

Finally, transport data is needed to account for heat and mass transfer throughout the reactor; 

these quantities are diffusivity, viscosity and thermal conductivity of the species. 

Several reviews on automatic mechanism generation have been published in the past, all with 

their own focus and application in mind. Green et al.
19

 summarized the main methods needed to 

allow computers to build complex kinetic models for real processes. Besides the discussion of all 

the necessary reaction steps, algorithms to calculate molecular properties and reaction rate 

coefficients, including pressure dependence, were discussed. Specific attention was paid to the 

implementation of (on-the-fly) reduced complex kinetic models in reactive flow simulations. 

Green
49

 further reviewed the obstacles to build kinetic models with a focus on the fundamental 

data models use, the methods for solving kinetic simulations, and the methods to determine if 

model predictions are consistent with experimental data. Furthermore, the challenge of handling 

data, both experimental and theoretical data in the kinetic model, was stressed. Ratkiewicz and 

Truong
50

 reviewed the use of algebra for the generation of chemical reactions in complex 

systems. Broadbelt and Pfaendtner
51

 wrote a dictionary on quantitative kinetic modeling that, 

besides unifying the chemical principles, served as a starting point for continuous tracking of the 

advancements, refinements, and refreshments in this field. The authors emphasized the need for 

collaboration between experimentalists and theorists and further focused on the state-of-the art of 

kinetic modeling via theoretical methods. Vinu and Broadbelt
52

 focused on several aspects of 

kinetic modeling of pyrolysis and oxidation processes involving polymers, such as the occurring 

elementary reactions steps, the assignment of rate coefficients to reactions, and the influence of 

end-group functionalities and reactive centers in the polymer chain on the reaction mechanism. It 

is no surprise that researchers working in the field of combustion are among the most active in 

the field of automatic kinetic model construction. During the last decade tremendous progress has 

been made in the combustion community thanks to accurate kinetic models in terms of engine 

design, fuel blend optimization, etc. This resulted in several recent reviews specifically on kinetic 

modeling of combustion processes.
53-55

 An interested reader is also directed to a recent book on 

the subject.
56

 However, all these reviews agree that for detailed kinetic models, which typically 

contain thousands of reactions c.f. Figure 1, it is simply not feasible to measure each reaction rate 

individually. Moreover, even with the power of today’s fastest supercomputers, the calculation of 
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all the rate coefficients using high level computational chemistry methods remains too time 

consuming. This implies that cheaper methods are needed to calculate the large number of 

unknown reaction rate coefficients of the different elementary reactions before one can even 

attempt to compare experiment with simulation. This is typically resolved by years of expert user 

involvement combined with several assumptions that help to retain the mechanism within a 

manageable size, so that it becomes tractable for experienced researchers.  

Although several challenges remain in automatic mechanism generation codes, it is already 

possible to generate large mechanisms by means of computers with only minor human 

interventions. The interested reader is referred to several papers in the literature where a kinetic 

model is automatically generated, optionally manually improved, and subsequently validated 

against experimental data. 

Ranzi et al.
57

 studied the capabilities of automatically generated kinetic models. The use of 

MAMOX+ was illustrated and the obtained models were reliable for the pyrolysis, partial 

oxidation, and combustion of branched alkanes.  

Warth et al.
58

 demonstrated the use of EXGAS to construct an oxidation model for n-butane. 

EXGAS itself is only a mechanism generation code and no model parameters are provided. The 

latter is handled by two other codes: THERGAS to calculate thermodynamic data and KINGAS 

to calculate reaction rate coefficients. The main response variables, such as product yields, 

conversion, and induction period, are satisfactorily predicted by the model. 

Hakka et al.
59

 used EXGAS to build an oxidation kinetic model for methyl and ethyl butanoates 

and validated it against experimental data published in the same article. The main reaction 

pathways in the oxidation of butanoates were searched via reaction flux and sensitivity analyses.  

Grenda et al.
60

 modeled the pyrolysis of methane at high temperature (1038K) via a reaction 

mechanism constructed by XMG that showed excellent agreement with experimental data. The 

authors emphasized the importance of pressure dependence of chemically activated reactions to 

accurately model such systems.  

Van Geem et al.
61

 generated a n-hexane steam cracking model using RMG which accurately 

predicted the conversion and the yields of the major products without any parameter adjustment 
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against the experimental data. Furthermore, it was shown that the quasi-steady state 

approximation for large radicals holds and that pressure dependence can be neglected for the 

studied conditions. Van Geem et al.
61

 subsequently reduced the mechanism substantially while 

still retaining good agreement with the experimental data. This agreement indicates that the 

generation of very large kinetic models is certainly not always the best option and accurate 

mechanism generations and reaction simulations can be done at lower computational costs.  

Harper et al.
62

 developed a n-butanol pyrolysis and combustion model using RMG and compared 

it successfully to experimental data. The most important reaction paths were uncovered, by 

means of sensitivity analyses, in which several rate coefficients needed to be more accurately 

determined. This was done using quantum chemistry and transition state theory (TST) 

calculations. These TST calculations are not yet automated as a part of the mechanism generation 

and this intervention can be seen as a recommended manual improvement of the model.  

Moréac et al.
63

 showed the capabilities of the REACTION code by modeling the oxidation and 

combustion of n-decane and n-heptane. The ignition delay time was accurately predicted and 

besides the validation of the entire model, the rate coefficients were also successfully compared. 

The model was built by combining two sub-models: a manually constructed C4- model and an 

automatically generated C5+ model.  

Mersin et al.
64

 compared a hand-generated kinetic model of hexadecane combustion and 

oxidation to one generated automatically by REACTION to show that they are similar.  

Several other publications on this topic are by Glaude et al.
65

, Buda et al.
66

, Prickett and 

Mavrovouniotis
67

, Muharam and Warnatz
68

, and Khan and Broadbelt
69

. 

Note that the ability to predict chemical processes does not only provide an alternative to time-

consuming and costly experiments, it also accelerates process development and innovation. 

Recently, via the generation of kinetic models, it has already become possible to describe 

complex gas-phase chemistry occurring in processes such as steam cracking, pyrolysis and 

combustion. Simulation software based on detailed kinetic models has already found its way into 

industrial production plants, both to optimize the day-to-day production as well as to further 

develop and improve the plant.
2-7

 Future applications of detailed gas-phase and solvation-phase 

kinetic models could encompass the detailed development of complex reactor systems and 
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combustion engines, reactants or fuels with specific requirements, and reactor materials. 

Furthermore, although this work is focused on gas-phase chemistry, the extensions to catalysis, 

polymerization and biomass related processed open up a wide array of possible applications of 

detailed kinetic models. This ranges from catalyst design
70,71

 and optimization of catalytic 

processes
72

 to the creation of new polymer materials with very specific characteristics
73,74

 or the 

development of sustainable processes based on biomass feeds
75

. A lot of effort has been made in 

these fields, but the description of these applications lie outside of the scope of this thesis.  

During the last five years clear progress has been made in this field reducing expert user 

involvement by automating many of the tasks that used to require human intervention, such as 

sensitivity and rate of production analysis. With this progress, the first accurate and completely 

in-silico generated kinetic model should become available in the not-so-far future. Starting from 

the state-of-the-art in automatic kinetic model generation all the necessary ingredients for a good 

code are outlined. The main focus of the next sections are (1) on the automatic construction of 

detailed kinetic models for the description of gas-phase processes such as oxidation, pyrolysis 

and combustion, and (2) on the assignment of kinetic and thermodynamic data for species and 

reactions. Both fast, scalable methodologies and computationally expensive methods are 

discussed. Particular attention is paid to recent advancements which are especially of interest for 

this work, such as the use of on-the-fly quantum mechanical calculations to extract the required 

data. Most of the examples given in this work are applied to kinetic models incorporating only 

small elements such as hydrogen, oxygen, carbon and nitrogen but the discussed approaches can 

be extended to other elements and chemistries. 
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1.2.1 Building a reaction mechanism 

Three elements are key to generate a mechanism automatically, which are illustrated in Figure 2. 

These will be elaborated in the following paragraphs.  

 

Figure 2: Schematic overview of the essential elements of an automatic kinetic model generation code. 

Resulting kinetic model of reactant A up to products I and F via intermediates B, C, D, E, G and H. 

In computer codes, a species is regarded as a collection of atoms each bonded to one or more 

other atoms, and knowledge of the atom connectivity, bond orders, lone electron pairs, radical 

sites, and charges suffices for a correct treatment of the species. It is thus possible for computers 

to use the topological representation of the species, e.g. bond matrices
25,36,76,77

 or graph 

objects
20,24

, or to employ a collection of functional groups to describe the chemical structures.
78,79

 

The former only holds information about the elements, the bond orders, and the connectivity of 

the molecule. The latter is useful when the complete atom connectivity of the molecule is 

unnecessary for the mechanism generation. To construct a detailed predictive kinetic model it is 

key to represent the species unambiguously, i.e. to represent each species in a unique fashion. 

Furthermore, it is necessary to allow unambiguous reading of input species. Several methods 

have been developed to read, write and generate species names such as SMILES
80

, InChI
81

, 

adjacency lists or in-house developed names.
82,83

 

One possible way to assure each species’ uniqueness in a kinetic model is the use of algorithms 

developed by so-called chem(o)-informatics This is a cross-disciplinary scientific field involving 
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computer sciences, mathematics and chemistry. The most important species representation in 

chemo-informatics projects is the use of graph objects with a set of nodes or vertices representing 

the atoms, connected by edges that represent the chemical bonds. Furthermore, a graph can be 

weighted to introduce additional information about the chemical species.
84

 Vertices can point to 

more than “an atom” by bearing information about the atom type, its electronic configuration, etc. 

The edges can refer to single, double, triple, aromatic, transition-state, etc. bonds. This species 

representation can be used to describe stable species, i.e. minima on the potential energy surface 

(PES) as well as transition state structures, i.e. approximated by saddle points on the PES.  

To ensure species are represented in a unique and unambiguous manner, (chemo-) informaticians 

have developed algorithms for canonicalization, the unique numbering of atoms in a molecule.
50

 

The canonical representation of molecules, i.e. the unique set of numbers assigned to the atoms, 

can be used to compare two molecules, to search in molecular databases for information about 

the species, or to generate a unique name, e.g. an InChI
81

. Several algorithms have been 

developed to canonicalize a graph
85-88

, but the most widely used one was introduced by 

Morgan.
89

 This algorithm starts by partitioning all the atoms based on graph invariants, i.e. a 

sequence of numbers computed, starting from the graph topology. In each step, the graph 

invariant of each atom is recursively updated by summing the invariants of all its neighboring 

atoms from the previous step. The procedure continues until the number of distinct invariants 

reaches a maximum. This is illustrated in Figure 3: first, an initial invariant of one is chosen for 

each atom. In the second step, the methyl substituents retain an invariant of one since they only 

have one neighbor. The secondary carbon atoms get an invariant of two because of their two 

neighbors, and tertiary carbon atoms obtain an invariant of three, leading to a total of 3 distinct 

invariants. The third step continues with the same procedure resulting in 6 distinct invariants 

while the next step results in only 5 distinct variables. This means that the maximum number of 

invariants is 6, and that all the atoms with the same invariant in the third step are equivalent.  
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Figure 3: Recursive calculation of graph invariants for the atoms in dimethyldecalin. The initial invariants are 

chosen to be one.
90

 

The first possibility to verify whether two chemical species are identical is to generate a unique 

name, a so-called string, for both graphs and subsequently compare the strings. Another option is 

to use graph isomorphism. Two graphs are isomorphic if a bijection exists from the vertices of 

the first graph to the ones of the second graph in such a way that the connection between the 

vertices remains. Besides the use of isomorphism algorithms in determining the uniqueness of 

two graphs, these algorithms can be used for sub-graph recognition as well, i.e. whether graph G 

contains a sub-graph that is identical to graph H. This results in a mapping between the vertices 

of G that match vertices of H.  

Sub-graph recognition is a valuable tool in automatic mechanism generation for several 

applications. First, a molecule can be searched for functional groups or reactive centers capable 

of undergoing a specific reaction. Secondly, if constraints are used to limit the size of the 

mechanism or only add kinetically significant reactions and species, they can be defined in terms 

of sub-molecular structures. This way, the presence of a specific atom arrangement with specific 

bond types can be searched for via isomorphism algorithms to decide whether or not a given 

species can undergo certain reactions. Finally, to calculate species properties or reaction rate 

coefficients via group additivity, the groups in a molecule need to be identified and linked to 

databases. The presence of specific groups can be detected via sub-graph searches.  

The use of such sub-graph definitions, to store sub-molecular patterns in libraries or to define 

reactive centers and reaction constraints, demands an unambiguous and human-readable sub-

graph language, the latter is needed to construct data libraries and input files or to analyze output 

files. An example of a sub-molecular pattern language is the SMARTS language (SMILES 

ARbitrary Target Specification).
91

 The use of atom or bond specifications, alongside logical 
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operators, allows the definition of both very general as well as very specific sub-molecular 

patterns.  

All the possible reactions a species can undergo, either unimolecular or in the presence of another 

species, can be described in terms of elementary reaction families.
31

 A reaction family specifies 

the atom rearrangements occurring when proceeding from the reactants to the products. 

Abstraction is made of the electronic structure and the atomic nature, only the connectivity 

pattern, the bond orders, and their changes are important to define a reaction family. These 

families each represent a particular type of elementary chemical reactions, e.g. a homolytic 

scission of a single bond or a radical addition to a multiple bond. A popular approach taken by 

kinetic model generation programs is to complete the reaction mechanism by successive 

application of the reaction families to large molecules with a limited series of reactions involving 

small molecules, e.g. reactions involving molecules ranging from hydrogen up to molecules 

containing three or four carbon atoms. This approach is justified in a number of ways. First of all, 

the availability of rate coefficients for reactions involving small molecules, either determined 

from kinetic experiments or from affordable high-level ab initio calculations avoids the need for 

more approximate methods that are designed to provide rate coefficients for each member of the 

reaction family. Second, group additivity does not yield the same accuracy for small molecules, 

because the molecule in its entirety influences the rate coefficients rather that the immediate 

surrounding of the reactive atoms. Furthermore, small molecules lack many reaction pathways 

that are available for larger molecules.
54

 Therefore, researchers have preferred the 

implementation of so called seed-mechanisms, which entail the small-molecule chemistry, in 

their kinetic models.
92

 The molecules in these seed-mechanisms are limited in size and most 

kinetic data originates directly from experimental or theoretical work. The part of the kinetic 

model that contains reactions of larger molecules are automatically generated either starting from 

the seed-mechanism or starting from scratch. In the latter case, the seed-mechanism is merged 

after the kinetic model generation. In many processes where automatic kinetic model generation 

is applied, larger molecules break down into smaller ones, and eventually to molecules contained 

in the seed-mechanisms. A correct description of the small-molecule chemistry is thus of utmost 

importance to enable the validation of the complete kinetic model. Therefore, extensive 

validation and optimization of small-molecule chemistry has been done in the past. Metcalfe et 

al.
92

 published a comparative study of small kinetic models which serve, amongst others, as seed-
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mechanisms for the description of the combustion of commonly used and potentially beneficial 

fuels. Several kinetic models describing small-molecule combustion have been developed in the 

past.
93-97

  

To automatically generate all the possible reactions that a species can undergo reaction rules are 

required to execute the reaction specifying the characteristic transformations corresponding to the 

considered reaction families. After the execution of these reaction rules, product species are 

formed, which can subsequently be subjected to the reaction rules themselves giving birth to 

second generation, third generation, …, products. The mechanism generation is iteratively 

continued until the mechanism is considered complete according to user-defined tolerances and 

constraints.  

Each species not yet subjected to the reaction rules first needs to be searched for structural 

features needed for the execution of a certain reaction family. For example, when a β-scission 

family is to be executed, the molecule has to possess the required structural feature, i.e. an atom 

with an unpaired electron bonded to an atom that is connected to a third atom via a single bond, 

c.f. Figure 4. If a molecule possesses this submolecular structural feature, the reaction rules 

defining the characteristic structural rearrangement of the reaction family can be executed. For 

the β-scission, the rules define the increase of the bond order between the first and second atom, 

the breaking of a bond between the second and third atom, the loss of the unpaired electron of the 

first atom and the gain of an unpaired electron on the third atom. The formed products are 

subsequently added to the mechanism if not yet present.  
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Figure 4: Reaction rules defining the characteristic structural rearrangement of a β-scission reaction 

exemplified for the reaction of the ethyl radical to ethylene and the hydrogen radical. 

When reaction families allow the size of molecules to increase, the aforementioned procedure to 

construct a mechanism could keep generating reactions infinitely. Furthermore, this procedure 

does not entail any chemical knowledge and a significant number of kinetically unimportant or 

improbable reactions would be added to the mechanism. To limit the size and only add important 

reactions, termination criteria are required. These criteria can be constructed in several ways, of 

which rule-based, rate-based, and rank-based are the most commonly described in literature. 

Rate-based criteria
21

, as used in RMG
18

 for example, employ reactor simulations to assess which 

species have high rates of formation and should be added to the kinetic model. To ensure that all 

the important reactions are included, these criteria thus need relatively accurate values for rate 

coefficients and thermochemistry. The algorithm is illustrated in Figure 5. The initially defined 

reactants constitute the initial core of the mechanism that is subjected to all possible reactions 

specified by the reaction rules of all the defined reaction families. This yields a set of product 

species that are added to the edge of the mechanism. The model (core plus edge) is then used in a 

reactor model to identify the edge species with the highest rate of formation. If this highest rate 

exceeds a threshold value, c.f. Eq. 1.2, the species and its corresponding reactions are added to 

the core of the kinetic model. In Eq. 1.2, R is the rate of formation, t is the time and ε is a user-

defined tolerance. The subscript i is the species under consideration to be added to the core, min 

is the minimum requirement for a species to be added to the core and j corresponds to the species 

in the core. This iterative procedure is continued until no edge species have a rate of production 

that meets the requirement of Eq. 1.2. 
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 𝑅𝑖(𝑡) ≥ 𝑅𝑚𝑖𝑛(𝑡) = ε ∙⁡(∑𝑅𝑗
2

𝑗

(𝑡))

1
2⁄

 
Eq. 1.2 

 

Figure 5: Rate-based model enlargement. The pink area is the core of the mechanism, containing initially six 

species (A-F) and six reactions. These six species are subjected to all possible reactions specified by the 

reaction rules of the defined reaction families which lead to the formation of four new species (G-J) that are 

put in the edge of the mechanism. The reactions of the core and edge are then used in a reactor model to 

identify the species with the highest rate of formation (G) that is added to the core of the mechanism. Next, all 

possible reactions of this expanded core are again generated leading to a new species in the edge (K).  

Rule-based criteria, on the other hand, incorporate chemical knowledge of the user to evaluate 

whether or not the structural rearrangement defined by the reaction family is to be executed. For 

example, this knowledge can be translated into constraints on the required characteristic 

structural features as is done in Genesys
24

 and illustrated in Figure 6. These constraints are 

defined for each reaction family and reactions are only added if all the constraints are met. 

Constraints can be defined on the atomic level of the reactive atoms, e.g. hybridization, number 

of neighbors, etc., or on the molecule in its entirety such as the molecule size, the presence of 

rings or aromaticity, etc.  
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Figure 6: Reaction family constraints. Per reaction family (i.e. a β-scission), constraints can be defined 

limiting the application domain of this family for a given reaction system. The first constraint limits this 

reaction family to the formation of double bonds only, triple bonds are not allowed. The second constraint 

dictates that no allenic structures can be formed. Finally, the third constraint limits the reaction family to 

open-chain structures, the double bond cannot be formed in a ring or with only one atom in the ring.  

A third termination method is based on the maximum number of reaction steps, i.e. rank-based 

model enlargement, to obtain all products.
98,99

 

Other mechanism-limiting methods are employed a posteriori in contrast to the a priori 

techniques described above. These methods are mechanism reduction algorithms that grasp the 

essential chemistry in a large model and remove the redundant species and reactions. Mechanism 

reduction to skeletal mechanisms
100-102

, lumping
29,78,79,103-107

, quasi-steady state 

approximation
26,108

, and sensitivity analyses
104

 are well known and widely used methods.
10,109

 

Path flux analysis can also be used to reduce the mechanism.
110

 Model reduction is in particular 

important in the context of Computational Fluid Dynamic simulations where only small kinetic 

models are allowed due to the computational cost of the calculations.
111,112

 Kinetic models with a 

few hundred of reactions can already be handled.
113

 

1.2.2 From reaction mechanism to kinetic model: data calculation 

To allow reactor simulations, properties of all the species and rate coefficients of all the reactions 

in a mechanism must be provided. Species properties refer to thermodynamic parameters and 

optionally transport properties of the molecules. The latter are not considered in this work. 
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Measuring all these parameters experimentally is unfeasible and accurate quantum mechanical 

calculations remain computationally extremely demanding. Therefore, several methods have been 

developed which require only a fraction of the computational resources needed for ab initio 

calculations.  

1.2.2.1 Thermodynamics 

The thermodynamic parameters are often represented by NASA polynomials
114

 describing the 

temperature dependence of the enthalpy of formation, the entropy, and the heat capacity, c.f. Eq. 

1.3, Eq. 1.4, and Eq. 1.5.  

 
𝐶𝑝(𝑇)

𝑅
= 𝑎1 + 𝑎2 ∙ 𝑇 + 𝑎3 ∙ 𝑇

2 + 𝑎4 ∙ 𝑇
3 + 𝑎5 ∙ 𝑇

4 Eq. 1.3 

 
∆𝑓𝐻(𝑇)

𝑅
= 𝑎1 ∙ 𝑇 +

𝑎2
2
∙ 𝑇2 +

𝑎3
3
∙ 𝑇3 +

𝑎4
4
∙ 𝑇4 +

𝑎5
5
∙ 𝑇5 + 𝑎6 Eq. 1.4 

 
𝑆(𝑇)

𝑅
= 𝑎1 ∙ ln(𝑇) + 𝑎2 ∙ 𝑇 +

𝑎3 ∙ 𝑇
2

2
+
𝑎4 ∙ 𝑇

3

3
+
𝑎5 ∙ 𝑇

4

4
+ 𝑎7 Eq. 1.5 

Aside from the calculation of enthalpies of reaction, thermodynamic data are needed once 

reactions are implemented as reversible reactions, i.e. to account for thermodynamic consistency. 

If no experimental or theoretical values are available for a species, calculation procedures are 

used to obtain the enthalpy, entropy, and heat capacities.
115

 These methods are fast and have been 

proven to be accurate for a wide range of molecules; these two characteristics are extremely 

valuable for automatic kinetic model generation where thermodynamic properties of many 

species are required.  

1.2.2.1.1 Group additivity  

The main method to calculate thermodynamic parameters of ideal gases is group additivity, as 

introduced by Benson.
116,117

 The basic assumption is that thermodynamic values of an entire 

molecule can be determined from contributions of all the groups within a species. A group was 

defined by Benson as a central polyvalent atom with all of its neighbors. Such a group is labeled 

X-(A)i(B)j(C)k(D)l with X the central atom having i neighbors of atom A, j of atom B, and so on. 

To differentiate between atoms having a double, triple or aromatic bond, a subscript is used. For 

instance, a carbon atom can be single (C), double (Cd) or triple (Ct) bonded, and can be part of an 

aromatic ring (unfused: Cb or fused: Cbf) or can be allenic (Ca). For example, propylene consists 

of three groups, as shown in Figure 7. In Figure 7a, the notation for the first atom is trivial, 
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however, the notation for the second and the third carbon atom (both Cd) does not include all 

their ligands. When only considering hydrocarbons, a double bonded carbon atom is always 

double bonded to another carbon atom and, hence, implies another Cd as ligand, which is thus left 

out of the notation. As a corollary, when heteroatoms are considered, sp² carbon atoms bonded to 

a hetero-atom, such as the oxygen atom in a carbonyl groups, need to be noted differently, which 

is done by the introduction of a diatomic center instead of a central atom, e.g. (CO), (CS), (CN) 

corresponding with -C=O, -C=S, -C=N- etc., c.f. Figure 7b. The same principle is applicable to 

aromatic carbon atoms, always neighboring two other aromatic carbon atoms in the case of an 

unfused ring and three in the case of a fused ring, to triple bonded carbon atoms and to allenic 

carbon atoms. 

 

Figure 7: (a) Benson groups in propylene. Propylene has three polyvalent atoms. The first one, depicted in 

blue, is a sp³ carbon atom (notation: C) bonded to three hydrogen atoms and an sp² carbon atom (notation: 

Cd). The second atom (in green) has an sp² hybridization. It is thus implied that, when only considering 

hydrocarbons, this atom is double bonded to another Cd atom. Therefore, the latter is not added in the Benson 

group notation and only the sp³ carbon atom and the hydrogen atom are mentioned as ligands. (b) Benson 

groups in acetaldehyde. The carbonyl group is seen as one polyvalent center to differentiate between a C=C 

bond and a C=O bond. 

The thermodynamic properties of molecules and radicals can be calculated by adding a 

contribution for each group in the species. Group additivity values (GAVs) initially originated 

from experimental data, but Yamada et al.
118

 showed that computational chemistry calculations 

can also be used to derive these GAVs if experimental data are lacking. To account for 

interactions in the molecule reaching further than the nearest neighbors of each atom, non-next-

nearest neighbor interactions (NNI, for example gauche or cis interactions), c.f. Figure 8, 

resonance corrections (RES) and ring strain corrections (RSC) have been introduced.
8,119

 The 

thermodynamic properties are accordingly calculated using Eq. 1.6. Several publications 



Chapter 1: Introduction  19  

summarize GAVs for species and radicals
8,119-121

, and stand-alone codes have been written to 

determine thermodynamic properties based on group additivity.
122-124

  

 

Figure 8: Gauche 1-4 non-next-nearest neighbor interaction (NNI) in 2-methyl butane. Carbon atom number 

1 and carbon atom number 4 are not bonded to each other, but their H-ligands do interact which influences 

the thermodynamics of the molecule. It is thus necessary to account for this contribution when using group 

additivity for the determination of thermochemical properties.  

 

 {
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 Eq. 1.6 

The entropy calculated via group additivity still needs to be corrected to account for the 

molecular symmetry
120

, c.f. Eq. 1.7.  

 𝑆 = 𝑆𝐺𝐴𝑉 − 𝑅 ∙ 𝑙𝑛 (
𝜎

𝑛𝑜𝑝𝑡
) Eq. 1.7 

SGAV is the entropy calculated with Eq. 1.6, and S is the entropy for the molecule. R is the 

universal gas constant, σ the total symmetry number and nopt is the number of optical isomers of 

the species. The total symmetry number is the number of identical configurations obtained both 

by rotating the total molecule around symmetry axes as well as by internal rotations around 

bonds. Note that the factor  in Eq. 1.7 arises when enantiomers are lumped together 

and considered indistinguishable. The latter assumption is acceptable since enantiomers have 

identical thermochemical properties and is often applied when lumping enantiomers does not 

affect the modeling results. In contrast, diastereomeric relations between molecules cannot be 

treated in the same way as was done for enantiomers. Kinetic model generation tools that 

distinguish between chiral or cis-trans stereoisomers not only require a molecule representation 
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that accounts for stereocenters, but also require modifications that allow the creation and 

destruction of stereocenters in molecules. Only very recently, a proof of concept of 

stereochemistry-aware kinetic model generation was presented and applied.
125

 

GAVs for radicals are more complex to obtain, hence Lay et al.
126

 developed the hydrogen bond 

increment (HBI) method in which the thermochemistry of a radical R· is calculated by the sum of 

the values of the parent molecule RH and a contribution to account for the loss of the hydrogen 

atom.  

The above described methods have been shown to calculate thermochemical data within 4 kJ 

mol
-1

, i.e. with so-called chemical accuracy similar to high-level ab initio calculations.
8,119,121

 The 

accuracy and applicability of group additivity depends on the availability and accuracy of the 

GAVs. GAVs for hydrocarbons have been determined and are regularly updated when new 

experimental or theoretical data became available. Furthermore, GAVs can easily be 

implemented in computer software to calculate thermochemistry very quickly. Therefore, group 

additivity offers an excellent way to calculate the thermodynamic parameters in large reaction 

mechanisms.  

Several schemes for additivity have been developed next to the group additivity scheme proposed 

by Benson. Platt
127,128

 introduced a method to predict the enthalpies of formation, heats of 

vaporization, boiling points, etc. of paraffins based on the number of C-C and C-H bonds and 

extra contributions for neighboring bonds. Greenshields and Rossini
129

 calculated the isomeric 

variation of the same properties as Platt based on bonds, pairs of bonds and other structural 

features. Thinh et al.
130,131

 introduced a methodology to calculate the heat capacities, standard 

heats of formation, standard entropies of formation, standard free energies of formation, and 

absolute entropies using central polyvalent atoms or polyatomic central moieties to defined the 

group contributions. Smith
132,133

 introduced an approach to calculate standard enthalpies of 

formation of alkanes and radicals from an additive bond-energy scheme, including additional 

contributions for interactions between neighboring hydrogen atoms. 

1.2.2.1.2 Computational chemistry 

Ab initio methodologies, which calculate the electronic energy of a species by approximately 

solving the corresponding Schrödinger equation, are used to locate local minima, resembling 
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molecules or radicals, or first-order saddle points, which approximately resemble the transition 

state of a reaction with pronounced barrier, on the potential energy surface. This equation is very 

difficult to solve and can only be approximated, using electronic structure models, when the 

species has more than two atoms. Two major electronic structure methods have been developed: 

wavefunction-based and density-based both including semi-empirical as well as ab initio 

methods.  

Wavefunction-based ab initio methods, based on the Hartree-Fock (HF) model, solve the 

Schrödinger equation by approximating the many-electron system as a set of one-electron 

systems. This implies that the electron interactions are only calculated as mean fields. The results 

are the eigenvalues of the Hamiltonian corresponding to the wavefunctions describing the 

electronic states. The lowest energy found corresponds to the ground state. Post-HF methods, 

such as Coupled Cluster
134

 or Møller–Plesset perturbation theory
135,136

 methods, include electron 

correlation effects in the electronic structure calculations to obtain more accurate results. Several 

semi-empirical models, e.g. the Parameterized Model series
137,138

, have been developed that can 

be categorized as wavefunction-based methods. 

In the density-based methodology, such as density functional theory
139

 (DFT) functionals are 

used that express the energy based on the electron density. To obtain an approximation for the 

electronic kinetic energy, Slater determinant wavefunctions are often used, as introduced by 

Kohn and Sham
140

, which represent a fictitious system of non-interacting electrons. Examples of 

this methodology are B-LYP
141

 and Minnesota functionals
142

. They employ different 

approximations of the electron-correlation energy. Here, semi-empirical methods have also been 

developed in which the parameters to obtain the exchange-correlation energy are fitted to 

experimental data.  

Wavefunction-based and density-based methods can also be combined, as it is done in some 

composite methods. Here, DFT methods are generally used to optimize geometries and calculate 

frequencies, while a series of high-level single point quantum chemical calculations is used to 

calculate the energy. Examples are the complete basis set (CBS)
143,144

, Gaussian (G)
145,146

 or 

Weizmann (W)
147,148

 methods in which DFT is used to calculate the geometry and the post-HF 

methods calculate the energies.
53
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Starting from a reasonable initial guess, the geometry can be optimized using several levels of 

theory by making use of the Hessian matrix, which is the second derivative of the energy to the 

coordinates of the atoms in the molecule, and is thus a force constant matrix. The accuracy of the 

geometry optimization typically increases with the computational cost of the calculations. Semi-

empirical methods are relatively fast, hence large molecules can be handled in a reasonable 

calculation time, but the results are less accurate compared to the computationally more intensive 

ab initio methods. It is not the purpose of this chapter to give an extensive review on the 

capacities, applications, and limitations of the available ab initio methods because other reviews 

cover this subject, e.g. Klippenstein et al.
149

. 

From quantum chemical calculations, thermodynamic properties are obtained by making use of 

molecular partition functions q. To calculate these partition functions the molecular frequencies, 

calculated from the Hessian, among other properties are needed, which originate from ab initio 

calculations. By assuming that all the modes (vibrations, rotations, translation and electronic 

modes) in a molecule are separable, the partition functions can be calculated by a multiplication 

of the electronic, translational, vibrational, and rotational partition functions, as shown in Eq. 1.8. 

The calculation of each contribution is explained in Chapter 3.  

 𝑞𝑡𝑜𝑡 = 𝑞𝑒𝑙𝑒𝑐𝑞𝑡𝑟𝑎𝑛𝑠𝑞𝑟𝑜𝑡𝑞𝑣𝑖𝑏 Eq. 1.8 

From the partition functions, which is a microscopic property, macroscopic properties can be 

calculated, such as the internal energy U, the enthalpy H, the entropy S, and the heat capacity Cp. 

 𝑈(𝑇) = 𝑅𝑇2 (
𝜕𝑙𝑛(𝑞(𝑇))

𝜕𝑇
) Eq. 1.9 

 𝐻(𝑇) = 𝑈(𝑇) + 𝑅𝑇 Eq. 1.10 

 𝑆(𝑇) = 𝑅 (1 + 𝑙𝑛 (
𝑞(𝑇)

𝑁𝐴
) + 𝑇

𝜕𝑙𝑛(𝑞(𝑇))

𝜕𝑇
) Eq. 1.11 

 𝐶𝑃(𝑇) = 𝑅 (1 + 2𝑇
𝜕𝑙𝑛(𝑞(𝑇))

𝜕𝑇
+ 𝑇

𝜕2𝑙𝑛(𝑞(𝑇))

𝜕𝑇2
) Eq. 1.12 

Finally, the standard enthalpy of formation can be calculated using the atomization method, in 

this the subscript ∆𝑎𝐻 stands for the atomization enthalpy.  
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∆𝑓𝐻°(𝑋𝑚𝑌𝑛) = 𝑚∆𝑎𝐻°(𝑋) + ⁡𝑛∆𝑎𝐻°(𝑌) − (𝑚𝐻(𝑋) + 𝑛𝐻(𝑌)

− 𝐻(𝑋𝑚𝑌𝑛)) 
Eq. 1.13 

It is important to note in the context of computational chemistry methods that a large number of 

conformers exist for most species and transition states. For example, n-butane has three local 

minima on its PES, 2 unique configurations, n-pentane already has nine with 4 unique 

configurations, and n-hexane has 27 out of which 14 are unique. The problem becomes even 

more complex in cases were ring structure or polar moieties are present in the molecule. Several 

computer codes and algorithms have been developed in order to search for a low-energy 

conformer and the lowest-energy one. Two main categories of algorithms can be distinguished: 

deterministic and stochastic algorithms.
150,151

 Deterministic methods scan the torsional space of 

the molecule on a grid. If the number of rotamers is high enough, the lowest-energy conformer 

can be found. It is however, not possible to know how many rotamers are necessary to assure a 

convergence to the lowest-energy conformer, and the torsional scans are computationally 

intensive. Therefore, the number of rotamers is often reduced to a small number, losing the 

guarantee of finding the lowest-energy conformer. Stochastic methods only search for subsets of 

the full conformational space, for example by only scanning the rotation of one bond.
150

 Monte 

Carlo methods
152,153

, “distance geometry” models
150

, genetic algorithms
154

 and random 

perturbations
155

 are well-known stochastic methods, which locate local minima but not always 

the global minimum. A detailed description of each method can be found elsewhere.
156-160

  

1.2.2.1.3 On-the-fly computational chemistry 

Although work has already been done for cyclic compounds, e.g. Ince et al.
161

, group additivity is 

not always accurate for ring structures such as polycyclic species where almost every molecule 

needs a unique ring strain correction to obtain adequate results. Also for many molecules, GAVs 

are simply not available (yet). Therefore, even though it is more time consuming, calculating the 

thermodynamics on-the-fly using computational chemistry calculations offers alternatives. These 

calculations have been incorporated in kinetic model generation.
162-164

 The incorporation of on-

the-fly computational chemistry calculations into automated kinetic model generation 

applications requires a reasonable initial guess for the three-dimensional coordinates of the atoms 

in the molecule. Automated kinetic model generation applications employ a connectivity-based 

molecular representation throughout the various steps of the kinetic model generation, and hence 



24  Chapter 1: Introduction 

require a conversion of the graph-based molecular structure to a format in which explicit three 

dimensional (3D) atomic coordinates are stored. 3D coordinates generation tools have been 

developed for decades, and applied in various chemo- and bioinformatics frameworks.
165

 In the 

context of kinetic model generation applications, three key parameters of the 3D coordinates 

generation tool are important: 1) the robustness to handle a wide variety of molecular structures 

that arise upon the execution of reaction families, 2) the accuracy of the produced atomic 

coordinates to ensure an adequate initial guess for the subsequent geometry optimization, and 3) 

the execution speed of the program, and hence the potential to process hundreds of molecular 

structures within a reasonable timeframe. Recently, Ebejer et al.
151

. performed a benchmark study 

in which these parameters were evaluated. Illustrations of the integration of on-the-fly 

computational chemistry calculations into automated kinetic model generation applications are 

scarce. Broadbelt et al.
164

 proposed a rule-based 3D coordinates generation algorithm tailored to 

molecules encountered during the generation of hydrocarbon pyrolysis models and integrated 

MOPAC
137

 in the kinetic model construction procedure.
166

 Magoon and Green
163

 integrated semi-

empirical calculations by MOPAC2009 and the Gaussian 03 suite of programs
167

 and force-field 

calculations from MM4
168

 through a 3D coordinates generation interface using a “distance 

geometry” approach by Blaney et al.
169

 as implemented in RDKit, initially developed at 

Novartis.
170

 By using this algorithm for a set of 43 polycyclic hydrocarbons (propellanes) and 

comparing the thermodynamic properties to experimentally measured ones
171

, a mean absolute 

deviation (MAD) of 29 kJ mol
-1

 was observed for the PM3 method compared to a MAD of 167 

kJ mol
-1

 when using group additivity and 124 kJ mol
-1

 for the MM4 method. No GAVs were 

calculated for this system, and no ring strain corrections are available. It is thus suspected that the 

GAV method does not perform well. An update of ring strain corrections could increase the 

performance, but as stated above, for most molecules a separate single ring strain correction is 

necessary, which defeats the original purpose of GAVs being a fast and scalable calculation 

method.  

1.2.2.2 Rate coefficients 

The calculation methods for reaction rate coefficients are based on the idea that the reactive 

center of reactions within a reaction family is the same, or at least highly resembling, for all the 

reactions in that family. For each reaction belonging to the family, the rate coefficient can be 

calculated based on a contribution for the reactive center alongside reaction-specific kinetic 
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contributions. In most cases, rate coefficients are written in the Arrhenius or modified Arrhenius 

form, describing the temperature dependence of the reaction (Eq. 1.14 and Eq. 1.15 respectively). 

 𝑘(𝑇) = 𝐴 ∙ 𝑒𝑥𝑝 (−
𝐸𝑎
𝑅 ∙ 𝑇

) Eq. 1.14 

 𝑘(𝑇) = 𝐴 ∙ (
𝑇

1 K
)
𝑛

∙ 𝑒𝑥𝑝 (−
E

𝑅 ∙ 𝑇
) Eq. 1.15 

Here, A is the pre-exponential factor, Ea is the activation energy of the reaction, n is sometimes 

introduced to account for temperature dependence of A and Ea
116

, R is the universal gas constant 

and T the absolute temperature.  

1.2.2.2.1 Semi-empirical methods to calculate rate coefficients 

A general class of methods to quickly calculate the rate coefficient or the activation energy of a 

reaction uses a linear free-energy relationship:  

 ln⁡(𝑘𝑖(𝑇)) = ln⁡(𝑘0(𝑇)) + 𝑚 ∙ (𝑥𝑖 − 𝑥0) Eq. 1.16 

Where k0(T) is the rate of a known reaction belonging to the same reaction family, m is 

determined per reaction family, and xi is a property of reaction i or the species in reaction i (the 0 

subscript refers to the known reaction). The first set of linear free-energy methods compares the 

reaction enthalpy of a reference reaction (with known kinetics) to the reaction enthalpy of 

reaction i to calculate ki(T). Evans and Polanyi
172

 first introduced this approach in which the pre-

exponential factor is considered constant for all reactions within a reaction family and the 

activation energy depends linearly on the reaction enthalpy (Eq. 1.17). 

 𝐸𝑎
𝑖 = 𝐸𝑎

0 + 𝛾 ∙ ∆𝑟𝐻°𝑖 
Eq. 1.17 

Here, 𝐸𝑎
𝑖  is the activation energy of reaction i and ∆𝑟𝐻°𝑖  is the standard reaction enthalpy of 

reaction i, the ‘°’ symbol refers to standard conditions, i.e. at a pressure of 1 bar and a chosen 

temperature. 𝛾 is the transfer coefficient for the reaction family and 𝐸𝑎
0 is the intrinsic barrier, 

which is the activation energy for a thermo-neutral reaction, hence noted with the ‘0’ superscript. 

For highly exothermic reactions, the Evans-Polanyi relationship leads to negative activation 

energies, but this is avoided by truncating the relationship to zero. Furthermore, if an Evans-

Polanyi model is constructed, the validity range should be reported and one should be careful 

when extrapolating outside this range.  
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However, for many reactions the activation energy shows nonlinear dependence of the activation 

energy on the reaction enthalpy.
173

 Alternative relationships were proposed in the literature, such 

as the Marcus equation (Eq. 1.18)
174

, which predicts the activation energies well for mildly 

endothermic or exothermic reactions. 

 𝐸𝑎
𝑖 = 𝐸𝑎

0 ∙ (1 +
∆𝑟𝐻°𝑖

8 ∙ 𝐸𝑎
0)

2

 Eq. 1.18 

Roberts and Steele
175

 extended the Evans-Polanyi relation by introducing the role of polar effects. 

This improves the accuracy of the activation energies, as demonstrated by comparison to 

literature values, but suffers from a limited applicability.  

Blowers and Masel
173,176

 extended the approach of Evans and Polanyi by accounting for the 

nonlinear behavior. Three regimes were proposed to calculate the activation energy based on the 

reaction enthalpy. In the first regime, an activation energy of zero is assigned if the reaction 

enthalpy is less than −4 ∙ 𝐸𝑎
0. In the second regime, the activation energy equals the reaction 

enthalpy if the latter is larger than 4 ∙ 𝐸𝑎
0. The last regime, i.e. if the reaction enthalpy lies in 

between −4 ∙ 𝐸𝑎
0 and 4 ∙ 𝐸𝑎

0, the activation energy is calculated according to Eq. 1.19, where Vp is 

a parameter related to the intrinsic barrier, depending on wB, wF and 𝐸𝑎
0.  

 𝐸𝑎 =
(
𝑤𝐵 + 𝑤𝐹 + ∆𝑟𝐻˚

2 ) (𝑉𝑝 − 𝑤𝐵 − 𝑤𝐹 + ∆𝑟𝐻˚)
2

𝑉𝑝
2 − (𝑤𝐵 +𝑤𝐹)2 + ∆𝑟𝐻˚2

 
Eq. 1.19 

The difference between this approach and the one of Evans and Polanyi is illustrated in Figure 9 

for a set of hydrogen abstraction reactions by the hydrogen radical on a variety of hydrocarbons. 

If the full data set is regressed to either an Evans-Polanyi or a Blowers-Masel relationship, the 

Blowers-Masel model predicts the trends better than the Evans-Polanyi model. However, when 

the dataset is divided in three parts based on the nature of the carbon atom from which the 

hydrogen is abstracted, Evans-Polanyi models can predict the activation energies well. In Figure 

9, the fraction of the reactions with the highest exothermicity are hydrogen abstractions leading to 

the formation of resonantly stabilized radicals. The second part are abstractions from an sp
3
 

carbon atom and the third fraction are endothermic reactions that lead to the formation of vinylic 

or phenylic radicals.  
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Figure 9: Performance comparison of the Evans-Polanyi (blue line) and Blowers-Masel (green line) methods 

in predicting the activation energies of hydrogen abstraction reactions by the hydrogen radical. The red 

points represent calculated activation energies / enthalpies of reaction pairs at the CBS-QB3 ab initio level of 

theory.
177

 Also shown is the performance of the Evans-Polanyi model for the three distinct subsets of the data, 

which reflect different radical types. 

1.2.2.2.2 Group contribution methods for Arrhenius parameters 

As described in section 1.2.2.1, group contribution methods were initially developed to calculate 

the thermochemistry of molecules and radicals in a scalable manner, by adding a contribution for 

each constituting group of the species. This approach can also be applied to the calculation of rate 

coefficients.
120,178-188

 An expression for rate coefficient calculations based on transition state 

theory is given in Eq. 1.20 in which kB is the Boltzmann constant, T the absolute temperature, V˚m 

the standard molar volume and h is the Planck constant. ∆‡𝑆 and ∆‡𝐻 are the standard entropy of 

activation and the standard enthalpy of activation. The number of single events ne of the reaction 

is obtained via Eq. 1.21, in which σ is the total rotational symmetry number and nopt is the 

number of optical isomers. Eq. 1.21 not only provides a convenient way to determine the number 

of single events, but also translates it into the more tangible problem of the determination of 

symmetry numbers. Nevertheless, the determination of the number of single events and 

symmetry number remains a challenging problem to automate, with many attempts only 

providing appropriate values in a limited subspace of molecules or reactions.
189-191

 Moreover, 

more generally applicable solutions to the algorithmic evaluation of the symmetry of molecules 

and reactions will inevitably be hampered by ad hoc complications originating from 

stereoisomerism and conformational degrees of freedom present in reactants and/or transition 
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states.
192,193

 Finally, the contribution of quantum mechanical tunneling to the rate coefficient is 

incorporated via the tunneling coefficient κ.  

Since group additivity was shown to calculate thermodynamic data of molecules and radicals 

with good accuracy, the same method was successfully extended to rate coefficient calculations. 

As Eq. 1.20 shows, calculating the thermodynamic properties of transition states and reactants 

suffices to calculate the rate coefficients of hydrogen abstraction reactions and the high-pressure 

limits of unimolecular reactions. Hence, the idea to use of group additivity to predict rate 

coefficients is based on the assumption that thermodynamic properties of transition states can be 

calculated with similar success compared to species.  

 𝑘(𝑇) = 𝑛𝑒𝜅(𝑇)
𝑘𝐵𝑇𝑉˚𝑚

ℎ
exp⁡(

∆𝑆⧧

𝑘𝐵
) exp⁡(−

∆𝐻⧧

𝑘𝐵𝑇
) Eq. 1.20 

 
𝑛𝑒 =

𝑛𝑜𝑝𝑡,‡
∏ 𝑛𝑜𝑝𝑡,𝑟𝑟

∙
∏ 𝜎𝑟𝑟

𝜎‡
 

Eq. 1.21 

Group additivity has several advantages. First, compared to theoretical calculations, it can be 

used independent of the type of reactions or species, provided that data is available. It provides a 

fast, easy, and scalable calculation of rate coefficients for automatic kinetic model generation 

codes. Theoretical calculations need user-expertise once a new reaction family is encountered or 

once other types of atoms are present in the species. Secondly, group additivity can be extended 

with non-next-nearest neighbor interactions, resonance corrections, ring strain corrections, and so 

forth, to improve the accuracy. Empirical methods, on the other hand, only use a small number of 

parameters for one reaction family and no extra contribution can be implemented.  

Several methods have been developed employing an additive approach. One such method uses 

experimentally determined rate coefficients of a few reactions to calculate the rate coefficient of 

other reactions. This has been used to describe complex processes such as the oxidation of 

volatile organic compounds in the atmosphere. Aumont et al.
76

 reported a set of structure-activity 

relationships for several reaction types such as hydroxyl radical reactions, NO3 hydrogen 

abstractions, ozone based reactions, etc. Kwok and Atkinson
194

 developed a scheme to calculate 

rate coefficients of hydroxyl radical reactions using a group contribution method, giving the total 

reaction rate of a hydroxyl radical with an organic compound, which can be seen as a lumped 

reaction rate. The addition of hydroxyl radicals to multiple bonds was studied by Peeters et al.
195

, 
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who developed a structure-activity relationship calculated the rate coefficients by a sum of partial 

site-specific rate coefficients. The latter depends on the stability of the resulting β-hydroxyl 

radical.  

A second method is based on a group additive scheme for Arrhenius parameters, where the rate 

coefficients of reactions are calculated based on the rate coefficient of a reference reaction 

belonging to the same reaction family and a contribution for the structural differences between 

the reaction of interest and the reference reaction.
120,178-181,185,186,196-200

 For every group present in 

the reactive center, a contribution to the different parameters is taken into account and is called 

the primary contribution. This is illustrated in Figure 10, the reactive center consists of the three 

carbon atoms, each bearing several ligands that can influence the reaction rate coefficients.  

Secondary contributions can also be obtained if the reaction rate coefficients depend on sub-

molecular groups which are not part of the reactive center. If a reactive center is constructed by n 

atoms, the pre-exponential factor and activation energy can be calculated by Eq. 1.22 and Eq. 

1.23 respectively. 

 

Figure 10: Groups to calculate the reaction rate of a radical addition to a double bond. 

 𝑙𝑜𝑔𝐴̃ = 𝑙𝑜𝑔𝐴̃𝑟𝑒𝑓 +∑∆𝐺𝐴𝑉𝑙𝑜𝑔𝐴̃
0

𝑛

𝑖=1

(𝑋𝑖) Eq. 1.22 

 𝐸𝑎 = 𝐸𝑎,𝑟𝑒𝑓 +∑∆𝐺𝐴𝑉𝐸𝑎
0

𝑛

𝑖=1

(𝑋𝑖) Eq. 1.23 

Here 𝐸𝑎,𝑟𝑒𝑓, and 𝐴̃𝑟𝑒𝑓 are the Arrhenius parameters of the reference reaction. ∆𝐺𝐴𝑉0 is the group 

additivity value of a group within the reactive center, relative to the reference reaction. An 

important advantage of this method is that only the differences between the reactants and 
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transition state are needed, the thermodynamic properties of the transition states are not 

necessary, in contrast to the “supergroup” approach of Green et al.
182-184

 The outcome of these 

equations can subsequently be employed to obtain the reaction rate coefficient.
180,181

 

 𝑘(𝑇) = 𝜅𝑛𝑒𝐴̃exp⁡(−
𝐸𝑎
𝑅𝑇

) Eq. 1.24 

While the Arrhenius parameters A and Ea can be modeled by the summation of groups of 

localized sub-molecular fragments in the transition state, the rate coefficient k does contain two 

contributions that are non-local in nature and hence should be evaluated for every reaction 

separately, cf. Eq. 1.24. The contribution  to the rate coefficient represents tunneling of atoms 

through the reaction barrier. Marin and coworkers
120,181,185,186,196-198,200

 used an empirical power 

law, correlating the tunneling coefficient  with temperature and the activation energy in the 

exothermic direction. This proved to be a fast and accurate method to obtain adequate values for 

the tunneling coefficient without the need for the imaginary frequency of the motion along the 

reaction coordinate or the potential energy surface of the reaction. The contribution ne represents 

the number of single events. Note that non-local contributions are excluded from the rate 

coefficient of the reference reaction as well. As a result, when evaluating the rate coefficient of a 

specific reaction, a separate contribution from tunneling and a separate contribution from the 

number of single events should be accounted for in order to calculate the rate coefficient of the 

reference reaction and to determine the rate coefficient of the studied reaction. 

To determine the group additivity values for a certain reaction family, Marin and 

coworkers
120,180,181

 started by defining reference reactions for which the kinetics were calculated 

theoretically. Next, a list of reactions is defined in which all structural features that reactants can 

possess and are anticipated to influence the kinetics significantly are at least once considered. 

While group additivity values corresponding to each structural feature should in principle be 

determined statistically independent, it is not always possible as certain structures are always 

present together, i.e. group additivity values can be linearly dependent.
8
 In these cases, one of the 

groups is assigned a predefined ΔGAV
0
 and the ΔGAV

0
s of the other structures will depend on 

this choice. However, similarly to thermodynamics, this arbitrary choice of the reference value 

does not influence the final Arrhenius parameters.  







Chapter 1: Introduction  31  

A third group additive method is based on the thermodynamic properties of the reactants and 

transition state of a reaction.
182-184

 New group additivity values can be calculated for transition 

state specific centers based on ab initio calculations. Green et al.
182-184

 first used ‘supergroups’ 

instead of the conventional Benson groups. Subsequently, these supergroups, which contained 

more than one polyvalent atom with its ligands, were subdivided into groups in line with the 

Benson definition. For this, distinction was made between methyl, primary, secondary and 

tertiary carbon atoms around the abstracted hydrogen atom, for hydrogen abstraction reactions. 

The groups defined around this abstracted hydrogen atom bearing two distinct ligands, H-

(X1)(X2) in which X can be a hydrogen atom, a methyl group or a primary, secondary or tertiary 

carbon atom, result in 11 sets of GAVs while the GAVs of the groups with two equal ligands 

were defined as zero. 

The rate coefficients can be calculated using Eq. 1.20. If the enthalpy of formation and entropy of 

both the reactants and transition state are calculated at the same level of theory one can expect the 

accuracy to improve as systematic errors partially cancel out, however, inducing that the 

thermodynamic properties of the transition state have to be known. As stated previously the 

method of Marin and coworkers does not require the thermodynamic properties of the transition 

state. 

An advantage is that the supergroup approach does not require an Arrhenius form of the rate 

coefficient as the latter can be calculated at any temperature. To account for this, the group 

additivity schemes calculating Arrhenius parameters have to report ΔGAV
0
s at several 

temperatures or include ‘n’ as an extra parameter, Eq. 1.15. However, for reaction families such 

as beta-scissions and radical additions, Sabbe et al.
120

 showed that ΔGAV
0

Ea varies by less than 

4.5 kJ/mol in 90% of the cases for a temperature range between 300 and 1300K. In the same 

study, ΔGAV
0

logA varies less than 0.4. 

Green et al.
182-184

 deduced GAVs alongside non-nearest-neighbor effects for hydrogen abstraction 

reactions based on the thermodynamic properties of the reactants and transition states. The 

deviations of the use of group additivity versus the direct rate calculations via transition state 

theory were reported: for the full temperature range 300-500K, the deviations of the rate 

coefficients for hydrogen abstractions by hydrogen radicals do not exceed 30%.  
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1.2.2.2.3 Tree structure averaging 

The rate coefficient of a reaction is largely determined by the reactive atoms in the specific 

reaction, i.e. adjacent to where bonds are being formed or broken. Identifying the reactive center 

allows one to calculate the reaction rate coefficient, and hence, methods have been developed that 

exploit this characteristic feature. The reactive center can be decomposed into its constituting 

reactive atoms. For example, in H-abstraction reactions XH + Y· → X· + YH the reactive center 

would be the abstracting atom (Y) and the atom from which a hydrogen is abstracted (X). 

In the “rate rules” implementation in RMG
18-21

, the groups X and Y are used to locate the 

transition state supergroup XHY in the database of rate rules, and the appropriate rule is used to 

as reaction rate coefficient. This rule may be deduced from an Evans-Polanyi expression, but is 

often a reaction rate coefficient for a specific reaction containing that supergroup, either from a 

quantum chemistry and transition state theory calculation or taken from literature. When a rate 

rule is not available for XHY, the rate coefficients of supergroups close to it in the database are 

averaged. For example if there is no rule available for XxHYy, there may be data for Xi≠xHYy 

and/or XxHYj≠y, or, if necessary, for Xi≠xHYj≠y. The database is arranged in a hierarchical tree 

structure, so that the most specific group definition with data is used, and the closest possible, and 

hence most chemically similar, rules are averaged.
20,201

 Details are provided in the PhD theses by 

Jing Song and Joshua Allen and a publication by Sumathy and Carstensen.
20,202,203

 The scheme 

provides approximations when only few data are available, using the philosophy that even a 

highly uncertain rate coefficient is better than no rate coefficient at all. Disadvantages of this 

averaging scheme include that it can obfuscate the source(s) of the final reaction rate coefficient. 

1.2.2.2.4 Reaction class transition state theory 

Truong
204

 proposed a prediction scheme for a large set of reactions – the reaction class transition 

state theory (RC-TST) – based on the idea that reactions belonging to the same reaction class 

have the same reactive center and thus possess similarities on their PES. Several characteristics of 

the reactions of the same class are equal, which makes it possible to calculate reaction rate 

coefficients based on known rate coefficients. Given a known rate coefficient 𝑘1 of a reaction, 

called the principal reaction, rate coefficients of other reactions belonging to the same reaction 

class can be calculated as shown in Eq. 1.25. The relative rate depends on four coefficients: the 
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transmission coefficient, the reaction symmetry number coefficient, the partition function 

coefficient, and the potential energy coefficient. 

 
𝑘2
𝑘1

= 𝑓𝜅 ∙ 𝑓𝜎 ∙ 𝑓𝑄 ∙ 𝑓𝑉 Eq. 1.25 

The ratio of transmission coefficients of both reactions as a function of temperature is calculated 

using Eq. 1.26 in which κ1 is the tunneling coefficient of the principal reaction and κ2 the one of 

the reaction of interest.  

 𝑓𝜅 =
𝜅2(𝑇)

𝜅1(𝑇)
 Eq. 1.26 

If the tunneling contributions for both reactions are calculated using the same model, e.g. the 

Eckart model
205

, according to Truong
204

 errors cancel out which increases the accuracy. By 

analysis of the transition states of several reactions belonging to the same reaction class, Truong 

found that the imaginary frequency, i.e. the one corresponding to the reaction coordinate, is more 

or less conserved throughout the reaction class. This way, the assumption was made of a constant 

imaginary frequency and zero-point energy corrections to the barrier and reaction energy in one 

reaction class. For each reaction, only the differences in barrier height and reaction energy of the 

principal reaction need to be known to determine the ratio of transmission coefficients. 

The reaction symmetry number coefficient  in Eq. 1.25 is calculated as the ratio of the 

symmetry numbers of both reactions. The partition function coefficient is given in Eq. 1.27 in 

which all partition functions are products of the translational, rotational and vibrational partition 

functions. ⧧ is the mark for a transition state and r marks the reactants. 

 𝑓𝑄 =

(
𝑞⧧

∏ 𝑞𝑟𝑟
)
2

(
𝑞⧧

∏ 𝑞𝑟𝑟
)
1

=

(𝑞⧧)2
(𝑞⧧)1

(∏ 𝑞𝑟𝑟 )2
(∏ 𝑞𝑟𝑟 )1

 Eq. 1.27 

The translational and rotational contributions result in a constant multiplication factor in the 

coefficient. Vibrational contributions, however, depend on temperature. By rearranging the 

equation to a ratio of the transition state partition functions divided by a ratio of reactant partition 

functions, Truong showed that the substituent effects in the transition state and reactants yield a 

constant contribution, which cancels out if there is no coupling between the substituents and the 

f
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reactive center. It can thus be expected that the partition function coefficients do not strongly 

depend on temperature. This was confirmed by analyzing several hydrogen abstraction reactions 

in which the partition function coefficient only varied with temperature for temperatures below 

300K. A constant high-temperature coefficient was subsequently introduced. Furthermore, it was 

observed that a constant 𝑓𝑄 can be defined for one reaction family. This value is calculated by 

comparing the values obtained for two reactions, one of which is the principal reaction, by high-

level vibrational frequencies calculations. 

The potential energy coefficient (Eq. 1.28) accounts for the difference in classical barrier height 

and thus shows the effects of the substituents on the potential energy of the reactants and 

transition state. The differential height is determined by calculating the differences in potential 

energy of the transition state and of the reactants of the reaction compared to the principal 

reaction as shown in Eq. 1.29.  

 𝑓𝑉 = 𝑒𝑥𝑝 (−
(∆𝑉⧧,2 − ∆𝑉⧧,1)

𝑘𝑏𝑇
) = 𝑒𝑥𝑝 (−

∆∆𝑉⧧
𝑘𝑏𝑇

) Eq. 1.28 

 ∆∆𝑉⧧ = (𝐸⧧,2 − 𝐸⧧,1) − (𝐸𝑟,2 − 𝐸𝑟,1) Eq. 1.29 

Truong validated the approach for a set of hydrogen abstractions by hydrogen atoms. The 

principal reaction was the abstraction from methane and the one from ethane was used to 

calculate 𝑓𝑄. Transition state theory with Eckart tunneling corrections was used to calculate the 

rate coefficient of these two reactions. By comparing the obtained rate for these reactions both to 

experimental and theoretical data, it was shown that by only using the barrier height and the 

reaction energy, it is possible to predict rate coefficients of reactions belonging to one reaction 

class reasonably well. 

In a subsequent publication, Zhang and Truong
206

 showed that the reaction class transition state 

theory together with a linear energy relationship (RC-TST/LER) provides an accurate means for 

the prediction of rate coefficients. The approach was validated against a set of 46 hydrogen 

abstractions from a sp
3
 hybridized carbon atom by a hydrogen radical. Zhang and Truong derived 

linear energy relationships - using the 46 reactions - both for hydrogen abstractions from alkanes 

as well as from alkenes. With the barrier heights obtained from the linear energy relationship, the 

potential energy coefficient could easily be determined. The symmetry coefficients were directly 

calculated using the symmetry numbers of the reaction and the ones from the principal reaction. 
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To calculate the transmission coefficients, using the reaction enthalpy and the barrier height 

obtained from the linear energy relationship, a constant imaginary frequency for all the reactions 

was assumed. The partition function factor was taken constant for all the reactions. Comparison 

of the reaction rate coefficients calculated using the RC-TST/LER method against both 

experimental data and theoretical rate coefficients (from transition state theory with Eckart 

tunneling) showed a good agreement. The maximum deviation when comparing the rate 

coefficients to experimental ones amounted to 137% with an average deviation of 51%, while the 

deviations between the calculated rate coefficients and the theoretical rate coefficients remained 

below 100%. 

Several articles describing the application of the RC-TST/LER method were published: Kungwan 

and Truong
207

 applied the method to hydrogen abstractions from alkanes by a methyl radical, 

Huynh and Truong
208

 calculated rate coefficients for hydrogen abstractions by a hydroxyl radical 

from alkanes, Huynh et al.
209

 applied the method to abstraction reactions ground state oxygen 

atoms from alkanes, Huynh and Truong
209

 investigated the method for abstraction reactions by 

formyl radicals from alkanes, Ratkiewicz et al.
210

 looked at abstraction reactions by hydrogen 

radicals from alcohols, Ratkiewicz et al.
211

 calculated the rate coefficients of hydrogen 

abstractions by ethyl radicals from alkanes, Piansawan et al.
212

 applied the method for hydrogen 

abstractions from alkanes by chlorine radicals, and Wang et al.
213

 used the method for hydrogen 

abstractions by hydrogen radicals from methyl esters.  

Wang et al.
214

 gave a new interpretation of the reaction class transition state theory using an 

extension of the isodesmic reaction method to the calculation of reaction barriers. They showed 

that the results of RC-TST are very sensitive to the level of the ab initio method used but the new 

method does not suffer from this sensitivity.  

1.2.2.2.5 Computational chemistry methods 

Analogously to thermodynamic data, rate coefficients have been accurately calculated based on 

high-level computational chemistry in the last decade(s). Most calculations are based on 

transition state theory, c.f. Eq. 1.30, in which q is the partition function and ∆⧧𝐸 the energy of 

activation, i.e. the energy difference between the reactants and the transition state at 0K.  
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 𝑘(𝑇) = 𝑛𝑒𝜅(𝑇)
𝑘𝐵𝑇𝑉𝑚

0

ℎ

𝑞⧧
∏ 𝑞𝑟𝑟

exp⁡(−
∆𝐸⧧

𝑘𝐵𝑇
) Eq. 1.30 

Transition state theory can be applied using the partition functions directly, of using the 

enthalpies and entropies of activation as shown in Eq. 1.20. Both approaches yield exactly the 

same results.
184

 

Optimizing stable species is the search for a minimum on the PES, as opposed to transition states, 

where saddle points on the PES are located. These saddle points are characterized by one 

imaginary frequency, which corresponds to the pathway along the reaction coordinate, c.f. Figure 

11. This saddle point is used to calculate reaction rate coefficients of a reaction as approximation 

of the transition state, being a hypersurface which separates the products from the reactants. 

Computational chemistry methods can search for transition states and calculate the electronic 

energy and molecular frequencies. ∆⧧𝐸 and 𝑞⧧ can be calculated to obtain the rate coefficient 

from Eq. 1.20 or Eq. 1.30, provided that these properties are available for the reactants and 

products of the reaction.  

 

Figure 11: Illustration of a transition state. 

1.2.2.2.6 On-the-fly computational chemistry 

During automatic kinetic model generation, both the reactants and products are known as a result 

of the execution of reaction rules. The graph structure of the transition state is thus known and an 

initial guess of its three dimensional structure can be made. Preliminary work on this 

methodology has already been done.
215,216

 Bhoorasingh and West
216

 constructed a code to 
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automatically locate transition states of intermolecular hydrogen abstraction reactions. The 

geometry of the transition states are constructed based on a “distance geometry” algorithm. Such 

an algorithm builds the 3D coordinates based on distance limits between each pair of atoms in the 

species of transition state. For reactive atoms, these distances are not comparable to stable 

species, and a group contribution method has been developed to calculate the bond lengths of 

bonds that are formed or broken during the reaction. After optimization of the transition state 

structure, intrinsic reaction coordinate (IRC) calculations are used to validate the transition state.  

Zádor and Najm
215

 introduced a computer code called “KinBot” at Sandia National Laboratories, 

which is able to automatically explore chemical pathways in an efficient manner for reactions 

that are relevant in gas-phase systems. Several reaction families are already covered, such as 

single bond scission, isomerization via hydrogen transfer, cyclic ether formation and direct HO2 

elimination. One of the strengths of this approach is that, although no new reaction classes can be 

found, new reaction pathways can be discovered. At this point, however, it is computationally too 

expensive to build an entire mechanism by searching for all possible reactions on the PES. 

Starting from initial species, reactions can be found by distorting the reactant geometry in many 

ways until a saddle point on the PES is found. Distorting the equilibrium reactant geometry in 

this context means perturbations of bond lengths, bond angles and dihedral angles according to 

previously acquired chemical knowledge. The result of these perturbations is that the code slowly 

moves on the PES to locate saddle points and subsequently the product structures.  

1.2.2.2.7 Accounting for pressure dependence 

Until now, only the assignment of high-pressure limit reaction rate coefficients to elementary 

reactions was described in this work; no attention was given to pressure dependent rate 

coefficients. However, many steps in gas phase processes such as atmospheric reactions, 

oxidation, combustion, or pyrolysis can depend on pressure and a full description of the pressure 

dependence can be necessary to allow numerical simulations under diverse conditions. An 

example of a rate coefficient as a function of the pressure is given in Figure 12. Both 

unimolecular and chemically activated bimolecular reactions can be strongly pressure dependent, 

but most current kinetic model generation codes do not calculate the pressure dependent rate 

coefficients. Furthermore, experimental data are often measured at relatively low pressure whilst 
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industrial processes seldom use these low pressures. An accurate extrapolation is necessary when 

a kinetic model is validated against the low pressure data that are used to predict industrial data.
19

 

 
Figure 12: Pressure dependence of the rate coefficient kuni from the reaction of the 1-pentano-3-yl radical to 

water and the 2-penten-5-yl radical at 900K. The rate coefficients are expressed in s
-1

 and the pressure in Pa.  

Especially when dealing with high-temperature low-pressure conditions common in experimental 

combustion studies (T ≳ 1000 K, P ≲ 1 bar) of small molecules, as many as half of the reactions 

may be in the fall-off regime, i.e. the rate coefficients are lower than the high-pressure limit rate 

coefficients, and depend on the total pressure. Calculating the density of states from 

approximated thermochemical data remains a challenge, and a poorly calculated potential energy 

surface (due to inaccurate thermochemical or kinetic data) can make the resulting Master 

Equation difficult to solve. There thus remains a trade-off between accuracy, speed, and 

robustness.
217

 Although this is not straightforward for automatic kinetic model generation 

programs, it is even harder to do by hand, and most models simply neglect the vast majority of 

chemically activated reactions, which are reactions that proceed after the collision of the reactant 

with another molecule. This collision creates an activated complex which decomposes to the 

products of the reaction.  

A potential energy surface of a pressure dependent reaction contains several wells, bimolecular 

products and saddle points, but only a few of them contribute significantly to the chemistry 

described by the envisioned kinetic model. Often, a full analysis of the PES is necessary and 

sample simulations for extreme conditions are required before the important reaction pathways 
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can be determined. Furthermore, rate coefficient predictions for pressure dependent reactions is a 

time-consuming and tedious task. Rice-Ramsperger-Kassel-Marcus (RRKM) master equation 

methods can be used to determine the pressure-dependent rate coefficient, but this requires user-

intensive and computationally expensive ab initio calculations on the reactants, transition state, 

and products, and an analysis of the contributions of the densities of states. 

Rate coefficients resulting from chemically activated reactions are usually complicated functions 

of temperature and pressure, and can often not be represented by modified Arrhenius expressions 

(Eq. 1.15). Relatively simple fall-off reactions can be represented by a high-pressure expression 

and a low-pressure expression, interpolated either by a parameter-free Lindemann-Hinshelwood 

form, or an expression with parameters to describe the curve between them such as the Troe 

form.
218,219

 

 In single well systems, the commonly used Troe or SRI formalisms
220

 work very well, but some 

apparent reaction rate coefficients cannot be described accurately with these methods, even if 

additional parameters are introduced. A purely mathematical approach to handle these ‘problem 

cases’ is the use of Chebyshev polynomials. Alternative ways to represent more complex k(T,p) 

dependencies are the sum of two or more modified Arrhenius expressions to capture a complex 

temperature-dependency, a set of modified Arrhenius expressions at different pressures that are 

interpolated in log(p) space, a combination of the previous two approaches (i.e. the sum of two or 

more sets of modified Arrhenius expressions, each at several pressures), or a set of Chebyshev 

polynomials in (T,p).
221

 

 An advantage – due to explicit definitions of the temperature and pressure limits – of Chebyshev 

polynomials is to prohibit rate coefficients from being used outside the valid range and thus to 

prevent unjustified extrapolative predictions. The time spent evaluating these complex 

expressions, especially while performing sensitivity analyses or fluid dynamics simulations, can 

be a considerable problem and is a further barrier to their widespread use. Although other forms 

have been proposed
222,223

, they tend not to see widespread adoption until they are incorporated 

into downstream simulation software such as Chemkin
224

 or Computational Fluid Dynamics 

codes. 
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Matheu et al.
225

 developed an algorithm for the exploration and screening of pressure-dependent 

mechanisms. Only the important pressure-dependent reactions are added to the mechanism for 

the given temperature and pressure. The prediction of the pressure-dependent rate coefficient via 

on-the-fly calculations was presented in a subsequent publication.
226

 This was achieved by using 

the high-pressure limit rate coefficient calculated by the calculation methods available in the 

mechanism generation code alongside group additive thermochemistry of the reactants. An 

improved Quantum-Rice-Ramsperger-Kassel/Modified Strong Collision (QRRK/MSC) code is 

used to calculate the rate coefficient as a function of pressure.
227

 An estimated error of a factor of 

10 is expected, given that the high-pressure limit may have an uncertainty of up to a factor of 10, 

which is a reasonable accuracy for a rate coefficient. 

Green et al.
19

 developed a method to assess for which reactions pressure-dependence should be 

calculated by comparing the high-pressure limit pre-exponential factor to the hard-sphere 

collision rate constant and the concentration of the bath gas and by controlling whether the 

temperature is high enough to merit the use of pressure dependent calculations. 

1.2.2.2.8 Challenges faced with rate coefficient calculations 

One of the biggest challenges facing automatic mechanism generation is the lack of kinetic and to 

a lesser extent thermodynamic data on which to base the models. The methods used to calculate 

the thousands up to millions of reaction rate coefficients generally use known reaction rate 

coefficients from reactions similar to the ones being calculated (i.e. with resembling electronic 

changes) or data derived from these coefficients. If such data are not available, then analogies are 

made with less similar reactions, i.e. a broader generalization is made. When the data are 

arranged in a tree structure with the most general nodes at the top and each level down the tree 

getting more specific, the calculation method can repeatedly be based on a parent node until data 

are found. The principle here is that “uncertain rate coefficients are better than rate coefficients”, 

as the alternative (pretending that the rate coefficient is zero) is usually worse. 
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Figure 13: Example of tree structure to assign reaction rate coefficients to hydrogen abstraction reactions. 

Structure taken from Sumathy et al.
203

. 

Problems can occur when an inappropriate generalization is made. For example, assuming the 

database does not contain an entry for the rate coefficient for the insertion reaction of CO2 into a 

C–C bond, it may generalize to CO2 insertion into any single bond R–R, and then use the rate 

expression for insertion into a C–H bond, which is much too fast.
228

 A challenge of this approach 

is therefore structuring the tree so that chemically similar functional groups are close to each 

other, resulting in a sensible analogy if the desired data are not found. Another challenge is 

populating the tree with sufficient data distributed across a wide chemical space. When models 

are found to depend critically on rate coefficients coming from broad generalizations, the user 

should seek to fill in the missing areas of the database and build the model again. Such data either 

come from searching the literature, performing experiments, or performing quantum chemistry 

and transition state theory calculations of a few characteristic reactions. Once these data are in the 

database they can be used to improve all future models. 

Another important challenge when determining reaction rate coefficients is the existence of 

barrierless reactions. For these reactions, the reaction rate can decrease as a function of 

temperature. Regressing Arrhenius or modified Arrhenius parameters can lead to negative values 

for the activation energy. The term “activation energy” has to be used carefully in this context 

because the energy of the transition state is not higher than the energy of the reactants (if the 

reaction is considered in the exothermic direction) since the reaction is barrierless. Evans-

Polanyi, Blower-Masel, group additivity, … are not applied to barrierless reactions, since the 

activation energies are generally constant with values around zero – independent of the enthalpy 
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of reaction. Semi-empirical methods and group additivity models introduced above cannot be 

used since most reaction families with barrierless reactions, such as radical recombination 

reactions, do not follow these trends. Quantum mechanical methods can lead to rather accurate 

reaction rate coefficients, but the level of expertise required to obtain reliable results is at present 

too high to allow inclusion of these reaction families in on-the-fly kinetic model generation. 

Furthermore, because expert-user involvement is needed and only a limited number of 

researchers are working on this topic, data is lacking for many of these reactions. It is clear that 

still a lot of work needs to be done before barrierless reactions can be considered in on-the-fly 

automatic kinetic model generation codes. A fixed pre-exponential factor is often employed and 

the activation energy is equated with reaction enthalpy in endothermic direction, again with the 

philosophy that any rate coefficient is better than no rate coefficient at all.  

One category of database entries for rate coefficient calculations that needs particular attention is 

those involving aromatic groups. Atoms and bonds that belong to aromatic moieties inside 

molecules feature a reactivity that is distinctly different from non-aromatic species
229

 due to the 

resonance stabilization of the aromatic ring, and hence require specific database entries. 

Unfortunately only a limited number of elementary rate coefficients are available for reactions 

involving aromatic species. For example, the pathways to aromatics such as indene, naphthalene, 

benzene, styrene and other polyaromatic hydrocarbons starting from five-membered rings such as 

cyclopentadiene and cyclopentadienyl are not completely understood on an elementary 

basis.
230,231

 An often chosen pragmatic solution that addresses the lack of fundamental 

understanding of these systems is the introduction of lumped reactions that model the underlying 

elementary aromatic chemistry, as in the work of Cavallotti and Polino.
232

 A consequence of this 

particular example of data scarcity is the limited capability of current mechanism generators to 

model aromatic chemistry. In addition to the issue of data scarcity and a lack of fundamental 

understanding, the algorithmic identification of aromatic atoms and bonds inside molecules 

during automated kinetic model generation is also non-trivial, not in the least due to the absence 

of a straightforward definition of aromaticity.
233

 

Group contributions for thermochemical properties of species cannot account for ring strain, 

since this is based on a structural arrangement. Therefore extra corrections are required. This 

works for simple structures, for example when a 5- or 6-membered ring is present, but as 
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complexity increases, e.g. when the ring contains heteroatoms (other than carbon), or when there 

are polycyclic species with fused rings, the number of ad-hoc ring corrections required becomes a 

major challenge. To overcome this problem, Magoon and coworkers added a feature to RMG to 

perform on-the-fly semiempirical quantum chemistry calculations (as described in section 

1.2.2.1), allowing them to model TCD (exo-Tricyclo[5.2.1.0
2,6

] decane), the main component of 

JP-10 jet fuel
234

, which contains fused cyclopentadiene rings. 

Relatively accurate thermochemistry of ring-containing species is a huge help, since many 

reaction rate coefficients depend largely on the reaction enthalpy, but rate coefficients can have 

their own problems with rings: in some reaction families the transition state may have ring 

structures unlike either the reactant or product. Current efforts to perform on-the-fly calculations 

of transition states may help in these cases.
235,236

 

The final challenge regarding rings is once again data scarcity: there are currently few rate rules 

available, even for simple species like cyclopentane. Numerous studies have been carried out on 

cyclohexane, methylcylcohexane and decalin pyrolysis and combustion.
237-239

 However, very 

little attention is paid to the chemistry of 5-membered rings, although the ring strain is very 

different. The difficulty to experimentally differentiate and accurately identify components 

containing five- and six-membered rings with standard techniques such as gas-chromatography 

and mass spectrometry further complicate kinetic modeling efforts involving naphthenic 

components.
231,240,241
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1.3 Genesys 

Genesys is a kinetic model generation code recently developed at the Laboratory for Chemical 

Technology (LCT) at Ghent University
24

. The main features of the code as it exists today are 

highlighted in this section. As mentioned above, many kinetic model generators are built with an 

application domain in mind. The species representation, the definition of reaction rules and the 

accompanying databases are tailored to these specific applications, hampering the use of the code 

outside of it. To overcome this limitation, Genesys has been developed by integrating open-

source chemo-informatics codes. These codes allow a general representation of species, 

independent of the elements and reaction families. For Genesys, the chemo-informatics library 

called the “Chemistry Development Kit” (CDK)
242,243

, developed at the University of Notre 

Dame, is used as shown in Figure 14. Besides supporting nearly all the chemical elements and 

providing a robust molecular representation, CDK provides different algorithms such as the 

conversion of species identifiers such as InChI
81

 and SMILES
80,86,91

 to the internal representation, 

graph isomorphism and automorphism and property identification algorithms such as aromaticity 

detection, resonance detection, subgraph recognition, among others by using SMARTS
91

, etc. 

 

Figure 14: Interaction between Genesys and CDK 

Genesys is written in the programming language JAVA, as is CDK, allowing an easy integration 

of both codes and is distributed via a closed repository on https://github.ugent.be/LCT/Genesys.  

Genesys solely generates elementary reactions, i.e. reactions characterized by a single transition 

state, and the generation of these reactions is terminated using either the rule-based method, the 

rate-based method or a combination of both. Figure 15 illustrates how a kinetic model is 
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generated. The user input, i.e. the reactants and the reactions families, is read and used to 

iteratively build the reaction mechanism. This is followed by the assignment of the necessary data 

to species and reactions. When Genesys employs the rule-based termination criterion, the 

assignment of data can be done after the network generation, and the final reaction network is 

independent of these data. For the rate-based algorithm, after each iteration step, the 

thermodynamic and kinetic data are calculated and a reactor simulation is performed to assess 

which species and reactions should be added to the model.  

 

Figure 15: Illustration of the generation of a kinetic model using Genesys. 

The four following sections elaborate on (1) user input to Genesys, (2) the kinetic model 

generation algorithm, (3) post-processing, and (4) Genesys features. 

1.3.1 Genesys input 

The input needed to generate a kinetic model consists of a set of input species and a set of 

reaction families. Input species, which are often limited to the reactants to a chemical process, 

can be declared in InChI or SMILES format. Genesys reads these chemical identifiers and CDK 

translates them to the internal graph representation of species. A significant difference of 

Genesys compared to most other kinetic model generation codes is the externalization of reaction 

families, allowing the user to input a set of reaction families appropriate to his or her chemical 

process, without having knowledge nor access to the source code of Genesys. As consequence 

the user is responsible to build and select the set or reaction families needed for the process. The 

reaction families are written in the “extensible markup language” XML. A reaction family 

contains several elements. Each family is assigned a name. Next is defined whether a reaction 

family is unimolecular or bimolecular. This is followed by the reaction recipe. This recipe 

contains information of the breaking and forming of bonds, the increase and decrease of bond 
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orders and the gain or loss of charges and single electrons. Each of these elements is defined on 

the level of the reactive atoms. Which atoms can undergo this recipe is defined in the next 

section. Each reactive center of each reactant needs a separate definition in which the entire 

reactive centers is defined using the SMARTS language. Besides this definition, each reactive 

atom separately is also defined using a SMARTS string. The definition of each reactant is 

concluded by adding a list of constraints the reactant needs to comply with to allow reaction 

through this reaction family. These constraints can be defined on the atomic level, e.g. 

hybridization, elements, number of neighbors, etc. or on the entire molecule, such as molecule 

size, presence of rings, etc. The final part of the reaction family definition contains the procedure 

to calculate the rate coefficients of the reactions belonging to this reaction family. Several 

procedures are enabled in Genesys, such as Evans-Polanyi
172

, Blowers-Masel
173,176

, group 

additivity
185,198,244

, etc. An example of a reaction family definition is given in Figure 16.  

 
Figure 16: Screenshot of the input for a reaction family in Genesys read by the “Rinzo XML Editor”. The 

reaction family is the homolytic substitution of a hydrogen atom on a sulfur atom, which is part of the 

reaction families which describe the pyrolysis of alkyl sulfides.  
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1.3.2 Kinetic model generation algorithm 

Once the input species and reaction families are defined, the construction of the model can start, 

including the generation of new product species, the determination of the reactions between the 

species and the assignment of kinetic and thermodynamic parameters. The generation 

commences with a pool of initial species. These species are added to a set of species called the 

“source”, which contains all species that have not been subjected to the reaction families yet. In 

each iteration step, one species is taken out of the “source” and moved to the set of species called 

the “core” species. For this species, all the possible reactions are generated, according to the user-

defined constraints per reaction family. For monomolecular reaction families, only that species is 

used. Bimolecular reactions are generated by using the species at hand with each species from the 

“core” species set. The reactions lead to the formation of species. If these product species are 

new, i.e. they are not present in the “source” nor in the “core” species set, they are added to the 

“source”. The resulting reactions are added to the model, if they are new. This procedure is 

continued until the “source” is empty. This scheme for network generation is shown in Figure 17. 

 

Figure 17: Network generation scheme of Genesys. 

In order to distinguish whether or not a reaction has already been encountered in the network, a 

method to compare chemical structures needs to be developed. Within Genesys, this method 

comprises two steps. First, both the reactants and the products InChI strings are generated, this 

enables the comparison of simple string objects. Each new reaction is then compared to the 

reactions in the network, both in the forward and the reverse direction, by the use of those InChI 
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strings. When a reaction is discovered with the same reactants and products, an isomorphism 

check of the transition state is performed. This way, reactions with the same reactants and 

products but a different transition state can be added to the network This is for example necessary 

to distinguish between the two intramolecular hydrogen abstractions from the 1-pentyl to the 2-

pentyl radical, of which the transition states can possess a 3 membered ring structure or a 5 

membered ring structure.  

Once the network generation is done, i.e. once the “source” is empty, thermodynamic and kinetic 

parameters need to be calculated and assigned to the different reactions and species. For species, 

the search for appropriate thermodynamic parameters is two-fold. First, a library containing 

thermodynamic data for a large amount of species is visited. If one of the species in the network 

is present in this library, the thermodynamic data is pulled from the library and used as such. 

Second, if a species from the network is not present in the first library, its thermodynamic 

properties are calculated using group additivity. All group additivity values originate from CBS-

QB3 calculations.
8,120,121,161,245

  

The procedure to calculate reaction rate coefficients is supplied by the user as part of the 

definition of reaction families. Genesys has a database containing many group additivity values 

calculated by Marin and coworkers
120,181,185,186,196-198,200

. The procedure to calculate rate 

coefficients from group additivity is shown in Figure 18. If the kinetic parameters are assigned by 

use of group additivity models, an external library is needed, which contains the values for a 

given reaction family. Those values are the single-event pre-exponential factor and activation 

energy of the reference reaction, plus the different group additivity values. For each surrounding 

of each reactive atom, corresponding group additivity values are required. In order to connect 

specific sub-molecular patterns to those values, SMARTS string are used. Group additivity only 

calculates single-event pre-exponential factors, which is multiplied by the number of single 

events and optionally a tunneling coefficient to obtain the final pre-exponential factor, which 

entails the need for accurate symmetry calculations. Empirical tunneling models are typically 

used, which depend on the temperature and the activation energy in the exothermic direction. 
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Figure 18: Calculation scheme for kinetics using group additivity. The example is the β-scission of the 1-

hexen-5-yl radial to the allyl radical and propene.  

The externalization of the libraries with kinetic group additive values has several advantages, one 

being the possible use of the values in two reaction families with different constraints without the 

need of storing the same values in each reaction family. Furthermore, this externalization 

facilitates simple and straightforward extensions and updates of the libraries, which are easily 

decipherable and well structured.  

1.3.3 Post-processing 

A final step of the generation of the kinetic model holds the post-processing, this results in human 

readable information of the model and input files that allow the use of the generated model in 

third-party tools.  

Since Chemkin
224

 is widely used software for kinetic modelling, and their input formats have 

been standardized and are generally accepted by the kinetic modelling community, Genesys 

automatically writes the final kinetic model in Chemkin format. Furthermore, for each species 
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and each reaction in the model, the source of the thermodynamic and kinetic data respectively, is 

summarized, allowing the user to verify where all the data comes from. Visualization of all the 

species in a model is also enabled.  

1.3.4 Genesys features 

Genesys has several features facilitating a fully automatic kinetic model generation with, besides 

the building of proper input, minimal user interaction.  

First, both to calculate the total entropy of molecules, as well as to calculate the number of single 

events of reactions, the total rotational symmetry number of molecules and transition states is 

necessary. This number is automatically calculated using the automorphism group order of the 

corresponding graph, corrected for the presence of so called “label stereocenters”, which are 

stereocenters that appear in a species by labelling indistinguishable atoms making them 

distinguishable. More information on the algorithms to obtain the symmetry numbers can be 

found elsewhere.
191

 

Secondly, Genesys has been developed to explicitly account for stereoisomers.
125

 This entails 

algorithms to detect stereocenters and generate all possible stereoisomers of a species or 

transition state, algorithms to construct and destruct stereocenters through the course of chemical 

reactions, algorithms to assign stereospecific and stereoselective rate coefficients and algorithms 

to assign separate thermodynamic parameters to stereoisomers. The latter two sets of algorithms 

are also driven by databases build to distinguish stereoisomers.  

Finally, Genesys also allows to automatically merge the final kinetic model with existing kinetic 

models, if they are provided in Chemkin format. This is useful when the small molecule 

chemistry cannot be described by the reaction families nor by the available databases, or when 

considerable work on similar molecules has already been done, and the current study is an 

extension of existing kinetic models.  
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1.4 Outline 

The search for and the development of reliable kinetic models is hampered by large data scarcity. 

The data gap needs to be accounted for, which cannot be done by experimental studies alone. 

They need to be complemented with high level quantum chemical calculations, which although 

they are time intensive, they are in most cases still faster than experimental work. However, 

current state-of-the-art ab initio calculations require user knowledge and expertise, slowing down 

the use of these data in industry. This work takes a first step towards fully automated ab initio 

calculations in the framework of kinetic model generation.  

The state-of-the-art searches for reaction on a potential energy surface is examined in Chapter 2, 

where the pyrolysis of 1-pentanol is studied. One of the most important radicals in this process is 

the 1-pentanol radical formed after hydrogen abstractions from 1-pentanol. The potential energy 

surface of this radical is studied using the KinBot
215

 software. By means of Master Equation 

calculations, pressure- and temperature-dependent rate coefficients are obtained, which are 

subsequently used to build a 1-pentanol pyrolysis model using Genesys. The final model is 

compared to experimental data and a good agreement is found.  

The kinetic model generator Genesys has then been extended to allow on-the-fly ab initio 

calculations, both to obtain thermodynamic as well as kinetic data. Chapter 3 elaborates on the 

methodology used to minimize human interaction and to ensure a reliable, robust and widely 

applicable code. Calculated data on thermodynamics of molecules and radicals, and on reaction 

rate coefficients are promising. The comparison to literature data is satisfactory.  

Chapter 4 uses the on-the-fly ab initio calculation methodology of Chapter 3 to build a new 

group additivity model for intramolecular hydrogen abstraction reactions. No such model has 

been reported in literature so far. Many reaction rate coefficients have been calculated 

automatically and are very similar to experimental and theoretic literature results. Their 

regression into a group additivity model is validated; independently calculated rate coefficients 

are well within the uncertainty boundaries of the model.  

The use and necessity of a group additive model for intramolecular hydrogen abstractions is 

illustrated by building a kinetic model for n-heptane pyrolysis, reported in Chapter 5. Genesys 

has been used as kinetic model generator, including the new group additive model. Several sets of 



52  Chapter 1: Introduction 

experimental data have been simulated showing a good accuracy of the model. Rate of 

production analysis shows the most important pathways and can highlight where intramolecular 

hydrogen abstractions are important.  

This thesis is concluded in Chapter 6 where the main findings are summarized, and an outlook is 

given for the near future.  
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Chapter 2: Decomposition and 

isomerization of 1-pentanol radicals and 

the pyrolysis of 1-pentanol 

2.1 Abstract 

Stable species and saddle points on the potential energy surface of the terminal addition of 

hydroxyl to 1-pentene have been determined, which are of interest for n-pentanol pyrolysis and 

combustion. All the stationary points have been determined automatically with the KinBot 

software and have been calculated using UCCSD(T)-F12/cc-pVTZ-F12//M062X/6-311++G(d,p) 

quantum chemistry calculations. The master equation has been solved to obtain k(T,p) for all the 

reactions on the potential energy surface in a temperature range of 50-3000K and a pressure 

range of 0.001-10 MPa. The entrance channel is characterized by a barrierless step into a Van der 

Waals-well followed by a transition state, for which an effective two transition states model has 

been employed. The newly obtained rate coefficients have been implemented in a kinetic model 

for the thermal decomposition of 1-pentanol diluted in a nitrogen stream. The results prove that 

the reactions automatically found by KinBot are of significant importance to correctly describe 

conversion and product selectivities.  
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2.2 Introduction 

The increasing worldwide energy demand and the major environmental constraints on 

greenhouse gas emissions are strongly driving the search for alternative fuel and base chemical 

resources. Many studies have reported industrial, experimental, and theoretical results on 

feedstocks derived from non-fossil processes, among which urban waste and biological 

feedstocks are the most promising. Primary alcohols have already been considered for decades as 

sustainable fuel; ethanol, belonging to the first generation biofuels, is a widespread substitute for 

conventional diesel.
1
 Other alcohols such as propanol and n- and iso-butanol gained significant 

interest in the past for their higher energy density, higher cetane numbers and lower hygroscopic 

properties. To increase the energy content even more, the second-generation biofuel n-pentanol is 

now extensively studied. Its performance in engines has been studied to minimize the CO, 

hydrocarbon, NOx, and smoke emission,
2,3

 particulate emissions,
4
 mixing characteristics,

5
 and 

optimize the cetane number
6
 of a pentanol/diesel blend. Experimental and modeling work on the 

combustion properties such as laminar flame speeds
7,8

 and ignition characteristics
9
 have been 

reported.  

Optimizing a well-established and well-understood chemical process such as combustion or 

pyrolysis for a new, alternative feedstock requires the knowledge of the underlying chemistry. 

Alternative feedstocks contain a fundamentally different chemical structure compared to fossil 

resources, and their chemistry is thus not comparable. The growing experimental database on 

these feedstocks is a first step towards optimal chemical processes. However, experimental work 

is expensive, time-consuming, and has several constrains on operating conditions and reactor 

configurations. Therefore, chemists and chemical engineers have developed engineering 

approximations and computer simulations, which complement the experimental results and allow 

directed experimental design, lowering the cost and time of the process development. 

A fundamental part of the computer simulations for chemical processes is the availability of a 

chemical kinetic model, i.e. a set of rate expressions of the occurring reactions. Kinetic models 

for thermal decomposition, steam cracking, and combustion processes can contain up to 

thousands of reactions, for which most of the rate coefficients have never been measured 

experimentally. Typically many of the reaction rate coefficients are not accurately known and 

calculation methods are applied such as group additivity and linear free energy correlations, but 
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their accuracy is questionable if they are applied beyond the training set they were developed for. 

This limitation is nowadays overcome by calculating many rate coefficients ab initio by taking 

advantage of the growing computational power and availability of high-performance computing 

solutions. However, calculating all the thermodynamic properties of species and reaction rate 

coefficients of the selected reactions through high level quantum chemistry calculations is still 

too time consuming to be implemented on-the-fly since (1) many manual interventions are 

necessary, (2) systematic conformational searches become practically impossible for molecules 

with several torsional modes, (3) even for small molecules, finding all the reactions is tedious and 

pathways can easily be overlooked, and (4) locating transition states sometimes needs to be done 

on a trial-and-error basis. To overcome these challenges and ensure a full exploration of the 

potential energy surface (PES), a computer code called KinBot
10

 has been developed, which will 

be discussed in more detail in section 2.3.1.  

In this chapter the capabilities of KinBot
10

 are illustrated for the thermal decomposition of n-

pentanol. This is a challenging problem because of the intrinsic complexity of the decomposition 

chemistry. During the pyrolysis of 1-pentanol the first radicals are formed when the C–C, C–O, 

C–H, or O–H bonds break. At the same time the unimolecular dissociation of n-pentanol 

continues to be an important process, abstraction reactions mostly by X = H, CH3, OH radicals 

are driving the secondary chemistry. These abstraction reactions yield six different pentanol 

radicals:  

CH3CH2CH2CH2CH2OH + X → CH3CH2CH2CH2CHOH + XH 

    → CH3CH2CH2CHCH2OH + XH 

    → CH3CH2CHCH2CH2OH + XH 

    → CH3CHCH2CH2CH2OH + XH 

    → CH2CH2CH2CH2CH2OH + XH 

    → CH3CH2CH2CH2CH2O + XH 

In the remaining of the chapter, the radical site will not be marked in the structures, instead, the 

radicals will be denoted -R, -R, -R, -R, -R, and o-R, alluding to the location of the radical 

site.  



72  Chapter 2: Decomposition and isomerization of 1-pentanol radicals and the pyrolysis of 1-pentanol 

While parameters for the unimolecular reactions of smaller alcoholic radicals are available in the 

literature, the information on the decomposition reactions of these radicals only consist of 

approximations or values derived from indirect or relative experiments. The unimolecular 

decomposition of -R is known to primarily lead to OH + 1-pentene, and the reverse reaction has 

been investigated more directly. Nip and Paraskevopoulos,
11

 Biermann et al.,
12

 and McGillen et 

al.
13

 measured the absolute rate coefficient of the OH + 1-pentene reaction around room 

temperature, and the latter
13

 also determined its temperature dependence in the 262 – 312 K 

range. These values are only of limited use, for three reasons. First, the addition reactions can 

lead to terminal and non-terminal adducts, while for 1-pentanol only the terminal adduct is 

relevant. Second, a fraction of this reaction proceeds via abstraction, even at room temperature, 

according to Biermann et al.
12

 this fraction amounts around 13%. And finally, the temperature 

range at which these experiments were carried out is outside the range of interest for pyrolysis 

studies. Nevertheless, these calculations can be used to compare with the theoretical results 

obtained in this work. There are two other studies that determined the unimolecular dissociation 

and isomerization rate coefficients for -R. The work of Heimann et al.
14

 is an indirect 

measurement, while Hein et al.
15

 used a direct measurement. However, both measurements were 

only able to put a lower limit on the isomerization rate coefficient. In summary, there is very little 

information in the literature about these and the related reactions.  

In this work, the Ab Initio Transition State Theory Master Equation (AITSTME) approach has 

been used, which has been shown to be successful in the past to study the analogous reactions of 

smaller alcohol radicals up to C4,
16-21

. AITSTME-based pressure- and temperature-dependent rate 

coefficients for 1-pentanol radical decomposition and isomerization have been calculated at the 

UCCSD(T)-F12/cc-pVTZ-F12//M06-2X/6-311++G(d,p) level of theory. However, because the 

potential energy surface is even more complicated than in the case of 1-butanol,
20

 KinBot was 

employed to explore and characterize the relevant stationary points. The trends for radical 

decompositions in this class of reactions is summarized and compared the calculations to state-of-

the-art group additivity rate coefficients of Genesys. Finally, the new rate coefficients have been 

used to update the Genesys-generated model for 1-pentanol pyrolysis, which is then compared 

against flow reactor experiments. 
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2.3 Methods 

2.3.1 Exploration of the PES by KinBot  

A large number of the known reaction types for hydrocarbon and oxygenate molecules and 

radicals have been translated to automatic procedures in the KinBot code.
10

 KinBot builds on the 

idea that most reactions can be classified in a reaction family, and that the transition states of all 

reactions belonging to the same family have important similarities. These similarities are 

translated in an estimation of the geometrical structure of the transition state, i.e. bond lengths, 

bond angles and torsional angles. By collecting the available chemical knowledge on possible 

reactions for hydrocarbons and oxygenate molecules and implementing this in the code, KinBot 

can automatically explore reaction pathways. The input comprises solely of the geometry of the 

starting structure and KinBot finds most of the reactions that are important for that structure. 

With this computational approach of searching for reactions, conformational searches can also be 

automated with systematic calculations ensuring the lowest energy conformer is found. 

Starting from the geometry of a reactant, KinBot crawls on the potential energy surface in search 

for transition states. From the structure of the transition state, the code searches for products by 

following the reaction coordinate, i.e. intrinsic reaction coordinate calculations, into local minima 

on the PES. One of the local minima is the reactant in KinBot, on the other side of the energy 

barrier, a product can be found. This product is either a new well on the same PES or a 

bimolecular product. In case of a well, KinBot continues to search for reactions with this well as 

reactant. In case of bimolecular products, KinBot halts its search and considers this an endpoint 

of the current pathway. By iteratively applying this method, the full PES is searched for, 

according to user-defined rules. For example, the search past an energy barrier will only continue 

if the barrier height is lower than a user-defined energy, which amounted 418 kJ mol
-1

 in this 

work. Other input variables are the level of theory each calculation is done at, the computational 

aspects such as memory and number of cores, etc.  

First, all stationary points were located at the B3LYP/6-31+G level of theory, which was also 

used for the conformational sampling, intrinsic reaction coordinates calculations, and the 

hindered rotor potentials. The final geometry of each stationary point was obtained using the 

M06-2X/6-311++G(d,p) level of theory, at which level the molecular frequencies were 
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calculated. All the aforementioned calculations were done using the Gaussian09 suite of 

programs
22

. Accurate single-point electronic energies were calculated using UCCSD(T)-F12/cc-

pVTZ-F12 level of theory as implemented in Molpro 2009.
23

  

To limit the calculation time, the hindered rotor potentials were obtained at the B3LYP/6-31+G 

level of theory. Several rotors were repeated at M06-2X/6-311++G(d,p) to evaluate the difference 

in level of theory. Only small deviations were seen, as reported in Appendix A, suggesting that 

the B3LYP potentials can be used to calculate the rate coefficients. 

2.3.2 OH + 1-pentene channel  

One crucial part of the PES is the OH + 1-pentene exit channel. This is a dynamically complex 

pathway that consists of a barrierless outer transition state and a submerged inner barrier. The 

reaction is controlled by the inner TS at the temperatures relevant for pyrolysis. However, in 

order to compare it to the available room temperature data an effective two-transition-state 

model
24,25

 was used. In this, the sum of states for the transitional modes of the barrierless channel 

is calculated using variable-reaction coordinate transition state theory (VRC-TST).
26,27

 State 

averaged CASPT2(5e,4o)/cc-pVDZ
23

 calculations was used to evaluate the long-range potential 

on-the-fly between OH and 1-pentene with an active space consisting π and π
*
 orbitals of 1-

pentene (2 electrons), and the p orbital (2 electrons) and the radical orbital (1 electron) of OH. 

Geometry relaxation is negligible in this region,
17,28

 but a 1-D correction to achieve aug-cc-pVDZ 

accuracy is used. The calculated conserved mode number of states was convolved with the 

internal mode state counts including the hindered rotor sum of states. Finally, the inner and outer 

transition states were combined in a two-transition-state model. The effect of the 139.7 cm
-1

 spin-

orbit coupling of the OH radical on the canonical level in the barrierless calculations is included, 

and a systematic study on how the calculations are affected by the various conformers of the 

pentene molecule is also conducted. The resulting corrections were less than 10%. The details of 

the calculations for the corrections are described in Appendix B.  

2.3.3 Master Equation calculations  

To calculate pressure- and temperature-dependent rate coefficients, the MESS code was used.
29,30

 

In these calculations a 1-D hindered rotor corrections for the state counts is included, in which the 

rotational frequencies were manually removed from the set of molecular frequencies, and Eckart 

barriers were used to approximate the tunneling corrections at the microcanonical level. The 
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symmetry numbers for each species were determined using the principles described by Pollak and 

Pechukas.
31

  

2.3.4 Experimental data  

The pyrolysis of n-pentanol has been studied experimentally on a Bench Scale set-up, which has 

been described previously by Djokic et al.
32

 and Harper et al.
33

.  

Nitrogen and n-pentanol have been purchased from Sigma Aldrich and Air Liquide respectively, 

with a purity of 99.999+% and 99% respectively. The reactor is an Incoloy 800HT tube of 

1.475m long with an internal diameter of 6mm, placed in a vertical furnace consisting of four 

heating sections controlled by four thermocouples inside the reactor tube. The pressure is 

measured at the in- and outlet of the reactor, with an inlet set point of 0.17 MPa. The pressure 

drop along the reactor can be neglected. Two sets of experiments were done, one with at a 

pentanol dilution of 1:4 in nitrogen gas, another one with a dilution of 1:1. For the first set, the 

pentanol inlet flow rate amounts 0.013 g s
-1

, for the second one 0.033 g s
-1

. The temperature 

inside the reactor was varied between 913 and 1073 K with increments of 20 K. 

The reactor effluent is directed to a sample valve maintained at 573K, after which a gaseous part 

is injected on-line on a gas chromatograph to quantify C4- hydrocarbon species using a flame 

ionization detector. Permanent gasses are quantified with two thermal conductivity detectors. The 

concentrations of all the species are calculated based on the flow rate of nitrogen gas. Response 

factors were deducted using a calibration mixture provided by Air Liquide, Belgium. Another 

fraction of the reactor effluent is injected on a gas chromatograph used to identify small 

oxygenated molecules such as formaldehyde, methanol and water. Propylene, which is quantified 

on the first detector, is used as secondary internal standard here. A last part of the effluent is sent 

to an on-line GC×GC with is used to identify and quantify the species, using a time of flight mass 

spectrometer and a flame ionization detector respectively. Ethene is used as secondary internal 

standard. The effective carbon number approach
34

 is used to obtain response factors. The transfer 

lines between the reactor and the analysis section are heated to prevent condensation. The 

analysis procedure allows on-line analysis of the complete product spectrum. Carbon balances 

close with 5% percent. The uncertainty on the mole fractions is estimated to be 5%, according to 

earlier work.
32,33

 



76  Chapter 2: Decomposition and isomerization of 1-pentanol radicals and the pyrolysis of 1-pentanol 

The Bench Scale set-up can be modelled as an ideal plug-flow reactor.
33

 Chemkin
35

 is used as 

kinetic model simulation tool. The reactor conditions an inlet flow rates are taken from the 

experimental measurements. The temperature profile and pressure are imposed on the reactor.  

2.3.5 Kinetic model construction 

To test the rate coefficients, a pentanol pyrolysis model has been built. Genesys
36

 is a recently 

developed automatic kinetic model generator integrated with advanced open-source chemo-

informatics libraries, allowing the generation of kinetic models independent of the reactants, 

elements, or chemistry. For this work, the rule-based termination criterion of Genesys was 

employed. Reaction families relevant for hydrocarbon and oxygenates pyrolysis have been 

constructed, consisting of hydrogen abstraction reactions, β-scission reactions and the reverse 

radical addition reactions, homolytic bond scissions and the reverse recombination reactions, and 

CO formation reactions. Each reaction family is constrained to only allow relevant reactions to be 

generated. These constraints are defined based on the immediate surroundings of reactive centers, 

e.g. valency or hybridization, as well as on the molecule in its entirety, such as molecule size, 

presence of rings or aromaticity. For most reaction families, group additivity is employed to 

calculate the rate coefficients.
37-43

 Species thermochemistry is also calculated from group 

additivity.
44-46

  

In this work the n-pentanol pyrolysis sub-model generated by Genesys is merged with the 

Aramco Mech,
47

 which describes the pyrolysis and oxidation chemistry of small compounds, 

with up to 4 carbon atoms. The kinetics for the homolytic scission reactions of C-H, C-C, C-O 

and O-H bonds are taken from the literature, as well as the H2O elimination in n-pentanol.
48

 

Finally, the reactions and kinetics generated by KinBot for n-pentanol radicals are added to the 

model. The merging of kinetic models is done semi-automatically in several steps. First, to be 

able to compare species, their names are mapped with the corresponding InChI’s. Then, the 

models are compared to identify large differences in thermodynamics and kinetics. If these 

differences exist, it is the responsibility of the user to select the proper set of data. In a next step 

the models are merged using a master/slave approach. Here, the master kinetic model is taken as 

is, and the reactions and species of the slave model that are not present in the master model are 

added. The naming of the species is adapted to correspond to the naming of the master model. A 
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final manual check is necessary to identify inconsistencies by calculating reverse reaction rate 

coefficients and comparing them to the reverse reaction rate coefficients in the original models.  

2.4 Results 

2.4.1 PES  

For the current study, β-R was used as starting structure in KinBot. From this structure, the other 

5 radicals were found via H-transfer transition states, alongside 17 bimolecular products. All the 

reactions found by KinBot can be found in Figure 1, in which all energies are relative to the 

pentene + OH energy. All the reactions can be categorized into three reaction families. Firstly, 15 

reactions are intramolecular hydrogen abstractions among 6 radicals. These reactions comprise of 

1-2, 1-3, 1-4, 1-5 and one 1-6 internal hydrogen shifts. 1-2 and 1-3 hydrogen shift reactions have 

a high barrier, between 159 and 201 kJ mol
-1

, compared to the reactions with a larger ring 

structure in the transition state, where the barrier amounts between 84 and 134 kJ mol
-1

. 

Secondly, 13 more reactions are β-scission reactions yielding a bimolecular product pair, i.e., a 

radical species and an unsaturated molecule. The entrance channel is the OH addition to 1-

pentene on the first carbon atom, and is characterized by a barrierless step into a van der Waals-

well followed by a barrier to form the initial well on the PES, as shown in Figure 1a. The other 

reactions are H-β-scissions forming C5H10O unsaturated compounds and C-β-scissions. The 

highest barriers correspond to the H-β-scission reactions and amount up to 197 kJ mol
-1

 

compared to its well, and the lowest energy pathway to a bimolecular product is the formation of 

formaldehyde and the n-propyl radical (123 kJ mol
-1

 above the well). Finally, 4 direct water 

elimination reactions were found, which have considerably higher reaction barriers compared to 

all previous reactions: 285-331 kJ mol
-1

. From Figure 1, the lowest energy well can be identified 

as the α-R, which lies 44 kJ mol
-1

 below the highest one, the o-R.  
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Figure 1: Potential energy surface of the 1-pentanol radicals. The transition states and products are separated per well: (a) 

-R, (b) ε-R, (c) δ-R, (d) γ-R, (e) α-R, and (f) o-R. 

2.4.2 OH + 1-pentene capture rate coefficient 

The calculated OH + 1-pentene capture rate coefficients at low temperatures can be compared to 

experimental data available in the literature.
11-13

 However, as mentioned in the introduction, the 

experiments measure addition both to the terminal and the non-terminal C-atom of the double 

bond, and potentially include contributions at room temperature from abstraction. The latter 

contribution was measured to be 13±5 % by Biermann et al.
12

 at 298 K, but there is no 

information on the branching ratio for the two adducts. Based on previous calculations for 

propene
17

, the branching into the two wells is estimated to be 1:1, and the contribution from the 

abstraction is ~30% lower at the low, and ~10% higher at the high end of the 262 – 312 K 
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experimental temperature range of McGillen et al.
13

 Applying these estimated corrections, the 

calculations are compared to the experimental values as shown in Figure 2. 

 
Figure 2: Calculated rate coefficients for the terminal addition of OH on 1-pentene compared to literature data of Nip and 

Paraskevopoulos11 (black), Biermann et al.12 (blue) and McGillen et al.13 (red). The empty symbols are the total rate 

coefficients as reported in literature, the full symbols are our estimate for the terminal addition reaction. The green line is 

the calculate terminal addition and the red line is the calculated terminal addition for which the barrier was decreased by 

4.18 kJ mol-1.  

Similarly to other studies, the addition rate coefficient is underpredicted, largely because the 

inner barrier for addition is too high. Decreasing it by 4.18 kJ mol
-1

, a change similar to what was 

used in previous studies,
16,17

 brings theory and experiment in almost perfect accord.  

2.4.3 Rate coefficients  

The OH addition to a multiple bond and its two-transition-state characteristics have been 

determined for several hydrocarbon molecules. Greenwald et al.
25

 studied the OH addition to 

ethene in the 10–600 K range. Their rate coefficients k(T,P) compare well with experimental 

data. The full C2H5O PES of the OH addition to ethene has been further explored by Senosiain et 

al.,
16

 consisting of three wells and four bimolecular products. The two addition reactions of OH 

to propene have been studied by Zádor et al.
17

 The C3H5O PES has also been studied by Zádor 

and Miller
49

 in which OH adds to either propyne or propadiene, and there are further high-level 

kinetics calculations in the literature on the hydroxyl additions to 1-butene,
20

 2-butene,
21

 and 

isoprene.
50
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The above theoretically calculated rate coefficients have all been obtained at a very similar level 

of theory, including high level of theory for the electronic structure calculations. Furthermore, 

they all solved the master equation to obtain temperature and pressure dependent rate 

coefficients. This makes a comparison of these studies appropriate. The rate coefficients for 

hydroxyl addition to alkenes are shown in Figure 3 for ethene, propene, cis- and trans-2-butene, 

isoprene and 1-pentene. All the rate coefficients correspond to the addition of OH to one carbon 

atom. The propene study only includes the total addition rate coefficient, i.e. both to the terminal 

as well as central carbon atom.
17

 The authors report a 50:50 branching fractions for both 

additions , the total rate coefficient has thus been divided by two to only include the addition to 

one well.  

Figure 4 shows the total dissociation rate coefficient of the initial adduct, i.e. an alcohol with a 

radical site in β position of the hydroxyl group. This dissociation contains C-H, C-C and C-O β-

scission reactions. The branching fractions of the latter, which results back in the initial OH and 

alkene, are reported in Figure 5. As already reported in the literature, the dissociation to the OH 

and alkene is largely favored at low temperature, with branching fractions of 1 at 300K and 

below.  

 
Figure 3: Theoretical OH addition rate coefficients to several alkenes in their high pressure limit calculated by Greenwald 

et al.25 for ethene, Zádor et al.17 for propene, Antonov et al.21 for 2-butene, Greenwald et al.50 for isoprene, and this study 

for 1-pentene. The symbols correspond to experimental data of ethene (■), propene (●), pentene (○), trans-2-butene(▲), 

cis-2-butene (▼), and isoprene (♦). The data originates from Tully et al.51,52 (blue), Gordon and Mulac53 (red), Schmidt et 

al.54 (purple), Atkinson and coworkers55,56 (green), and McGillen et al.13 (grey). The rate coefficients k are expressed in 

cm3 mol-1 s-1. 
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Figure 4: Total theoretical dissociation rate coefficient of alcohols with a radical site in β position relative to the hydroxyl 

group in their high pressure limit. In the case of 2-butanol, the secondary radical is considered, i.e. formed by the OH 

addition to 2-butene. The rate coefficients originate from Zádor et al.17 for n-propanol and isopropanol, Antonov et al.21 

for 2-butanol, Zhang et al.20 for 1-butanol, and this study for 1-pentanol. The rate coefficients are expressed in s-1. 

 
Figure 5: Branching fraction of the dissociation to OH and alkene to the total dissociation rates (all in their high pressure 

limit). In the case of 2-butanol, the secondary radical is considered, i.e. formed by the OH addition to 2-butene. The rate 

coefficients originate from Zádor et al.17 for n-propanol and isopropanol, Antonov et al.21 for 2-butanol, Zhang et al.20 for 

1-butanol, and this study for 1-pentanol. 

Besides the comparison to similar reactions on other PESs, the rate coefficients can also be 

compared to the current group additivity rate coefficients calculated by Genesys. As long as the 

new calculations are not incorporated in Genesys, the group additivity values will be used 

instead. These rate coefficients, although they are valuable to obtain a large amount of data very 

fast, show relatively high uncertainties compared to ab initio data. The values used for this 

comparison are either in-house or can be found in literature.
37,40

 All the group additive values 



82  Chapter 2: Decomposition and isomerization of 1-pentanol radicals and the pyrolysis of 1-pentanol 

have been obtained from CBSQB3 calculations, with an overall uncertainty of 2. Group additivity 

itself introduces an additional uncertainty factor of 3
38

, yielding a total uncertainty factor of 3.66. 

To calculate this, the differences between the logarithms of the rate coefficients is used instead of 

their ratio. It can be assumed that the probability distribution of the logarithm of the ab initio rate 

coefficient is a normal distribution with the logarithm of the true rate coefficient as expected 

value and a standard deviation of log 2, c.f. Eq. 2.1. Similarly, the probability distribution of the 

logarithm of the group additivity rate coefficient has the logarithm of the ab initio rate coefficient 

as expected value and a standard deviation of log 3 as shown in Eq. 2.2. Assuming that the 

uncertainty of the group additivity model is independent of the uncertainty of the ab initio rate 

coefficients, the probability distribution of the logarithm of the group additivity rate coefficient 

compared to the logarithm of the true rate coefficient is also a normal distribution with a standard 

deviation of 3.66, calculated in Eq. 2.3 to Eq. 2.6. In the equations Eq. 2.1 to Eq. 2.6, the 

subscript “AI” stands for ab initio, “GA” stands for group additivity, the rate coefficient without 

subscript is the true rate coefficient, P(x) is the probability distribution of x, E(x) is the expected 

value of x, and Var(x) is the variance.  

 𝑃(log 𝑘𝐴𝐼) =
1

√2𝜋(log 2)2
𝑒

−
(log 𝑘𝐴𝐼−log 𝑘)2

2(log 2)2
 

Eq. 2.1 

 𝑃(log 𝑘𝐺𝐴) =
1

√2𝜋(log 3)2
𝑒

−
(log 𝑘𝐺𝐴−log 𝑘𝐴𝐼)2

2(log 3)2
 

Eq. 2.2 

 𝑉𝑎𝑟(log 𝑘𝐴𝐼) = (log 2)2 = 𝐸[(log 𝑘𝐴𝐼)2] − (log 𝑘)2 
Eq. 2.3 

 𝑉𝑎𝑟(log 𝑘𝐺𝐴)𝐴𝐼 = (log 3)2 = 𝐸[(log 𝑘𝐺𝐴)2] − (log 𝑘𝐴𝐼)2 
Eq. 2.4 

 𝑉𝑎𝑟(log 𝑘𝐺𝐴)𝑡𝑜𝑡 = 𝐸[(log 𝑘𝐺𝐴)2] − (log 𝑘)2 = 𝜎𝐴𝐼
2 + 𝜎𝐺𝐴

2  
Eq. 2.5 

 𝑉𝑎𝑟(log 𝑘𝐺𝐴)𝑡𝑜𝑡 = (log 2)2 + (log 3)2 = (log 3.66)2 
Eq. 2.6 

Table 1 summarizes 8 reactions for which the rate coefficients were both calculated in this work 

as well as with Genesys. The second column gives the high pressure limit rate coefficients at 

1000 K calculated in this study. The third column shows the ratio of the rate coefficients in this 

work compared to the Genesys calculated rate coefficients, both evaluate at 1000 K in the high 

pressure limit. In general, the accuracy of the Genesys group additivity rate coefficients is good, 

only three rate coefficients show a deviation factor higher than 2, and only one has a deviation 
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factor higher than 4. The Genesys rate coefficients are thus well within the expected uncertainty 

boundaries, but their values can be corrected when using high level ab initio calculations, which 

should result in a more accurate final kinetic model.  

Table 1: High pressure limit rate coefficients of 8 reactions calculated in this work at 1000 K and the ratio of the rate 

coefficients of this work compared to the Genesys group additivity rate coefficients. 

Reaction 
𝒌𝒕𝒉𝒆𝒐𝒓𝒚  

(𝒄𝒎𝟑 𝒎𝒐𝒍−𝟏 𝒔−𝟏) 

𝒌𝒕𝒉𝒆𝒐𝒓𝒚

𝒌𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆
 (−) 

CH3CH2CH=CH2 + CH2OH → γ-R 6.0×109 1.07 

CH3CH2CH2 + CH2=CHOH → α-R 3.1×109 0.52 

CH2=CHCH2CH2CH2OH + H → ε-R 4.3×1012 0.99 

CH3 + CH2=CHCH2CH2OH → γ-R 1.1×1010 1.14 

CH2=CH2 + CH2CH2CH2OH → ε-R 1.5×1010 0.37 

CH3CH=CH2 + CH2CH2OH → δ-R 8.8×109 0.19 

CH2=CHCH2CH2CH2OH + H → δ-R 5.8×1012 1.39 

CH3CH2 + CH2=CHCH2OH → β-R 3.9×109 0.42 

2.4.4 Modelling  

The experimental and simulation results are given in Figure 6 and Figure 7 for the major and 

minor compounds respectively. Simulations have also been done with three models found in the 

literature by Heufer et al.
48

, Togbé et al.
57

 and Wang et al.
58

. Compared to the other models, the 

current work gives the closest agreement of the conversion to the experimental data. The 

predictions of the three main products, ethene, methane and CO, as a function of conversion is 

comparable to the experiments for the four models. Propene and ethane both exhibit a maximum 

in their mass fraction profile at a conversion of 90%. The simulations are able to capture the 

maximum, but it lies at a higher conversion. The model of Heufer et al. leads to the best propene 

simulations, although the differences are small between the models. For ethane, Togbé et al. 

shows a better agreement to the experimental data, the models of Heufer et al. and Wang et al. are 

not able to capture the trend of the selectivity towards ethane as a function of the conversion. The 

water yields are similar for the four models, and the current work gives the best butadiene 

predictions, although secondary reaction pathways of butadiene are probably missing, which 

explains the overprediction only at high temperatures. Although the relative deviations of the 
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simulations on these compounds are higher compared to the major products, the absolute 

deviations are of a similar order of magnitude. 

 
Figure 6: Experimental results (dots) and simulations (lines) for (a) the conversion of pentanol as a function of 

temperature, (b) the mass fraction of ethene as function of the conversion, (c) the mass fraction of methane as a function of 

conversion and (c) the mass fraction of CO as a function of conversion. The model generated by Genesys (red) is compared 

to the models of Heufer et al.48 (purple), Togbé et al.57 (blue), and Wang et al.58 (green). 
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Figure 7: Experimental results (dots) and simulations (lines) for (a) the mass fraction of propylene, (b) the mass fraction of 

ethane, (c) the mass fraction of water and (c) the mass fraction of butadiene as a function of conversion. The model 

generated by Genesys (red) is compared to the models of Heufer et al.48 (purple), Togbé et al.57 (blue), and Wang et al.58 

(green). 

From the reactor simulations, the main decomposition pathways can be identified and their 

relative importance can be quantified. The initial decomposition of the n-pentanol radical 

happens through either a C-C bond cleavage or the direct elimination of a water molecule, 

forming pentene. Homolytic scission of C-O, C-H and O-H bonds do not play an important role. 

The weakest bond is, in agreement to studies of pentanol
48,59

 or other alcohols
60,61

, the bond in β 

position of the hydroxyl group, followed by the terminal C-C bond. Once a radical pool is 

created, these scission reactions decrease very rapidly in importance, and the main decomposition 

route is hydrogen abstractions, shown in Figure 8. The reaction scheme is recorded at the highest 

n-pentanol decomposition rate, which is at a distance of 37 cm into the reactor for the simulation 

at 973 K. At 37 cm, the set-point temperature is already reached. The percentages show the 

relative rate of production to the total decomposition rate of n-pentanol. For the sake of clarity, 

no intramolecular hydrogen abstractions and well-skipping reactions have been added to the 

figure. Two intramolecular hydrogen abstraction reactions have a contribution of more than 1% 

compared to the total conversion rate of n-pentanol: the net conversion of δ-R to o-R amounts 
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2%, and the total net conversion of ε-R to α-R is around 1%. Also, one well-skipping reaction has 

a noteworthy contribution: o-R reacts to propene and the CH2CH2OH with a production rate of 

3%.  

More or less half of the o-R first undergoes a C-C-β-scission to formaldehyde and n-butyl. The 

remainder of the o-R decomposes through the well-skipping reaction mentioned above. The α-R, 

which is the lowest lying well on the OH+1-pentene PES, see Figure 1, and is also the main 

radical formed through hydrogen abstractions from n-pentanol, decomposes to n-propyl and vinyl 

alcohol. The β-R reacts via a C-O-β-scission, forming 1-pentene and a hydroxyl radical. The C-

C-β-scission is also somewhat important, leading to ethyl and 1-buten-3-ol. Two C-C-β-scission 

are possible in γ-R, forming methyl and 1-buten-4-ol, and 1-butene and CH2OH, respectively. 

As already mentioned, δ-R is consumed by an intramolecular hydrogen abstraction reaction to o-

R. Furthermore, it decomposes through two pathways: the formation of propene and 

CH2CH2OH and a well-skipping reaction to formaldehyde and n-butyl, accountable for almost 

10% of the total decomposition of n-propanol.  

 
Figure 8: Initial decomposition of n-pentanol at a position of 37 cm in the Bench Scale set-up at 973 K, which corresponds 

to a conversion of 38%. The percentages are the relative rates to the total rate of consumption of n-pentanol.  
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2.5 Conclusions 

The decomposition of n-pentanol has been studied in several steps. First, all the stationary points 

on the n-pentanol radical potential energy surface have been automatically found using the 

KinBot software. The wells and saddle points were optimized at the M062X/6-311++G(d,p) level 

of theory with additional single point energy calculations at the UCCSD(T)-F12/cc-pVTZ-F12 

level of theory. The OH + 1-pentene channel was treated with a two-transition state model to 

account for both the inner saddle points as well as the barrierless outer transition state. Master 

equation calculations were used to get the pressure and temperature dependent rate coefficients.  

The resulting potential energy surface is comparable to other alcohol pyrolysis potential energy 

surfaces, which typically exhibit the van der Waals well when adding OH to and olefin giving the 

β-radical. Intramolecular hydrogen abstractions are the only isomerization reactions, and exit 

channels exist of β-scissions and water eliminations. The rate coefficients from this potential 

energy surface compare well to experimental data and theoretical data of similar systems.  

Second, the decomposition of n-pentanol has been studied in a flow reactor at various 

temperatures covering a wide conversion range. A kinetic model developed by Genesys and 

augmented with the newly calculated rate coefficients is able to describe the conversion and 

selectivities of the main products well.  
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Chapter 3: On-the-fly ab initio 

calculations 

3.1 Abstract 

During automatic kinetic model generation a large number of species and reactions are generated. 

All these species and reactions need to have thermodynamic and kinetic data assigned to them. 

Currently, databases and approximation methods are the main alternative to experimental and 

high level theoretical methods. In many cases, however, the approximation methods give poor 

results, leading to inaccurate kinetic models. The ever-growing computational power and 

availability of high performance computing solutions allows to envisage on-the-fly ab initio 

calculations for a large number of species and reactions. Currently, the need for extensive user 

knowledge and involvement is the main hurdle to develop a fully ab initio kinetic model. The 

present chapter introduces automation procedures to minimize the user involvement and to allow 

fully automated quantum chemical calculations for a large number of species and reactions for 

gas-phase processes, with a wide variety in chemical structure.  
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3.2 Introduction 

Reliable procedures to calculate thermodynamic and kinetic data that cover a wide range of 

species and reactions are indispensable to automatically build a kinetic model. Although a kinetic 

model can contain thousands of reactions, most of the reactions can be classified in a limited set 

of reaction families and the calculation of rate coefficients can be done per reaction family. When 

data is lacking or when the calculation procedures do not yield satisfactory results, quantum 

chemical calculations can complement this data gap. In the framework of automatic kinetic 

model generation, these quantum chemical calculations include several reactions belonging to the 

same reaction family. Based on the ab initio results, calculation procedures such as linear free-

energy relationships
1,2

 or group additivity
3-8

 methods can be developed. These methods are fast 

and scalable, and do not require any additional quantum chemical calculations. If developed 

properly these methods are more than adequate for current state-of-the-art in kinetic modeling. 

Since ab initio calculations are computationally intensive, require several manual interventions, 

user knowledge and last but not least expertise, the development of a reaction rate coefficients 

calculation methodology remains time consuming. Automation algorithms which can perform ab 

initio calculations and subsequently extract accurate thermochemical data would thus be of great 

interest for kinetic model generation. As mentioned in Chapter 1, species and reactions are 

represented as mathematical graphs containing the connectivity information between the atoms. 

This topology information, also called two dimensional (2D) representation of species, is 

insufficient to start ab initio calculations. Therefore, to automatically perform ab initio 

calculations, three dimensional (3D) coordinates of species and transition states need to be 

generated. This is then followed by calculations using quantum chemical software packages. 

Finally, thermodynamic data and reaction rate coefficients can be calculated.  

Several approaches to incorporate quantum mechanical calculations in automatic kinetic model 

generation are possible. For example, as was discussed in the previous chapter, reactions on a 

potential energy surface (PES) can be found using the KinBot
9
 software. Although the results are 

useful for automatic kinetic model generation, i.e. the rate coefficients can be stored in the kinetic 

model generators databases for later use, the approach has several disadvantages when aiming at 

automated construction of calculation procedures for reaction rate coefficients. First, only a 

single PES can be calculated per simulation. A kinetic model typically contains hundreds of 
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species and up to thousands of reactions. The stationary points of these species and reactions lie 

on numerous potential energy surfaces, which have to be calculated separately. Second, reaction 

families are typically hard coded into the current tools, which means that extension of the 

chemical space requires the availability and knowledge of the source code. Third, the exploration 

of potential energy surfaces is very useful when the chemistry of a given molecule or radical is 

not well known, however, many reaction families and many rate coefficients are already available 

in databases. Potential energy surface searches identify reactions independent of their reaction 

family, i.e. they are not limited to a certain reaction families. When, for a chemical process, data 

is already available for a few reaction families, and data is necessary for the other families, the 

potential energy searches will find all the reaction families and thus re-calculate a lot of data. 

This increases the computational demands, calculation times and user involvement significantly.  

When the kinetic model generation program does not include all possible reaction families for a 

molecule or radical, quantum chemistry can be used to search for new reaction types and new 

reactions which are not well documented yet. These calculations are computationally very 

expensive and cannot yet be coupled with automatic kinetic model generation in a 

straightforward way. Nevertheless, the methods used to discover new reaction types can be of 

interest for this work. They share similar challenges and they could be implemented in automatic 

kinetic model generation codes in the future. Suleimanov and Green
10

 published the discovery of 

chemical reaction steps using the double-ended freezing string method and the single-ended 

Berny optimization methods. Starting from the Bond Electron (BE) matrix, in which each row i 

contains the electronic configuration of the i
th

 atom, reactions are identified by multiplying the 

BE matrix with a reaction matrix A yielding another BE matrix, corresponding to the product 

structure. Via force field calculations, the reactant and product connectivity are converted to 3D 

coordinates. To locate the transition state, single-ended and double-ended searches can be used.
11

 

Single-ended searches start from an initial guess of the 3D coordinates of the atoms of the 

transition state and explore the PES using local gradients. An example is the Berny saddle point 

optimization method.
12-14

 Double-ended algorithms start from the reactant and product wells on 

the PES to locate the saddle point in between. Several algorithms have been developed for this 

purpose.
15-17

 Suleimanov and Green employ a double-ended search to locate a good initial guess 

for an optimization with a single-ended method. Zimmerman
18,19

 developed a similar approach as 

the BE matrices of Suleimanov and Green. Reactions are defined by the changes in coordination 
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number of atoms and in connectivity between the atoms. Force field calculations are employed 

prior to DFT optimizations. The latter allows screening for kinetically insignificant intermediates, 

which are too high in energy compared to the starting species. Double-ended searches are 

subsequently used to locate the transition state. 

Instead of starting from one species and exhaustively identifying saddle points and wells on the 

PES, it is also possible to start from a known reaction or species and automatically perform ab 

initio calculations aiming at improving the thermodynamic and kinetic databases. This approach 

was already mentioned in literature by several authors. Broadbelt et al.
20

 introduced algorithms to 

build 3D coordinates of species from the connectivity information. The geometrical structure was 

then used as input in a semi-empirical quantum chemistry program to obtain heats of formation of 

the species in a kinetic model. Magoon and Green
21

 extended this methodology by introducing 

more flexibility in terms of application range and also allowed the search for the lowest energy 

conformer. Semi-empirical methods are used to extract thermodynamic parameters. Broadbelt et 

al. and Magoon and Green only enabled the calculations of species, i.e. wells on the potential 

energy surface. It is, however, also possible to extend this approach during the calculation of 

reaction rate coefficients by optimizing transition state structures. Bhoorasingh and West
22

 

developed a group additive scheme to estimate the structure of transition states of intermolecular 

hydrogen abstraction reactions which were then used as input for ab initio calculations. Intrinsic 

reaction coordinates calculations validate a successful transition state search. Finally, rate 

coefficients were extracted using transition state theory. 

To solve the above mentioned shortcomings to automatically perform ab initio calculations in the 

framework of kinetic model generation, a new tool has been developed which is described in this 

chapter. The tool starts from a reaction network, i.e. a set of known species and reactions, and 

automatically performs quantum chemical calculations to obtain electronic energies and 

molecular frequencies. These results are used to generate thermodynamic and kinetic data, which 

are directly incorporated in kinetic models. The new tool is, in contrast to the work of 

Bhoorasingh and West
22

, not limited to one specific chemistry, reaction family or calculation 

method. With the applications of thermal decomposition, pyrolysis, combustion, oxidation, and 

atmospheric chemistry in mind, radical and molecular reactions in the gas-phase are covered, 

independent of the elements present in the reactions. Semi-Empirical, (post-)Hartree-Fock, 
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Density Funcional Theory, or composite methods can be used, and new methods can easily be 

added, with only small changes in the source code. An overview of the methodology used in this 

work is given in Figure 1.  

The present chapter introduces this tool, which is an extension to the existing kinetic model 

generator Genesys
23

. Genesys is a recent kinetic model generator, based on open-source 

chemoinformatics, which allows an unrestricted model generation in terms of application range. 

Genesys is written in the programming language JAVA, which was also chosen as programming 

language for this work. This chapter first describes the methodology in which, starting from 

molecular identifiers, initial 3D structures are generated. These structures are refined in several 

steps and are used in extensive conformational scans to identify the lowest energy conformer. 

The final optimizations are preferably done at high level of theory. Torsional modes are treated 

with a one dimensional (1D) hindered rotor approach. Secondly, the calculation methods to 

obtain thermodynamic and kinetic data are described. Thirdly, results are presented for several 

species and reactions exhibiting a wide variety of features, such as hetero-atoms, ring structure, 

reaction families, radical centers, resonance, etc. 
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Figure 1: Illustration of the methodology of on-the-fly ab initio calculations.   



Chapter 3: On-the-fly ab initio calculations  99 

3.3 Methodology  

3.3.1 Stable species 

3.3.1.1 3D coordinates 

During automatic kinetic model generation, chemical species are typically represented using a 

matrix or mathematical graph. This 2D representation is very powerful for the generation of 

reactions, molecular comparison, recognizing sub-molecular patterns, user input and output, and 

database searches.
24

 However, the main disadvantage is the loss of information on the spatial 

arrangements of the atoms within a molecule or radical. 3D coordinates are not available, which 

is an intrinsic limitation to start ab initio calculations. To allow automatic quantum chemical 

calculations, the 2D representation needs to be extended to a 3D one. The problem of generating 

a 3D structure for a molecule or radical has already been widely studied in the past for the 

purpose of drug discovery, retrosynthetic analysis, molecular depiction, etc. In general, 

algorithms to generate 3D coordinates can be categorized in two groups: rule-based and 

numerical methods.
20

 Rule-based methods employ heuristics to obtain a molecular structure. The 

heuristics originate from the chemical knowledge of the software developer. Therefore, it is 

always tailored to one or a limited set of application domains. This restricts its use significantly. 

Numerical techniques
25-29

 such as “distance geometry” offer a broader application domain and 

robustness and typically consist of two steps. First, a “distance bounds matrix” is built, which is 

used to embed all the atoms in the three dimensional space. This structure is further refined using 

an energy minimization algorithm. 

In order to create a general tool for 3D coordinates generation, the “distance geometry” method 

has been implemented in Genesys, which is illustrated in Figure 2. With “distance geometry” the 

author implies the generation of 3D structures based on a distance bounds matrix, which 

describes the lower and upper distance limits between two atoms. From these distance limits, an 

initial structure can directly be generated without any optimization of the coordinates. The 

distance bounds matrix can be built based on the topology of the molecule or radical, i.e. its 2D 

representation. However, the initial structure can be far away from the equilibrium, and 

optimization procedures to refine the initial guess are recommended. 
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Figure 2: Illustration of the coordinates generation procedure.  

The following paragraphs on distance geometry are based on the work of Havel
30

. In order to 

allow distance geometry, the lower lab and upper uab distance limits between each pair of atoms a 

and b in a molecule or radical needs to be generated. This information is put in a matrix with the 

upper limits in the upper triangle and the lower limits in the lower triangle. A well-constructed 

distance bounds matrix contains the full conformational space of a molecule or radical, i.e. the 
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interatomic distances in each conformer all lie within the lower and upper bound defined in the 

distance bounds matrix.  

The generation of the lower and upper bounds between two atoms depends on the atomic 

topology. Let A, B, C, and D be four atoms subsequently bonded to each other as shown in 

Figure 3. The distances between A and B, B and C, and C and D are 1-2 distances, i.e. a 1-2 

distance is the distance between two atoms that are bonded to each other. Similarly, a 1-3 

distance defines the interatomic distance between two atoms that are both bonded to the same 

atoms, in Figure 3 the distances between A and C, and B and D are 1-3 distances. Finally, a 1-4 

distance is defined by the distance between two atoms that are bonded to two other atoms which 

are bonded to each other, such as the distance between A and D in Figure 3. The distance limits 

of atoms that are bonded to each other, are defined by a small range around the average bond 

length between them. Average bond lengths are tabulated in databases. 1-3 distances are 

calculated based on the two bond lengths and the average bond angle, which is also tabulated. 

The 1-4 distance must lie between the minimum distance defined by the syn-conformation and 

the maximum distance defined by the anti-conformation. A small range below and above the 

minimum and maximum distances respectively is used to allow flexibility of the algorithm. The 

ranges chosen around tabulated equilibrium values are important for the accuracy of the 

algorithm. Both too loose and too strict limits will lead to unrealistic molecular structures.  

 

Figure 3: Illustration of 1,2, 1,3 and 1,4 distances.  

Before the matrix can be used for the generation of 3D coordinates, inconsistencies need to be 

corrected. An algorithm called “triangle inequality bound smoothing” is chosen as adequate 

method to locate contradictions in the bounds. In this algorithm, the upper and lower limits 

between two atoms a and b need to be compared to the path through a third atom c, as illustrated 

in Figure 4. The path is a sequence of three atoms (a,c,b) with the length calculated based on the 

two upper and two lower bounds (uac, ubc, lac, lbc). The upper bound uab cannot exceed the sum of 

the two lower bounds lac and lbc. Similarly, the lower bound lab should be larger than 𝑙𝑘𝑚 − 𝑢̅𝑖𝑘 −
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𝑢̅𝑗𝑚  in which i, j, k and m are not necessarily distinct atom indices. The overbars denote the 

triangle inequality limits.
31

 

 
Figure 4: Illustration of the upper and lower limit of the distance between A and C based on the distances of A 

and B and B and C.  

After the triangle inequality bound smoothing, a random distance matrix is chosen that fits within 

the boundaries imposed by the distance bounds matrix, a procedure which is called “metrization”. 

For each two atoms A and B, a distance dab is obtained by Eq. 3.1 in which r is a random number 

between 0 and 1. By applying this procedure several times, different distance matrices can be 

build, belonging to a different conformer or a different stereo-isomer. 

 𝑑𝑎𝑏 = 𝑙𝑎𝑏 + 𝑟(𝑢𝑎𝑏 − 𝑙𝑎𝑏) Eq. 3.1 

This is followed by the actual fitting of coordinates to the distances, i.e. embedding. More 

information on the embedding algorithm can be found in Appendix C or in literature
29,30

. 

Following paragraphs give the approach used in Genesys in brief. In an embed algorithm, the 

coordinates 𝒙𝟏, …, 𝒙𝑵 of the N atoms that are a best-fit to the estimated distances can be found 

fast and reliable by eigenvalue methods. For this work, unweighted embedding is performed, i.e. 

all the weight factors 𝑤𝑖,𝑗 are equal to 1. The squared distances 𝑑𝑎𝑏
2
 are used, which are denoted 

as 𝐷𝑖𝑗. In a first step, the distances of each atom to the center of mass of the species is calculated, 

in which 𝑚𝑗 is the mass of the j
th

 atom and 𝑀 is the total mass of the species:  

 𝐷0𝑖 = 𝑀−1 ∑ 𝑚𝑗

𝑁

𝑗=1

𝐷𝑖𝑗 − 𝑀−2 ∑ 𝑚𝑗𝑚𝑘𝐷𝑗𝑘

𝑁,𝑁

1=𝑗<𝑘

 Eq. 3.2 

It can be easily proven that the distances to the center of mass , i.e. center of mass coordinates, is 

exact if the estimated distances among the points are exact. The embedding procedure searches 

for a minimum of the function given in Eq. 3.3.  

 
1

2
∑ ((𝒙𝒊 ∙ 𝒙𝒋 − 𝑎𝑖𝑗))

2
𝑁,𝑁

𝑖,𝑗=1

 Eq. 3.3 
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 𝑎𝑖𝑗 ∶=
1

2
(𝐷0𝑖 + 𝐷0𝑗 − 𝐷𝑖𝑗) Eq. 3.4 

By introducing the matrices 𝑨 and 𝑿, c.f. Eq. 3.5 and Eq. 3.6, the function in Eq. 3.3 can be 

expressed as a squared Frobenius norm, shown in Eq. 3.7.  

 𝑨 ∶= [𝑎𝑖𝑗] Eq. 3.5 

 𝑿 ∶= [𝒙𝟏 … 𝒙𝑵]𝑻 Eq. 3.6 

 𝐹(𝑿) =
1

2
‖𝑿𝑿𝑻 − 𝑨‖2 Eq. 3.7 

A necessary condition for the global minimum is that the gradient becomes zero.  

 [
𝜕𝐹

𝜕𝑥𝑖𝑗
] = (𝑿𝑿𝑻 − 𝑨)𝑿 = 𝟎 Eq. 3.8 

 𝑨𝑿 = 𝑿(𝑿𝑻𝑿) Eq. 3.9 

𝑿𝑻𝑿 is a 3x3 matrix named the tensor. It can be assumed that the coordinates are rotated in space 

so that the inertial tensor is diagonal.  

 𝑿𝑻𝑿 = 𝒅𝒊𝒂𝒈(𝜆1, 𝜆2, 𝜆3) Eq. 3.10 

The columns of 𝑿 are proportional to eigenvectors of 𝑨 and the moments of inertia 𝜆1, 𝜆2, 𝜆3 are 

the corresponding eigenvalues. Combining the previous two equations result in Eq. 3.11.  

 𝑿𝑻𝑨𝑿 = (𝑿𝑻𝑿)2 = (𝒅𝒊𝒂𝒈(𝜆1, 𝜆2, 𝜆3))
2
 Eq. 3.11 

By making use of the expression resulting from the global minimum equation we can rewrite the 

Frobenius norm, c.f. Eq. 3.12. 

 𝐹(𝑿) = 𝑡𝑟(𝑨2) − 𝜆1
2 − 𝜆2

2 − 𝜆3
2 Eq. 3.12 

The global minimum 𝑿 is obtained by taking the three largest nonnegative eigenvalues of 𝑨 and 

scaling the corresponding eigenvectors by their square roots, which contains the initial 

coordinates of all the atoms.  

The initial Cartesian coordinates generated by embedding reflect the overall shape. However, the 

quality of this estimate is poor and it does not satisfy the original distance bounds matrix as a 
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result of the compression of the structure during its projection from N – 1 dimensions to three 

dimensions. Therefore an improvement step is introduced in which the coordinates are refined by 

use of an error function that forces all constraints to lie between the lower and upper bounds. The 

distance error function takes following form, the first term enforces upper bound constraints 

while the second term handles the lower bounds.  

 𝐹𝑑𝑖𝑠𝑡 = ∑ ∑ max [0, (
𝑑𝑖𝑗

2

𝑢𝑖𝑗
2 − 1)

2

] + max [0, (
2𝑙𝑖𝑗

2

𝑙𝑖𝑗
2 + 𝑑𝑖𝑗

2 − 1)

2

]

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 Eq. 3.13 

Distance geometry is a computationally fast method to generate conformers, but it has the 

downside that purely distance-based constraints tend to lead to distorted aromatic rings and 𝑠𝑝2 

centers. Optimization with force field calculations can correct this. Therefore, the Merck 

Molecular Force Field (MMFF)
32

 has been implemented in Genesys as refinement step. Since 

several optimization steps are done after the force field calculations, the original version of the 

MMFF was chosen for this work, without any adjustments.  

Stereoisomers can have distinct thermodynamic parameters, e.g. in the case of multiple chiral 

centers or when cis-trans centers are present in the species. Genesys explicitly accounts for each 

stereoisomer of a species
33

, and thus needs to build the coordinates for each stereoisomer 

separately. In the case of chiral centers, the distance geometry algorithm is applied several times, 

as shown in Figure 5, each time with a different distance matrix, i.e. by varying the random 

numbers, and structures that do not comply with the stereoconfiguration are eliminated. Because 

distance geometry is very fast, this step does not influence the total calculation time significantly. 

The same approach is adopted for species in which the cis-trans center reaches further than a 1-4 

distance. For cis-trans isomers over a double bond, the lower and upper limit for the 1-4 distances 

are based on the stereoconfiguration of the double bond.  
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Figure 5: Flowsheet of the generation of 3D coordinates for species with chiral centers in Genesys 

3.3.1.2 Ab initio calculations 

Once an initial estimate for the 3D structure of a molecule or radical is generated, ab initio 

calculations can be started using the Gaussian09 suite of program
34

. Genesys has been 

programmed to allow flexibility of the user in terms of the used ab initio steps, but a basis of four 

steps is recommended. Initially, a pre-optimization method is used at low level to refine the 3D 

structure. Which method to employ is user-defined, common methods are HF/STO-3G or semi-

empirical methods such as PM3. For this work, PM3 was chosen for its wide applicability and its 

speed. Genesys only records the final 3D coordinates of the Gaussian calculation. The 
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connectivity of the final structure is verified by comparing it to the 2D connectivity of the species 

or transition state.  

The second step is the search for the lowest energy conformers. Again, the level of theory is user-

defined, and B3LYP/3-21G* was used in this work, although any level can be specified. The 

procedure for the conformational search is given in Figure 6. The conformational analysis is 

exhaustive for open chain species and non-exhaustive for ring structures. Each conformer is 

generated by Genesys and submitted as a separate calculation to Gaussian. For open-chain 

species, each internal rotor is first identified. In a second step, starting from the pre-optimized 3D 

coordinates, all the combinations of k dihedral increments in the n rotors are generated by 

rotating all the atoms on one side of the rotor bond around the axis of the bond around an angle of 

2π/k. This results in a total of k
n
 structures, as is illustrated for diethyl sulfide in Figure 7, in 

which two internal rotor exists: the two C-S bonds. For diethyl sulfide n is thus 2. The value of k 

is user-defined, and a value of 3 is used in this work. A total of 3
2
 = 9 structures are generated.  

Although a total of k
n
 structures are initially generated, the number of Gaussian calculations is 

lower than k
n
 because (1) conformational duplicates can be formed in the case of symmetry in 

molecules and radicals, and (2) some combinations of dihedral angles result in chemically 

insignificant or different structures, i.e. non-bonded atoms are too close to each other. In Figure 

7, several structures are equivalent due to the external symmetry. For example, structure c can be 

superimposed to structure d by rotating the structure around a vertical axis going through the 

sulfur atom. Analogously, structures b and g are identical, structures e and i are identical, and 

structures f and h are identical. Furthermore, structures b and c are each other’s mirror structure, 

and have thus the same energy. This results in four energetically different structures as shown on 

the figure.  
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Figure 6: Flowsheet of the conformer generation procedure in Genesys. 
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Figure 7: Application of the conformational analysis algorithm to diethyl sulfide. The energies are the 

electronic CBSQB3 energies relative to the lowest energy conformer.  

For ring structures, the distance geometry algorithm is used to generate several conformers. By 

applying the algorithm a number of times, different sets of dihedral angles in the ring structure 

are formed. All these structures are first pre-optimized as discussed above. The conformation of 

side chains to the ring structure is exhaustively analyzed analogously to open chain species. 

Genesys keeps track of the geometries of all the conformers together with their electronic energy.  

A third step in the Gaussian calculations is the optimization at high level of theory. This step is 

done for all the conformations that are low in energy. For example, in this work, all the 

conformations within 5 kJ mol
-1

 of the lowest energy conformer are optimized at high level. 

Since the lower level of theory of the conformational analysis cannot always identify the lowest 

energy conformer, it is necessary to also calculate the high level energy of structures that are 

slightly higher in energy in the conformational scan. In this work, the high level optimization was 

done at the CBS-QB3 level of theory. The final geometries are recorded, together with the 

electronic energy, and the frequencies and normal modes of each conformer. The conformer with 

the lowest energy is selected to continue the calculations. This energy is the electronic energy at 
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0K, this is thus only an approximation of the lowest energy conformer. A more accurate 

determination of the conformers would be a Boltzmann average of all the conformers, evaluated 

at the temperature of interest.  

The final step in the Gaussian calculations is the determination of 1D hindered rotor profiles 

around rotatable bonds. The same rotatable bonds as identified during the conformational scan 

are used to perform a MODREDUN calculation in Gaussian in which the dihedral angle is gradually 

increased, with the size of the increment supplied as user option. A default of 10 degrees is set, 

which was used in this work. MODREDUN calculations in Gaussian can freeze one of the internal 

coordinates of the molecule or radical while optimizing all other coordinates. The stepwise 

application of these optimizations while increasing the dihedral angle results in an energy profile 

as function of that angle. Genesys verifies whether the final energy of the rotational scan is the 

same energy as for the initial geometry. If this is not the case, the hindered rotor profile is 

considered to be incorrect.  

3.3.2 Transition states 

The above methodology for species can also be applied for transition states. However, several 

additional steps are required.  

First, the generation of initial 3D coordinates is more complex compared to molecules or radicals 

because there are no universal force field parameters available for transition states. To use 

Genesys, users need to supply reaction families, reaction family constraints, computational 

details, etc. based on their knowledge of the chemistry at hand. This philosophy is further 

employed in the generation of transition state structures. It is well-known that all reactions 

belonging to the same reaction family have strong similarities in terms of geometrical 

arrangement of the atoms that change in connectivity throughout the reaction, i.e. the reactive 

atoms. When calculating reaction rate coefficients with the ab initio module of Genesys, the 3D 

structure of the reactive center, i.e. all the reactive atoms relative to each other, needs to be 

supplied by the user, this structure is called the template. This structure can be filtered from the 

vast knowledge on transition state structures generated in the past. Furthermore, the structure of 

each transition state optimized by Genesys is saved in its database. These databases will be used 

in the future to decrease the user involvement and aim at fully automated generation of 3D 

coordinates for transition states.  
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The 3D coordinates of the reactive center is used to build the distance bounds matrix. All the 

atoms that do not change in connectivity are treated as atoms not part of a transition state. With 

the distance bounds matrix, an initial structure can be formed, which is also further refined with 

force field calculations. For this, new parameters need to be defined relative to the reactive 

atoms. The equilibrium distances and angles are deduced from the user supplied template. Since 

no force field parameters are available for transition states, force constants do not exist to 

accompany the equilibrium distances. Instead, the force constants are estimated based on known 

force constants. For this, the topology of the transition state is used, in which transition state 

specific bonds are replaced by conventional bonds. The force constants for most of these bonds 

already exists in the MMFF.
32

 The force field contributions for which no force constants are 

defined yet are obtained by assigning force constants from similar bonds.  

The initial transition state structure is pre-optimized with ab initio calculations using Gaussian 

software. In these calculations the structure of the reactive atom is fixed and only the remaining 

part of the transition state is energy-optimized. This allows to relax the non-reactive atoms, but 

no saddle point needs to be identified at this low level of theory, for this, the MODREDUN option is 

used. On the other hand, during the conformational analysis, the full transition state structure is 

optimized. No coordinates are fixed and the energy of the final 3D coordinates are used to select 

the low energy conformers. The identification of the transition state is done with the TS option in 

the optimization step. If the user-supplied template is indeed close to the saddle point structure, 

this step will easily identify the full transition state structure. The final optimization and hindered 

rotor steps are also calculated with the TS option.  

Optimizing a molecular structure to a saddle point on the PES can sometimes result in an 

unwanted structure, often correlated with a maximum energy along a rotational path. The 

assessment of a correct transition state calculation can be done in several ways. Often, user 

involvement is required by visually controlling the structure and animating the normal mode 

corresponding to the imaginary frequency. However, since Genesys aims at automatically 

performing ab initio calculations without any user involvement, this is not an option. Another 

possibility is performing intrinsic reaction coordinate (IRC) calculations. These calculations start 

from the transition state structure and follow the imaginary frequency downwards in the two 

wells that are connected through this transition state. If the wells correspond to the expected 



Chapter 3: On-the-fly ab initio calculations  111 

reactants and products of this reaction, an adequate transition state was found. Although these 

calculations are reliable and can be fully automated, Genesys does not make any use of them 

because (1) IRC calculations are slow and computationally demanding and (2) Gaussian 

checkpoint files are required, which can become very large, often leading to computational 

memory limitations. Therefore, a new method was developed, to verify the transition states in 

two steps. First, the 3D coordinates of the reactive atoms are compared with the template of the 

reaction family. The transition state structure optimization is only considered successful if the 

bonds lengths do not deviate too much from the user-defined bond lengths. Second, the normal 

mode corresponding to the imaginary frequency is analyzed. Analysis of normal modes is 

explained in more detail in section 3.3.3. The normal mode corresponding to the imaginary 

frequency in a transition state has large contributions in the length variation of bonds that are 

formed or broken throughout the reaction. If these contributions are larger than the bond length 

contribution of other bonds, the transition state optimization is considered successful.  

3.3.3 Thermodynamics 

To obtain thermodynamic values from ab initio calculations, i.e. the enthalpy, entropy and heat 

capacities of species, ideal gas statistical thermodynamics is used. The approach used in Genesys 

is similar to the work of Van Speybroeck
35

 and Sabbe and coworkers
36,37

, from which the 

equations below are taken.  

The molecular partition functions are calculated based on the results from Gaussian. The 

translational, rotational, vibrational, and electronic contributions are assumed to be uncoupled 

and can be separated, c.f. Eq. 3.14. 

 𝑞 = 𝑞𝑡𝑟𝑎𝑛𝑠 ∙ 𝑞𝑟𝑜𝑡 ∙ 𝑞𝑣𝑖𝑏 ∙ 𝑞𝑒𝑙𝑒𝑐 Eq. 3.14 

For the electronic partition function, it is assumed that only the ground state contributes, which 

has a value of 1 for closed shell and 2 for open shell species. Another contribution that is 

straightforward to calculate is the translational contribution, which depends on the mass of the 

species and the temperature only as shown in Eq. 3.15.  

 𝑞𝑡𝑟𝑎𝑛𝑠 = 𝑉 (
2𝜋𝑚𝑘𝐵𝑇

ℎ2
)

3
2
 Eq. 3.15 
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The vibrational contributions are obtained from the harmonic frequencies of the species. When 

using CBS-QB3, a scaling factor of 0.99 on the frequencies is used, and the total vibrational 

partition function is calculated as a product of the separate ones, Eq. 3.16. A non-linear species 

with N atoms has 3N-6 degrees of freedom, i.e. 3N-6 molecular frequencies.  

 𝑞𝑣𝑖𝑏 = ∏ 𝑞𝑣𝑖𝑏,𝑖

3𝑁−6

𝑖=1

= ∏
𝑒

−ℎ𝜈𝑖
2𝑘𝐵𝑇⁄

1 − 𝑒
−ℎ𝜈𝑖

𝑘𝐵𝑇⁄

3𝑁−6

𝑖=1

 Eq. 3.16 

Finally, the rotational contribution is calculated as follows, c.f. Eq. 3.17 (for non-linear species). 

The principal moments of inertia are calculated based on the optimized 3D coordinates of the 

atoms.  

 𝑞𝑟𝑜𝑡 =
1

𝜎𝑟𝑜𝑡
8𝜋 (

2𝜋𝑘𝐵𝑇

ℎ2
)

3
2

√𝐼1𝐼2𝐼3 Eq. 3.17 

The vibrational contributions as described above assume harmonic oscillations around the 

optimized 3D coordinates, which is a reasonable assumption for most of the molecular 

frequencies. However, the frequencies that resemble an internal rotation around a bond cannot be 

calculated based on the harmonic oscillator approximation. For these modes, hindered rotor 

calculations are necessary. In this work, it is assumed that each rotor is independent of the other 

rotors and that 1D relaxed scans can be used. All rotational scans with a barrier lower than 50 kJ 

mol
-1

 are treated as hindered rotors, others are considered harmonic oscillators. To calculate the 

contribution to the partition function 𝑞𝑣𝑖𝑏,𝑖  of the i
th

 vibrational mode resembling an internal 

rotation, the potential energy of the relaxed scan is approximated by a function as shown in Eq. 

3.18, in which 𝜑 is the torsional angle. The coefficients 𝐴𝑘 and 𝐵𝑘 are calculated per hindered 

rotor scan using a linear least-square regression method. This function is chosen as opposed to 

Fourier series because it fits hindered rotor profiles better. Since the rotational scan starts at the 

lowest energy configuration of the species, the potential energy is zero when φ is zero, which is 

always the case in Eq. 3.18. The fit of the potential energy is finally also compared to the ab 

initio potential energy, which allows to identify discontinuities in the ab initio profile. These are 

communicated to the end-user. 
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  𝑉(𝜑) = ∑
1

2
𝐴𝑘(1 − cos(𝑘𝜑)) +

𝑛

𝑘=1

∑ 𝐵𝑘(sin(𝑘𝜑))

𝑛

𝑘=1

 Eq. 3.18 

Before the Schrödinger equation can be solved for an internal rotation, the reduced moment of 

inertia of the rotation needs to be calculated. In this work, the I
(2,3)

 estimator of the moment of 

inertia, according to East and Radom
38

 is used. The first number (2) corresponds to the 

approximation of the coupling of one rotor with the rotation of the entire species. The second 

number (3) corresponds to the use of the axis through the centers of mass of each top as rotational 

axis.  

On each side of the bond around which the hindered rotor profile was obtained, the moment of 

the rotating top is calculated.  

 𝐼𝑡𝑜𝑝,1 = ∑ 𝑚𝑘𝑑𝐴,𝑘
2

𝑁1

𝑘=1
 Eq. 3.19 

N1 is the number of atoms on one side of the rotating top and dA,k is the distance from the k
th

 

atom to the axis of rotations, i.e. the axis through the centers of mass of the tops. Similarly, Itop,2 

is constructed with the atoms on the other side of the rotating top. The I
(3,2)

 estimator can then be 

calculated by Eq. 3.20. 

 
1

𝐼𝑟𝑒𝑑
=

1

𝐼𝑡𝑜𝑝,1
+

1

𝐼𝑡𝑜𝑝,2
 Eq. 3.20 

With the reduced moment of inertia and 𝑉(𝜑) representing the energy profile of the 1D hindered 

rotation, the 1D Schrödinger equation, Eq. 3.21, can be numerically solved, resulting in the 

energy eigenvalues 𝜖𝑘𝑖 of the i
th

 rotation.  

 [−
ℏ2

2𝐼𝑟𝑒𝑑

𝜕2

𝜕𝜙2
+ 𝑉𝑖(𝜙𝑖)] Ψ𝑘𝑖(𝜙𝑖) = 𝜖𝑘𝑖Ψ𝑘𝑖(𝜙𝑖) Eq. 3.21 

Finally, the partition function corresponding to the rotation can be calculated, c.f. Eq. 3.22. σi is 

the internal symmetry number of the rotation, gk is the degeneracy of the energy level 𝜖𝑘𝑖, and m 

is the number of energy levels included when solving the Schrödinger equation.  
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 𝑞𝑖 =
1

𝜎𝑖
∑ 𝑔𝑘𝑒

−𝜖𝑘𝑖
𝑘𝐵𝑇⁄

𝑚

𝑘=1

 Eq. 3.22 

The above treatment of rotors only applies for hindered rotors, free rotors also need to be taken 

into account. When the barrier for rotations is low, i.e. smaller than 1 kJ mol
-1

, a rotor is treated 

as free. The partition function corresponding to a free rotor is given in Eq. 3.23.  

 𝑞𝑖 =
(8𝜋3𝐼𝑟𝑒𝑑𝑘𝐵𝑇)

1
2

ℎ𝜎𝑖
 Eq. 3.23 

The vibrational contribution to the partition function qvib is multiplied by qi to account for the 

hindered or free rotation. However, in order for qvib to be correct, the molecular frequency 

corresponding to the torsional mode should not be accounted for in Eq. 3.16. Genesys thus needs 

to automatically select which frequencies νi to include in Eq. 3.16 and which ones to leave out. 

The selection procedures is based on the methodology developed by Ayala and Schlegel
39

. This 

methodology identifies frequencies that correspond to rotations based on the normal mode of the 

frequency. This normal mode is given in Cartesian coordinates by Gaussian, normalized such that 

the sum of the lengths of all vectors is one. Obviously, this definition of the normal mode is only 

valid for one set of 3D coordinates, i.e. the final structure in its standard orientation. In order to 

compare frequencies in terms of their contributions to a rotational movement around a bond, the 

normal modes are translated into internal coordinates, describing the changes in bond lengths, 

bond angles, out-of-plane motions, and dihedral angles in a species. This translation is obtained 

by multiplying the vector with all the Cartesian coordinates of the normal mode with the so-

called Wilson B matrix. The calculation of this matrix is elaborated in Appendix C. Once a 

normal mode is expressed in internal coordinates, the ratio of the contributions to changes in 

dihedral angles around one bond divided by the sum of all the other contributions can be 

calculated. In the case of a rotational movement, this ratio is high. For each bond around which 

rotation is possible, a ratio corresponding to each frequency is calculated and the frequency with 

the highest ratio is considered as the one corresponding to the torsional mode. For the next bonds, 

this frequency is no longer considered. This iterative procedure ensures that one frequency is 

selected per bond around which rotation is possible.  
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Once the molecular partition function q(T) is known, macroscopic thermodynamic values can be 

calculated according to the equations Eq. 3.24-Eq. 3.26.  

 𝑆(𝑇) = 𝑅 (1 + 𝑙𝑛 (
𝑞(𝑇)

𝑁𝐴
) + 𝑇

𝜕𝑙𝑛(𝑞(𝑇))

𝜕𝑇
) Eq. 3.24 

 𝐶𝑃(𝑇) = 𝑅 (1 + 2𝑇
𝜕𝑙𝑛(𝑞(𝑇))

𝜕𝑇
+ 𝑇

𝜕2𝑙𝑛(𝑞(𝑇))

𝜕𝑇2
) Eq. 3.25 

 𝐻(𝑇) = 𝑅𝑇 (1 + 𝑇 (
𝜕𝑙𝑛(𝑞(𝑇))

𝜕𝑇
)) Eq. 3.26 

From the above calculated enthalpy H(T), the standard enthalpy of formation at 298K is obtained 

from the atomization enthalpy method, i.e. Eq. 3.27 for a species with structural formula XmYn. 

∆𝑓𝐻° is the standard enthalpy of formation of the species, H is the enthalpy as calculated by Eq. 

3.26 and ∆𝑎𝐻° is the atomization enthalpy, which is based on experimental data. All the values of 

∆𝑓𝐻°, ∆𝑎𝐻° and 𝐻  are evaluated at 298K. The atomization enthalpy method is illustrated in 

Figure 8 for ethane. The calculated atomization enthalpy consist of the calculated standard 

enthalpies of the elements constituting the species minus the calculated standard enthalpy of the 

compound under study. The atomization enthalpies of the elements constituting the species from 

their standard originate from experimental data, c.f. Table 1.  

 
∆𝑓𝐻°(𝑋𝑚𝑌𝑛) = 𝑚∆𝑎𝐻°(𝑋) +  𝑛∆𝑎𝐻°(𝑌) − (𝑚𝐻(𝑋) + 𝑛𝐻(𝑌)

− 𝐻(𝑋𝑚𝑌𝑛)) 
Eq. 3.27 
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Figure 8: Schematic representation of the atomization enthalpy method to obtain the standard enthalpy of 

formation for the calculated enthalpy and experimental atomization enthalpies, with ethane as example. The 

atomization enthalpy ∆𝒂𝑯°𝒆𝒙𝒑 is experimentally determined, ∆𝒂𝑯°𝒄𝒂𝒍𝒄 is the calculated atomization of ethane, 

which is obtained from the ab initio enthalpies of ethane and its atoms. 

Table 1: Experimental atomization enthalpies used in the atomization enthalpy method taken from the NIST 

Chemistry WebBook
40

. 

Element 
∆𝒂𝑯°(𝟐𝟗𝟖𝑲) 

(kJ mol
-1

) 

H 217.998 

C 716.68 

N 472.68 

O 249.18 

Si 450.00 

P 316.39 

S 276.98 

Finally, the standard enthalpy of formation can be corrected by making use of Bond Additive 

Corrections (BAC’s) and spin-orbit corrections (SO). For this work, BAC’s from literature have 

been taken for hydrocarbon and oxygenate species.
41

 No consistent set of BAC’s was found for 

sulfur and nitrogen for CBS-QB3 results. Their standard enthalpies of formation were thus not 

corrected with BAC’s. The enthalpy of formation was finally increased by applying spin-orbit 

corrections for carbon (0.35 kJ mol
-1

), oxygen (0.93 kJ mol
-1

), and sulfur (2.35 kJ mol
-1

) atoms. 
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Table 2: Bond additive corrections taken from the literature.
41

 The value for the triple bonded carbon atoms 

(C≡C) comes from the work of Sabbe et al.
36

. 

Bond 𝑩𝑨𝑪 (kJ mol
-1

) 

C-C -2.07 

C-H -0.19 

C-O 1.58 

C=O 3.11 

O-H -1.77 

C=C -3.45 

C≡C -3.97 

The final values for the standard enthalpy of formation, the standard entropy and the heat 

capacities can be used as such for kinetic model generation and reactor simulations. However, 

most reactor simulation codes require the thermodynamics to be in Chemkin
42

 format. This 

format does not contain the thermodynamic values directly but describes the temperature 

dependence of the thermodynamic properties in so-called NASA polynomials. These polynomials 

are constructed from two sets of 7 coefficients, one set for low and one for high temperatures. 

The 7 coefficients describe the thermodynamic properties as shown in Eq. 3.28-Eq. 3.30. 

 
𝐶𝑝(𝑇)

𝑅
= 𝑎1 + 𝑎2 ∙ 𝑇 + 𝑎3 ∙ 𝑇2 + 𝑎4 ∙ 𝑇3 + 𝑎5 ∙ 𝑇4 Eq. 3.28 

 
∆𝑓𝐻(𝑇)

𝑅
= 𝑎1 ∙ 𝑇 +

𝑎2

2
∙ 𝑇2 +

𝑎3

3
∙ 𝑇3 +

𝑎4

4
∙ 𝑇4 +

𝑎5

5
∙ 𝑇5 + 𝑎6 Eq. 3.29 

 
𝑆(𝑇)

𝑅
= 𝑎1 ∙ ln(𝑇) + 𝑎2 ∙ 𝑇 +

𝑎3 ∙ 𝑇2

2
+

𝑎4 ∙ 𝑇3

3
+

𝑎5 ∙ 𝑇4

4
+ 𝑎7 Eq. 3.30 

To obtain the NASA polynomials of a chemical species, a linear least-square regression method 

is used based on the ab initio derived heat capacities. The unknown coefficients a1 through a5 

constitute the b vector, each row of the matrix X contains the temperature exponents, as shown in 

Eq. 3.31, and each column corresponds to a temperature at which the head capacity is evaluated. 

Finally, the y vector contains the heat capacities.  

 𝑿𝒊 = [𝟏 𝑻𝒊 𝑻𝒊
𝟐 𝑻𝒊

𝟑 𝑻𝒊
𝟒] Eq. 3.31 

The unknown coefficients in b are given by:  
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 𝒃 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 Eq. 3.32 

Once a1 through a5 are known, a6 and a7 follow from one data point of the standard enthalpy of 

formation and the standard entropy respectively.  

3.3.4 Kinetics 

The above description of thermodynamics calculations is valid for stable species as well as 

transition state structures. The resulting thermodynamic properties can be employed to deduce 

reaction rate coefficients according to Eq. 3.33. In this expression, ne is the number of single 

events, κ is the tunneling coefficient, kB is the Boltzmann constant, V°m is the standard molar 

volume, and h is the Planck constant. For bimolecular reactions, the difference in number of 

species between the transition state and the reactants −∆𝑛⧧ is -1, for monomolecular reactions, 

this value is 0. The single event entropy difference ∆𝑆̃⧧  and the enthalpy difference ∆𝐻⧧  are 

calculated from the standard entropy and standard enthalpy of formation of the reactants and the 

transition state of a reaction. 

 𝑘(𝑇) = 𝑛𝑒𝜅(𝑇)
𝑘𝐵𝑇(𝑉˚𝑚)−∆𝑛⧧

ℎ
exp (

∆𝑆̃⧧

𝑘𝐵
) exp (−

∆𝐻⧧

𝑘𝐵𝑇
) Eq. 3.33 

Eq. 3.33 is often referred to as the macroscopic expression because of the use of the macroscopic 

thermodynamic properties of the reactants and products, i.e. the standard enthalpy of formation 

and the standard entropy. A rate coefficient can however also be constructed from partition 

functions, which are microscopic properties, leading to the microscopic expression Eq. 3.34. 

Here, ∆𝐸⧧ the energy difference between the reactants and the transition state at 0K.  

 𝑘(𝑇) = 𝑛𝑒𝜅(𝑇)
𝑘𝐵𝑇(𝑉˚𝑚)−∆𝑛⧧

ℎ

𝑞⧧

∏ 𝑞𝑟𝑟
exp (−

∆𝐸⧧

𝑘𝐵𝑇
) Eq. 3.34 

The number of single events, also referred to as the reaction path degeneracy
43

, is calculated from 

the rotational symmetry numbers and numbers of optical isomers of the reactants and products:  

 𝑛𝑒 =
𝑛𝑜𝑝𝑡,‡

∏ 𝑛𝑜𝑝𝑡,𝑟𝑟
∙

∏ 𝜎𝑟𝑟

𝜎‡
 Eq. 3.35 

Tunneling is calculated using the Eckart
44

 method. This method fits an Eckart potential through 

the zero-point-corrected energies of the stationary points, i.e. the reactants, transition state and 

products, c.f. Eq. 3.36.  



Chapter 3: On-the-fly ab initio calculations  119 

 𝑉(𝑠) =
𝑎𝑒𝛼(𝑠−𝑠0)

1 + 𝑒𝛼(𝑠−𝑠0)
+

𝑏𝑒𝛼(𝑠−𝑠0)

(1 + 𝑒𝛼(𝑠−𝑠0))2
+ 𝑐 Eq. 3.36 

With this potential, the Schrödinger equation can be solved exactly. This way, an analytic form of 

the transmission probability can be constructed. The tunneling coefficient is calculated from the 

formulas of Coote et al.
45

 which implement the Eckart
44

 method.  

Analogously to thermodynamic parameters, rate coefficients k(T) can often not be used as such in 

reactor modeling or kinetic model generation, but they need to be converted to another format, 

typically Arrhenius or modified Arrhenius expressions, as shown in Eq. 3.37 and Eq. 3.38 

respectively.  

 𝑘(𝑇) = Aexp (−
E𝑎

R𝑇
) Eq. 3.37 

 𝑘(𝑇) = AT𝑛exp (−
E

R𝑇
) Eq. 3.38 

The Arrhenius coefficients A, n and Ea can be estimated by regression of a set of values of k(T) 

in the temperature range of interest. A linear least-square regression is possible after transforming 

the Arrhenius expression into a linear form:  

  ln(𝑘(𝑇)) = ln(𝐴) + 𝑛 ln(𝑇) −
𝐸

𝑅𝑇
 Eq. 3.39 

For the linear least-square regression, c.f. Eq. 3.41, the b vector contains ln(A), n and Ea, each 

row of the matrix X is shown in Eq. 3.40 and each column corresponds to a temperature at which 

the rate coefficient is evaluated. The y vector contains the rate coefficients.  

 𝑿𝒊 = [1 ln(𝑇𝑖) −(𝑅𝑇𝑖)
−1] Eq. 3.40 

The Arrhenius coefficients are given by:  

 𝒃 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 Eq. 3.41 

The significance of the regression can be verified by calculating the F-value, c.f. Eq. 3.42, in 

which n is the number of rate coefficients and p is the number of parameters, p is 2 for Arrhenius 

expressions and 3 for modified Arrhenius expressions.  
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 𝐹 =

(𝑿𝒃)𝑻𝑿𝒃
𝑝

𝒚𝑻𝒚 − (𝑿𝒃)𝑻𝒚
𝑛 − 𝑝

 Eq. 3.42 

The quality of the regression can further be analyzed using R
2
 values, i.e. multiple correlation 

coefficients. R
2
 values lie between 0 and 1, and the higher the value, the better the Arrhenius 

parameters are able to describe the rate coefficients.  

 𝑅2 =
(𝑿𝒃)𝑻𝑿𝒃

𝒚𝑻𝒚
 Eq. 3.43 

In calculation procedures such as group additivity
5-8,46-48

, the pre-exponential factor A is 

calculated based on several contributions. First, the group additivity model calculates a so-called 

single event pre-exponential factor Ã. The final pre-exponential A is obtained by multiplying Ã 

with the tunneling coefficient and the number of single events:  

 A = 𝑛𝑒𝜅𝐴̃ Eq. 3.44 

The tunneling coefficient and number of single events are calculated separately. The number of 

single events can be obtained from the topology of the reactants and transition state.
49

 Many 

calculation procedures exist for tunneling coefficients, which depend on the reaction family. For 

example, Sabbe et al.
6
 introduced a correlation to calculate the tunneling coefficient in hydrogen 

abstraction reactions between hydrocarbons, c.f. Eq. 3.45. Similarly Eq. 3.46 shows a correlation 

for the tunneling coefficients in homolytic substitutions by hydrogen radicals at thiols and 

sulfides developed by Vandeputte et al.
50

. 

 κ(T) = 1 + (
162

𝑇
)

3

𝐸𝑎,𝑒𝑥𝑜 + 2.71 ∙ 10−6 ∙ exp (−
𝑇 − 300

26
) 𝐸𝑎,𝑒𝑥𝑜

4  Eq. 3.45 

 κ(T) = 1 + (
83

𝑇
)

3

𝐸𝑎,𝑒𝑥𝑜 Eq. 3.46 
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3.4 Results 

Genesys has been applied to a range of species and reactions to illustrate its capabilities and the 

approach in automatic ab initio calculations during automatic kinetic model generation.  

3.4.1 Stable species 

Thermodynamic properties have been calculated for 21 species with variety of structural features: 

The set contains both small (C3-) and big (C10) species, hetero-atomic molecule (with oxygen, 

sulfur and nitrogen), ring structures, aromatic structures, radicals and resonantly stabilized 

species, optical and cis/trans isomers, and a molecule with H-bridge bonding. They are shown in 

Figure 9. 

 

Figure 9: 21 species used to illustrate the on-the-fly ab initio thermodynamics calculations in Genesys. 

A total of 2162 calculations were done with Gaussian, including 215 pre-optimizations, 1393 

conformational scans, 502 final optimizations and the calculation of 52 1D hindered rotor 

potentials.  
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3.4.1.1 Initial coordinates generation 

A crucial step in automatically performing ab initio calculations is the generation of initial 3D 

coordinates, which are close enough to a local minimum on the potential energy surface. The 

Merck Molecular Force Field
32

 has been shown to be very robust, all the necessary force field 

parameters needed to estimate the 3D coordinates of the atoms of the species in Figure 9 are 

present. The initial distance geometry algorithm results in structures in which several coordinates 

are far from the force field equilibrium values. The force field implemented in Genesys can 

however correct these coordinates, while keeping the connectivity of the species. In ethane for 

example, as shown in Figure 10, the distance geometry algorithm creates a 3D structure in which 

the bond lengths and bond angles are close to the force field equilibrium values. However, the 

dihedral angle can be further away from the equilibrium, and the ethane structure is close to the 

eclipsed configuration. The force field optimization corrects this by rotating around the C-C bond 

finding a minimum in forces for a dihedral angle close to 60°, which corresponds to the staggered 

configuration.  

 
Figure 10: Illustration of the generation of 3D coordinates via “distance geometry” followed by force field 

calculations, φ is the H-C-C-H dihedral angle. 

3.4.1.2 Conformational analysis 

The conformational analysis is performed in two steps, depending on whether the species or 

transition state contains a cyclic structure. For ring structures, the distance geometry is used as 

conformer generator. The distance geometry algorithm is used several times to generate a number 

of initial structures, by varying the random numbers to select the distance matrix from the 
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distance bounds matrix. These structures are compared to each other via the Root Mean Square 

(RMS) distances between the atoms and identical structures are filtered out. For 1,3-

dimethylcyclohexane, for example, this leads to 11 different sets of coordinates. For such a 

species, it is necessary to evaluate the structure of the cyclohexane skeleton and to evaluate the 

position of the methyl groups on the ring. Genesys automatically generated chair and twist-boat 

ring structures. For each conformer, the methyl groups can be each in equatorial, each in axial or 

one in equatorial and one in axial position. In the twist-boat structure, the carbon atoms are not 

equivalent, i.e. the symmetry is lower, this leads to more possibilities to substitute the ring with 

two methyl groups.  

Conformational analysis is also important in open chain structures. After the pre-optimization, 

each conformer is generated by rotating only one side of a rotatable bond. This is exhaustively 

done for the whole species. In decane, there are 9 rotatable bonds. The methyl groups are not 

considered in the conformational scan, leading to 7 rotatable bonds that contribute in the 

conformational analysis. 3 scan were done around 120°; a total of 3
7
=2187 structures were 

generated. These structures are filtered to eliminate chemically insignificant ones, i.e. when non-

bonded atoms are too close to each other. Furthermore, due to symmetry, several conformers are 

present twice in the set of structures. These are identified based on RMS distances, and are 

eliminated from the calculations. For decane, 581 Gaussian calculations were performed during 

the conformational analysis. Out of the 581 calculations, 14 are within 5 kJ mol
-1

 from the lowest 

energy conformer, another 190 structures are within 10 kJ mol
-1

 from the minimum. The highest 

energy conformer is 35.7 kJ mol
-1

 above the lowest one. The structure in which every C-C-C-C 

dihedral angle is approximately 180°, was identified as global energy minimum for decane, as 

expected.  

Hydrogen-bridge bonds are not included in the topology information of a species in Genesys. 

However, they play an important role when calculating thermodynamic parameters. During the 

conformational analysis of 1,3-butanediol, several conformers were created in which the 

hydrogen of one alcohol group approaches the oxygen atom of the other alcohol group. Figure 11 

shows the difference in electronic energy between all the conformers of 1,3-butanediol, relative 

to the lowest energy conformer, calculated at the B3LYP/3-21G* level of theory. Each point on 

the graph corresponds to a different conformer. Flat areas of the graph mean that several 
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conformers have similar energies, whereas a steep slope represent a big gap in energy between 

the conformers. Such a gap is seen around 14 kJ mol
-1

, where the next conformer has an energy 

of 25 kJ mol
-1

. All conformers with an energy up to 14 kJ mol
-1

 contain a hydrogen-bridge bond, 

the others do not. Therefore, these structures are used in the high level optimization and 

downstream calculations.  

 
Figure 11: Electronic energy of all the conformers of 1,3-butanediol relative to the lowest energy conformer.  

As mentioned in section 3.3.1.2, a cutoff energy of 5 kJ mol
-1

 is employed to start CBS-QB3 

calculations. This cutoff is defined by making a tradeoff between the certainty to identify the 

lowest energy conformer and the number of high level of theory calculations that need to be done. 

In order to verify whether this value is not too low, energy calculations at high level of theory 

were performed for all the conformers. The maximum deviation in DFT energy between the 

conformer with the lowest CBS-QB3 energy and the conformer with the lowest DFT energy 

amounts less than 3 kJ mol
-1

 making the value of 5 kJ mol
-1

 appropriate for the molecules in this 

work.  

3.4.1.3 Stereoconfiguration 

As mentioned for 1,3-dimethylcyclohexane, Genesys explicitly takes the stereoconfiguration of 

species into account. When a species with a stereocenter is encountered, each stereo-isomer is 
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generated and treated as a separate species. In the case of 3-methyl-2-pentanol, there are two 

chiral centers. This leads to 4 possible stereoisomers, two set of two enantiomers, who relate as 

diastereomers to each other. Since enantiomers have the same electronic energy and frequencies, 

it is not necessary to treat them as separate species in Gaussian. Diastereomers, however, need to 

each have their own thermodynamic parameters assigned to. Figure 12 shows the pairs of 

enantiomers, together with their standard enthalpy of formation and entropy. Although the 

differences are small, 1.5 kJ mol
-1

 for the standard enthalpy of formation and 1.3 J mol
-1

 K
-1

 for 

the entropy, Genesys is able to account for these differences. Furthermore, it has been shown that 

these differences can play an important role during kinetic model simulations.
33

 

 
Figure 12: The stereoisomers of 3-methyl-2-pentanol consist of two pairs of enantiomers. Two elements of 

different pairs are diastereomers of each other. Diastereomers have different thermodynamic properties. 

Besides multiple chiral centers, the stereoconfiguration of cis-trans centers also influences the 

thermodynamics. As for diastereomers, Genesys explicitly accounts for the cis and the trans 

configuration of a species. Both configurations are treated as separate species and separate 

coordinates are assigned to them. In the case of cis-trans stereoisomers over a double bond, the 

initial distance bounds matrix is different for each isomer, in contrast to chiral centers where the 

distances are identical for each isomer, since they are only based on the topology. When defining 

the 1-4 distances, a dihedral angle of 0° is chosen for cis-isomers, whereas the dihedral angle in 

the trans-isomer is 180°.  
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The equilibrium bond lengths in 2-butene are 154 pm for the single C-C bonds a and 134 pm for 

the double C-C bond b. The angle α is assumed to be 120°. With these geometrical constraints, 

the distance d, c.f. Figure 13, between the two terminal carbon atoms is 393 pm in the case of the 

trans structure, and 288 pm for the cis isomer. These values are used to build the distance bounds 

matrix, yielding different initial 3D coordinates.  

 
Figure 13: Distances between the two terminal carbon atoms in 2-butene depends on the stereoconfiguration 

of the double bond.  

In species were cis-trans isomers exist, but where the locus of stereoisomerism is larger than two 

atoms, e.g. as a result of substituents on a ring structure, the distance bounds matrix cannot 

account for the stereocenters. Two distance bounds matrices of these isomers are thus identical. 

In this case, the proper isomer is selected after the generation of the 3D structure. As mentioned 

above, 1,3-dimethylcyclohexane has a cis and a trans isomer. Each isomer is tracked in Genesys, 

and separate thermodynamics are calculated.  

3.4.1.4 Thermodynamics 

Finally, the obtained thermodynamic properties, i.e. the standard enthalpy of formation and the 

standard entropy are compared to literature data, both experimental as well as theoretical data. 

Table 3 shows the comparison between the on-the-fly ab initio calculated standard enthalpies of 

formation and standard entropies and the literature data. Open-chain hydrocarbons show very 

good agreements in standard enthalpy of formation, definitely when corrected with BAC’s. The 

standard entropy is also comparable to the experimental data. Cyclic structures show higher 

deviations, the BAC’s decrease the standard enthalpy of formation too much. Standard entropy 

values are close to the experimental ones. For hetero-atomic species, there is only a limited 

amount of data available in the literature. The calculated standard enthalpy of formation of 

methyl butanoate is within chemical accuracy, i.e. an agreement within 4 kJ mol
-1

, of the 

experimental data. Although the hydrogen-bridge was successfully found in 1,3-butanediol, a 

large deviation in standard enthalpy of formation is obtained.   
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Table 3: Comparison between Genesys and literature data of the standard enthalpy of formation and the 

standard entropy. Enthalpies are expressed in kJ mol
-1

 and entropies in J mol
-1

 K
-1

.  

   ∆𝑓𝐻°298    𝑆°298  

 
Genesys 

BAC 

+SO 
Literature Δ

a
 Δcorr

a 
Genesys Literature Δ

a
 

Methane -74.2 -0.4 -74.9
b
 -0.7 -0.3 186.1 188.7

b
 2.6 

Ethane -81.8 -2.5 -84.0
b
 -2.2 0.3 229.2 229.1

d
 -0.1 

Ethylene 55.9 -3.5 52.5
b
 -3.4 0.1 218.9 219.3

b
 0.4 

Propane -100.7 -4.6 -104.7
b
 -4.0 0.6 270.8 270.2

d
 -0.6 

Trans-2-butene -3.5 -7.7 -10.8
b
 7.2 0.4 298.8 296.5

d
 -2.3 

Cis-2-butene 1.5 -7.7 -7.7
b
 -9.2 -1.5 297.8 300.8

d
 3.0 

Propyne 192.0 -5.8 185.4
b
 -6.5 -0.8 247.4 248.1

d
 0.7 

Decane -228.5 -19.3 -249.7
b
 -21.2 -1.9 541.4 545.8

b
 4.4 

Trans-1,3-

dimethylcyclohexane 
-173.3 -16.8 -176.5

d
 -3.2 13.6 

378.7 376.2
d
 -2.5 

Toluene 58.1 -17.7 50.1
b
 -8.0 9.8 320.1 320.7

d
 0.6 

Naphthalene 159.4 -27.7 150.0
b
 -9.4 18.3 332.6 333.1

d
 0.5 

Methyl butanoate -455.3 1.8 -454.4
c
 0.9 -0.8 400.2   

3-methylpentane-2-ol -331.7 -10.0    423.7   

1,3-butanediol -459.7 -4.9 -433.0
b
 26.7 31.5 359.7   

Thiophene 114.4 3.8 116.4
b
 2.0 -1.8 278.6 278.9

d
 0.3 

Diethyl sulfide -83.0 3.8 -83.5
b
 -0.5 -4.3 369.9   

Pyridine 144.1 1.8 140.2
b
 -3.9 -5.6 281.9 282.8

d
 0.9 

Ethyl radical 124.4 -2.3 119.0
b
 -5.4 -3.1 247.8 248.0

f
 0.3 

t-butyl radical 59.7 -6.5 48.0
b
 -11.7 -5.2 320.0 319.1

h
 -0.9 

1-buten-3-yl radical 141.3 -7.5 135.2
f
 -6.1 1.4 301.1 301.1

h
 0.0 

Cyclopentadienyl 

radical 
273.0 -12.3 271.0

e
 -2.0 10.3 

278.0 264.9
i
 -13.1 

Vinyloxyl radical 13.8 -1.7 14.6
g
 0.8 2.6 258.9 258.9

g
 0.0 

a
 Δ corresponds to ∆𝑓𝐻°298,𝑙𝑖𝑡 − ∆𝑓𝐻°298,𝑔𝑒𝑛𝑒𝑠𝑦𝑠 for the standard enthalpy of formation and 𝑆°298,𝑙𝑖𝑡 − 𝑆°298,𝑔𝑒𝑛𝑒𝑠𝑦𝑠. 

The subscript corr refers to the calculated standard enthalpy of formation corrected with bond additive and spin-orbit 

corrections.  
b
 Nist Chemistry WebBook (http://webbook.nist.gov/chemistry/) 

c
 El-Nahas et al.

51
 

d
 Lange's Handbook of Chemistry, 14th Edition

52
 

e
 Nunes et al.

53
 

f
 Sabbe et al.

36
 

g
 Paraskevas et al.

41
 

h
 Sabbe et al.

37
 

i
 Kiefer et al.

54
  

 

No BAC’s were used to calculate the standard enthalpy of formation of nitrogen and sulfur 

containing compounds. Nevertheless, good agreement with the standard enthalpy of formation is 

found for pyridine, thiophene and diethyl sulfide. Their standard entropies also compare well 

with the literature data.  
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Five radical species were calculated and compared to other theoretical results. Except for the 

cyclopentadienyl radical, chemical accuracy is obtained for the standard enthalpy of formation. 

The entropies are very close to the literature data.  

In general, good agreement has been obtained between automatically calculated ab initio 

thermodynamic values of several molecule and radicals and literature data, within chemical 

accuracy. Only minor manual interventions are necessary, i.e. the correction of the rotational 

symmetry, giving promising results to use Genesys for the calculations of thermodynamic 

parameters where data is lacking.  

3.4.2 Reactions 

To validate the automated ab initio reaction rate coefficient calculations, 8 reactions belonging to 

8 different reaction families have been calculated automatically. These reaction families are inter- 

and an intramolecular radical addition, inter- and intramolecular hydrogen abstraction, 

substitution, dehydration, dehydrogenation, and retro-ene reaction. All reactions can be found in 

Table 4.  

3.4.2.1 3D coordinates  

For each reaction, a reaction family is constructed in Genesys. A part of the reaction family 

definition contains the coordinates of the reactive atoms. This information describes the 3D 

arrangement of the atoms that change in connectivity throughout the reaction at the saddle point, 

and has been constructed from literature and manually calculated transition states. The initial 

bond lengths and bond angles of the reactive atoms in the transition state are listed in Table 4, 

together with the final geometries. The letters refer to the bonds and angles depicted in the 

transition state (TS) figures.  

For radical addition reactions, both inter- and intramolecular, it has been assumed that the bond 

length between the attacking and the attacked carbon atom amounts to 231pm, according to 

literature data. Because this transition state is rather early, the bond length of the bond that 

changes from a double to a single bond is close to the average bond length of a double bond, i.e. 

135pm compared to 133pm. This value is further away from the average singly bonded carbon-

carbon bond length of 154pm. For the intramolecular addition, the bond angle between the three 

reactive atoms is restricted because of the ring structure in the transition state, whereas for the 

intermolecular case, the bond angle is higher due to steric hindrance.  
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The bond lengths in transition states of hydrogen abstractions can often be easily estimated by 

multiplying the stable bond lengths by a factor around 1.2. For a C-H bond and an O-H bond, this 

leads to a bond length of respectively 135pm and 239pm in the transition state. For 

intermolecular hydrogen abstractions, the bond angle between the three reactive atoms is 

assumed to be as high as possible, i.e. 180°. Similarly to intramolecular radical addition 

reactions, if the reactive atoms are part of a ring structure in the transition state, the bond angle is 

lower. In this case it is approximately 100°.  

Bond lengths in substitution reactions such as R5, where the bond being broken and the bond 

being formed are similar, i.e. they are both single C-S bonds, can be assumed to be equal. The 

bond angle should be high because of the steric hindrance, but the sulfur atom is also bonded to a 

hydrogen atom, a tradeoff between both leads to a bond angle of around 153° as starting point.  

Transition states for R6-R8 are more complex to find since these reactions have more than three 

reactive atoms. Furthermore, the transition state is cyclic. The dehydration reaction proceeds 

through a four-membered ring structure as shown in Table 4. The transition states of R7 and R8 

both contain a six-membered ring of which all atoms are part of the reactive atom. The transition 

state for the dehydrogenation reaction R7 belongs to the S1 point group, a reflection plane 

through the middle of the forming H-H bond, the C-C bond that decreases in order and the carbon 

atom that is not a reactive atom, reflects the species onto itself. Therefore, only 7 parameters (4 

bond lengths and 3 bond angles) are required instead of 12. Finally, the retro-ene reaction R8 

depends on 6 bond lengths and 6 bond angles. 

Table 4: Reactions used for the validation of the on-the-fly ab initio reaction rate coefficient calculations with 

the initial and final geometrical parameters of the reactive atoms. The distances are expressed in pm, the 

angles in degrees.  

 Reactions TS  Initial Final 

R1   

a 

b 

α 
 

135 

231 

120° 
 

135 

233 

110° 
 

R2 

  

a 

b 

α 
 

135 

231 

98° 
 

136 

231 

100° 
 

  

  



130    Chapter 3: On-the-fly ab initio calculations 

(Table 4 continued) 

 Reactions TS  Initial Final 

R3   

a 

b 

α 
 

135 

135 

180° 
 

132 

138 

179° 
 

R4 

  

a 

b 

α 
 

123 

239 

156° 
 

118 

237 

153° 
 

R5  
 

a 

b 

α 
 

188 

188 

153° 
 

211 

206 

165° 
 

R6  

 

a 

b 

c 

d 

α 

β 

γ 

δ 
 

141 

160 

158 

115 

101° 

73° 

116° 

68° 
 

142 

190 

141 

128 

94° 

61° 

130° 

75° 
 

R7 

 

 

a 

b 

c 

d 

α 

β 

γ 
 

97 

156 

141 

139 

115° 

96° 

108° 
 

97 

156 

141 

139 

115° 

96° 

108° 
 

R8 

 

 

a 

b 

c 

d 

e 

f 

α 

β 

γ 

δ 

ε 

ζ 
 

133 

137 

129 

184 

139 

141 

139° 

105° 

123° 

102° 

122° 

104° 
 

135 

140 

132 

189 

139 

142 

147° 

105° 

114° 

100° 

117° 

99° 
 

Each of the geometrical values used for the generation of initial coordinates for the atoms of 

transition states is valid for one specific reaction family because a reaction family is by definition 

a set of reactions with similar electronic structures in the transition state. The bonds that are 

formed, broken or change in order should be of identical nature, i.e. same elements with the same 

hybridization. 
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Table 5: Bond lengths (in pm) in the transition state of several retro-ene reactions with an oxygen atom in 

different positions.  

 

 

Transition state a b c d e f 

 

129 135 132 198 140 142 

 

135 140 132 189 139 142 

 

138 144 141 188 138 138 

 

118 144 139 229 137 133 

Retro-ene reactions, for example, are important reactions in hydrocarbon and oxygenates 

pyrolysis and combustion. The parameters as listed in Table 4 can only be used in the case an 

oxygen atom is present in the β position of the hydrogen reactive atom. The other four reactive 

atoms need to be carbon atoms. In the case another retro-ene reaction is considered, with an 

oxygen atom in a different position, different geometrical parameters are required. This is 

illustrated in Table 5: Four transition states are depicted belonging to four different retro-ene 

reactions. The position of the oxygen atom is varied. The bond lengths between the reactive 

atoms in the transition state are strongly dependent on the position of the oxygen atom. Although 

the absolute deviations are limited to 40pm, the total deviation on the transition state structure is 

rather high and led to failed saddle point searches by Gaussian without the proper initial 

geometries. 

The initial 3D coordinates generation leads to transition states in which all the bond lengths and 

angles are close to the ones defined in the reaction families. These starting geometries are used as 

input for Gaussian as explained above. The final geometrical parameters in Table 4 correspond to 

the CBS-QB3 optimized structures. Of course, the initial structure of the transition states needs to 

be close enough to the saddle point for a successful calculation, but from the differences between 

the initial and final geometries it can be seen that a reasonable estimate is acceptable, with a 

maximum deviation of 30pm for bond lengths and 14° for bond angles. 
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3.4.2.2 Kinetics 

The rate coefficients are shown in Figure 14 and Figure 15 as a function of temperature, the 

modified Arrhenius parameters are listed in Table 6 together with the rate coefficients at 300 and 

1000K, and the simple Arrhenius parameters are listed in Table 7. Tunneling coefficients and 

numbers of single events can be found in Table 8. Figure 14 and Figure 15 also report rate 

coefficients from the literature to compare the results. The modified Arrhenius parameters in 

Table 6 have been obtained via linear regression of the modified expression, after transforming it 

to a linear form. The uncertainty intervals in Table 6 correspond to a confidence of 95%. 

Regression of the conventional Arrhenius equation, i.e. Eq. 3.37, has also been done, the results 

can be found in Table 7. For most reactions, the regression has been done in a temperature range 

of 300 to 2000K. However, for two reactions, R6 and R7, tunneling coefficients are very high at 

low temperature, which can be seen in Table 8. The uncertainty on the Arrhenius parameters is 

too high when considering the same temperature range and the Arrhenius parameters have thus 

been regressed in a temperature range of 600 to 2000K.  

The rate coefficients in Table 6 are reported calculated from ab initio (AI) and from the modified 

Arrhenius parameters (ARRH). The ratio of both is also given, which shows a good agreement. 

An average deviation of 5% is observed with a maximum deviation of 17%. Conventional 

Arrhenius parameters do not reach this accuracy, as shown in Table 7, especially for the reactions 

for which tunneling coefficients are high. The average deviation amounts 47% with a maximum 

deviation of 202%. For each regression, the significance of the regression is verified by the F 

values, which all lie between 6.2 10
4
 and 3.9 10

7
, which are very high compared to the F0.05 

values of 3.68 and 3.89 for the regression of 300 to 2000K and 600 to 2000K respectively. The 

R² values are always larger than 0.999. The three parameters show very high binary correlation 

coefficients: -0.9994 for ln 𝐴 and n, 0.9736 for ln 𝐴  and 𝐸 , and -0.9669 for E and n. For the 

simple Arrhenius parameters, the R² values are higher than 0.99, the binary correlation coefficient 

for ln 𝐴 and E𝑎 amounts 0.8242. Although the binary correlation coefficient is lower for simple 

Arrhenius parameters, their accuracy in a large temperature domain is too low to be used for 

automatic kinetic model generation. Simple Arrhenius parameters can be used in a more narrow 

temperature range, if the application of the kinetic model allows this.   
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Table 6: Rate coefficients for the validation set. The first row of each reaction corresponds to the forward rate coefficient, the second row to the reverse 

one. The units of E are kJ mol
-1

, A and k are expressed in s
-1

 for monomolecular reactions and m
3
 mol

-1
 s

-1
 for bimolecular reactions. Modified 

Arrhenius parameters have been obtained from linear regression of the modified Arrhenius equation. The uncertainty intervals of the regression 

correspond to a confidence of 95%. The pre-exponential factors contain the contributions for tunneling and the numbers of single events. The rate 

coefficients have been evaluated using the modified Arrhenius parameters (ARRH) and using the ab initio calculations (AI), their ratio is also reported.  

 
T  

range (K) 
A n E 𝒌𝑨𝑹𝑹𝑯 𝒌𝑨𝑹𝑹𝑯 𝒌𝑨𝑰 𝒌𝑨𝑰 

𝒌𝑨𝑰

𝒌𝑨𝑹𝑹𝑯
 

𝒌𝑨𝑰

𝒌𝑨𝑹𝑹𝑯
 

     300K 1000K 300K 1000K 300K 1000K 

R1 300-2000 
6.6 ± 1.5 10

-2
 2.37 ± 0.02 23.0 ± 0.2 4.8 10

0
 5.3 10

4
 4.9 10

0
 5.4 10

4
 1.01 1.01 

5.7 ± 4.4 10
10

 0.97 ± 0.07 123.3 ± 0.4 4.9 10
-9

 1.7 10
7
 5.0 10

-9
 1.7 10

7
 1.02 1.01 

R2 300-2000 
4.0 ± 2.6 10

7
 0.70 ± 0.13 29.1 ± 0.8 1.9 10

4
 1.5 10

8
 1.8 10

4
 1.4 10

8
 0.97 0.92 

8.0 ± 4.3 10
11

 0.77 ± 0.10 124.3 ± 0.6 1.5 10
-8

 5.2 10
7
 1.5 10

-8
 5.2 10

7
 1.02 0.99 

R3 300-2000 
9.1 ± 8.5 10

-9
 4.48 ± 0.35 32.0 ± 2.0 3.1 10

-3
 5.3 10

3
 3.4 10

-3
 5.9 10

3
 1.11 1.11 

3.1 ± 2.9 10
-10

 4.83 ± 0.39 48.3 ± 2.2 1.1 10
-6

 2.9 10
2
 1.3 10

-6
 3.2 10

2
 1.17 1.11 

R4 300-2000 
2.6 ± 2.0 10

2
 2.56 ± 0.18 64.4 ± 1.0 3.5 10

-3
 5.4 10

6
 3.7 10

-3
 5.7 10

6
 1.06 1.06 

6.0 ± 3.9 10
1
 2.40 ± 0.14 11.7 ± 0.8 4.9 10

5
 2.3 10

8
 5.2 10

5
 2.5 10

8
 1.07 1.07 

R5 300-2000 
5.6 ± 2.5 10

-1
 1.90 ± 0.08 50.6 ± 0.4 4.4 10

-5
 6.4 10

2
 4.6 10

-5
 6.1 10

2
 1.04 0.96 

1.1 ± 0.1 10
-3

 2.64 ± 0.01 50.5 ± 0.0 6.1 10
-6

 2.1 10
2
 5.9 10

-6
 2.1 10

2
 0.96 1.00 

R6 600-2000 
8.2 ± 6.9 10

4
 2.50 ± 0.23 268.8 ± 2.0  2.4 10

-2
 1.2 10

-31
 2.3 10

-2
  0.98 

1.5 ± 1.2 10
-10

 4.52 ± 0.19 224.1 ± 1.7  1.1 10
-8

 8.2 10
-34

 1.1 10
-8

  1.03 

R7 600-2000 
8.7 ± 5.4 10

7
 1.46 ± 0.12 228.5 ± 1.1  2.4 10

0
 1.1 10

-27
 2.3 10

0
  0.95 

2.3 ± 0.3 10
-4

 2.70 ± 0.02 125.0 ± 0.2  8.6 10
-3

 1.2 10
-18

 8.3 10
-3

  0.97 

R8 300-2000 
6.5 ± 4.3 10

3
 2.29 ± 0.14 170.4 ± 0.8 6.5 10

-21
 6.1 10

1
 7.0 10

-21
 6.5 10

1
 1.07 1.07 

1.8 ± 1.0 10
-11

 4.31 ± 0.11 148.8 ± 0.6 1.1 10
-26

 2.6 10
-6

 1.1 10
-26

 2.6 10
-6

 1.04 1.01 
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Table 7: Simple Arrhenius parameters for the validation set. The first row of each reaction corresponds to the 

forward rate coefficient, the second row to the reverse one. The units of Ea are kJ mol
-1

, A is expressed in s
-1

 

for monomolecular reactions and m
3
 mol

-1
 s

-1
 for bimolecular reactions. The Arrhenius parameters have been 

obtained from linear regression of the Arrhenius equation. The uncertainty intervals of the regression 

correspond to a confidence of 95%. The rate coefficients have been evaluated using the Arrhenius parameters 

(ARRH). The ab initio (AI) rate coefficients can be found in Table 6. The ratios of the Arrhenius and ab initio 

rate coefficients are also reported. 

 T range (K) A Ea 𝒌𝑨𝑹𝑹𝑯 𝒌𝑨𝑹𝑹𝑯 
𝒌𝑨𝑰

𝒌𝑨𝑹𝑹𝑯
 

𝒌𝑨𝑰

𝒌𝑨𝑹𝑹𝑯
 

    300K 1000K 300K 1000K 

R1 300-2000 
5.7 ± 1.5 10

6
 36.0 ± 1.7 3.1 10

0
 7.5 10

4
 1.59 0.72 

9.9 ± 1.2 10
13

 128.6 ± 0.7 4.0 10
-9

 1.9 10
7
 1.25 0.90 

R2 300-2000 
8.7 ± 0.8 10

9
 32.9 ± 0.5 1.6 10

4
 1.7 10

8
 1.11 0.84 

2.9 ± 0.3 10
14

 128.4 ± 0.6 1.3 10
-8

 5.7 10
7
 1.18 0.91 

R3 300-2000 
8.4 ± 3.7 10

6
 56.4 ± 3.2 1.3 10

-3
 9.5 10

3
 2.68 0.62 

4.2 ± 2.0 10
6
 74.6 ± 3.4 4.3 10

-7
 5.3 10

2
 3.02 0.60 

R4 300-2000 
9.4 ± 2.7 10

10
 78.3 ± 1.8 2.2 10

-3
 7.6 10

6
 1.69 0.75 

6.5 ± 1.7 10
9
 24.8 ± 1.7 3.1 10

5
 3.3 10

8
 1.66 0.76 

R5 300-2000 
1.2 ± 0.3 10

6
 60.8 ± 1.4 3.1 10

-5
 8.0 10

2
 1.45 0.76 

7.2 ± 2.1 10
5
 64.9 ± 1.8 3.6 10

-6
 2.9 10

2
 1.64 0.72 

R6 600-2000 
4.2 ± 0.9 10

13
 290.6 ± 2.1  2.8 10

-2
  0.83 

8.6 ± 2.9 10
5
 263.5 ± 3.7  1.5 10

-8
  0.74 

R7 600-2000 
1.1 ± 0.1 10

13
 241.4 ± 1.2  2.7 10

0
  0.85 

5.8 ± 1.3 10
5
 148.5 ± 2.2  1.0 10

-2
  0.82 

R8 300-2000 
3.0 ± 0.8 10

11
 182.9 ± 1.6 4.3 10

-21
 8.4 10

1
 1.64 0.78 

4.6 ± 2.0 10
3
 172.3 ± 3.0 4.6 10

-27
 4.6 10

-6
 2.40 0.57 

Radical addition reactions to unsaturated bonds often contain an early transition state, with a low 

energy barrier, which is seen in the simple Arrhenius parameters of the reactions R1 and R2, i.e. 

36.0 and 32.9 kJ mol
-1

 respectively as shown in Table 7. The reactions are exothermic, and the 

reverse reactions have thus a higher barrier. Tunneling coefficients for these reactions are 

typically low, as seen in Table 8. The pre-exponential factor of the reverse reaction of R2 is 

several orders of magnitude higher than the forward one, which reflects the strong loss in entropy 

when closing an open carbon chain to a cyclic structure. The kinetics of R1, shown in Figure 14a 
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in the reverse direction, show a satisfactory agreement with the experimental data over a wide 

temperature range. The rate coefficients are within a factor of 1.75 from the experimental data of 

Papic and Laidler
55

 and Mintz and Le Roy
56

, the deviations to the data of Tsang et al.
57

 is higher, 

with an average deviation of a factor of 4, and a maximum of 4.91 at 800K. The rate coefficients 

are also comparable to other ab initio studies such as the one from Sabbe et al.
5
  

Table 8: Tunneling coefficients at 300 and 1000K, and numbers of single events of the 8 reactions. 

 Reactions κ (300K) κ (1000K) ne forward ne reverse 

R1  1.17 1.02 8 2 

R2 

 

1.22 1.02 4 4 

R3  37.14 1.29 12 8 

R4 

 

25.08 1.31 2 2 

R5  1.15 1.01 2 2 

R6  2542444.93 1.48 2 4 

R7 

 

112.78 1.24 1 4 

R8 

 

5.49 1.12 3 6 

Intramolecular additions, and their reverse β-scission reactions, are important in the pyrolysis and 

combustion of cyclic species, and also for the production of aromatic compounds, and PAH 

formation. An accurate understanding of these reactions is thus crucial for modeling and 

optimization of fuel blends and combustion engines. One of the simplest reactions belonging to 

this family is the exo-addition of the 1-hexen-6-yl radical to the cyclohexyl radical (R2), of 

which the rate coefficients are shown in Figure 14b. Wang et al.
58

 also used CBS-QB3 

calculations with 1D hindered rotor potential to calculate the rate coefficients. In this reaction, 

where 4 internal rotations are frozen in the transition state and product, the use of the 1D 

hindered rotor approach has a major impact on the calculated rate coefficient. This maximum 
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ratio between Wang et al. and this work is 2.6, which is obtained at low temperature. Sirjean at 

al.
59

 reports rate coefficients that are more than an order of magnitude higher. The experimental 

data of Handford-Styring and Walker
60

 deviate a factor of 0.8 to 1.0, which is in very good 

agreement of the ab initio rate coefficients.  

 
Figure 14: Rate coefficients calculated by Genesys for (a) the β-scission of the n-propyl radical to a methyl 

radical and ethylene (reverse of R1) compared to experimental data from Papic and Laidler
55

, Tsang et al.
57

, 

Mintz and Le Roy
56

, (b) the intramolecular addition of the 1-hex-5-enyl radical to the cyclohexyl radical (R2) 

compared to experimental data from Sirjean et al.
59

, Wang et al.
58

, and Handford-Styring and Walker
60

, (c) 

the hydrogen abstraction by a methyl radical from ethane (R3) to literature data from Baulch et al.
61

, Arthur 

and Bell
62

, Peukert
63

, and Möller et al.
64

, and (d) the ROO to QOOH reaction (R4) compared to literature data 

from Cord et al.
65

, Davis and Francisco
66

, and Crounse et al.
67

. 

Hydrogen abstraction reactions, such as R3 and R4, have high tunneling coefficients at low 

temperatures, as shown in Table 8. Regression of a modified Arrhenius expression for these 

reactions thus leads to high n values, and an accompanied higher uncertainty on n and on the pre-

exponential factor. R3 is compared to experimental data, where Genesys deviates up to a factor 

of 2 compared to the work of Peukert et al.
68

, a factor of 1.3 compared to the work of Arthur and 

Bell
62

, and a factor of 3.3 compared to the work of Möller et al.
64

. Furthermore, the rate 

coefficients reported by Baulch et al.
61

, who evaluated a large number of reactions and 
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summarized their Arrhenius parameters, are within a factor of 1.9 of the results obtained with 

Genesys, the average deviation between 300 and 1500K only amounts to 1.4.  

The ROO to QOOH reaction, which is an intramolecular hydrogen abstraction from an 

alkylperoxy radical to a hydroperoxyalkyl radical, has a large impact on the combustion and 

oxidation of hydrocarbons.
69

 R4 belongs to this reaction family. Its rate coefficients are shown in 

Figure 14d. Since it is very difficult to isolate and measure the reactants and products of this 

reaction family, direct measurements of the rate coefficients are lacking. The rate coefficients of 

R4 are thus compared to other ab initio obtained rate coefficients, and an excellent agreement is 

achieved.  

Homolytic substitutions, such as the reaction of ethane thiol with a methyl radical yielding 

methane thiol and an ethyl radical (R5), are encountered during the thermal decomposition of 

sulfur containing compounds. The process is not well understood yet, and many experimental and 

theoretical studies are still required to establish a set of rate coefficients for this reaction family. 

Since no comparison is possible, Figure 15a only shows the forward and reverse rate coefficient 

calculated with Genesys. These reactions occur at a rate of similar order of magnitude as other 

bimolecular reactions such as intermolecular hydrogen abstractions (R3), c.f. Table 6, and can 

thus be expected to indeed play an important role in thermal decomposition of thiols, sulfides, or 

other sulfur-containing compounds. This has already been shown for substitutions by hydrogen 

radicals.
50

 A tool such as Genesys is of great value to identify important pathways and 

subsequently generate a set of rate coefficients for reaction families of which the kinetics are not 

well known.  

 



138    Chapter 3: On-the-fly ab initio calculations 

 
Figure 15: Rate coefficients calculated by Genesys for (a) the homolytic substitution from ethane thiol by a 

methyl radical to methane thiol and an ethyl radical (R5), (b) the dehydration of propanol (R6) compared to 

literature data from Johnson et al.
70

, (c) the H2 elimination of cyclopentene to cyclopentadiene (R7) compared 

to literature data from Lewis et al.
71

, King
72

, Rickborn et al.
73

, and Vanas and Walters
74

, and (d) the retro-ene 

reaction from 3-methoxy-1-propene to formaldehyde and propylene (R8) compared to literature data from 

Gutman et al.
75

 and Kwart et al.
76

. 

The last three reactions are more complex in the determination of their transition state as they 

involve reaction centers containing 4 to 6 polyvalent atoms and exhibit a cyclic structure in the 

transition state. R6 and R7 have very high tunneling coefficients at low temperature, as 

mentioned above. Their rate coefficients can thus only be regressed into an (modified) Arrhenius 

equation at higher temperatures, starting at 600K. Although both reactions have low rate 

coefficients at 1000K, order of magnitudes 1 s
-1

 or lower, these reactions do not involve radicals 

and are often important for the initial decomposition of molecules before the radical chemistry 

becomes the main decomposition route. The same applies for R8. The rate coefficients of R6, the 

direct elimination of water from a primary alcohol, is shown in Figure 15b. The rate coefficients 

compare well to the data of Johnson et al.
70

, in which the deviation factor amounts up to 2, except 

at low temperatures, where tunneling is important.  
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The direct elimination of hydrogen gas from an unsaturated 5 membered ring structure, as shown 

in Figure 15c, has already been experimentally observed in the 1940’s
74

. To the best of the 

authors knowledge, no ab initio rate coefficients are reported in literature. Genesys calculated the 

rate coefficient, which is in very good agreement to several experimental studies, the deviation 

factor does not exceed 2.  

Finally, a retro-ene reaction (R8) has been calculated by Genesys. The reaction rate coefficients 

reported by Gutman et al.
75

 are within a factor of 1.1, the ones of Kwart et al.
76

 are up to a factor 

of 2.4 higher.  

Similarly to thermodynamic values, the rate coefficients obtained by Genesys have a promising 

accuracy when compared to literature data. Currently, minor manual interventions are necessary, 

which can and will be eliminated in the future. These calculations can be used to automatically 

fill databases with ab initio reaction rate coefficients or to re-calculate rate coefficients when 

crucial pathways in a kinetic model have been identified, which are often based on less accurate 

calculation procedures. Furthermore, this opens the door to rate-based kinetic model generation, 

which is sensitive to the accuracy of the reaction rate coefficients. 
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3.5 Conclusions 

This chapter introduces automation procedures for on-the-fly ab initio calculations in the 

framework of the automatic kinetic model generator Genesys. Genesys represents species and 

transition states as graph structures, and provides 3D coordinates of the constituting atoms to start 

ab initio calculations. A distance geometry algorithm has been implemented in Genesys to allow 

the generation of an initial 3D structure. For transition states, the user knowledge of the reaction 

family at hand, translated in the 3D coordinates of the reactive atoms near the saddle point, is 

used to estimate the coordinates. The 3D structures are then used in Gaussian in several steps to 

calculate the necessary thermochemical data for automatic kinetic model generation. An 

extensive conformational search is employed to ensure that the lowest energy conformer is used. 

Stereochemistry is explicitly accounted for in the ab initio calculations and thermochemical and 

kinetic data because the thermodynamic properties and rate coefficient can differ significantly 

depending on the isomer. Rotational modes are treated with a 1D hindered rotor approach.  

The methodology is used to calculate the thermodynamic parameters of a set of species and the 

rate coefficients of 8 reactions. Comparison to manually obtained ab initio data and experimental 

data shows an excellent agreement, illustrating the capabilities of Genesys to automatically 

generate an accurate set of data readily usable in automatic kinetic model generation. Only minor 

manual interventions were needed, which will be eliminated in the future. 

On the longer term, to generate kinetic models at larger scale with Genesys first the 

thermodynamic calculations need to be improved. For example, the generation of new BAC 

values from a large experimental dataset will increase the accuracy of the standard enthalpies of 

formation.  
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Chapter 4: Group additivity model for 

intramolecular hydrogen abstractions 

4.1 Abstract 

Group additivity is a powerful concept for calculating, amongst others, thermodynamic data and 

reaction rate coefficients. A novel methodology is introduced to determine a set of ΔGAV° 

values regressed from data obtained by quantum chemical calculations. The method is 

demonstrated for intramolecular hydrogen abstraction reactions of alkanes, alkenes and alkynes, 

for which no group additivity values are currently available. Calculating 448 reaction rate 

coefficients at the CBS-QB3 level of theory for 1-2 up to 1-7 hydrogen shift reactions allowed 

the estimation ΔGAV° values for 270 groups. The influence of substituents on (1) the attacking 

radical, (2) the attacked carbon atom, and (3) the carbon chain between the attacking and attacked 

reactive atom has been systematically studied. Substituents have been varied between hydrogen 

atoms and sp
3
, sp

2
 and sp hybridized carbon atoms. Hence, the primary contributions to the 

Arrhenius parameters, i.e. the influence of the ligands of the attacked and attacking carbon atom, 

as well as the secondary contributions to the Arrhenius parameters, i.e. the influence of the 

ligands of the carbon chain between the attacking and attacked carbon atom, are accounted for. 

This group additivity model is applicable to a wide variety of reactions in the 300-1800K 

temperature range. Correlations for tunneling coefficients have been generated which are 

complementary to the ΔGAV° to obtain accurate rate coefficients without the need for imaginary 



148 Chapter 4: Group additivity model for intramolecular hydrogen abstractions 

frequencies nor electronic energies of activation. These correlations depend on the temperature 

and activation energy of the exothermic step. The group additivity model has been successfully 

applied to a test set of reactions also calculated at the CBS-QB3 level of theory.  

4.2 Introduction  

On-the-fly ab initio calculations for each reaction during automated kinetic model generation is 

computationally infeasible. One option is that the previously calculated ab initio data are 

retrieved from databases and used in future model generations. The straightforward way to 

implement this is the extension of the databases with a single entry per reaction and species 

calculated previously. This database is visited during kinetic model generation and the data is 

pulled from the database in case of an exact hit between the target molecule (or reaction) and the 

database molecule (or reaction). Another, more general, solution is the generations of procedures 

to calculate new thermodynamics or rate coefficients methods based on the ab initio data. In this 

way, the calculations can be constantly improved by performing new ab initio calculations. 

Thermodynamics are mainly based on group additivity procedures, introduced by Benson
1
, and 

extended by many researchers. For kinetic parameters, a variety of methods is available, as 

described in Chapter 1, each with different accuracies, theoretical bases, data requirements, etc. 

One of the methods that exhibits a similar accuracy compared to the direct use of ab initio 

calculations, is group additivity
2-11

, i.e. ΔGAV° values. This method has been successfully 

applied to many reactions such as hydrogen abstraction reactions, radical addition reactions to 

multiple bonds, and homolytic substitution reactions in hydrocarbon, oxygenates and sulfur 

compounds.  

One of the important reaction families during combustion, steam cracking or pyrolysis of 

hydrocarbons is the intramolecular hydrogen abstraction family, also called hydrogen migrations 

or hydrogen shifts (H-shifts). This isomerization reaction happens through a cyclic transition state 

in which a hydrogen atom migrates from a carbon atom to a radical site. This is thus a 

monomolecular reaction with a single product species, and the reverse reaction belongs to the 

same reaction family. The distance between the attacking radical and the attacked carbon atom is 

crucial to obtain kinetic parameters. In this work, the following reactions are considered: 

reactions between neighboring carbon atoms and reactions with one up to 5 carbon atoms 
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between the attacking and attacked carbon atom. These reactions are noted 1-2, 1-3, 1-4, 1-5, 1-6 

and 1-7 intramolecular hydrogen abstractions. The number 1 is the position of the attacking 

radical center and the numbers 2 to 7 are the positions of the attacked carbon atom. A 1-2 H-shift 

proceeds through a three-membered cyclic transition state, a 1-3 H-shift through a four-

membered cyclic transition stated, and so on. This is illustrated in Figure 1.  

 
Figure 1: Illustration of 1-2 to 1-7 intramolecular hydrogen abstraction reactions (H-shifts). The transition 

state of a 1-2 H-shift proceeds through a three-membered cyclic structure, a 1-7 H-shift has an eight-

membered cyclic transition state. The numbers correspond to the position of the carbon atoms, the hydrogen 

atoms have not been drawn for the sake of clarity, except in the transition state structures: the migrating 

hydrogen atom is visualized.  

Considerable work has already been done to develop procedures to calculate the rate coefficients 

of intramolecular hydrogen abstractions. Benson
12

 introduced many calculation methods both for 

thermodynamic as well as kinetic parameters. Activation energies of intermolecular abstraction 

reactions were modelled using linear-free energy relationships.
12

 This implies that to obtain the 

activation energies of H-shifts, the activation energy of an intermolecular hydrogen abstraction 
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reaction is calculated and augmented with a contribution for the ring strain introduced by the 

cyclic transition state.  

During the development of a n-heptane oxidation kinetic model, Curran et al.
13

 included 

intramolecular hydrogen abstraction reactions. The method for kinetics calculations is similar to 

Benson’s approach. The kinetics were calculated using a linear free-energy method, using the 

activation energy of a similar bimolecular abstraction, together with a ring strain correction and 

the reaction enthalpy. The pre-exponential factors were obtained from transition state theory by 

calculating the difference in entropy between the radical and the transition state. This method was 

also employed for other kinetic models.
14,15

  

Zheng and Truhlar
16

 calculated the 1-4 hydrogen transfer in the 1-pentyl radical and the 1-4 and 

1-5 hydrogen transfers in the 1-hexyl radical using variational transition state theory with 

multidimensional tunneling. The resulting rate coefficients agree well with experimental data and 

the tunneling coefficients are able to accurately describe the rate coefficients at low temperatures. 

The barriers for hydrogen shift reactions in alkyl, alkenyl and oxoallylic radicals have been 

investigated by Hayes and Burgess
17

 using the composite ab initio methods G3MP2B3 and 

G3B3. A reduction in reaction barrier of 10 and 20 kJ mol
-1

 has been found for secondary and 

tertiary radical formation, respectively, compared to the formation of a primary radical, which is 

not influenced by the transition state ring size. The formation of alkenyl and oxoalkyl radicals 

also exhibits lower barriers compared to their alkyl radical analogues. 

Ratkiewicz and coworkers
18,19

 employed the Reaction Class Transition State Theory (RC-TST) to 

obtain calculation procedures for 1-4 and 1-5-migration reactions in alkyl radicals. The 

calculation procedures allowed to approximate the rate coefficients by distinguishing between 

primary, secondary and tertiary carbon atoms of which a hydrogen atom is abstracted. 

Furthermore, Ratkiewicz et al.
20

 calculated the rate coefficients of thermo-neutral 1-3 up to 1-6 

hydrogen migrations and used those results to successfully calculate the rate coefficients of 

hydrogen migration reactions of non-thermo-neutral reactions.  

Quantum tunneling plays a prominent role in hydrogen migration reactions at lower temperature. 

Using n-heptyl as model molecule, Sirjean et al.
21

 computed tunneling coefficients using a multi-

dimensional treatment (small curvature tunneling (SCT) approximations
22,23

) and compared it to 
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three one-dimensional methods: Wigner
24

, Skodje and Truhlar
25

, and Eckart
26

 tunneling. In 

general, Sirjean and coworkers found that Eckart tunneling yields the most accurate results 

compared to SCT approximations. Neglecting corner cutting, compensated by a narrower 

potential energy curve results in this apparent accuracy of Eckart tunneling coefficients. This 

conclusion should thus be used with care; other reaction families do not necessarily show this 

behavior.  

Davis and Francisco
27

 studied all the possible intramolecular hydrogen abstractions in C2 to C7 

n-alkyl radicals and assessed the differences in rate coefficient when varying the location of the 

abstraction site relative to the terminal carbon atom. The influence of equatorial or axial 

transition states was also investigated. In another article, Davis and Francisco
28

 calculated 

thermodynamic properties and rate coefficients for H-shifts in methylalkyl radicals to show the 

influence of methyl groups either on the transition state ring structure or immediately outside of 

it.  

Resonance stabilization can play an important role in intramolecular hydrogen abstraction 

reactions as shown by Wang et al.
29

. Reactions between an alkyl radical and an allyl radical, or 

between two allyl radicals were studied as the CBS-QB3 level of theory, including 1-2 up to 1-7 

shifts. Wang et al.
30

 also reported reactivity-structure based on calculation rules for 1-2 up to 1-7 

hydrogen shifts in saturated alkyl radicals.  

Bian et al.
31

 studied 3 types of unimolecular reactions for the 2-octenyl and 3-octenyl radicals: 

intramolecular additions, internal hydrogen migrations and bond dissociations. The presence of a 

double bond strongly affects the isomerization rate through internal hydrogen migration 

reactions. The formation of resonantly stabilized allylic radicals is favored, both when the double 

bond is a part of the transition state ring structure, as well as with a saturated transition state ring 

structures. Other hydrogen migration reactions that bypass the double bond can be neglected. For 

long-chain alkenyl radicals, 1-4 and 1-5-migrations are significantly faster, up to two orders of 

magnitude, compared to 1-7 and 1-8 migrations. At temperatures above 1600K, 1-2 and 1-3-

migrations become more important due to entropy effects.  

The concept of group additivity has, since its introduction by Benson
1,12,32

 in the 1950’s, widely 

been used in the chemical community to calculate properties of single compounds or mixtures. 
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This concept originates from the idea that a property of a molecule can be broken down into 

separate contributions from each group in the molecule. A group has originally been defined as a 

central polyvalent atom and its immediate ligands. This led to the notation X-(A)k(B)l(C)n(D)m 

for the central atom X with k ligands of type A, l of type B, and so forth. By summing the 

contributions of all groups in a molecule, the property of that molecule can be calculated. Of 

course, several contributions in a molecule cannot be comprised in central atoms and their 

neighbors only. Interactions reaching further in a molecule need to be accounted for as well. In 

the framework of kinetic modelling, where thermodynamic parameters of molecules are 

indispensable, these interactions are for example non-nearest neighbor interactions (NNIs), ring 

strain corrections (RSCs), or symmetry corrections to the entropy. For kinetics, contributions 

such as the number of single events and tunneling coefficients also need a separate treatment as 

complement to the group additivity scheme. In the past two decades, alongside the development 

of large kinetic models, calculation of kinetic parameters gained significant interest. Group 

additivity has become a prominent procedure for kinetic parameters. Several definitions of groups 

can be used for kinetic data. Sumathi et al.
33-35

 introduced so-called supergroups, which consist of 

a central reactive moiety instead of a single central atom. The groups are defined on the level of 

the transition state topology. Marin and coworkers
2-11

 extended the concept of group additivity 

for kinetic data by defining the groups as the reactive atoms in the reactants. In this way, the 

groups are still defined as one central atom with its ligands.  

This chapter introduces a group additive model for intramolecular hydrogen abstractions in 

hydrocarbon radicals. The influence of ligands of the attacking and attacked carbon atom 

(primary contributions) on the Arrhenius parameters are studied, together with the contributions 

of substituents on the carbon chain between the attacking and attacked carbon atom (secondary 

contributions) to the pre-exponential factor and activation energy. This chain is of significant 

importance in this reaction family, because it composes the cyclic structure in the transition state. 

A set of 60 reactions to generate the primary contributions, together with 81 reactions for the 

secondary contributions, have been automatically calculated at the CBS-QB3 level of theory, 

with a systematic conformational search and one-dimensional (1D) hindered rotor potentials. A 

test set of 108 reactions has been calculated at the same level of theory to test the approach.  
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4.3 Methodology  

4.3.1 Ab initio calculations 

An extensive description of the theoretical methods to automatically obtain ab initio rate 

coefficient can be found in Chapter 3, section 3. In brief, each reaction is first generated based on 

the reactant topology, building the connectivity of the transition state and product structure. From 

the topology, initial three-dimensional (3D) coordinates of the atoms in the reactant, transition 

state and product are generated using an algorithm called “distance geometry”. The coordinates 

are refined using the Gaussian09 suite of programs
36

. This refinement is done in several steps, 

including a fast, semi-empirical pre-optimization, a conformational search, an optimization at 

high level of theory and the calculation of 1D hindered rotor potentials. All these steps are 

automatically generated and post-processed with the Genesys software.
37

 The results are used to 

extract high-pressure limit rate coefficients for temperatures between 300 and 1800K.  

Many of the reactants, products and transition states calculated have multiple equivalent 

hydrogen atoms, and can exhibit external rotational symmetry or optical isomers. To account for 

this, the number of single events is calculated for each reaction, which is done automatically in 

Genesys. The symmetry is calculated using the automorphism group of the connectivity graph of 

the molecule.
38

 Optical isomers are perceived as reported by Vandewiele et al.
39

. Tunneling plays 

an important role in hydrogen abstractions reactions. Similarly to previous work 
18-21,31

, the 

Eckart method
26

 is chosen to calculate tunneling coefficients.  

For the generation of initial 3D coordinates of the atoms in the transition state, Genesys requires 

the user to supply the coordinates of the reactive atoms, see Chapter 3, section 3.2. For 

intramolecular hydrogen abstraction reactions, three coordinates are sufficient. First, two bond 

lengths are necessary, i.e. the two C-H bond lengths between the hydrogen that is abstracted and 

the attacking and attacked carbon atom. Secondly, the C-H-C angle between the same three 

reactive atoms is needed. Because the reverse reaction to an intramolecular abstraction reaction 

belongs to the same reaction family, it is assumed that the two C-H bond lengths are equal. It is 

obvious that the geometry of a transition state depends on its ring size, i.e. whether the reaction is 

a 1-2, 1-3, etc. shift. The initial estimates for the C-H bond lengths are all set to 135pm. 

However, six different angles were defined, as shown in Table 1.  
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Table 1: Coordinates input for the initial generation of 3D coordinates for the transition states and the 

minimum and maximum final values. 

 C-H bond length (pm) C-H-C angle (°) 

 
Initial 

value 

Minimum 

final value 

Maximum 

final value 

Initial 

value 

Minimum 

final value 

Maximum 

final value 

1-2 shift 135 123 143 68 67 71 

1-3 shift 135 133 153 103 103 106 

1-4 shift 135 127 154 132 132 135 

1-5 shift 135 124 153 152 152 157 

1-6 shift 135 122 151 165 162 171 

1-7 shift 135 126 152 168 165 177 

4.3.2 Group additivity model 

Marin and coworkers
2-11

 introduced a group additive method to calculate the pre-exponential 

factor and activation energies of reactions belonging to a reaction family. Rate coefficients for 

monomolecular reactions such as intramolecular hydrogen abstractions can be calculated from 

Eq. 4.1, with ∆‡𝐻 the standard enthalpy of activation and ∆‡𝑆 the standard activation entropy.  

 𝑘 =
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 (−

∆‡𝐻 − 𝑇∆‡𝑆

𝑅𝑇
) 

Eq. 4.1 

The activation entropy can be calculated by summing two contributions: a symmetry-independent 

entropy contribution and a term depending on the symmetry numbers σ and the numbers of 

optical isomers nopt of the reactant and transition state, c.f. Eq. 4.2 and Eq. 4.3. The number of 

single events ne has been defined as the reaction path degeneracy by Pollak and Pechukas
40

.  

 ∆‡𝑆 = ∆‡𝑆̃ + 𝑅𝑙𝑛(𝑛𝑒) Eq. 4.2 

 𝑛𝑒 =
𝑛𝑜𝑝𝑡,‡

𝑛𝑜𝑝𝑡,𝑟
∙
𝜎𝑟
𝜎‡

 
Eq. 4.3 

This formulation of the activation entropy can be substituted in Eq. 4.1. By then dividing both 

sides by the number of single events, the so-called single-event rate coefficient is obtained.  

 
𝑘

𝑛𝑒
= 𝑘̃ =

𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 (−

∆‡𝐻 − 𝑇∆‡𝑆̃

𝑅𝑇
) 

Eq. 4.4 

The Arrhenius activation energy can be calculated from the rate coefficient:  

 𝐸𝑎 = 𝑅𝑇2
𝜕

𝜕𝑇
ln 𝑘 = ∆‡𝐻 + 𝑅𝑇 

Eq. 4.5 
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The rate coefficient can thus be rewritten into:  

 𝑘̃ =
𝑘𝐵𝑇

ℎ
𝑒𝑥𝑝 (

∆‡𝑆̃

𝑅
) exp⁡(1)exp⁡(−

∆‡𝐻 + 𝑅𝑇

𝑅𝑇
) 

Eq. 4.6 

The last exponential factor contains the exponential part of the Arrhenius equation, the other 

factors can be identified as the single-event pre-exponential factor.  

Obtaining the Arrhenius parameters of a reaction thus only depends on the activation enthalpy 

∆‡𝐻 and activation entropy ∆‡𝑆̃. The enthalpy of formation and the standard entropy of a stable 

molecule can be approximated using group additivity.
1,12,32

 Marin and coworkers
2-11

 and Green 

and coworkers
33-35

 extended this concept to transition states, which allows to calculate the 

standard enthalpy of formation and the entropy by summing group additive values and optionally 

non-nearest neighbor interactions, as shown in Eq. 4.7 and Eq. 4.8. 

 ∆𝑓𝐻𝑇
𝑜(𝑇𝑆) =∑𝐺𝐴𝑉𝐻(𝐶𝑖

𝑇𝑆)

𝑖

+∑𝑁𝑁𝐼𝐻,𝑗
𝑗

 
Eq. 4.7 

 𝑆̃𝑇
𝑜(𝑇𝑆) = ∑𝐺𝐴𝑉𝑆̃(𝐶𝑖

𝑇𝑆)

𝑖

+∑𝑁𝑁𝐼𝑆̃,𝑗
𝑗

 
Eq. 4.8 

By defining ΔGAV as the difference between a group additive value in the transition state and the 

group additive value in the reactant, corresponding to the same polyvalent atom, the activation 

energy and the activation entropy can be modelled as:  

 𝐸𝑎(𝑇) =∑∆𝐺𝐴𝑉𝐸𝑎(𝐶𝑖)

𝑖

+∑∆𝑁𝑁𝐼𝐸𝑎,𝑗
𝑗

+ 𝑅𝑇 
Eq. 4.9 

 ∆‡𝑆̃𝑜(𝑇) = ∑∆𝐺𝐴𝑉∆𝑆̃(𝐶𝑖)

𝑖

+∑∆𝑁𝑁𝐼∆𝑆̃,𝑗
𝑗

 
Eq. 4.10 

Each group in the reactant that is not part of the reactive moiety, i.e. the polyvalent atoms that do 

not change in connectivity throughout the reaction, and of which the immediate neighbors also do 

not change in connectivity, has the same group additive values in the transition state. For these 

groups, ΔGAV is zero.  

Since only transition state specific groups need to be accounted for, only the direct surroundings 

of the transition states need to have group additive values assigned to. It is thus more practical to 
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introduce a reference reaction. The activation energy can be calculated using Eq. 4.11, in which 

∆𝐺𝐴𝑉𝐸𝑎
𝑜 = ∆𝐺𝐴𝑉𝐸𝑎 − ∆𝐺𝐴𝑉𝐸𝑎,𝑟𝑒𝑓. The index i iterates over the groups that are transition state 

specific, which depends on the reaction family. For intramolecular abstraction reactions, the 

attacking and attacked carbon atoms and the carbon chain connecting them are the groups that are 

considered to influence the kinetics. It is initially assumed that other non-nearest neighbor 

interactions can be neglected.  

 𝐸𝑎(𝑇) = 𝐸𝑎,𝑟𝑒𝑓(𝑇) +∑∆𝐺𝐴𝑉𝐸𝑎
𝑜

𝑖

(𝐶𝑖)⁡ 
Eq. 4.11 

In a similar fashion, the single-event pre-exponential factor can be calculated according to Eq. 

4.12. The log notation is used for the common logarithm, i.e. the logarithm with base 10, 

throughout this chapter.  

 log 𝐴̃ (𝑇) = log 𝐴̃ (𝑇)𝑟𝑒𝑓 +∑∆𝐺𝐴𝑉log 𝐴̃
𝑜

𝑖

(𝐶𝑖)⁡ 
Eq. 4.12 

With 

 ∆𝐺𝐴𝑉log 𝐴̃
𝑜 =

log 𝑒

𝑅
(∆𝐺𝐴𝑉log 𝐴̃ − ∆𝐺𝐴𝑉log 𝐴̃,𝑟𝑒𝑓) Eq. 4.13 

In general, ab initio methods yield more accurate relative than absolute values, which makes 

these methods well suited to calculate ∆𝐺𝐴𝑉𝑜 ’s, rather than ∆𝐺𝐴𝑉 ’s. Also, the temperature 

dependence of the kinetic parameters is mostly accounted for in 𝐸𝑎,𝑟𝑒𝑓(𝑇) and log 𝐴̃ (𝑇), making 

the ∆𝐺𝐴𝑉𝑜 values less temperature dependent.  

The group additive values for the pre-exponential factor, and the reference reaction pre-

exponential factor are evaluated without taking the number of single events into account. The 

final pre-exponential factor of a reaction thus needs to be multiplied by the number of single 

events, as shown in Eq. 4.14.  

 log 𝐴 (𝑇) = log 𝐴̃ (𝑇)𝑟𝑒𝑓 +∑∆𝐺𝐴𝑉log 𝐴̃
𝑜

𝑖

(𝐶𝑖) + log 𝑛𝑒  
Eq. 4.14 
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The reference reactions for the 1-2 up to 1-7 hydrogen shifts are shown in Figure 2. The most 

simple reaction per hydrogen shift is chosen, i.e. a thermo-neutral reaction with identical 

reactants and products and with hydrogen atoms as substituents for each group.  

 

Figure 2: Reference reactions for the 1-2 up to 1-7 intramolecular hydrogen abstraction reactions. Each 

reaction is thermo-neutral, the products and reactants are identical. Both the attacking carbon atom, attacked 

carbon atom as well as the carbon chain in between have the simplest surroundings, i.e. hydrogen atoms.  
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To obtain group additive values, several reactions are calculated in which the hydrogen atoms are 

substituted with three possible groups: methyl groups noted as C, vinyl groups noted as Cd, and 

Ct as a triply bounded carbon atom. This leads to 10 possible combinations around each central 

carbon atom: C-(H)2, which corresponds to the reference reactions, and which has group additive 

values of zero, C-(C)(H), C-(Cd)(H), C-(Ct)(H) , C-(C)2, C-(Cd)(C), C-(Ct)(C), C-(Cd)2, C-

(Cd)(Ct), and C-(Ct)2. In this notation, the ligands that are necessary for the reactions are not 

included. These are an extra C-ligand for the attacking radical, extra C- and H-ligands for the 

attacked carbon atom and two extra C-ligands for the atoms along the carbon chain between the 

reactive atoms. The substitutions are done on C1 and C2 (Figure 2) to study the primary 

contributions and C3 to C7 for secondary contributions. The nature of the attacking and attacked 

carbon atoms and the carbon chain in between both is not changed, only sp
3
 hybridized atoms are 

considered in this work.  

So far, the pre-exponential factors have been described without considering tunneling corrections. 

From the ab initio calculations, tunneling coefficients have been calculated using the Eckart 

procedure. These tunneling coefficients are subsequently used to develop correlations which can 

model the tunneling coefficients of new reactions belonging to the same reaction family. These 

correlations depend on the temperature and the exothermic activation energy. The latter can be 

obtained from group additivity and no new ab initio calculations need to be done.  

In a first step, one reaction is used to determine one group additive value by substituting one 

group on the reference reaction with one of the nine groups listed above, constituting the training 

set. This leads to a straightforward determination of the ∆𝐺𝐴𝑉𝑜 ’s by taking the difference 

between the Arrhenius parameters of the reaction and the Arrhenius parameters of the reference 

reaction. In a next step, the group additivity methodology is validated against a test set of 

reactions that contain more than one group. If satisfactory agreements are obtained between the 

ab initio and group additively calculated rate coefficients, group additivity can be used to model 

this reaction family. Finally, to increase the accuracy of the group additive values, all the 

reactions, i.e. the training set and the test set, are used to determine final ∆𝐺𝐴𝑉𝑜’s which can 

deviate slightly from the previously calculated ones, but increase the overall accuracy of the 

group additivity model. For this step, two least-square regressions are used, one for the pre-

exponential factors and one for the activation energies. The ∆𝐺𝐴𝑉𝑜’s constitute the b vector. The 
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i
th

 element of the y vector contains the difference in pre-exponential factor or activation energy of 

reaction i compared to the reference reaction. Each element xij of the matrix X is 1 if reaction i 

contains group j, and 0 otherwise. The ∆𝐺𝐴𝑉𝑜’s are calculated by:  

 𝒃 = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚 
Eq. 4.15 

The significance of the regression can be verified by calculating the F value, c.f. Eq. 4.16, in 

which n is the number of reactions and p is the number of group additivity values.  

 𝐹 =

(𝑿𝒃)𝑻𝑿𝒃
𝑝

𝒚𝑻𝒚 − (𝑿𝒃)𝑻𝒚
𝑛 − 𝑝

 
Eq. 4.16 

The quality of the regression can further be analyzed using R
2
 values, i.e. multiple correlation 

coefficients. R
2
 values lie between 0 and 1, and the higher the value, the better the group additive 

values are able to describe the Arrhenius parameters.  

 𝑅2 =
(𝑿𝒃)𝑻𝑿𝒃

𝒚𝑻𝒚
 Eq. 4.17 

4.4 Results 

4.4.1 Transition state geometries 

Table 1 gives the extrema of the two geometrical parameters compared to the user input values. 

The bond length provided to Genesys, which applies to both the forming and breaking bond of 

the abstraction reactions, amounts 135pm. The final values in the full set of the 249 transition 

states lie in between 122pm and 154pm. The extrema in bond lengths do not show much 

deviation as a function of the type of H-shift. However, bond angles do depend strongly on the 

type of H-shift. 1-2 H-shifts, proceeding through a three-membered cyclic transition state, have a 

C-H-C angle between 67° and 71°. The angles in 1-7 H-shifts, of which the transition state 

contains an eight-membered ring structure, are much higher and can amount up to 177°, which 

approaches the maximum angle of 180°. 
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4.4.2 Ab initio calculations  

This section reports the ab initio rate coefficients which were automatically calculated using the 

Genesys software. The rate coefficients include tunneling corrections and the number of single 

events and are thus the effective rate coefficients of the reactions. They have been calculated 

automatically from 300 up to 1800K with intervals of 100K. Each set of 5 consecutive rate 

coefficients is regressed to obtain Arrhenius parameters.  

4.4.2.1 Rate coefficients  

The Arrhenius parameters for the training set, regressed between 800-1200K, are shown in Table 

4 and Table 5. The tables in Appendix E give the Arrhenius parameters for the test set, also 

regressed in the temperature interval 800-1200K. Since the regression was done in a small 

temperature range, the 95% confidence intervals on the pre-exponential factors and activation 

energies are low, c.f. Table 2. For all the reactions, the uncertainty on log 𝐴 is lower than 0.17, 

which corresponds to a factor of 1.17 on the pre-exponential factor. The minimum values show 

negligible uncertainties on the pre-exponential factors. A noticeable trend is the increase of the 

uncertainty as a function of the type of H-shift. The average uncertainty increases from a value of 

0.07 for 1-2 H-shifts to a value of 0.11 for 1-7 H-shifts. The maximum uncertainties show a 

similar trend. For the activation energies, all uncertainties of the regression are within 1.33 kJ 

mol
-1

. A similar trend as for the pre-exponential factors is seen when comparing the uncertainties 

of the different families. Both the average and the maximum values increase from 1-2 H-shifts to 

1-7 H-shifts.  

Table 2 : Minimum (Min), maximum (Max), and average (Av) uncertainties on the pre-exponential factors 

and activation energies. The uncertainties on 𝐥𝐨𝐠 𝑨⁡and Ea correspond to the 95% confidence intervals of the 

linear regression of the Arrhenius equation.  

 Uncertainty on 𝐥𝐨𝐠𝑨 (-) Uncertainty on Ea (kJ mol
-1

) 

 Min Max Av Min Max Av 

1-2 shift 0.05 0.12 0.07 0.37 1.00 0.55 

1-3 shift 0.01 0.13 0.09 0.06 1.07 0.72 

1-4 shift 0.002 0.13 0.09 0.01 1.02 0.71 

1-5 shift 0.00 0.14 0.09 0.04 1.15 0.75 

1-6 shift 0.01 0.15 0.10 0.06 1.23 0.80 

1-7 shift 0.02 0.17 0.11 0.18 1.33 0.91 

All 0.002 0.17 0.09 0.01 1.33 0.76 

A total of 249 reactions were considered yielding 448 distinct rate coefficients of single reactions. 

For several reactions, the reactant and product are identical. These are identity reactions and their 
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forward and reverse rate coefficients are the same. For the other reactions, the forward and 

reverse rate coefficients are different and can both be used to generate and validate the group 

additive approach. Table 3 tabulates the number of reactions and distinct rate coefficients 

calculated by Genesys for the 1-2 up to 1-7 H-shifts considering (1) the primary contributions, (2) 

the secondary contributions and (3) the test set reactions. It was observed, as shown in section 

4.4, that 1-7 H-shifts do not play an important role over a wide temperature range. Therefore, the 

test set is limited.  

Table 3: Number of reactions and distinct rate coefficients automatically obtained with Genesys.  

 Reactions Distinct rate coefficients 

 Primary Secondary Test set Primary Secondary Test set 

1-2 shift 10 0 17 19 0 33 

1-3 shift 10 9 20 19 9 33 

1-4 shift 10 9 19 19 18 34 

1-5 shift 10 18 22 19 27 42 

1-6 shift 10 18 23 19 36 44 

1-7 shift 10 27 7 19 45 13 

Total 60 81 108 114 135 199 

For primary contributions, 10 reactions were calculated per type of H-shift, in which the 

substituents of the attacked carbon atom were varied between hydrogen atoms, methyl groups, 

vinyl groups and ethynyl groups. The resulting Arrhenius parameters are reported in Table 4, n is 

the number of CH2 groups between the radical site and the attacked carbon atom. For a 1-2 shift, 

n is 0, for a 1-3 shift, n is 1, and so on. Secondary contributions were calculated by substituting 

the hydrogen atoms on the carbon chain between the radical site and the attacked carbon atom by 

methyl groups, vinyl groups and ethynyl groups. The Arrhenius parameters are shown in Table 5. 

The two substituents X1 and X2 are bonded to a carbon atom located at a distance of n CH2 

groups of the radical site and m CH2 groups of the attacked carbon atom. For 1-2 shifts, no 

secondary contributions exist. Finally, all the other reactions belong to the test set, tabulated in 

Appendix E. The test set was constructed by two possible changes from the reference reactions. 

First, the hydrogen atoms of the reference reaction can be substituted by larger groups, e.g. ethyl 

groups instead of methyl groups. Second, hydrogen atoms on two carbon atoms were substituted. 

The full test set of 1-2 up to 1-6 H-shifts contain each group on each position at least once. The 1-

7 H-shift test set is smaller due to the relative unimportance of 1-7 H-shifts compared to the other 

intramolecular hydrogen abstractions. In this test set, not all the groups are present.  
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Table 4: Arrhenius parameters for the reactions used to deduce primary ΔGAV°’s at 1000K regressed from the rate coefficients between 800 and 1200K. Per 

reaction, the first line corresponds to the forward direction, the second line to the reverse. The pre-exponential factors are expressed in s
-1

 and Ea is expressed in 

kJ mol
-1

. All pre-exponential factors include tunneling and the number of single events. 

 

  1-2 (n=0) 1-3 (n=1) 1-4 (n=2) 1-5 (n=3) 1-6 (n=4) 1-7 (n=5) 

X1 X2 logA Ea logA Ea logA Ea logA Ea logA Ea logA Ea 

H H 13.4 177.3 12.7 176.2 11.4 106.0 10.5 73.1 10.0 69.3 8.8 76.0 
  13.4 177.3 12.7 176.2 11.4 106.0 10.5 73.1 10.0 69.3 8.8 76.0 

H CH3 13.6 167.4 13.0 166.4 11.7 93.7 10.8 62.8 9.8 57.1 8.6 63.5 
  13.9 183.6 13.1 181.8 11.8 110.7 10.8 78.8 10.1 74.1 9.0 80.3 

H C2H3 13.4 135.6 12.9 144.0 11.1 74.9 10.3 46.6 9.7 44.4 8.3 49.4 

  14.3 211.0 13.9 217.4 12.4 148.5 11.5 120.1 10.8 117.8 9.2 123.0 
H C2H 13.5 144.7 13.0 150.9 11.6 77.2 10.7 49.0 9.3 44.5 8.6 51.8 

  13.8 206.6 13.2 207.0 11.9 134.0 11.0 104.7 9.5 102.5 8.9 107.0 
CH3 CH3 13.3 157.2 12.7 157.5 11.5 84.7 10.4 52.1 9.2 47.8 8.3 56.3 

  14.1 183.8 13.0 182.5 11.8 111.1 10.6 78.5 9.7 75.0 8.4 81.9 

CH3 C2H3 12.9 127.6 12.6 137.8 11.1 66.8 10.0 38.7 8.7 37.2 7.3 44.6 

  14.2 215.2 13.8 221.2 12.4 152.1 11.3 123.3 10.5 127.2 9.1 130.6 
CH3 C2H 13.2 136.0 12.7 143.2 11.3 68.8 10.4 40.5 9.2 34.2 7.9 43.9 

  14.0 211.7 12.9 213.2 11.6 140.6 10.8 111.2 9.7 104.9 8.9 117.2 
C2H3 C2H3 12.7 115.0 12.5 126.2 11.1 56.7 10.2 35.1 9.2 33.3 7.5 38.6 

  13.9 233.7 13.6 241.3 12.1 175.4 10.8 151.2 10.7 154.6 9.0 155.2 

C2H3 C2H 13.0 114.6 12.6 129.0 11.2 56.0 10.2 29.5 9.0 25.3 7.7 32.1 
  14.3 234.8 13.8 239.3 12.4 168.5 11.5 140.0 10.4 136.6 9.3 143.4 

C2H C2H 13.1 115.3 12.7 130.1 11.3 55.3 10.3 30.8 9.0 26.3 8.2 32.9 
  13.8 233.7 12.8 235.3 11.7 161.9 10.7 133.6 9.9 129.9 8.6 136.4 
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Table 5: Arrhenius parameters for the reactions used to deduce secondary ΔGAV°’s at 1000K regressed from the rate coefficients between 800 and 1200K. The 

pre-exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. All pre-exponential factors include tunneling and the number of single events. 

 

 

  1-3 1-4 1-5 

  n=1, m=1 n=1, m=2 n=2, m=1 n=1, m=3 n=2, m=2 n=1, m=3 

X1 X2 logA Ea logA Ea logA Ea logA Ea logA Ea logA Ea 

H CH3 13.1 174.5 11.7 100.5 12.1 103.9 10.7 67.7 11.1 71.0 10.6 67.3 
H C2H3 12.7 172.9 11.7 99.3 11.7 101.7 10.9 68.0 10.9 70.4 10.7 68.9 
H C2H 12.6 170.5 11.6 97.9 11.8 103.4 10.8 67.2 11.0 73.8 10.6 71.3 

CH3 CH3 13.3 171.5 11.7 98.0 12.2 102.7 11.1 66.0 11.6 70.1 10.7 66.7 
CH3 C2H3 13.0 169.9 11.7 95.3 11.9 100.6 11.0 63.9 11.3 67.6 10.7 65.3 
CH3 C2H 13.0 169.5 11.7 96.9 12.1 102.7 10.9 63.0 11.3 68.3 10.6 64.2 
C2H3 C2H3 12.9 167.4 11.7 95.2 11.7 104.0 11.0 61.6 11.0 68.2 11.2 62.4 
C2H3 C2H 12.9 168.0 11.8 93.9 11.8 101.3 11.0 62.1 11.0 69.4 10.6 68.3 
C2H C2H 12.7 167.3 11.7 94.4 11.7 103.2 10.9 64.4 10.8 72.6 10.8 69.2 

 

  1-6 1-7 

  n=1, m=4 n=2, m=3 n=3, m=2 n=4, m=1 n=1, m=5 n=2, m=4 n=3, m=3 n=4, m=2 n=5, m=1 

X1 X2 logA Ea logA Ea logA Ea logA Ea logA Ea logA Ea logA Ea logA Ea logA Ea 

H CH3 10.0 65.3 10.0 66.3 10.0 65.9 10.3 68.0 8.8 72.1 8.9 73.7 9.1 72.3 8.7 74.4 8.9 74.1 
H C2H3 9.8 64.8 10.3 68.5 10.1 68.2 9.9 67.4 8.8 71.3 8.8 74.7 9.3 74.0 8.9 74.3 8.4 73.6 
H C2H 9.7 62.8 10.1 67.5 9.9 67.6 9.9 69.0 8.7 71.5 8.9 72.6 9.2 79.2 8.9 74.0 8.8 78.1 

CH3 CH3 9.8 63.2 10.1 66.7 10.1 65.5 10.4 68.5 9.0 69.2 9.5 74.7 9.3 80.1 8.9 70.4 9.1 76.3 
CH3 C2H3 9.9 61.2 10.3 66.5 10.4 65.5 10.3 66.2 9.1 72.5 9.2 69.6 10.0 75.7 9.3 69.1 9.1 76.8 
CH3 C2H 9.9 61.9 10.2 62.8 10.2 63.8 10.3 67.7 8.9 73.3 9.1 70.8 9.6 77.4 9.0 72.1 9.5 79.9 
C2H3 C2H3 9.9 58.7 10.4 63.3 10.6 64.5 9.8 65.2 9.0 69.9 9.2 65.8 9.9 71.4 9.2 66.3 9.5 74.9 
C2H3 C2H 9.9 57.7 10.3 67.0 10.3 65.9 10.0 65.9 8.9 70.3 9.0 75.0 9.8 78.1 9.1 75.1 8.5 78.4 
C2H C2H 9.8 60.4 10.1 65.3 10.2 68.3 10.0 72.0 9.1 73.0 9.0 69.7 9.7 77.6 9.1 74.4 9.2 83.5 
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From all the ab initio calculated rate coefficients, the activation energy can be plotted as a 

function of the reaction enthalpy, c.f. Figure 3. Although a clear trend is visible, the use of linear 

free-energy relationships such as Evans-Polanyi
41

 or analogous methods such as Blowers-Masel
42

 

leads to a maximum deviation of 11 kJ mol
-1

 or more, which is high compared to the group 

additivity results below.  

 
Figure 3: Ab initio activation energies of all the training and test reactions as a function of the ab initio 

reaction enthalpy, calculated at 1000K. The points correspond to 1-2 (), 1-3 ( ), 1-4 (), 1-5 (), 1-6 (), 

and 1-7 ( ) H-shifts. 

4.4.2.2 Number of single events 

Genesys automatically calculates the total rotational symmetry number and number of optical 

isomers to obtain the number of single events. A few typical symmetrical contributions have been 

tabulated in Table 6. The six reference reactions all have 6 as number of single events. The 

reactants have a two-fold and three fold internal symmetry contribution, without any external 

symmetry, and the transition state has an external symmetry number of 2. The latter assumes that 

flipping ring structures into another conformer has a very low energy barrier. The reactants and 

transition states do not exhibit any optical isomerism. However, the reference reactions are all 

identity reactions, which implies that the number of single events needs to be increased by a 

factor 2, from the indistinguishability of the forward versus the reverse reaction. This leads to a 

number of single events of 2 ∙
6
1⁄

2
1⁄
= 6. This is illustrated by the 1-2 H-shift of ethyl (R1) in Table 
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6. The value of 6 can be intuitively explained by the three indistinguishable hydrogen atoms of 

the methyl group and the 2 sides of the planar radical structure that can approach the abstracted 

hydrogen atom.  

When one of the four hydrogen atoms neighboring the reactive atoms is substituted by a larger 

group, e.g. a methyl group, the two-fold external symmetry of the transition state disappears. 

Instead, a three-fold internal symmetry arises as a result of the methyl rotation. Furthermore, in 

the transition state, the reactive atom bonded to the methyl group is chiral. Its four neighbors are 

different in nature since the hydrogen atom participating in the reaction is further away from the 

carbon atom compared to the other hydrogen atom. This chiral center leads to a number of optical 

isomers of 2. R2 in Table 6 illustrates this for the 1-4 H-shift in 1-pentyl. The value of four comes 

from two indistinguishable hydrogen atoms that can be abstracted by 2 possible sides of the CH2 

radical group.  

If another methyl group is added to a reactive atom, the chirality of the transition state disappears 

again. The transition state still does not contain any external rotational symmetry and the methyl 

rotor is the only contribution of the transition state to the number of single events. However, 

because these methyl rotors are also present in the reactant, this contribution cancels out. Again, 

the resulting value of 2 can be explained by the number of hydrogen atoms, i.e. one, and the 

number of ways the planar CH2 radical group can face the abstracted hydrogen atom, i.e. two.  

Table 6 : Numbers of single events of selected reactions.  

  Reactant TS  

 Reaction σ nopt σ nopt ne 

R1  6 1 2 1 6 

R2  6 1 3 2 4 

R3 
 

18 1 9 1 2 

R4 
 

18 2 3 2 6 

R5 

 

18 2 18 4 2 

Substituents on the carbon chain between the two reactive atoms have also an influence on the 

symmetry numbers and numbers of optical isomers, such as R4 in Table 6. The optical isomers in 

the reactant are preserved throughout the reaction leading to a cancelation of its contribution to 

the number of single events. Since the internal symmetry due to the methyl substituent also 
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cancels out, the only final contribution comes from the terminal methyl group and the radical 

center, leading to number of single events of 6. This values originates from the three 

indistinguishable hydrogen atoms than can be abstracted, and the two ways the planar CH2 

radical group can face the abstracted hydrogen atom.  

R5 shows another example in which the reactant has one chiral center, leading to a number of 

optical isomers of 2. The transition state, however, contains two chiral centers, and 4 isomers of 

this transition state exist: two pairs of diastereomers. In principle, the energy of these two 

diastereomers is different and the rate coefficient depends thus on the specific diastereomer. 

However, this difference is neglected in this work, and the lowest energy diastereomer is always 

taken. In this case, the number of optical isomers amounts to 4, yielding a total number of single 

events of two. This number represents the two ways the planar radical group can face the 

abstracted hydrogen atom. If the diastereomers would be made distinguishable, two rate 

coefficients would be calculated, each with a number of single events of 1. In this case, the 

dihedral angle around the bond between the two chiral centers in the transition state is fixed per 

diastereomer, and the planar radical structure can only approach the abstracted hydrogen atom 

with one direction. The total rate coefficient used in this work will slightly overestimate the real 

total rate coefficient because the highest rate coefficient is multiplied by 2 instead of using the 

sum of the highest and lowest value.  

The above examples give an overview of the different types of contributions. However, many 

other combinations are encountered in this study, but a complete analysis of all the number of 

single events falls outside the scope of this chapter.  

4.4.2.3 Tunneling coefficients 

Tunneling plays a crucial role in hydrogen abstractions, whether they are intramolecular or 

intermolecular. At low temperatures, the tunneling coefficient can amount up to 2 10
5
 for 1-3 H-

shifts. However, at these temperatures, the total rate coefficient is insignificant for practical 

purposes such as combustion, oxidation or pyrolysis reactions. At higher temperatures, tunneling 

is still important, where the coefficients amount up to 1.52 for 1-3 H-shifts at 1000K. The 

average and extreme values of 1-2 to 1-7 H-shifts are given in Table 7. In general, 1-3 H-shifts 

have the highest tunneling coefficients, followed by 1-2 and 1-4 H-shifts. 1-5, 1-6 and 1-7 H-

shifts have comparable values for tunneling coefficients.  
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Figure 4 shows the tunneling coefficients at 1000K as a function of the imaginary frequency. The 

imaginary frequency is, besides the electronic energy of activation, the second parameter to 

calculate Eckart tunneling corrections. From Figure 4, the range in imaginary frequencies can 

also be observed. 1-3 H-shifts have the highest imaginary frequencies, which range from 1945 to 

2100cm
-1

, this is also reflected in the high tunneling coefficients for these reactions. In 1-2 H-

shifts, although the reaction proceeds through a three-membered ring, there are no small C-C-C 

bond angles. In 1-3 H-shifts, however, the four-membered ring has a small C-C-C angle, leading 

to a higher ring strain for these reactions. The imaginary frequencies in 1-2 H-shifts vary between 

1723 and 1982cm
-1

. From 1-4 to 1-6 H-shifts, there is a downward trend in the imaginary 

frequencies with averages of 1780cm
-1

 for 1-4, 1611cm
-1

 for 1-5, and 1545cm
-1

 for 1-6 H-shifts. 

The imaginary frequencies for 1-7 H-shifts increase again and lie in a range of 1393 to 1693 cm
-1

. 

For each H-shift, most of the reactions show an imaginary frequency that is relatively close to the 

maximum value for the family. Only a few reactions show imaginary frequencies that are closer 

to the minimum value. These reactions all include the formation or destruction of a strong 

resonantly stabilized radical, e.g. a hydrogen is abstracted between two vinyl groups. 

 
Figure 4: Tunneling coefficients, calculated by the Eckart

26
 procedure, at 1000K as a function of the 

imaginary frequency of the saddle point on the PES. The points correspond to 1-2 (), 1-3 ( ), 1-4 (), 1-5 

(), 1-6 (), and 1-7 ( ) H-shifts. 
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Table 7: Average and extreme values for tunneling coefficients of 1-2 to 1-7 H-shifts at temperatures ranging 

from 300 to 1800K.  

  1-2   1-3   1-4  

T/K Average Maximum Minimum Average Maximum Minimum Average Maximum Minimum 

300 10860.65 59138.61 290.02 98656.95 213897.87 8151.39 270.59 585.33 26.95 

400 22.97 46.40 9.09 63.85 85.07 28.43 10.35 14.10 4.84 

500 4.88 6.52 3.39 7.59 8.59 5.58 3.74 4.39 2.55 

600 2.72 3.20 2.22 3.49 3.74 2.96 2.38 2.63 1.88 

700 2.02 2.25 1.76 2.38 2.49 2.14 1.86 2.00 1.58 

800 1.69 1.83 1.53 1.91 1.97 1.76 1.60 1.69 1.42 

900 1.51 1.60 1.40 1.65 1.69 1.56 1.45 1.51 1.32 

1000 1.39 1.46 1.31 1.49 1.52 1.43 1.35 1.39 1.25 

1100 1.31 1.36 1.25 1.39 1.41 1.34 1.28 1.32 1.20 

1200 1.26 1.30 1.21 1.32 1.34 1.28 1.23 1.26 1.17 

1300 1.21 1.25 1.17 1.27 1.28 1.23 1.20 1.22 1.14 

1400 1.18 1.21 1.15 1.23 1.24 1.20 1.17 1.19 1.12 

1500 1.16 1.18 1.13 1.19 1.20 1.17 1.15 1.16 1.11 

1600 1.14 1.16 1.11 1.17 1.18 1.15 1.13 1.14 1.09 

1700 1.12 1.14 1.10 1.15 1.16 1.13 1.11 1.13 1.08 

1800 1.11 1.12 1.09 1.13 1.14 1.12 1.10 1.11 1.07 

  1-5   1-6   1-7  

T/K Average Maximum Minimum Average Maximum Minimum Average Maximum Minimum 

300 40.64 66.41 4.95 30.04 49.12 4.37 64.99 102.65 9.48 

400 5.60 6.91 2.36 4.88 6.00 2.23 6.39 7.56 3.17 

500 2.79 3.13 1.72 2.58 2.94 1.66 2.96 3.22 2.04 

600 2.00 2.16 1.46 1.90 2.10 1.42 2.06 2.18 1.63 

700 1.65 1.76 1.32 1.59 1.72 1.30 1.69 1.75 1.43 

800 1.47 1.54 1.24 1.43 1.52 1.22 1.49 1.53 1.32 

900 1.36 1.41 1.19 1.33 1.40 1.17 1.37 1.40 1.25 

1000 1.28 1.33 1.15 1.26 1.31 1.14 1.29 1.32 1.20 

1100 1.23 1.26 1.12 1.21 1.26 1.12 1.24 1.26 1.16 

1200 1.19 1.22 1.10 1.18 1.22 1.10 1.20 1.21 1.13 

1300 1.16 1.19 1.09 1.15 1.18 1.08 1.17 1.18 1.11 

1400 1.14 1.16 1.08 1.13 1.16 1.07 1.14 1.15 1.10 

1500 1.12 1.14 1.07 1.11 1.14 1.06 1.12 1.13 1.09 

1600 1.11 1.13 1.06 1.10 1.12 1.06 1.11 1.12 1.08 

1700 1.10 1.11 1.05 1.09 1.11 1.05 1.10 1.11 1.07 

1800 1.09 1.10 1.05 1.08 1.10 1.04 1.09 1.09 1.06 

4.4.2.4 Comparison to experimental data 

The rate coefficients automatically calculated by Genesys were compared to experimental data 

from literature. The 1-4 H-shift in 1-pentyl has been extensively measured in several independent 

experiments and its rate coefficients can serve as a good data to compare the ab initio data to. 
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Figure 5a shows the 1-4 shift of 1-pentyl to 2-pentyl in the temperature range 300-1800K in the 

high pressure limit, compared to 6 experimental studies. A good agreement is seen between the 

theoretical and experimental rate coefficients. The temperature dependence at low temperatures is 

well-captured by the tunneling coefficients, which amounts to 468 at 300K and has thus a major 

contribution to the rate coefficient at these low temperatures.  

 
Figure 5: (a) Arrhenius plot of the 1-4 H-shift of 1-pentyl to 2-pentyl compared to experimental data from the 

literature of Miyoshi et al.
43

 (), Yamauchi et al.
44

 ( ), Tsang et al.
45

 (), Marshall
46

 (), Endrenyi and Le 

Roy
47

 (), and Watkins
48

 ( ). (b) Arrhenius plot of the 1-5 H-shift of 1-hexyl to 2-hexyl compared to 

experimental data from the literature of Tsang et al.
49

 (, Yamauchi et al.
44

 ( ), Imbert and Marshall
50

 (), 

Dóbé et al.
51

 (), and Watkins and Ostreko
52

 (). The lines correspond to the ab initio rate coefficients 

calculated by Genesys. Log(|k|) is reported in which the rate coefficients are expressed in s
-1

. 

Another reaction for which many experimental data are available is the 1-5 H-shift in the 1-hexyl 

radical yielding the 2-hexyl radical, of which the rate coefficients are given in Figure 5b. 

Although much effort has been done to obtain experimental rate coefficients, the results are 

scattered over more than one order of magnitude, especially at temperatures between 500 and 

1000K. The rate coefficients calculated by Genesys show a good agreement at high temperatures, 

i.e. a maximum deviation factor below 1.4 above 500K compared to the data of Yamauchi et al.
44

 

and a deviation factor up to 2 above 500K compared to the data of Tsang et al.
49

. However, at 

lower temperatures, the rate coefficients are higher than the experimental ones.  

4.4.2.5 Comparison to theoretical data 

As mentioned in the introduction of this chapter, many different groups have been working on 

intramolecular hydrogen abstraction reactions, using a variety of theoretical methods. The rate 

coefficients of 46 reactions calculated by Genesys at 1000K were compared to literature data 

from several sources, as tabulated in Table 8. Reactions from 1-2 up to 1-7 H-shift families were 
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compared, mainly consisting of alkyl radicals and a few alkenyl radicals, since these are the only 

literature data available for which comparable rate coefficients were calculated with Genesys. Of 

the 70 rate coefficients compared, 40 of the literature rate coefficients are within a factor of 2 of 

the Genesys rate coefficients. 17 more rate coefficients are within a factor of 3, giving only 17 

rate coefficients that deviate more than a factor 3. A few of these outliers are the rate coefficients 

of Ratkiewicz et al.
20

 in which the 1-3 H-shift in 1-propyl, the 1-4 H-shift in 1-butyl, the 1-5 H-

shift in 1-pentyl, the 1-6 H-shift in 1-hexyl are 5, 3, 55 and 717 times higher than the Genesys 

rate coefficients, respectively. These very high deviations are also seen for the Ratkiewicz data 

compared to other literature data.  

In conclusion, the rate coefficients of Genesys are in general well within the uncertainty limits of 

the literature data. These results also indicate that the generation of a set of group additive values 

seems feasible with the current dataset of rate coefficients.  
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Table 8 : Rate coefficients of several reactions calculated by Genesys (Gen) and the ratio of the Genesys rate 

coefficients to literature rate coefficients evaluated at 1000K. 
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(Table 8 continued) 
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4.4.3 Group additivity model 

As explained previously, to obtain group additive values, the Arrhenius parameters are used, 

excluding the number of single events and tunneling corrections. The resulting pre-exponential 

factor is referred to as the single-event pre-exponential factor. Tunneling corrections and the 

number of single event are calculated separately from the group additive values and are added to 

the group additive rate coefficient to again obtain the total rate coefficient.  

4.4.3.1 Initial model 

The reactions from the training set, i.e. Table 4 and Table 5, are used to deduce an initial set of 

ΔGAV°’s, in which each ΔGAV° is calculated based on the rate coefficient of a single reaction. 

The reactions only deviate from the reference reactions by one change to a reactive atom or to a 

carbon atom along the chain in between the two reactive carbon atoms, all other groups remain 

equal to those of the reference reaction. The tables in Appendix F tabulate the initial group 

additive values and the reference Arrhenius parameters.  

The validity of the initial model has been assessed by comparing the ab initio rate coefficients by 

group additivity rate coefficients. Appendix E list the test set reactions for 1-2 to 1-7 H-shifts 

respectively. The last column shows the ratio of the group additivity calculated rate coefficient to 

the ab initio calculated rate coefficient. The parity plots given in Figure 6 summarize these data. 

In Table 9, the mean absolute deviations and maximum deviations between the group additive 

rate coefficient and the ab initio rate coefficients are given. All the deviations were calculated by 

dividing the highest rate coefficient by the lowest one, to only get values higher than 1. Except 

for 1-7 H-shift, the mean deviations are all well within a factor of two, which is a typical 

accuracy for group additivity
4
, and which is of the same order of magnitude as the uncertainty on 

CBS-QB3 ab initio rate coefficients. A few outliers show higher deviations, which can be 

attributed to either not considering non-nearest neighbor effects, which will be discussed later, or 

to the ab initio uncertainties.  
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Figure 6: Parity plots of the group additivity predicted single-event rate coefficients kGA versus the ab initio 

rate coefficients kAI at 1000K for 1-2 (), 1-3 ( ) and 1-4 () H-shifts (left), and for 1-5 (), 1-6 () and 1-7 (

) H-shifts (right). The rate coefficients exclude tunneling corrections in this figure. Log(|k|) is reported for 

all reactions in which the rate coefficient is expressed in s
-1

.  

Table 9: Mean absolute deviation (MAD) and maximum (MAX) deviation between the group additivity rate 

coefficients and the ab initio rate coefficients evaluated at 1000K of the training and test reactions using both 

the initial set as well as the final set of group additivity values. All the deviations are calculated by dividing the 

highest rate coefficient by the lowest one. For each type of H-shift, the first row contains the deviations 

obtained from the initial set of group additive values. The training set is not included because all deviation 

factors amount 1 exactly. The bottom two rows contain the deviations of the training set and the ones of the 

test set respectively obtained from the final set of group additive values.  

  1-2  1-3  1-4  

  MAD MAX MAD MAX MAD MAX 

Initial set of ΔGAV°’s Test set 1.45 3.58 1.75 3.31 1.93 4.82 

Final set of ΔGAV°’s 
Training set 1.28 1.78 1.23 1.72 1.27 1.85 

Test set 1.25 1.81 1.35 2.60 1.44 2.91 

  1-5  1-6  1-7  

  MAD MAX MAD MAX MAD MAX 

Initial set of ΔGAV°’s Test set 1.60 5.82 1.90 4.96 2.41 3.81 

Final set of ΔGAV°’s 
Training set 1.20 1.82 1.25 1.78 1.07 1.90 

Test set 1.18 1.81 1.31 2.45 1.75 3.96 

4.4.3.2 Final model 

By using a training and test set, it has been shown that the group additivity approach is valid for 

intramolecular hydrogen abstraction reactions. Although the calculations of the rate coefficients 

are within the expected limits compared to the ab initio data, it is possible to increase the 

accuracy of the overall model by including the kinetic data of the test set in the calculation of 
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group additivity values. Since for all H-shifts but the 1-7 H-shifts, all groups are present at least 

twice in the combined set, a linear regression approach is necessary to obtain new group 

additivity values. For 1-7 H-shifts, the test set is small due to the relative unimportance of these 

reactions. The group additive values are summarized in Table 11 and Table 12. Although no 

independently calculated reactions are available to validate this set of group additive values, the 

validity of group additivity for these reactions has already been shown, and it can be expected 

that the new set of group additive values is more accurate because it was retrieved from a larger 

set of reactions. The gain in accuracy is shown in Table 9.  

Table 10 shows F and R
2
 values of the least-square regressions of ΔGAV°’s from the Arrhenius 

parameters of the ab initio calculations. All the significances are higher than the F0.05 value, 

except for the pre-exponential factors of the 1-7 H-shifts. More reactions are thus necessary to 

conclude this reaction family, but their relative importance is negligible, as shown in a next 

section. Therefore, it was chosen not to extend the dataset for 1-7 H-shifts. The multiple 

correlation coefficients between the ΔGAV°’s are high, especially for the activation energies. 

The Arrhenius parameters are thus well represented by the group additivity model. The 

uncertainties on the group additive values, defined by the 95% confidence intervals, are given in 

Appendix G. 

Table 10 : Significances of the regressions (F) and multiple correlation coefficients (R
2
) of regression of 

ΔGAV°’s for the 1-2 to 1-7 H-shifts. 

 𝐥𝐨𝐠 𝑨 𝑬𝒂 

 F R
2
 F R

2
 

1-2 13.55 0.878 254.1 0.993 

1-3 8.48 0.871 456.4 0.997 

1-4 7.72 0.888 298.1 0.997 

1-5 8.48 0.899 364.6 0.997 

1-6 7.12 0.895 258.6 0.997 

1-7 1.62 0.879 108.0 0.998 
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Table 11: Primary group additive values ΔGAV° for 1-2 to 1-7 intramolecular hydrogen abstractions deduced from the combined training set and test 

set. The reference reactions are given in Figure 2. The index i depends on the H-shift. For 1-2 H-shifts, i equals 2, for 1-3 H-shifts 3, etc. The units for 

ΔGAV°Ea values are kJ mol
-1

. For the reference reaction, the single-event pre-exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. 

The reference reaction pre-exponential factor does not include tunneling nor the number of single events. 

 1-2  1-3  1-4  1-5  1-6  1-7  

 logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea 

Reference 12.783 177.30 12.043 176.19 10.823 106.03 9.943 73.11 9.122 69.30 7.892 75.99 

C1-(C)(H)2 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 

C1-(C)2(H) -0.032 7.01 0.086 5.34 0.034 4.48 0.013 4.76 0.087 4.26 0.340 4.29 
C1-(Cd)(C)(H) 0.402 33.33 0.761 41.99 0.688 42.31 0.775 46.08 0.764 48.24 0.450 47.04 

C1-(Ct)(C)(H) 0.120 25.32 0.203 31.59 0.183 27.82 0.065 29.97 -0.332 33.83 0.140 31.04 
C1-(C)3 0.021 10.31 0.147 8.76 -0.005 4.56 -0.357 5.26 -0.360 6.74 -0.350 5.88 
C1-(Cd)(C)2 0.506 35.53 0.794 47.49 0.654 46.83 0.515 49.99 0.540 56.35 0.070 53.90 

C1-(Ct)(C) -0.020 31.18 -0.061 38.02 -0.002 36.18 0.059 38.31 -0.140 38.11 -0.310 37.32 
C1-(Cd)2(C) 0.480 56.23 0.818 64.07 0.665 66.51 0.428 77.93 0.508 82.53 0.240 79.16 

C1-(Cd)(Ct)(C) 0.617 55.01 0.695 63.30 0.640 64.29 0.745 66.77 0.474 68.44 0.590 67.39 
C1-(Ct)2(C) 0.197 56.04 0.200 59.90 0.250 52.32 0.415 61.84 -0.031 60.59 0.110 60.39 
Ci-(C)(H)3 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 

Ci-(C)2(H)2 0.069 -10.63 0.223 -11.26 0.135 -13.12 0.079 -11.69 0.150 -11.99 -0.010 -12.31 
Ci-(Cd)(C)(H)2 -0.210 -42.29 0.008 -32.99 -0.387 -32.25 -0.196 -27.19 -0.141 -25.64 -0.300 -26.59 

Ci-(Ct)(C)(H)2 -0.064 -35.02 0.202 -27.40 0.018 -30.08 -0.046 -25.84 -0.201 -24.03 -0.030 -24.19 
Ci-(C)3(H) 0.160 -16.47 0.455 -16.65 -0.070 -22.78 -0.057 -21.20 -0.374 -21.70 0.010 -19.69 

Ci-(Cd)(C)2(H) -0.296 -45.88 -0.051 -36.46 -0.137 -40.57 -0.360 -36.15 -0.613 -32.06 -0.835 -32.32 
Ci-(Ct)(C) (H) -0.039 -39.06 0.194 -33.30 0.144 -36.48 -0.030 -32.30 -0.240 -33.19 -0.510 -34.84 

Ci-(Cd)2(C)(H) -0.473 -62.70 -0.348 -53.33 -0.028 -52.32 -0.182 -39.01 -0.498 -36.53 -0.800 -37.35 
Ci-(Cd)(Ct)(C) (H) -0.140 -63.71 0.165 -46.56 -0.003 -49.57 -0.032 -45.34 -0.366 -43.60 -0.530 -43.85 
Ci-(Ct)2(C)(H) -0.080 -62.13 0.220 -45.13 0.198 -53.33 -0.075 -42.45 -0.341 -44.54 -0.040 -43.12 

 

 



Chapter 4: Group additivity model for intramolecular hydrogen abstractions 177 

Table 12: Secondary group additive values ΔGAV° for 1-2 to 1-7 intramolecular hydrogen abstractions 

deduced from the combined training set and test set. The reference reactions and the meaning of the index i 

are given in Figure 2. The units for ΔGAV°Ea values are kJ mol
-1

. For the reference reaction, the single-event 

pre-exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

.  

 1-3 1-4 

 i=2 i=2 i=3 

 logÃ Ea logÃ Ea logA Ea 

Ci-(C)2(H)2 0.000 0.00 0.000 0.00 0.000 0.00 

Ci-(C)3(H) -0.057 -3.32 0.073 -6.62 0.164 -4.52 

Ci-(Cd)(C)2(H) -0.080 -2.50 0.064 -9.81 0.067 -6.31 

Ci-(Ct)(C)2(H) -0.224 -7.22 -0.112 -7.41 0.069 -2.68 

Ci-(C)4 0.300 -5.07 -0.043 -7.66 -0.110 -1.57 

Ci-(Cd)(C)3 -0.018 -6.82 0.007 -11.72 -0.020 -5.74 

Ci-(Ct)(C) 3 -0.030 -8.57 0.073 -10.11 0.110 -3.79 

Ci-(Cd)2(C)2 0.199 -8.51 0.037 -10.97 0.087 -2.22 

Ci-(Cd)(Ct)(C)2 0.263 -7.52 0.100 -12.50 0.067 -5.75 

Ci-(Ct)2(C)2 0.001 -6.38 0.060 -12.14 0.053 -3.79 

 

 1-5 

 i=2 i=3 i=4 

 logÃ Ea logÃ Ea logÃ Ea 

Ci-(C)2(H)2 0.000 0.00 0.000 0.00 0.000 0.00 

Ci-(C)3(H) -0.011 -4.83 0.100 -3.81 0.043 -2.94 

Ci-(Cd)(C)2(H) -0.027 -5.60 0.206 -3.81 -0.025 -3.37 

Ci-(Ct)(C)2(H) -0.072 -6.19 -0.018 -1.40 0.030 -0.68 

Ci-(C)4 -0.134 -6.63 -0.013 -5.95 -0.024 -2.55 

Ci-(Cd)(C)3 -0.003 -11.81 0.238 -9.74 0.098 -1.53 

Ci-(Ct)(C) 3 0.061 -9.92 0.350 -7.47 0.176 -4.59 

Ci-(Cd)2(C)2 0.191 -9.95 0.175 -9.24 0.106 -7.52 

Ci-(Cd)(Ct)(C)2 0.270 -9.76 0.150 -3.53 0.300 -3.52 

Ci-(Ct)2(C)2 0.096 -9.90 -0.083 -5.00 0.211 -0.07 

 

 1-6 

 i=2 i=3 i=4 i=5 

 logÃ Ea logÃ Ea logÃ Ea logÃ Ea 

Ci-(C)2(H)2 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 
Ci-(C)3(H) -0.205 -6.87 0.123 -2.57 0.193 -3.84 -0.165 -4.08 
Ci-(Cd)(C)2(H) -0.067 -6.53 0.280 -2.37 0.257 -1.10 0.032 -3.79 
Ci-(Ct)(C)2(H) -0.108 -4.65 0.130 0.12 0.010 0.85 -0.119 1.35 
Ci-(C)4 -0.073 -5.46 0.136 -2.62 0.152 -4.57 0.077 -0.21 
Ci-(Cd)(C)3 -0.157 -5.56 0.426 -4.41 0.415 -4.43 -0.039 -2.93 
Ci-(Ct)(C) 3 -0.116 -7.77 0.278 -6.53 0.243 -7.81 0.067 -1.00 
Ci-(Cd)2(C)2 -0.190 -11.05 0.341 -6.10 0.670 -5.83 -0.239 -4.68 
Ci-(Cd)(Ct)(C)2 -0.120 -10.68 0.256 -4.79 0.445 -4.44 -0.129 -2.65 
Ci-(Ct)2(C)2 -0.174 -8.00 0.125 -4.08 0.166 -0.84 -0.020 2.59 
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(Table 12 continued) 

 1-7 

 i=2 i=3 i=4 i=5 i=6 

 logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea 

Ci-(C)2(H)2 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 0.000 0.00 
Ci-(C)3(H) 0.070 -5.04 0.195 -1.52 0.350 -3.73 0.240 0.23 0.020 -2.37 
Ci-(Cd)(C)2(H) 0.030 -4.69 0.030 -1.34 0.530 -2.01 0.100 -1.68 -0.400 -2.42 
Ci-(Ct)(C)2(H) -0.070 -4.54 0.120 -3.38 0.460 3.20 0.080 -1.99 0.060 2.08 
Ci-(C)4 0.190 -6.84 0.730 -1.26 0.060 4.09 0.150 -5.59 0.310 0.29 
Ci-(Cd)(C)3 0.360 -3.53 0.440 -6.37 1.250 -0.25 0.550 -6.85 0.050 0.84 
Ci-(Ct)(C) 3 0.150 -2.74 0.300 -5.23 0.840 1.45 0.220 -3.85 0.430 3.91 
Ci-(Cd)2(C)2 0.240 -6.10 0.430 -10.19 1.080 -4.60 0.430 -9.68 0.670 -1.13 
Ci-(Cd)(Ct)(C)2 0.130 -5.65 0.220 -0.99 1.010 2.12 0.300 -0.89 -0.260 2.43 
Ci-(Ct)2(C)2 0.280 -3.02 0.240 -6.32 0.960 1.62 0.340 -1.60 0.410 7.53 

4.4.3.3 Modelling tunneling coefficients 

The direct calculation of tunneling coefficients cannot be done from group additivity. Eckart 

tunneling coefficients are calculated using the electronic barrier and the imaginary frequency. 

However, these properties are not available without ab initio calculations. Instead, correlations 

are typically constructed to model the tunneling coefficients from properties that can be obtained 

from group additivity. In this work, the activation energy is used to model the tunneling 

coefficients, which is a good measure for the electronic barrier. Activation energies can be 

obtained from group additivity and do not require additional quantum chemical calculations. For 

each reaction, only the activation energy in the exothermic direction, Ea,exo, is considered, i.e. the 

smallest activation energy when the forward and reverse Arrhenius parameters are compared, 

since tunneling only pertains to the net electronic barrier 

Tunneling coefficients at 300 and 1000K for all the 1-2 up to 1-6 ab initio calculated training and 

test set reactions are depicted in Figure 7. The 1-7 H-shifts have not been included in the figure 

for the sake of clarity; their values are comparable to 1-6 H-shifts. The tunneling coefficients can 

be modelled with an exponential function given in Eq. 4.18.  

 𝜅(𝑇) = 1 + 𝑎⁡𝐸𝑎,𝑒𝑥𝑜
𝑏  

Eq. 4.18 

The temperature dependence of a and b is difficult to model without major loss in accuracy. 

Therefore, a and b are tabulated in Table 13 and linear or second order interpolation is suggested 

to obtain tunneling coefficients at intermediate temperatures. The linear regression of a and b led 

to F values ranging from 104.8 to 198626.6, which is much larger than the tabulated F0.05 values; 



Chapter 4: Group additivity model for intramolecular hydrogen abstractions 179 

with the degrees of freedom of each H-shift, a maximum F0.05 value of 3.385 is reached. The 

binary correlation coefficient of log 𝑎 and b is very close to -1, the maximum value is -0.996. The 

uncertainties in Table 13 correspond to the 95% confidence intervals. Most of the uncertainty 

intervals on the parameters are limited to 20% of the parameter itself, except for 1-3 H-shifts. 

Table 13: Coefficients a and b for Eq. 4.18 of the tunneling corrections of 1-2 to 1-7 hydrogen shifts at 

temperatures from 300 to 1800K. The uncertainties correspond to the 95% confidence intervals.  

 1-2 1-3 1-4 

T (K) log a b log a b log a b 

300 -13.39 ± 1.41 7.96 ± 0.65 -8.16 ± 1.89 6.02 ± 0.87 -5.03 ± 0.58 3.85 ± 0.30 

400 -3.98 ± 0.55 2.45 ± 0.25 -2.57 ± 0.74 2.01 ± 0.34 -1.76 ± 0.26 1.42 ± 0.14 

500 -1.96 ± 0.28 1.18 ± 0.13 -1.03 ± 0.35 0.85 ± 0.16 -1.21 ± 0.17 0.86 ± 0.09 

600 -1.57 ± 0.21 0.83 ± 0.10 -0.79 ± 0.24 0.55 ± 0.11 -1.13 ± 0.14 0.66 ± 0.07 

700 -1.51 ± 0.19 0.70 ± 0.09 -0.81 ± 0.19 0.43 ± 0.09 -1.16 ± 0.12 0.57 ± 0.06 

800 -1.52 ± 0.18 0.63 ± 0.08 -0.87 ± 0.17 0.38 ± 0.08 -1.24 ± 0.11 0.53 ± 0.06 

900 -1.57 ± 0.17 0.59 ± 0.08 -0.95 ± 0.16 0.35 ± 0.07 -1.32 ± 0.11 0.50 ± 0.06 

1000 -1.64 ± 0.17 0.57 ± 0.08 -1.02 ± 0.15 0.33 ± 0.07 -1.40 ± 0.11 0.49 ± 0.06 

1100 -1.70 ± 0.17 0.55 ± 0.08 -1.10 ± 0.15 0.31 ± 0.07 -1.50 ± 0.11 0.49 ± 0.06 

1200 -1.77 ± 0.17 0.54 ± 0.08 -1.17 ± 0.14 0.31 ± 0.07 -1.57 ± 0.11 0.48 ± 0.06 

1300 -1.84 ± 0.18 0.54 ± 0.08 -1.24 ± 0.14 0.30 ± 0.06 -1.65 ± 0.10 0.48 ± 0.05 

1400 -1.90 ± 0.18 0.53 ± 0.08 -1.30 ± 0.14 0.30 ± 0.06 -1.72 ± 0.10 0.49 ± 0.05 

1500 -1.96 ± 0.18 0.53 ± 0.08 -1.36 ± 0.14 0.30 ± 0.06 -1.78 ± 0.10 0.48 ± 0.05 

1600 -2.02 ± 0.18 0.53 ± 0.08 -1.42 ± 0.14 0.30 ± 0.06 -1.84 ± 0.11 0.48 ± 0.06 

1700 -2.09 ± 0.19 0.54 ± 0.09 -1.48 ± 0.14 0.29 ± 0.06 -1.89 ± 0.11 0.48 ± 0.06 

1800 -2.16 ± 0.19 0.55 ± 0.09 -1.54 ± 0.14 0.30 ± 0.06 -1.94 ± 0.12 0.47 ± 0.06 

 1-5 1-6 1-7 

T (K) log a b log a b log a b 

300 -2.91 ± 0.31 2.55 ± 0.18 -2.47 ± 0.27 2.26 ± 0.16 -2.50 ± 0.41 2.35 ± 0.23 

400 -1.55 ± 0.19 1.27 ± 0.11 -1.37 ± 0.16 1.14 ± 0.09 -1.07 ± 0.23 1.00 ± 0.13 

500 -1.35 ± 0.15 0.92 ± 0.09 -1.25 ± 0.13 0.85 ± 0.08 -0.92 ± 0.18 0.67 ± 0.10 

600 -1.36 ± 0.13 0.78 ± 0.08 -1.27 ± 0.11 0.72 ± 0.07 -0.97 ± 0.15 0.56 ± 0.09 

700 -1.43 ± 0.12 0.72 ± 0.07 -1.35 ± 0.11 0.66 ± 0.06 -1.07 ± 0.14 0.51 ± 0.08 

800 -1.53 ± 0.12 0.69 ± 0.07 -1.45 ± 0.11 0.64 ± 0.06 -1.17 ± 0.14 0.48 ± 0.08 

900 -1.62 ± 0.12 0.67 ± 0.07 -1.57 ± 0.11 0.63 ± 0.06 -1.29 ± 0.14 0.48 ± 0.08 

1000 -1.73 ± 0.12 0.67 ± 0.07 -1.68 ± 0.11 0.64 ± 0.07 -1.40 ± 0.14 0.48 ± 0.08 

1100 -1.83 ± 0.13 0.67 ± 0.07 -1.79 ± 0.12 0.65 ± 0.07 -1.50 ± 0.14 0.48 ± 0.08 

1200 -1.92 ± 0.13 0.68 ± 0.07 -1.91 ± 0.13 0.66 ± 0.08 -1.59 ± 0.15 0.49 ± 0.08 

1300 -2.01 ± 0.14 0.68 ± 0.08 -2.01 ± 0.14 0.68 ± 0.08 -1.69 ± 0.16 0.50 ± 0.08 

1400 -2.10 ± 0.15 0.70 ± 0.08 -2.13 ± 0.16 0.70 ± 0.09 -1.77 ± 0.16 0.50 ± 0.09 

1500 -2.22 ± 0.16 0.72 ± 0.09 -2.26 ± 0.17 0.74 ± 0.10 -1.86 ± 0.18 0.51 ± 0.09 

1600 -2.33 ± 0.16 0.75 ± 0.09 -2.39 ± 0.18 0.78 ± 0.10 -1.93 ± 0.19 0.52 ± 0.10 

1700 -2.43 ± 0.17 0.78 ± 0.09 -2.51 ± 0.20 0.81 ± 0.11 -2.05 ± 0.21 0.55 ± 0.11 

1800 -2.53 ± 0.18 0.80 ± 0.10 -2.62 ± 0.22 0.84 ± 0.12 -2.16 ± 0.22 0.58 ± 0.11 
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Eq. 4.18 can only be used to model tunneling between 300 and 1800K, extrapolation outside this 

temperature range leads to inaccurate results. The correlations are also depicted in Figure 7 and 

show a good agreement of the tunneling coefficients as a function of the exothermic activation 

energy, both at 300 and 1000K.  

Eq. 4.18 assures that tunneling coefficients are always greater than one, a values are always 

positive. When the activation energy of the exothermic step approaches zero, the tunneling 

coefficients will approach 1 at each temperature. Furthermore, a and b are always positive, which 

leads to a monotonic increase of tunneling coefficients as a function of the activation energy in 

the exothermic direction. Tunneling coefficients typically decrease with increasing temperature. 

This is not straightforward to see from the tabulated values of a and b. Table 13 shows that a 

always exhibits a maximum between 500K and 700K whereas a minimum for b is found between 

1500 and 1700K. However, the interplay of both does lead to a monotonous decrease of 𝜅 as a 

function of temperature.  

In Figure 7, the necessity to divide the intramolecular hydrogen abstraction reactions as different 

reaction families is highlighted. A single tunneling correlation will not be able to capture the 

large differences between 1-2, 1-3 and the other reaction families, which can surpass an order of 

magnitude at low temperatures. Tunneling coefficients of 1-4 up to 1-7 hydrogen shifts could be 

modelled together without much loss in accuracy, but the categorization for 1-2 and 1-3 hydrogen 

shifts is kept for other reaction families as well for reasons of consistency.  

 
Figure 7: Tunneling coefficients of all the 1-2 (), 1-3 ( ), 1-4 (), 1-5 (), and 1-6 () hydrogen abstraction 

reactions (points) at 300K (left) and 1000K (right) compared to the correlations (lines). 1-7 shifts have been 

left out for the sake of clarity; the values are of the same order of magnitude as 1-6 shifts.  
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4.4.3.4 Dependence of group additive values on the type of H-shift 

In the past
12-15

, intramolecular hydrogen abstraction rate coefficients have often been calculated 

by using the rate coefficient of a similar intermolecular hydrogen abstraction and adding a single 

correction depending on the ring size in the transition state, i.e. the type of H-shift. The reactive 

atoms of the intermolecular hydrogen abstraction should have a similar surrounding compared to 

the intramolecular reaction. Although this approach might be accurate for a limited number of 

reactions, it cannot be generalized to the whole intramolecular hydrogen abstraction reactions 

family. The effect of certain groups on the rate coefficient is dependent on the type of H-shift, 

and for each type, a separate contribution was thus calculated in this work.  

Secondary contributions, which are due to substituents on the carbon chain in between the two 

reactive atoms strongly depend on the length of that carbon chain. These contributions can thus 

not be generalized for all H-shifts. For example, if a hydrogen atom bonded to the adjacent 

carbon atom of the radical is substituted by a vinyl group, the influence on a 1-4 H-shift 

activation energy amounts -10.97 kJ mol
-1

. For a 1-7 H-shift, the activation energy is only 

decreased by 1.13 kJ mol
-1

. The difference between both is more than 9 kJ mol
-1

 and should thus 

not be neglected.  

Furthermore, primary contributions also need to be treated separately. Table 11 shows, for 

example, that two vinyl substituents on the attacked carbon atom have a contribution of -62.70 kJ 

mol
-1

 in 1-2 H-shifts, but only -37.35 kJ mol
-1

 in 1-7 H-shifts. At 1000K, this leads to a deviation 

of a factor of 20 on the rate coefficient.  

4.4.3.5 Temperature dependence of group additive values 

Previously generated group additivity models for activation energies and pre-exponential factors
2-

11
 observed that ∆𝐺𝐴𝑉𝑜  only show a minor temperature dependence because (1) Arrhenius 

parameters do not vary much when regressed over several temperature domains and (2) the 

temperature dependence is mostly covered by the Arrhenius parameters of the reference 

reactions.  

The temperature dependence is verified by calculating the group additive values at 300 to 1800K 

and relating the values to the value at 300K as show in Figure 8. The figure only shows the group 

additive values with the highest temperature dependence per H-shift. Most of the group additive 
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values with high temperature dependence correspond to the C1-(Cd)1(C) group. 1-6 H-shifts 

exhibit the highest temperature dependence, followed by 1-7 and 1-5 H-shifts. The temperature 

dependence in 1-2 and 1-3 shifts remains limited. The difference between 300K and 1800K 

reaches to 18 kJ mol
-1

 for the C1-(Cd)1(C) group in 1-6 H-shifts. The temperature dependence can 

thus become significant depending on the substituents of the reactive atoms and the carbon chain 

in between. Group additive values should thus only be used in the relevant temperature range 

where they were regressed from, which is 800 to 1200K for the values in Table 11 and Table 12.  

 
Figure 8: Temperature dependence of the ΔGAV°’s with the highest temperature dependence for the 1-2 (-), 

1-3 (-), 1-4 (-), 1-5 (-), 1-6 (-), and 1-7 (-) H-shifts. The temperature dependence is obtained by subtracting the 

group additive value at 300K from the group additive values at a given temperature. The lines to which no 

label are added all correspond to the C1-(Cd)1(C) group. 

4.4.3.6 Thermodynamic consistency  

One important note to be made when using a group additive model is that thermodynamic 

consistency is not necessarily met. Thermodynamic consistency is met if the ratio of the forward 

and reverse rate coefficients of a reaction equals the equilibrium coefficient of that reaction. 

When calculating the forward and reverse rate coefficients of a reaction using group additivity, 

their ratio is not equal to the equilibrium coefficient obtained from the ab initio thermodynamic 

parameters of the reactant and product, as shown in Table 14. The highest deviation for the 1-2 

H-shifts occurs in a reaction of which both the reactive atoms have non-hydrogen ligands. These 

reactions also show a higher deviation in the group additivity rate coefficients compared to the ab 

initio one. Furthermore, this deviation is in opposite direction for the forward versus the reverse 

rate coefficient, leading to the high deviation in equilibrium coefficients. Another higher 
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mismatch between the group additivity and the ab initio equilibrium coefficients is seen for a 1-7 

H-shift in which the group additivity reverse rate coefficient deviates with a factor of three 

compared to the ab initio one, as shown in Appendix E. Besides these two deviations, most group 

additivity equilibrium coefficients agree well with the ab initio coefficients.  

Table 14: Mean absolute deviation (MAD) and maximum (MAX) deviation between the group additivity 

equilibrium coefficients and the ab initio equilibrium coefficients evaluated at 1000K of the training and test 

reactions. All the deviations are calculated by dividing the highest equilibrium coefficient by the lowest one. 

 1-2  1-3  1-4  

 MAD MAX MAD MAX MAD MAX 

Training set 1.40 2.01 1.24 1.46 1.22 1.53 
Test set 1.40 3.02 1.23 1.64 1.22 1.65 

 1-5  1-6  1-7  

 MAD MAX MAD MAX MAD MAX 

Training set 1.22 1.87 1.21 1.67 1.16 2.76 
Test set 1.22 1.84 1.22 1.65 2.37 4.15 

During the generation of a kinetic model, often no thermodynamic data of species is available 

directly from ab initio calculations. Instead, calculation procedures such as group additivity are 

used to obtain thermodynamic data of all the species. These procedures are only applicable to a 

limited group of molecules, and have an accuracy lower than direct ab initio calculations. It is 

thus key to know if these data are sufficient to calculate the reverse reaction rate coefficients 

from thermodynamic consistency. First, the applicability domain of the calculation procedure 

needs to be verified. In the framework of Genesys, thermodynamic data is calculated based on the 

group additivity values of Marin and coworkers
53,54

. These values allow the calculation of 

standard enthalpies of formations, entropies and heat capacities for open chain hydrocarbon 

molecules and radicals, including double bonds, triple bonds and allenic bonds. Furthermore, the 

calculations also contain monoaromatic species and a limited set of aliphatic cyclic molecules 

and radicals. The application domain of the current work, i.e. reactions in open chain 

hydrocarbon radicals, including double and triple bonds, is thus covered by the thermochemistry 

calculations. Second, the accuracy of the group additivity thermochemistry data needs to be 

verified. Sabbe et al.
53

 reported a mean absolute deviation of the group additivity standard 

enthalpy of formation versus the ab initio calculated standard enthalpy of formation better than 

2kJ mol
-1

, which is good compared to CBS-QB3 accuracies of 4kJ mol
-1

. Furthermore, entropies 

and heat capacities are within 5J mol
-1

 according to Sabbe et al.
54

 Besides these reported 

uncertainties, the accuracy can be controlled by calculated equilibrium coefficients from group 
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additivity and comparing them to the ab initio equilibrium coefficients. Table 15 shows 6 

reactions for which the equilibrium coefficient has been calculated from the group additivity 

thermochemistry of the reactants and products 𝐾𝑒𝑞,𝐺𝐴 compared to the ratio of the forward and 

reverse rate coefficients. The ratios have been calculated by ab initio and by group additivity. In 

general, calculating the reverse rate coefficient using 𝐾𝑒𝑞,𝐺𝐴 gives an addition uncertainty of a 

factor of 2 compared to the ab initio reverse rate coefficient.  

Table 15 : Comparison of the group additivity equilibrium coefficients calculated from the thermodynamic 

data of Sabbe et al.
53,54

 to the ratio of the forward and reverse rate coefficients calculated from ab initio (AI) 

and from group additivity (GA).  

Reaction 𝑲𝟏 =
𝒌𝒇𝒐𝒓,𝑨𝑰

𝒌𝒓𝒆𝒗,𝑨𝑰
 𝑲𝟐 =

𝒌𝒇𝒐𝒓,𝑮𝑨

𝒌𝒓𝒆𝒗,𝑮𝑨
 𝑲𝒆𝒒,𝑮𝑨 

𝑲𝟏

𝑲𝟐
 

𝑲𝟏

𝑲𝒆𝒒,𝑮𝑨
 

 
1.4 10

3
 9.2 10

2
 3.3 10

3
 1.45 0.41 

 

8.8 10
3
 9.6 10

3
 1.7 10

4
 0.92 0.53 

 9.6 10
0
 1.1 10

1
 4.410

0
 0.92 2.19 

 

7.8 10
-1

 7.7 10
-1

 1.0 10
0
 1.03 0.79 

 

6.0 10
0
 8.0 10

0
 4.4 10

0
 0.75 1.36 

 4.5 10
0
 3.3 10

0
 4.4 10

0
 1.38 1.04 

4.4.4 Application of the group additivity model 

The calculation of Arrhenius parameters of an intramolecular hydrogen abstraction reaction using 

the new group additivity model requires several steps. This is illustrated based on the reaction in 

Figure 9 for which the group additivity Arrhenius parameters will be calculated at 1000K. The 

reference Arrhenius parameters first need to be known. The example reaction belongs to the 1-4 

H-shift family for which the logarithm of the reference single event pre-exponential factor is 

10.823 and reference activation energy is 106.03 kJ mol
-1

. In a 1-4 H-shift, four contributions 

ΔGAV°’s are necessary: two primary and two secondary contributions. The primary 

contributions in the example reaction are C1-(C)2(H) and C4-(C)3(H), with 0.034 and -0.070 as 

ΔGAV°logÃ and 4.48 and -22.78 as ΔGAV°Ea , respectively. The two secondary groups are C2-

(C)2(Cd)(H) and C3-(C)2(H)2, the latter corresponds to the reference reaction and its ΔGAV°’s are 

thus zero both for the pre-exponential factor as well as for the activation energy. The former 

however does deviate from de reference reaction, ΔGAV°logÃ is 0.064 and ΔGAV°Ea is -9.81. The 

resulting activation energy and single-event pre-exponential factor are:  
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𝐸𝑎(1000𝐾) = 𝐸𝑎,𝑟𝑒𝑓(1000𝐾) +∑∆𝐺𝐴𝑉𝐸𝑎

𝑜

𝑖

(𝐶𝑖, 1000𝐾) 

= 106.03 + 4.48 + (−22.78) + (−9.81) + 0.0 = 77.92 

Eq. 4.19 

 

 

log 𝐴̃ (1000𝐾) = log 𝐴̃𝑟𝑒𝑓 (1000𝐾) +∑∆𝐺𝐴𝑉log 𝐴̃
𝑜

𝑖

(𝐶𝑖, 1000𝐾) 

= 10.823 + 0.034 + (−0.070) + 0.064 + 0.0 = 10.851 

Eq. 4.20 

 
Figure 9: Illustration of the calculation of Arrhenius parameters from group additivity for intramolecular 

hydrogen abstraction reactions. 

Finally, the single event pre-exponential factor needs to be multiplied by two factors: the 

tunneling coefficient and the number of single events. The tunneling coefficient at 1000K for 1-4 

H-shifts is calculated according to 1 + 10−1.40⁡𝐸𝑎,𝑒𝑥𝑜
0.49 , see Table 13. The activation energy in 

exothermic direction needs to be known. The activation energy in the forward direction has 

already been calculated and amounts 77.91 kJ mol
-1

. In the reverse direction, the activation can 

be calculated analogously and amounts 91.16 kJ mol
-1

. The lowest activation energy belongs to 

the exothermic direction, and the resulting tunneling coefficient is 1.34.  

To calculate the number of single events, the total rotational symmetry numbers and the numbers 

of optical isomers of the reactant and transition state are needed. Neither contain any external 

rotational symmetry, but have three methyl groups leading to an internal symmetry number of 27. 

The number of optical isomers of the reactant is 2, C2 is a chiral center. The number of optical 

isomers in the transition state is 4, both C1 and C2 are chiral centers. The transition state thus 

exists as two pairs of diastereomers. In this work, the difference in energy between these 

diastereomers is neglected, instead the number of optical isomers is set to 4. The number of 

single events is thus 2. The total pre-exponential factor can now be calculated:  

 
log 𝐴 (1000𝐾) = log 𝐴̃ + log⁡(𝜅 ∙ 𝑛𝑒) 
= 10.851 + log⁡(1.34 ∙ 2) = 11.279 

Eq. 4.21 

4.4.4.1 1-octyl radical 

The 1-octyl radical can isomerize via 6 H-shifts yielding 2-, 3-, and 4-octyl radicals, as shown in 

Figure 10. The calculation of rate coefficients for these 6 reactions can be done using the newly 
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developed group additive model. The methodology is similar for all reactions, and is only 

illustrated for the 1-7 H-shift. The primary groups in this reaction are C1-(C)(H)2 and C7-

(C)2(H)2. The Arrhenius parameters of 1-7 H-shifts also depend on 5 secondary contributions 

which are all Ci-(C)2(H)2 in this example. These are identical to the secondary groups in the 

reference reaction, and their group additive value are thus zero. The pre-exponential factor and 

activation energy at 1000K are calculated according to Eq. 4.22 and Eq. 4.23. The tunneling 

correction is calculated using the activation energy of 63.68 kJ mol
-1

, which is in the exothermic 

direction, the reverse activation energy is 80.28 kJ mol
-1

. The numbers of single event for all the 

reactions in Figure 10 are equal to 4. 

𝐸𝑎(1000𝐾) = 75.99 + (−12.31) = 63.68 Eq. 4.22 

 

log 𝐴 (1000𝐾) = 7.882 + (−0.010) + 𝑙𝑜𝑔((1 + 10−1.40 ∙ 63.680.48) ∙ 4) = 8.595 
Eq. 4.23 

 

 
Figure 10: H-shifts in the 1-octyl radical 

The other 5 H-shifts in the 1-octyl radical can be calculated in an analogous manner. Each of the 

6 reactions has the same two primary group contributions: C1-(C)(H)2 and C2-(C)2(H)2, all the 

secondary contributions are zero. The branching fractions, i.e. the rate coefficients of each H-shift 

reaction compared to the sum of the 6 rate coefficients, are given in Figure 11a. The rate 

coefficients themselves are depicted in Figure 11b. As is already known for this reaction family, 

1-7 H-shifts only play a very small role compared to the other 5 H-shifts. The branching fraction 

of this 1-7 H-shift does not exceed 0.004 in the studied temperature domain. At low temperatures, 
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1-5 and 1-6 H-shifts are the most important, due to enthalpy effects. When the temperature rises, 

1-4 H-shifts become more important, followed by 1-2 and 1-3 H-shifts. The transition states of 

these three H-shifts have higher ring strain, and thus a less advantageous enthalpy of activation. 

However, because less rotors are frozen when the open chain reactants change to a cyclic 

structure in the transition state, their entropy of activation is increased. The same is visible when 

looking at the rate coefficients themselves. The slope of the 1-5 to 1-7 H-shifts is relatively flat, 

but their extrapolated intercept with the y-axis is lower compared to 1-2 and 1-3 H-shifts. 1-4 H-

shift exhibits and intermediate interaction of the slope and extrapolated intercept with the y-axis.  

 
Figure 11: 1-2 (-), 1-3 (-), 1-4 (-), 1-5 (-), 1-6 (-), and 1-7 (-) H-shifts in the 1-octyl radical: (a) branching 

fractions of each H-shift compared to the total H-shift rate coefficient and (b) rate coefficients of the 6 

reactions in which log(|k|) is reported. The rate coefficients k are expressed in s
-1

. 

It should also be noted that, although the 1-2 and 1-3 H-shift seem to gain importance at higher 

temperature, many radical species will decompose to bimolecular products instead at these 

temperatures. 

4.4.4.2 Applicability of the model 

The model only includes group additive values, no non-nearest neighbor effects have been 

included so far. However, a few reactions do show larger deviations. These deviations arise when 

two neighboring carbon atom have groups that come in each other’s vicinity. One of the most 

important of these deviations is seen when both the attacking and attacked carbon atoms are 

tertiary atoms instead of primary atoms. Although the total group additive rate coefficients agrees 

well with the ab initio values, both the activation energy and the pre-exponential factor show a 

too high deviation. The activation energy in a 1-2 shift is 14.4 kJ mol
-1

 too low via group 
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additivity, 5.3 kJ mol
-1

 in a 1-3 H-shift and 5.0 kJ mol
-1

 in a 1-4 H-shift. The methyl groups on 

each side of the transition state thus influence each other, and their influence is higher when the 

transition state ring is smaller. 

In a similar fashion, the need for non-nearest neighbor interactions was verified by adding three 

methyl groups on the three carbon atoms between the reactive atoms in a 1-5 H-shift. In this case, 

the predicted activation energy is 4.5 kJ mol
-1

 too high.  

All the other predicted activation energies were within 4 kJ mol
-1

 compared to the ab initio 

values. Nevertheless, future calculations to come up with a consistent set of non-nearest neighbor 

interactions is required to increase the accuracy of a limited number of reactions.  

4.5 Conclusions 

One of the new features of Genesys, i.e. automatically performing ab initio calculations, has been 

illustrated in this chapter by building a group additive model for intramolecular hydrogen 

abstractions in hydrocarbons. The geometries of all species and reactions have been generated by 

Genesys and submitted to Gaussian to obtain electronic energies and frequencies of the lowest 

energy conformers. Furthermore, 1D hindered rotor potentials have been calculated for all 

molecular frequencies resembling torsional modes. Rate coefficients have subsequently been 

calculated for all reactions, leading to a large set of kinetic data. These results have been 

compared to previous experimental and theoretic studies of intramolecular hydrogen abstractions 

and show a good agreement to literature data.  

The rate coefficients have been used to initially calculate a set of group additive values from a 

limited training set. These values have been used to calculate the rate coefficients of the reactions 

of the test set and have been compared to additional ab initio rate coefficients. Good agreement 

was found between both, i.e. most group additivity rate coefficients are within a factor of 2 of the 

ab initio values, validating the group additive approach for intramolecular hydrogen abstraction 

reactions. In a next step, both the training set and test set have been used to regress group additive 

values in order to increase the accuracy of the group additive model.  
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Since tunneling corrections cannot be modelled by group additivity, correlations have been 

obtained to calculate the transmission probability of intramolecular hydrogen abstractions. These 

correlations follow an exponential trend as function of the exothermic activation energies of the 

reaction, which is a property that can be modelled with group additivity. The parameters of the 

correlation are strongly temperature dependent, and their temperature dependence is too complex 

to be accurately modelled. Instead, the parameters have been tabulated and interpolation between 

these values is required to obtain tunneling coefficients at intermediate temperatures.  

Compared to alternative methods for calculating rate coefficients of intramolecular hydrogen 

abstractions, the current approach is more elaborate by taking both the immediate surroundings of 

the attacking and attacked carbon atom into account, as well as substituents on the carbon chain 

that connect these carbon atoms. The surroundings considered have also been expanded to 

multiple sp
2
 and sp hybridized carbon atoms.  

  



190 Chapter 4: Group additivity model for intramolecular hydrogen abstractions 

4.6 References  

1. Benson SW, Buss JH. Additivity Rules for the Estimation of Molecular Properties. 

Thermodynamic Properties. The Journal of Chemical Physics. 1958;29(3):546-572. 

2. Saeys M, Reyniers M-F, Marin GB, Van Speybroeck V, Waroquier M. Ab Initio 

Calculations for Hydrocarbons:  Enthalpy of Formation, Transition State Geometry, and 

Activation Energy for Radical Reactions. The Journal of Physical Chemistry A. 

2003;107(43):9147-9159. 

3. Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M. Ab initio group 

contribution method for activation energies for radical additions. Aiche Journal. 

2004;50(2):426-444. 

4. Sabbe MK, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB. Carbon-centered 

radical addition and beta-scission reactions: Modeling of activation energies and pre-

exponential factors. Chemphyschem. 2008;9(1):124-140. 

5. Sabbe MK, Vandeputte AG, Reyniers MF, Waroquier M, Marin GB. Modeling the 

influence of resonance stabilization on the kinetics of hydrogen abstractions. Physical 

Chemistry Chemical Physics. 2010;12(6):1278-1298. 

6. Vandeputte AG, Sabbe MK, Reyniers M-F, Marin GB. Kinetics of alpha hydrogen 

abstractions from thiols, sulfides and thiocarbonyl compounds. Physical Chemistry 

Chemical Physics. 2012;14(37):12773-12793. 

7. Vandeputte AG, Reyniers M-F, Marin GB. Kinetics of Homolytic Substitutions by 

Hydrogen Atoms at Thiols and Sulfides. Chemphyschem. 2013;14(8):1703-1722. 

8. Paraskevas PD, Sabbe MK, Reyniers MF, Papayannakos NG, Marin GB. Kinetic 

Modeling of a-Hydrogen Abstractions from Unsaturated and Saturated Oxygenate 

Compounds by Hydrogen Atoms. Journal of Physical Chemistry A. 2014;118(40):9296-

9309. 

9. Paraskevas PD, Sabbe MK, Reyniers MF, Papayannakos N, Marin GB. Kinetic Modeling 

of alpha-Hydrogen Abstractions from Unsaturated and Saturated Oxygenate Compounds 

by Carbon-Centered Radicals. Chemphyschem. 2014;15(9):1849-1866. 

10. Paraskevas PD, Sabbe MK, Reyniers MF, Papayannakos NG, Marin GB. Group Additive 

Kinetics for Hydrogen Transfer Between Oxygenates. Journal of Physical Chemistry A. 

2015;119(27):6961-6980. 

11. Paraskevas PD, Sabbe MK, Reyniers MF, Marin GB, Papayannakos NG. Group additive 

kinetic modeling for carbon-centered radical addition to oxygenates and -scission of 

oxygenates. Aiche Journal. 2016;62(3):802-814. 

12. Benson SW. Thermochemical kinetics: methods for the estimation of thermochemical 

data and rate parameters: Wiley; 1976. 

13. Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK. A Comprehensive Modeling Study of n-

Heptane Oxidation. Combustion and Flame. 1998;114(1–2):149-177. 

14. Curran HJ, Gaffuri P, Pitz WJ, Westbrook CK. A comprehensive modeling study of iso-

octane oxidation. Combustion and Flame. 2002;129(3):253-280. 

15. Curran HJ, Pitz WJ, Westbrook CK, Dagaut P, Boettner JC, Cathonnet M. A wide range 

modeling study of dimethyl ether oxidation. International Journal of Chemical Kinetics. 

1998;30(3):229-241. 



Chapter 4: Group additivity model for intramolecular hydrogen abstractions 191 

16. Zheng J, Truhlar DG. Direct Dynamics Study of Hydrogen-Transfer Isomerization of 1-

Pentyl and 1-Hexyl Radicals. The Journal of Physical Chemistry A. 2009;113(43):11919-

11925. 

17. Hayes CJ, Burgess DR. Kinetic Barriers of H-Atom Transfer Reactions in Alkyl, Allylic, 

and Oxoallylic Radicals as Calculated by Composite Ab Initio Methods. The Journal of 

Physical Chemistry A. 2009;113(11):2473-2482. 

18. Ratkiewicz A, Bankiewicz B. Kinetics of 1,5-Hydrogen Migration in Alkyl Radical 

Reaction Class. The Journal of Physical Chemistry A. 2012;116(1):242-254. 

19. Bankiewicz B, Huynh LK, Ratkiewicz A, Truong TN. Kinetics of 1,4-Hydrogen 

Migration in the Alkyl Radical Reaction Class. The Journal of Physical Chemistry A. 

2009;113(8):1564-1573. 

20. Ratkiewicz A, Bankiewicz B, Truong TN. Kinetics of thermoneutral intermolecular 

hydrogen migration in alkyl radicals. Physical Chemistry Chemical Physics. 

2010;12(36):10988-10995. 

21. Sirjean B, Dames E, Wang H, Tsang W. Tunneling in Hydrogen-Transfer Isomerization 

of n-Alkyl Radicals. The Journal of Physical Chemistry A. 2012;116(1):319-332. 

22. Lu D-h, Truong TN, Melissas VS, Lynch GC, Liu Y-P, Garrett BC, Steckler R, Isaacson 

AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG. POLYRATE 4: A new 

version of a computer program for the calculation of chemical reaction rates for 

polyatomics. Computer Physics Communications. 1992;71(3):235-262. 

23. Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC. Molecular modeling of 

the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene. 

Journal of the American Chemical Society. 1993;115(6):2408-2415. 

24. Wigner E. Crossing of Potential Thresholds in Chemical Reactions. Zeitschrift für 

Physikalische Chemie. 1932;B19:203-216. 

25. Skodje RT, Truhlar DG. Parabolic tunneling calculations. The Journal of Physical 

Chemistry. 1981;85(6):624-628. 

26. Eckart C. The Penetration of a Potential Barrier by Electrons. Physical Review. 

1930;35(11):1303-1309. 

27. Davis AC, Francisco JS. Ab Initio Study of Hydrogen Migration across n-Alkyl Radicals. 

The Journal of Physical Chemistry A. 2011;115(14):2966-2977. 

28. Davis AC, Francisco JS. Ab Initio Study of Key Branching Reactions in Biodiesel and 

Fischer–Tropsch Fuels. Journal of the American Chemical Society. 2011;133(47):19110-

19124. 

29. Wang K, Villano SM, Dean AM. The Impact of Resonance Stabilization on the 

Intramolecular Hydrogen-Atom Shift Reactions of Hydrocarbon Radicals. 

Chemphyschem. 2015;16(12):2635-2645. 

30. Wang K, Villano SM, Dean AM. Reactivity–Structure-Based Rate Estimation Rules for 

Alkyl Radical H Atom Shift and Alkenyl Radical Cycloaddition Reactions. The Journal 

of Physical Chemistry A. 2015;119(28):7205-7221. 

31. Bian H, Wang Z, Zhang F, Wang Z, Zhu J. Unimolecular Reaction Properties for the 

Long-Chain Alkenyl Radicals. International Journal of Chemical Kinetics. 

2015;47(11):685-694. 

32. Cohen N, Benson SW. Estimation of heats of formation of organic compounds by 

additivity methods. Chemical Reviews. 1993;93(7):2419-2438. 



192 Chapter 4: Group additivity model for intramolecular hydrogen abstractions 

33. Sumathi R, Carstensen HH, Green WH. Reaction rate prediction via group additivity, part 

2: H-abstraction from alkenes, alkynes, alcohols, aldehydes, and acids by H atoms. 

Journal of Physical Chemistry A. 2001;105(39):8969-8984. 

34. Sumathi R, Carstensen HH, Green WH. Reaction rate prediction via group additivity Part 

1: H abstraction from alkanes by H and CH3. Journal of Physical Chemistry A. 

2001;105(28):6910-6925. 

35. Sumathi R, Carstensen HH, Green WH. Reaction rate predictions via group additivity. 

Part 3: Effect of substituents with CH2 as the mediator. Journal of Physical Chemistry A. 

2002;106(22):5474-5489. 

36. Gaussian 03 [computer program]. Wallingford, CT, USA: Gaussian, Inc.; 2004. 

37. Vandewiele NM, Van Geem KM, Reyniers MF, Marin GB. Genesys: Kinetic model 

construction using chemo-informatics. Chemical Engineering Journal. 2012;207:526-538. 

38. Vandewiele NM, Van de Vijver R, Van Geem KM, Reyniers M-F, Marin GB. Symmetry 

calculation for molecules and transition states. Journal of Computational Chemistry. 

2015;36(3):181-192. 

39. Vandewiele NM, Van De Vijver R, Carstensen H-H, Van Geem KM, Reyniers M-F, 

Marin GB. Implementation of Stereochemistry in Automatic Kinetic Model Generation. 

International Journal of Chemical Kinetics. 2016;48(12):755-769. 

40. Pollak E, Pechukas P. Symmetry Numbers, Not Statistical Factors, Should be Used in 

Absolute Rate Theory and in Bronsted Relations. Journal of the American Chemical 

Society. 1978;100(10):2984-2991. 

41. Evans MG, Polanyi M. Further considerations on the thermodynamics of chemical 

equilibria and reaction rates. Transactions of the Faraday Society. 1936;32(0):1333-1360. 

42. Blowers P, Masel RI. Engineering approximations for activation energies in hydrogen 

transfer reactions. Aiche Journal. 2000;46(10):2041-2052. 

43. Miyoshi A, Widjaja J, Yamauchi N, Koshi M, Matsui H. Direct investigations on the 

thermal unimolecular isomerization reaction of 1-pentyl radicals. Proceedings of the 

Combustion Institute. 2002;29(1):1285-1293. 

44. Yamauchi N, Miyoshi A, Kosaka K, Koshi M, Matsui H. Thermal Decomposition and 

Isomerization Processes of Alkyl Radicals. The Journal of Physical Chemistry A. 

1999;103(15):2723-2733. 

45. Tsang W, Walker JA, Manion JA. Single-pulse shock-tube study on the decomposition of 

1-pentyl radicals. Symposium (International) on Combustion. 1998;27(1):135-142. 

46. Marshall RM. The rate constant for the intramolecular isomerization of pentyl radicals. 

International Journal of Chemical Kinetics. 1990;22(9):935-950. 

47. Endrenyi L, Roy DJL. The Isomerization of n-Pentyl and 4-Oxo-1-pentyl Radicals in the 

Gas Phase. The Journal of Physical Chemistry. 1966;70(12):4081-4084. 

48. Watkins KW. Photolysis of n-pentylazomethane vapor. Reactions of the n-pentyl radical. 

Journal of the American Chemical Society. 1971;93(24):6355-6359. 

49. Tsang W, Walker JA, Manion JA. The decomposition of normal hexyl radicals. 

Proceedings of the Combustion Institute. 2007;31(1):141-148. 

50. Imbert FE, Marshall RM. The mechanism and rate parameters for the pyrolysis of n-

hexane in the range 723–823 K. International Journal of Chemical Kinetics. 

1987;19(2):81-103. 

51. Dóbé S, Bérces T, Réti F, Márta F. Isomerization of n-hexyl and s-octyl radicals by 1,5 

and 1,4 intramolecular hydrogen atom transfer reactions. International Journal of 

Chemical Kinetics. 1987;19(10):895-921. 



Chapter 4: Group additivity model for intramolecular hydrogen abstractions 193 

52. Watkins KW, Ostreko LA. Isomerization of n-hexyl radicals in the gas phase. The 

Journal of Physical Chemistry. 1969;73(6):2080-2083. 

53. Sabbe MK, Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M. Group 

additive values for the gas phase standard enthalpy of formation of hydrocarbons and 

hydrocarbon radicals. Journal of Physical Chemistry A. 2005;109(33):7466-7480. 

54. Sabbe MK, De Vleeschouwer F, Reyniers MF, Waroquier M, Marin GB. First Principles 

Based Group Additive Values for the Gas Phase Standard Entropy and Heat Capacity of 

Hydrocarbons and Hydrocarbon Radicals. Journal of Physical Chemistry A. 

2008;112(47):12235-12251. 

 

  



194 Chapter 4: Group additivity model for intramolecular hydrogen abstractions 

 



Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 195 

Chapter 5: First principles based 

automated kinetic modeling of heptane 

pyrolysis 

5.1 Abstract 

This chapter demonstrates the automated generation of a kinetic model for n-heptane pyrolysis 

using Genesys. n-Heptane has been chosen because it is an important surrogate naphtha and a 

large experimental dataset is available to validate the pyrolysis behavior. The considered reaction 

families are: hydrogen abstraction reactions, radical addition to multiple bonds and the reverse β-

scission reactions. For additions and abstractions, both intermolecular and intramolecular 

reactions have been considered. The thermochemistry and the reaction rate coefficients of all the 

steps in the primary decomposition of n-heptane have been calculated by group additivity. 

Besides the primary decomposition chemistry, the chemistry of small compounds and the 

formation of aromatics have been incorporated in the model via literature reactions and kinetics. 

The final kinetic model contains 4221 reactions between 691 species. However, several species 

and reactions do not contribute to the pyrolysis of n-heptane, and model reduction steps using the 

DREGP method led to a more concise kinetic model, i.e. 1043 reactions and 154 species, 

significantly improving simulation times without any change in predicted reactant conversion or 

products yields. The kinetic model has been compared to two independently reported 

experimental datasets, showing a good agreement for most of the response variables without any 
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tuning of the first principles derived reaction rate coefficients, and performing better than 

previously reported mechanisms. A rate of production analysis was employed to find the main 

reaction pathways. Finally, considering intramolecular hydrogen abstractions (H-shift reactions), 

for which group additive values were calculated in previous chapter, proves to be important, 

especially to understand the formation of C5 and C6 olefins, which lead to soot precursors such 

as benzene and 1,3-cyclopentadiene.  

5.2 Introduction  

n-Heptane is one of the main linear alkanes in crude oil, and can be found in industrial processes 

as an important feed component for the petrochemical industry, as well as energy carrier both for 

gasoline or as surrogate for diesel. Its pyrolysis and combustion have been widely investigated to 

better understand in the decomposition and ignition chemistry relevant for these processes. 

Especially for pyrolysis, both experimental and modeling studies have been carried out.
1-11

  

Murata et al.
1
 developed a free-radical reaction mechanism for heavy paraffinic hydrocarbons 

able to predict the product distribution under pyrolysis conditions. The authors stressed the need 

for radical isomerization reactions, which they tackled by a heuristic process that decreases the 

concentrations of primary radicals and increases the concentrations of secondary radicals. Their 

results showed good agreement with experimental pyrolysis data for n-butane to n-hexadecane. 

Experiments for steam cracking of n-heptane were done by Bajus et al.
2
 at atmospheric pressure 

and temperatures of 953 to 1033K. The reactor effluent was analyzed using gas chromatography. 

The conversion of n-heptane was approximated by an Arrhenius equation with a pre-exponential 

factor of 1.34 10
11

 s
-1

 and an activation energy of 195.5 kJ mol
-1

. Aribike and Susu
3
 investigated 

steam cracking of n-heptane in a temperature range of 933 to 1053K at atmospheric pressure. The 

authors also reported a first order reaction describing the conversion of n-heptane, with a pre-

exponential factor of 5.88 10
10

 s
−1

 and an activation energy of 206.1 kJ mol
-1

. The formation of 

products has been modelled using secondary reactions including hydrogen abstraction reactions 

and addition and β-scission reactions. The same authors
4
 proposed a free radical mechanism for 

steam cracking of n-heptane. This mechanism also includes the formation of benzene via two 

pathways: Dehydrocyclization of alkenyl radicals and a Diels-Alder reaction. Both pathways are 

continued via the loss of hydrogen gas molecules. The kinetics of all the reactions in the 
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mechanism were taken from literature or estimated via the experimental data. Pant and Kunzru
5
 

studied the kinetics and the product distribution during steam cracking of n-heptane in a 

temperature range of 953-1023K under atmospheric pressure in a tubular reactor. A kinetic model 

consisting of one global reaction describing the formation of the main products from n-heptane, 

together with 24 non-elementary reactions between the primary products was constructed, with 

the rate coefficients calculated using the experimental data. Again, a single Arrhenius equation 

was used to model the conversion of n-heptane, with a pre-exponential factor of 6.02 10
13

 s
-1

 and 

an activation energy of 250.7 kJ mol
-1

. Held et al.
6
 developed a semi-empirical mechanism for n-

heptane oxidation and pyrolysis and validated the model using independent datasets. The final 

model consist of 266 reactions between 41 species. The pyrolysis of n-heptane was also studied 

by Chakraborty and Kunzru
7
 in a temperature range of 793-953K and a pressure range of 0.1-

2.93 MPa. It was found that the selectivities to several species depends on the pressure. At higher 

pressures, less hydrogen, methane, ethene, and propene are formed whereas more propane, 

butane, and 1-butene was measured. An overall activation energy for the decomposition of n-

heptane was found to be between 209 and 219 kJ mol
-1

. Garner et al.
8
 reported pyrolysis 

experiments of n-heptane using a high-pressure shock tube setup operated at pressures ranging 

from 2.5 to 5.0 MPa and temperatures ranging from 1000 to 1350K. Using these data, a kinetic 

model for pyrolysis of C7 hydrocarbons was built. Yuan et al.
9
 studied the pyrolysis of n-heptane 

diluted in argon in a tubular flow reactor at temperatures of 780 to 1780K. The reactor effluent 

was analyzed using synchrotron vacuum ultraviolet photoionization mass spectrometry, which 

enables the quantification of radical species in the reactor. Olahová et al.
10

 carried out steam 

cracking experiments of heptane at temperatures between 953 and 1033K and observed a 

conversion of n-heptane that can be modeled with an Arrhenius equation with a pre-exponential 

factor of 3.13 10
13

 s
-1

 and an activation energy of 249.1 kJ mol
-1

. By using 24 secondary 

reactions, simulations were able to predict the conversion and the yields of ethene and hydrogen 

gas. Other response variables showed high deviations. Zámostný et al.
11

 developed a model for n-

heptane pyrolysis using automatic kinetic model generation. The kinetics were obtained using a 

group contribution approach, and were further refined by fitting them through experimental data. 

The simulated yields of the main products are in good agreement to the experimental data, but the 

yields of other products, e.g. hydrogen gas, ethane, and propane, were not well described by the 

model.  



198   Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 

Many articles have already reported the chemistry or kinetic models for the pyrolysis of alkanes. 

Their thermal decomposition can be described by radical chain reactions, of which the typical 

reaction steps are listed in Table 1. The homolytic breaking of C-C (R1), and to a lesser of extent 

C-H, bonds, forms radical species. These radicals will abstract hydrogen atoms from the reactant 

(R2). The formed radicals will subsequently decompose via β-scission pathways (R3), forming 

smaller radicals and alkenes. This can be preceded by isomerization by H-shift reactions. The 

decomposition continues without much change in the total radical concentration. Finally, the 

recombination of radicals (reverse of R1) terminates the chain mechanism. This primary 

chemistry needs to be complemented by secondary chemistry, in which radical species can also 

add to olefins, again forming larger radicals (reverse of R3). Furthermore, large radicals can 

undergo cyclization through intramolecular radical addition steps. Subsequent hydrogen 

abstraction reactions and hydrogen β-scission reactions of these cyclic structures leads to the 

formation of aromatics. Besides the radical chemistry mechanism, other monomolecular reactions 

can be important for the aromatics formation.  

Table 1: Typical reaction steps in a alkane thermal decomposition chain mechanism. 

R1 
Homolytic scission and 

reverse recombination  

R2 Hydrogen abstraction 
 

R3 
Β-scission and reverse 

radical addition 
 

Although the above described chemistry is well-known and accepted, the individual steps and 

their rate coefficients strongly depend on the reactant. The design or optimization of a process 

can be accelerated by accurate kinetic modelling listing all the significant reaction steps and their 

kinetic data. In the current society, largely driven by a fossil feedstock industry, the search for 

cleaner and more sustainable options is inevitable to maintain living standards. To obtain these 

requirements, chemical processes in general, and steam cracking and combustion processes in 

particular, need to be optimized wherever possible to maximize the energy efficiency and 

minimize pollutant emissions. An accurate description of the chemistry of even relatively simple 

molecules such as n-heptane can serve as starting point for these optimizations. 

The pyrolysis studies described above are a first step in this direction, but a complete and 

accurate kinetic model for n-heptane thermal decomposition is to the best of the authors 
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knowledge not available. Moreover, the currently available kinetic models contain lumped 

reactions and species, which could raise some questions related to the true fundamental nature of 

the proposed models. Therefore, this chapter introduces the generation of a new n-heptane 

pyrolysis microkinetic model by merging an automatically generated model with well-established 

reaction steps taken from literature. The obtained kinetic model is first compared to experimental 

data without any tuning, i.e. to test its predictive capabilities. A rate of production analysis is then 

used to uncover the important pathways and access their importance depending on the reactor 

conditions. The necessity of H-shift reactions is evaluated by performing simulations with and 

without this reaction family and looking at the differences in radical concentrations and in 

product yields.  

5.3 Kinetic model generation 

The generation of the microkinetic model has been done in two parts. First, reaction families of 

which a large number of reactions can be important for the pyrolysis of n-heptane have been 

included in an automatic kinetic model generation scheme. The kinetics of these reactions can be 

accurately calculated using group additivity approaches. Second, reactions that cannot be 

generalized in reaction families or whose kinetics are more difficult to calculate have been added 

manually to the model.  

For the first part, the automatic kinetic model generator Genesys
12

 has been employed to generate 

a large number of reactions which can be categorized in a limited number of reaction families. 

The network generation, i.e. the search for the reactions themselves, followed by the calculation 

of the necessary data is described in the following sections.  

5.3.1 Network generation 

Genesys can be used as rule-based kinetic model generator, which means that the termination of 

the kinetic model does not depend on the reaction rates, as opposed to rate-based kinetic model 

generators. In a rule-based scheme, a reaction is included to the model if it complies with a 

number of constraints defined by the end-user. These constraints can be defined for the whole 

kinetic model or on a per reaction family basis. Both the inclusion of molecular constraints, such 

as the molecular size, the number and size of ring structures, aromaticity, etc., as well as atomic 

constraints on the reactive center are possible. The latter include the immediate surrounding or 
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atoms that change in connectivity throughout the reactions. These constraints can include atomic 

properties such valence, number of neighbors, hybridization, etc. and can also be defined by the 

role of the atom in the molecule, i.e. if the atom can or cannot be part of a ring or aromatic 

structure, what functional group can be part of its surroundings, etc. A good definition of the 

constraints is key to generate a model that can grasp the relevant chemistry without including too 

many unimportant reaction steps.  

Genesys has been used to automatically find hydrogen abstractions and β-scission reactions 

during the decomposition of n-heptane. Although these are only two reaction families, they have 

been subdivided in several reaction families in Genesys for two reasons:  

(1) Constraints can depend on the nature of the reaction itself and can be different for reactions 

belonging to the same family, and  

(2) kinetics are calculated per reaction family in Genesys and separate calculation schemes are 

often needed to assure the necessary accuracy.  

For β-scission reactions, the reverse radical addition reactions also need to be accounted for in the 

final model. Genesys considers all reactions reversible, and the kinetics of the reverse reaction 

step are calculated using thermodynamic consistency. Nevertheless, for technical reasons the 

reverse reaction families, or to be more specific the reaction recipe that needs to be executed, also 

need to be defined for a proper reaction network model generation. This can be explained as 

follows: because some reactions will first proceed through an addition, their products will not be 

present in the model before this reaction is generated by Genesys, and will thus not be found by 

only including the β-scission families. The resulting radical addition reaction families are not 

written to the final kinetic model, and should thus also be generated in the β-scission direction for 

their inclusion in the kinetic model. The reaction families used in Genesys and their subdivisions 

are summarized in Table 2.  

 



Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis                                                          201 

Table 2: Reaction families and their subdivisions used in Genesys.  

Reaction family Subdivision 1 Subdivision 2 Example Kinetics 

Hydrogen 

abstractions 

Intermolecular 
By C- radical  Sabbe et al.

13
 

By H- radical  Paraskevas et al.
14

 

Intermolecular 

1-2 H-shift  Chapter 4 

1-3 H-shift  Chapter 4 

1-4 H-shift  Chapter 4 

1-5 H-shift  Chapter 4 

1-6 H-shift  Chapter 4 

1-7 H-shift  Chapter 4 

Radical 

additions and β-

scissions 

Intermolecular 

Hydrogen-Centered β-

Scission  In house data 

Hydrogen radical addition  Reverse from 2.1.1. 

Carbon-Centered β-Scission  Sabbe et al.
15

 

Carbon radical addition  Reverse from 2.1.3. 

Intramolecular  

C6 ring opening 

 

In house data 

C6 cyclization 

 

Reverse from 2.2.1. 

C5 ring opening 
 

In house data 

C5 cyclization 
 

Reverse from 2.2.3 
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Due to the radical addition reactions defined in the reaction families, the growth of molecules is 

allowed, which would lead to an indefinite model generation without any constraints. 

Furthermore, many of these addition, leading to large molecules, are insignificant under pyrolysis 

conditions. The constraints on additions were set such that all species contain 7 carbon atoms or 

less because species with more than 7 carbon atoms were not reported in the validation data. Note 

that, if all the isomers are considered, and an unlimited amount of double or triple bonds are 

allowed, the network becomes too elaborate. The maximum number of double and triple bonds in 

a molecule is limited to 3, and triple bonds are not allowed in C4+ molecules because they have 

not been observed experimentally. Finally, to limit the number of isomers, only methyl branching 

is allowed, with a maximum of two branches per molecule.  

Next to the reaction families, a species input needs to be given to Genesys prior to the network 

generation. The reactant, n-heptane, is inputted by its SMILES notation “CCCCCCC”. Since rate 

coefficients of initiation reactions cannot be calculated using group additivity or other simple 

models, no initiation reactions are present in the reaction families. Therefore, a radical species 

needs to be added to the reactants list to start the generation of reactions. The methyl radical 

“[CH3]” has been provided next to n-heptane.  

The two initial species are put in the so-called “source” species, which is a set of species in 

Genesys containing all the species for which no reactions were searched yet. In each iteration 

step in Genesys, one species is taken from the source add added to the “reacted” species set. The 

latter contains all the species for which reactions have been searched. The species is checked 

against all the reaction families and all the possible monomolecular reactions are generated. Next, 

bimolecular reactions are searched for by using this species and each of the molecules in the 

reacted species. Newly generated species, that are not present in the source or reacted set, are 

added to the source. This procedure continues until the source is empty. A more elaborate 

description of the algorithm can be found elsewhere.
12

  

5.3.2 Thermochemistry and reaction rate coefficients 

Genesys contains two databases to obtain thermodynamic parameters of all the species in a 

kinetic model. Firstly, a database containing the thermochemistry of single species is present. 

After the network generation, all the species from the network are checked against the species in 

this database and if an exact hit is found between the target molecule and the database entry, the 



Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 203 

accompanying database thermochemistry is used in the kinetic model, this database was used for 

103 species in the kinetic model. Secondly, if a molecule is not found in the databases, its 

thermodynamic data is calculated based on group additivity, used for 283 species. An elaborate 

explanation of the concept and use of group additivity can be found in Chapter 1. In brief, each 

polyvalent atom in a molecule is assigned a group additive value, based on its nature and 

surroundings. These group additive values are tabulated in the databases of Genesys. the sum of 

all these group additive values gives an approximation of the property of the molecule. Besides 

the group additive values, a few other non-local contributions need to be accounted for such as 

non-nearest neighbor interactions or symmetry contributions. Entropy, standard enthalpy of 

formation and heat capacity can be calculated using this scheme. All the group additive values 

used in this work originate from CBS-QB3 ab initio calculations.
16,17

  

Kinetic data can, analogously to thermodynamics, be pulled from two separate databases: One 

containing single rate coefficients per reaction and one containing group additive values. The 

former database has not been used in this work, all the kinetic data is calculated from group 

additivity. Details on the group additivity scheme for kinetic data can be found in literature
13-15,18-

21
 as well as in Chapter 4 of this work. In short, the pre-exponential factor and activation energy 

of a reaction are calculated by taking the pre-exponential factor and activation energy of a 

reference reaction belonging to the same reaction family, and adding contributions for the ligands 

of the reactive atoms. This is shown in Eq. 5.1 and Eq. 5.2 in which Ci are the reactive atoms. For 

the pre-exponential factor, additional contributions for the number of single events ne and for 

tunneling corrections κ are required. The ∆𝐺𝐴𝑉°’s have all been obtained using ab initio rate 

coefficients calculated at the CBS-QB3 level of theory.  

 𝐸𝑎(𝑇) = 𝐸𝑎,𝑟𝑒𝑓(𝑇) + ∑ ∆𝐺𝐴𝑉𝐸𝑎

𝑜

𝑖

(𝐶𝑖) Eq. 5.1 

 log 𝐴 (𝑇) = log 𝐴̃ (𝑇)𝑟𝑒𝑓 + ∑ ∆𝐺𝐴𝑉log 𝐴̃
𝑜

𝑖

(𝐶𝑖) + log 𝜅 ∙ 𝑛𝑒  Eq. 5.2 

The above description of automatic reaction generation and kinetic parameter calculation are very 

powerful for their wide applicability, scalability, accuracy, and speed. However, several reaction 

steps cannot be described by these procedures and need a separate treatment. First, several 

reactions only happen once or a limited number of times and are difficult to be generalized in a 

reaction family. Among these reactions, the formation of the aromatics benzene, toluene and 
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naphthalene are of particular interest for this work. Second, for several reactions, although they 

can be described by general reaction recipes, the kinetics cannot be calculated by group additivity 

or other simple calculation procedures. Homolytic scission reactions and their reverse radical 

recombination reactions belong to this group of reactions. Calculations schemes typically result 

in large uncertainties, and most of the process responses are very sensitive to their rate 

coefficients. Therefore, the values are taken from literature when available. To account for the 

chemistry of small molecules, the model generated by Genesys was merged with a literature 

model for hydrocarbons and oxygenates, of which only the hydrocarbon species and reactions 

were kept. This literature model is the AramcoMech2.0 model
22

, of which the hydrocarbon part 

contains 114 species 498 reactions. The formation of aromatic species was also implemented in 

the kinetic model through literature reactions. A model generated by RMG
23,24

, including 743 

reactions between 360 species, was merged to the kinetic model. Finally, the 3 initial homolytic 

C-C scissions of n-heptane were taken from Mohamed et al.
25

 The specifications on the different 

parts of the model are given in Table 3. The number of species and reactions from the complete 

model is less than the sum of the different parts because several species and reactions are present 

in two or more models. Model merging is done semi-automatically using a master/slave approach 

as is explained in section 2.3.5. The complete model is archived at the LCT and is available on 

S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\.  

Table 3: Specifications on the automatic part of the kinetic model (Genesys) and on the parts that were added 

from literature. 

Model 
Number 

of species 

Number of 

reactions 

Genesys 387 3398 

AramcoMech2.0 
22

 114 498 

RMG
23,24

 360 743 

Initiations
25

 9 3 

Complete model 691 4221 

Reduced model 154 1043 

 

5.3.3 Model reduction 

The initial kinetic model contains 4221 reactions among 691 species. Many of the species and 

elementary steps are however insignificant for the conversion, the intermediates formation and 

the products formation during pyrolysis of n-heptane. Therefore, the model was reduced using the 

Chemkin Workbench
26

 which implements the “Directed Relation Graph incorporating Error 
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Propagation
27

” (DRGEP) reduction method. This method is a skeletal model reduction method, 

which removes redundant species and the reactions they participate in. The chemical scheme and 

kinetic structure of the important species is not altered by the reduction, in contrast to lumping 

techniques. The DRGEP method
27

 is graph-based, meaning that the reduction is based on 

identifying groups of species that may be internally coupled, but are not strongly coupled to 

selected important species. The coupling between two species is defined by the influence the 

removal of the first species has on the error to the production of the second species. Without error 

propagation, the importance of a species A for the production or consumption of species B 

depends on the reaction with the lowest relative rate of production along the pathway from A to 

B. With error propagation, errors are damped as they propagate along the network, and the 

importance of species A depends on the product of all the relative rates of production along the 

pathway from A to B. Since the relative rates of production lie between 0 and 1, the final 

importance of species A is lower compared to the DRG method without error propagation, and 

the difference between the two methods increases with an increasing number of reaction steps 

between A and B. In the case of several pathways from A to B, the pathway resulting in the 

highest importance of A is used.  

An important note to make is that this method is a local method, i.e. it depends on rates of 

production and thus on the conditions at which these are calculated. To allow the final model to 

maintain its accuracy under divergent conditions, two sets of conditions were used, taken from 

Yuan et al.
9
 and Zámostný et al.

11
. The resulting model contains 154 species reacting in 1043 

elementary steps. It can be found in the archive S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\.  

5.4 Results 

5.4.1 Model validation 

As mentioned in the introduction, Yuan et al.
9
 performed n-heptane pyrolysis experiments in a 

tubular reactor. The reactor configuration and process conditions are summarized in Table 4. 

Heptane is highly diluted in an argon stream, the n-heptane inlet mole fraction is 0.02, and low 

pressures are applied.  
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Table 4: Reactor configuration and conditions for the n-heptane pyrolysis experiments of Yuan et al.
9
. 

Reactor length (m) 0.3 

Reactor length in furnace (m) 0.1 

Diameter (m) 6 10
-3

 

Temperature (K) 780-1780 

Total pressure, absolute (Pa) 400 

Inlet Argon mass flow rate (g s
-1

) 1.5 10
-2

 

Inlet n-heptane mass flow rate (g s
-1

) 7.5 10
-4

 

Five kinetic models have been used to simulate the reactor outcome: The model of Genesys, and 

four literature models for combustion and pyrolysis of n-heptane, i.e. the models of Herbinet et 

al.
28

, Zhang et al.
29

, Cai et al.
30

, and Garner et al.
8
. The four literature models and the model 

generated in this work are compared in Table 5 in terms of size and the generation method. All 

the models were automatically generated, and three of the models only contain elementary steps, 

whereas two models contain lumped reactions and species.  

Table 5: Comparison of the five kinetic models used for the simulations. 

Model  
Number 

of species 

Number of 

reactions 

Automatic 

generation 

Elementary 

reactions 

Genesys 154 1043 yes yes 

Herbinet et al.
28

 1268 5336 yes no, lumped 

Zhang et al.
29

 303 1990 yes no, lumped 

Cai et al.
30

 1692 5804 yes yes 

Garner et al.
8
 135 717 yes yes 

The Chemkin
26

 software has been used to perform the reactor simulations. The reactor has been 

modelled as an ideal plug flow reactor. The reactor has a small diameter and the gas velocities are 

high, above 100 m s
-1

. Furthermore, the Péclet numbers amount between 615 and 1093 for mass, 

c.f. Eq. 5.3, and between 542 and 981 for heat transport, c.f. Eq. 5.4. Hence, although the 

Reynolds numbers, calculated by Eq. 5.5, are low (between 688 and 1195), the use of a plug flow 

reactor model is justified. In the equations Eq. 5.3 to Eq. 5.5, L is the length of the reactor, v is 

the gas velocity, D is the binary diffusion coefficient, 𝑘ℎ is the thermal conductivity, 𝑀𝑀 is the 

molar mass, 𝜌  is the density, 𝐶𝑝  is the heat capacity, and 𝜇  is the dynamic viscosity. These 

equations have been evaluated using the inlet conditions. 

 𝑃é𝑚𝑎𝑠𝑠 =
𝐿𝑣

𝐷
 Eq. 5.3 
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𝑃éℎ𝑒𝑎𝑡 =

𝐿𝑣

𝑘ℎ𝑀𝑀
𝜌𝐶𝑝

⁄
 

Eq. 5.4 

 𝑅𝑒 =
𝜌𝐿𝑣

𝜇
 Eq. 5.5 

The continuity equation to calculate concentration of n-heptane using a plug flow reactor model 

is given in Eq. 5.6 and Eq. 5.7, in which 𝐹𝐴0
 is the inlet flow rate of n-heptane, 𝑋𝐴  is the 

conversion of n-heptane, 𝑅𝑣,𝐴 is volumetric production rate and V is the reactor volume. The 

continuity equation is integrated as shown in Eq. 5.8. From this equation, the residence time t can 

be calculated according to Eq. 5.9 in which R is the ideal gas constant, T is the temperature and 

𝑝𝐴0
 is the inlet partial pressure of n-heptane. The residence time is thus calculated based on inlet 

conditions.  

 𝐹𝐴0
𝑑𝑋𝐴 = −𝑅𝑣,𝐴𝑑𝑉 Eq. 5.6 

 

𝑑𝑋𝐴

𝑑 (𝑉
𝐹𝐴0

⁄ )
= −𝑅𝑣,𝐴 

Eq. 5.7 

 
𝑉

𝐹𝐴0

= − ∫
𝑑𝑋

𝑅𝑣,𝐴

𝑋𝐴

0

 Eq. 5.8 

 
𝑡 =

𝑉

𝐹𝐴0
𝑅𝑇

𝑝𝐴0
⁄

 
Eq. 5.9 

The n-heptane mole fraction measured by Yuan et al.
9
 is shown Figure 1 together with the results 

from the five simulations. Using this reactor configuration, the residence time amounts between 2 

10
-4

 and 4 10
-4

 s, and n-heptane only starts to decompose at temperatures above 1100K. This is 

well predicted by four of the five kinetic models, among which the one developed in this work. 

All kinetic models show a too high decrease of the mole fraction of n-heptane as a function of 

temperature. The new model shows the lowest decrease of the n-heptane mole fraction and is thus 

slightly closer to the experimental measurements. Above 1600K, almost all the n-heptane is 

decomposed.  
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Figure 1: Simulated n-heptane conversion compared to the experimental data of Yuan et al.

9
 using the kinetic 

models of Genesys (red, full line), Herbinet et al.
28

 (blue, dashed line), Zhang et al.
29

 (green, dotted line), Cai et 

al.
30

 (orange, dashed – dotted line), and Garner et al.
8
 (purple, dashed – double dotted line). The kinetics can 

be found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

The formation of H2, methane, ethyne, ethene, ethane, propene, propyne, and allene as a function 

of temperature is depicted in Figure 2. All the simulations exhibit a too low hydrogen gas 

formation, with the model of Genesys being the closest to the experimental data, this without any 

fitting of model parameters to the experiments. For methane, the new model is capable of 

reproducing the experimental yields, together with the model of Cai et al.
30

. The other models not 

only show too low methane yields, the trend of the methane yield as a function of temperature is 

also not well predicted. Ethyne, which is mainly formed at high temperatures has a monotonously 

increasing yield as function of the temperature, which is well predicted by all kinetic models. The 

model of Genesys slightly overpredicts its formation, while the other models have a slightly too 

low ethyne prediction. One of the main products of n-heptane pyrolysis is ethene, of which the 

mole fraction amounts twice the n-heptane inlet mole fraction at high conversions, i.e. close to 4 

atoms of the 7 carbon atoms in n-heptane end up in ethene. The trends of ethene yields are well 

predicted by the four of the five kinetic models, with the Genesys model again being the closest 

to the experimental data.  
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Figure 2: Simulated H2, methane, ethyne, ethene, ethane, propene, propyne, and allene product yields 

compared to the experimental data of Yuan et al.
9
 using the kinetic models of Genesys (red, full line), Herbinet 

et al.
28

 (blue, dashed line), Zhang et al.
29

 (green, dotted line), Cai et al.
30

 (orange, dashed – dotted line), and 

Garner et al.
8
 (purple, dashed – double dotted line). The simulations are performed using an ideal plug flow 

reactor model, see Eq. 5.8. The kinetics can be found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 
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The mole fraction of ethane is largely overpredicted by the model of Zhang et al.
29

. The other 

four models are closer to the experimental data. The peak of the ethane yield as a function of 

temperature shown by the experiments is also visible in all the simulations. Three important C3 

products are propyne, allene and propene. The models Cai et al.
30

, Garner et al.
8
 and Genesys are 

able to grasp the trend of the temperature dependence of propene. The two latter also predict the 

mole fractions themselves well. The trends of propyne and allene are not well predicted by 

Genesys, and for both, a too low mole fractions is simulated. These compounds are important 

intermediates towards the propargyl radical, which can further react to benzene and other cyclic 

species.  

The product yields of 1-buten-3-yne (C4H4), 1,3-butadiene, 1-butene, 1,4-pentadiene (C5H8), 1-

pentene, benzene, and 1-hexene are given in Figure 3. The models of Genesys and Garner et al.
8
 

show a good C4H4 mole fractions while the other three models largely underpredict the formation 

of this product. The kinetic model of Genesys is also capable of predicting the C4H6 mole fraction 

until 1500K, above which the experimental data reports higher C4H6 yields. Three 1-alkenes, 

C4H8, C5H10, and C6H12, show a similar trend of their mole fraction: A narrow peak of their yield 

as a function of temperature is observed around 1400K, after which their mole fractions rapidly 

decrease. These trends are well captured by the new kinetic model, the other three models show 

higher deviations. The simulated trends of the C5H8 yields show higher deviations compared to 

the experimental data. Finally, the trend of the benzene formation can be described by the 

Genesys model, with an underprediction of the yields themselves. 



Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 211 

 
Figure 3: Simulated 1-buten-3-yne (C4H4), 1,3-butadiene, 1-butene, 1,4-pentadiene (C5H8), 1-pentene, benzene, 

and 1-hexene product yields compared to the experimental data of Yuan et al.
9
 using the kinetic models of 

Genesys (red, full line), Herbinet et al.
28

 (blue, dashed line), Zhang et al.
29

 (green, dotted line), Cai et al.
30

 

(orange, dashed – dotted line), and Garner et al.
8
 (purple, dashed – double dotted line). The simulations are 

performed using an ideal plug flow reactor model, see Eq. 5.8. The kinetics can be found on 

S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 
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Four radicals have been measured by Yuan et al.
9
: methyl, ethyl, propargyl and allyl, of which 

their experimental and simulated mole fractions are shown in Figure 4. The experimental methyl 

and ethyl trends are also seen in the simulations, but the absolute values show higher deviations. 

The kinetic model of Genesys is the closest to the experimental data. The increase of the 

propargyl radical yield ad high temperatures is well predicted by the model of Garner et al.
8
, the 

model of Genesys shows an underprediction. Finally, the allyl radical is not well predicted by any 

of the kinetic models.  

 
Figure 4: Simulated methyl, ethyl, propargyl, and allyl radical yields compared to the experimental data of 

Yuan et al.
9
 using the kinetic models of Genesys (red, full line), Herbinet et al.

28
 (blue, dashed line), Zhang et 

al.
29

 (green, dotted line), Cai et al.
30

 (orange, dashed – dotted line), and Garner et al.
8
 (purple, dashed – double 

dotted line). The simulations are performed using an ideal plug flow reactor model, see Eq. 5.8. The kinetics 

can be found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

 

  



Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 213 

Besides the high temperature and low pressure experiments of Yuan et al.
9
, the new kinetic model 

has been compared to the experimental data of Zámostný et al.
11

, who reported n-heptane steam 

cracking experiments of n-heptane in a tubular reactor at lower temperatures and higher pressure. 

The reactor configuration and experimental conditions are shown in Table 6.  

Table 6: Reactor configuration and conditions for the n-heptane steam cracking experiments of Zámostný et 

al.
11

.  

Reactor length (m) 0.75 

Reactor length in furnace (m) 0.3 

Inner diameter (m) 6 10
-3

 

Outer diameter (m) 12 10
-3

 

Temperature (K) 953-1033 

Absolute pressure (kPa) 101 

Inlet n-heptane mass flow rate (g s
-1

) 4.8-9.7 10
-3

  

Inlet water mass flow rate (g s
-1

) 1.3-2.9 10
-2

 

Steam dilution (kgwater/kgn-heptane) 3 

Two kinetic models have been used to simulate the reactor outcome: The model of Genesys, and 

the model of Garner et al.
8
. The Chemkin

26
 software has been used to perform the reactor 

simulations. The reactor has been modelled as an ideal plug flow reactor. Similarly to the 

experiments of Yuan et al.
9
, the reactor has a small diameter and high gas velocities. 

Furthermore, the Péclet numbers range from 294 to 734 for heat and 2310 to 5737 for mass 

transport. The Reynolds numbers amount between 1592 and 40000. These dimensionless 

numbers have been calculating using equations Eq. 5.3 to Eq. 5.5. Again, the ideal plug flow 

approximation of the reactor is justified. Zámostný et al.
11

 also reported simulated product yields 

which can be used for the comparison of the kinetic model performances. The kinetic parameters 

in the model of Zámostný et al.
11

 originate from fitting the model performance through six 

experiments and the other three experiments were used for validation. 

The experimental and modeled conversions are given in Figure 5. The model of Zámostný et al.
11

 

is able to predict the conversion of n-heptane. For the model of Genesys, the conversion was 

initially overpredicted. However, it was seen that a considerable amount of 1-, 2-, and 3-heptene 

are modeled by Genesys, i.e. up to 5wt%. The yields of these species are not measured by 

Zámostný et al.
11

. Very likely they could not be measured with the used analytical equipment, but 

the mass balances of the experimental data close. Therefore, the heptenes have been added to 
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unreacted heptane to calculate the conversion, which brings the experimental and modeled 

conversion close to each other. The model of Garner et al.
8
 largely underpredicts the conversion.  

 
Figure 5: Simulated n-heptane conversion compared to the experimental data of Zámostný et al.

11
 using the 

kinetic models of Genesys (blue circles), Zámostný et al.
11

 (green upwards-pointing triangles), and Garner et 

al.
8
 (purple downwards-pointing triangles). The simulations are performed using an ideal plug flow reactor 

model, see Eq. 5.8. The kinetics can be found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

 

The yields of the main products as a function of the conversion are given in Figure 6. Hydrogen 

gas is overpredicted by all three models, the simulations show a linear trend of the hydrogen yield 

as a function of the n-heptane conversion, whereas the experimental data exhibits an increase of 

the hydrogen yield that is less than linear. The methane yield, showing a linear increase as a 

function of the conversion, is very well predicted by all three models. For ethene and propene, the 

model of Genesys slightly underpredicts their yields, while the model of Zámostný et al.
11

 is 

closer to the experimental data. The model of Garner et al.
8
 shows a good ethene yield but also 

underpredicts the propene yield. 1-butene is well described by the model of Genesys and the 

model of Zámostný et al.
11

 while the model of Garner et al.
8
 overpredicts the yields. Figure 6 also 

shows the yield of C5 and C6 species, which is overpredicted by the new model while the other 

two models are close to the experimental data. The overprediction is mainly attributed to a high 

1-pentene yield.  
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Figure 6: Simulated H2, methane, ethene, propene, 1-butene and C5-C6 product yields compared to the 

experimental data of Zámostný et al.
11

 (red squares) using the kinetic models of Genesys (blue circles), 

Zámostný et al.
11

 (green upwards-pointing triangles), and Garner et al.
8
 (purple downwards-pointing 

triangles). The simulations are performed using an ideal plug flow reactor model, see Eq. 5.8. The kinetics can 

be found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

Figure 7 shows the experimental and simulated yields of minor products. Five products, i.e. 

ethane, propane, ethyne, propyne, and n-butane, are not calculated by the model of Zámostný et 

al.
11

. Ethane is well predicted by the model of Genesys, and propane is slightly overpredicted. 

The kinetic model of Garner et al.
8
 underpredicts the ethane yield and shows a good agreement 

for the propane yield. Ethyne and propyne are largely overpredicted by the model of Garner et 

al.
8
 whereas the kinetic model of Genesys shows a much better agreement.  
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Figure 7: Simulated ethane, propane, ethyne, propyne, n-butane, 2-butene, butadiene and unlisted product 

yields compared to the experimental data of Zámostný et al.
11

 (red squares) using the kinetic models of 

Genesys (blue circles), Zámostný et al.
11

 (green upwards-pointing triangles), and Garner et al.
8
 (purple 

downwards-pointing triangles). The unlisted product yields are obtained by closing the mass balance 

compared to all the listed product yields. The simulations are performed using an ideal plug flow reactor 

model, see Eq. 5.8. The kinetics can be found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 
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The model of Genesys calculates too much n-butane in contrast to the model of Garner et al.
8
. 2-

butene is well predicted by the model of Genesys. The other two models show higher deviations. 

Butadiene is well predicted by the model of Genesys and the model of Garner et al.
8
. The model 

of Zámostný et al.
11

 exhibits a small underprediction.  

The final graph of Figure 7 shows the amount of remaining species, which was calculated by 

adding all the mole fractions up of all the species that were not reported in the experimental 

study. The models of Genesys and Garner et al.
8
 have a similar amount of remaining species 

compared to the experimental data. The model of Zámostný et al.
11

 predicts too many other 

species.  

In conclusion, the model of Genesys has been tested in a wide range of temperatures, i.e. 680-

1800K, both at low (400 Pa) and high (1 10
5 

Pa) absolute pressures. A wide variety of product 

yields have been compared to experimental data, and considering the fundamental nature of the 

model clear improvements can be seen.  

5.4.2 Rate of production analysis 

To gain insights in the main decomposition pathways of n-heptane, a rate of production analysis 

has been done based on the reactor configurations and conditions of the experiments of Yuan et 

al.
9
 and Zámostný et al.

11
. The reaction scheme showing the initial reactions during n-heptane 

pyrolysis are depicted in Figure 8. The decomposition of n-heptane is characterized by a free 

radical chain mechanism. The origin of the radicals are the three homolytic C-C scissions in n-

heptane leading to methyl and 1-hexyl, ethyl and 1-pentyl, and n-propyl and 2-butyl radicals 

respectively. As expected, homolytic C-H scissions have been found to be unimportant. Another 

important family for the initial decomposition of n-heptane are hydrogen abstractions yielding the 

four n-heptyl radicals. The formed radicals further decompose via mainly C-H-β-scission 

reactions and C-C-β-scission reactions. This results in a wide variety of 1-alkene species such as 

ethene, propene, 1-butene, 1-pentene, and 1-hexene and in the three heptene species. The radicals 

with a carbon chain above four carbon atoms also isomerize via H-shift reactions to from 

secondary radicals. These can in turn also undergo β-scission reactions forming other olefin 

species. The relative importance of the competing reaction pathways strongly depends on the 

reactor conditions.  

 



218   Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 

 
Figure 8: Reaction scheme of the decomposition of n-heptane. n-Heptane and the products are depicted in 

bold. The percentages correspond to the rate of production of the reaction relative to the total rate of 

consumption of n-heptane, percentages are only added if they are 1% or higher. The grey arrows and 

percentages correspond to H-shift reactions. The non-italic percentages correspond to the experimental 

conditions of Yuan et al.
9
 at 1473K and a conversion of 20%. The italic percentages correspond to the 

experimental conditions of Zámostný et al.
11

 at the highest temperatures, i.e. with a peak temperature of 

1033K, and a conversion of 20%. The simulations are performed using an ideal plug flow reactor model, see 

Eq. 5.8. The kinetics can be found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

In the following sections, the rate of production of several important species during the 

decomposition of n-heptane are elaborated.  

When simulating the experimental data of Yuan et al.
9
, which take place at low pressure, high 

temperatures and low residence time, the main n-heptane decomposition pathways are the 

homolytic C-C scission reactions. Figure 9 shows the rate of consumption of n-heptane at four 

different temperatures: 1223K, 1473K and 1773K, with conversions of 12.8%, 95.0% and 

99.9999% respectively. The graph on the left shows the total rate of consumption of n-heptane at 

each temperature. On the right, the relative importance of three reaction families are depicted, i.e. 

the homolytic C-C scission reactions, hydrogen abstractions by hydrogen radicals and hydrogen 

abstractions by methyl radicals. Other reaction families account for less than 1% of the 
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conversion of n-heptane. The homolytic C-C scission reactions are important at each temperature, 

and the importance of hydrogen abstraction increases with decreasing temperature, of which 

abstraction reactions by hydrogen radicals are the most important ones. At the highest 

temperature, n-heptane decomposes early in the reactor and its rate of consumption thus rapidly 

decreases as a function of the distance in the reactor. It is important to note that these reactions 

are in the falloff region under the process conditions of Yuan et al.
9
. 

 
Figure 9: Total rate of consumption of n-heptane (left) and relative rate of consumption of n-heptane (right) of 

homolytic C-C scission reactions (red), hydrogen abstractions by hydrogen radicals (blue) and hydrogen 

abstractions by methyl radicals (green) using the experimental conditions of Yuan et al.
9
 at 1223K with a 

conversion of 0 to 12.8% (full lines), 1473K with a conversion of 0 to 95% (dashed lines) and 1773 with a 

conversion of 0 to 99.9999% (dotted lines). The simulations are performed using an ideal plug flow reactor 

model, see Eq. 5.8. The kinetics can be found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

When simulating the reactor of Zámostný et al.
11

, of which the pyrolysis takes place at higher 

pressures, lower temperatures and higher residence times (0.1 to 0.4 s according to Eq. 5.9), the 

relative importance of homolytic C-C scissions is much less, as can be seen in Figure 10. 

Hydrogen abstractions lead to a much higher conversion rate of n-heptane, with abstractions by 

hydrogen radicals being mainly important early in the reactor and abstractions by methyl radicals 

increasing in importance halfway through the reactor. This is mainly due to the concentration 

differences of hydrogen and methyl radicals. Hydrogen radicals are consumed much faster 

compared to methyl radicals. For the experimental conditions of Zámostný et al.
11

, the initiation 

kinetics are closer to the high-pressure limits.  
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Figure 10: Relative rate of consumption of n-heptane of homolytic C-C scission reactions (red full lines), 

hydrogen abstractions by hydrogen radicals (blue dashed lines) and hydrogen abstractions by methyl radicals 

(green dotted lines) using the experimental conditions of Zámostný et al.
11

 at 1033K with a conversion of 0 to 

54.3%. The simulations are performed using an ideal plug flow reactor model, see Eq. 5.8. The kinetics can be 

found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

The formation of methane is mainly driven by hydrogen abstractions by methyl radicals from n-

heptane and by the radical recombination of a methyl and a hydrogen radical. The reaction of 

methyl with an ethyl radical yielding ethene and methane is also important. Methyl radicals are 

created through C-C-β-scissions in various larger radicals. The reaction of a hydrogen radical 

with an ethyl radial giving two methyl radicals also contributes significantly, although it turns in 

a consumption route of methyl at high temperatures and high conversion. Further consumption 

pathways of methyl radicals are, besides hydrogen abstractions to methane, radical 

recombinations to methane, ethane and propane.  

The pathways to hydrogen gas all include hydrogen abstractions by hydrogen radicals. 

Abstractions from n-heptane have the highest rate of production, followed by abstractions from 

olefins yielding resonantly stabilized radicals and abstractions from small hydrocarbons such as 

ethane, ethene or methane. The hydrogen radicals themselves are formed through C-H-β-scission 

reactions. 

Ethene is almost exclusively formed by β-scission reactions of primary radicals. The C-H-β-

scission in the ethyl radical is the most important route to ethene, followed by the C-C-β-

scissions in 1-propyl, 1-butyl and 1-pentyl radicals. At low conversion and low temperature, 
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using the experimental condition of Yuan et al.
9
, the C-C-β-scissions in 1-propyl radical 

dominates the C-H-β-scission in the ethyl radical, but its importance decreases along the reactor, 

whereas the rate of production of ethene via the latter increases. At higher temperatures, the C-H-

β-scission in the ethyl radical are more important, which is also the case when using the 

experiments of Zámostný et al.
11

.  

Using the experimental conditions of Zámostný et al.
11

, propene is mainly formed by a C-C-β-

scission of the 2-heptyl radical. Early in the reactor, the C-H-β-scission of the propyl radical also 

contributes to the formation of propene. However, further in the reactor, the reverse reaction 

becomes a consumption pathway of propene to the 1-propyl radical. Other reactions that 

contribute to the formation of propene are the C-C-β-scissions of the 2-butyl, 2-pentyl and 2-

hexyl reactions. Also, the reaction of 1-butene with a hydrogen radical yielding propene and a 

methyl radical is important. Using the experimental conditions of Yuan et al.
9
, the same reactions 

are important, but their relative importance changes depending on the temperature.  

Ethyne formation proceeds through C-C-β-scission and C-H-β-scission reactions of vinylic 

radicals. The vinyl radical is an important source of ethyne, but the 1-propen-1-yl, 1-buten-1-yl, 

and 1-penten-1-yl radicals also contribute to the formation of ethyne. The reaction of a hydrogen 

radical or methyl radical with a vinyl radical yielding ethyne and hydrogen gas or methane is also 

important.  

Larger product species are mostly formed by consecutive β-scissions and hydrogen abstractions 

starting from the radicals formed from n-heptane, i.e. 1-butyl, 1-pentyl, 1-hexyl and the four 

heptyl radicals. These are precursors to, among others, heptenes, 1-hexene, 1-pentene, butenes, 

and butadiene.  

Although benzene is not formed in high amounts, its rate of production shows several interesting 

pathways, which are depicted in Figure 11. At a temperature of 1473K, the main pathway to from 

benzene is the H2 elimination of 1,4-cyclohexadiene. The latter is formed by C-H-β-scission of 

the 4-cyclohexenyl radical. This species is created after intramolecular radical addition reaction 

of the 1,4-hexadien-6-yl radical. At higher temperatures, the importance of benzene formation by 

a C-H-β-scission of the 1,3-cyclohexadien-5-yl radical increases. This radical is formed from 1,3-

cyclohexadiene, either by hydrogen abstractions of by a homolytic C-H scission. At high 
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temperatures and higher conversions, the formation of benzene via fulvene and via propargyl 

radicals also gains in importance. The formation of these species is also shown on Figure 11.  

 

Figure 11: Main reaction pathways towards benzene. The kinetics can be found on 

S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

5.4.3 Role of H-shift reactions 

The previous chapter introduced a set of group additivity values to calculate the rate coefficients 

of H-shift reactions. This reaction family has been added to the Genesys input, and a large 

number of H-shift reactions have been included in the kinetic model, with their rate coefficients 

being calculated from group additivity. It can be assumed that these reactions will influence the 

relative concentrations of the radicals of one parent molecule, i.e. a molecule that is obtained by 

substituting the radical site with a hydrogen atom. A difference in radical concentration will lead 

to different decomposition pathways and thus another product outcome. In order to quantify these 

differences, a new kinetic model was created by removing all the H-shift reactions from the 

model of Genesys. Reactor simulations with this new model can be compared to the original 

Genesys kinetic model to assess the differences in radical and product concentrations.  

As shown in section 5.4.2, n-heptane has two main decomposition pathways. First, homolytic C-

C scissions lead to the net formation of radicals in the reactor and result in 1-alkyl radicals. 

Second, radicals can abstract a hydrogen atom from n-heptane leading to the four different heptyl 
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radicals. Figure 12 shows the concentrations of the latter, i.e. the concentrations of the 1-, 2-, 3- 

and 4-heptyl radicals using the models with and without H-shift reactions. The rate coefficients of 

the hydrogen abstractions on n-heptane depend on the position of the hydrogen that is abstracted, 

and the both models show that 1-heptyl is present in a lesser amount compared to 2-, and 3-

heptyl, while 4-heptyl is the most important radical. However, when H-shift reactions are 

included in the model, the relative concentrations change significantly, mainly for the 1-, and 4-

heptyl radicals, which was also concluded from the rate of production analysis. At 1473K, the 

consumption of the 1-heptyl radical to the 4-heptyl radical via a 1-4 H-shift reaction amounts 

form more than 25% of the total consumption of the 1-heptyl radical. 2% of the 1-heptyl radical 

reacts to the 3-heptyl radical via a 1-5 H-shift reaction. The 2-heptyl radical also isomerizes to the 

3-heptyl radial (via a 1-4 H-shift reaction) and to the 4-heptyl radical (via a 1-3 H-shift reactions). 

These two reactions account for maximum 13% of the total consumption of the 2-heptyl radical. 

Furthermore, a small fraction of the 3-heptyl radical reacts to the 4-heptyl radical via a 1-2 H-

shift reaction. 

 
Figure 12: Mole fractions of the 1-heptyl (red), 2-heptyl (blue), 3-heptyl (green), and 4-heptyl (purple) radicals 

as a function of the distance to the inlet of the reactor for the model of Genesys including the H-shift reactions 

(full lines) and excluding the H-shift reactions (dashed lines). The reactor configuration and conditions are 

taken from the experimental data of Yuan et al.
9
 with a temperature of 1473K with a conversion of 0 to 

12.8%. The simulations are performed using an ideal plug flow reactor model, see Eq. 5.8. The kinetics can be 

found on S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

Besides hydrogen abstractions, the initial homolytic C-C scissions also lead to several large 

radicals such as 1-hexyl and 1-pentyl radicals. Under the studied conditions, 2-hexyl, 3-hexyl, 2-

pentyl and 3-pentyl radicals are not formed in significant amounts without H-shift reactions. The 
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ratio of the concentrations of the three hexyl radicals using the model with H-shift reactions 

compared to the model without H-shift reactions is shown in Figure 13. The ratio of the 

concentrations of the 2-hexyl radical exceeds an order of magnitude and the ratio for the 3- hexyl 

radical is even larger, up to more than 5 orders of magnitude at the beginning of the reactor. 

These radicals are mainly formed from the 1-hexyl radical via a 1-4 and a 1-5 H-shift reaction 

respectively, accounting for more than 10% of the consumption of the latter, of which the ratio is 

thus slightly below 1. The absolute concentrations of the 2-, and 3-hexyl are an order of 

magnitude lower than the 1-hexyl radicals. Pentyl and butyl radicals show a similar trend 

compared to hexyl radicals.  

 
Figure 13: Ratio of the mole fractions of 1-hexyl (red), 2-hexyl (blue) and 3-hexyl (green) using the model 

including H-shift reactions compared to the model excluding H-shift reactions as a function of the distance to 

the inlet of the reactor. The reactor configuration and conditions are taken from the experimental data of 

Yuan et al.
9
 with a temperature of 1473K with a conversion of 0 to 12.8%. The simulations are performed 

using an ideal plug flow reactor model, see Eq. 5.8. The kinetics can be found on 

S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

The concentrations of propyl radicals using both kinetic models are given in Figure 14, which 

shows that their concentrations are mostly independent of hydrogen shift reactions. At 1473K, the 

i-propyl radical is formed via two reactions. First, the reaction of an ethyl radical with a methyl 

radical yielding an i-propyl and a hydrogen radical is important in the beginning of the reactor. 

Second, the abstraction from a hydrogen atom from propane gains in importance throughout the 

reactor. The n-propyl radical is formed via homolytic C-C scission reactions and β-scission 

reactions. The 1-2 H-shift reaction for n-propyl to i-propyl or vice versa is not important.  
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Figure 14: Mole fractions of the n-propyl (red) and iso-propyl (blue) radicals as a function of the distance to 

the inlet of the reactor for the model of Genesys including the H-shift reactions (full lines) and excluding the 

H-shift reactions (dashed lines). The reactor configuration and conditions are taken from the experimental 

data of Yuan et al.
9
 with a temperature of 1473K with a conversion of 0 to 12.8%. The simulations are 

performed using an ideal plug flow reactor model, see Eq. 5.8. The kinetics can be found on 

S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

Not only does the inclusion of H-shift reactions influence the radical concentrations, but the 

yields of the stable products are also dependent on these reactions, as can be seen in Figure 15 for 

ethene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, and 3-hexene. 

When including H-shift reactions, the concentrations of 1-alkyl radicals decreases, leading to a 

decrease in ethene formation, because 1-alkyl radicals are the main intermediates to form ethene. 

In contrary, propene can be formed from secondary radicals, from which the concentration 

increases as a result of H-shift reactions. The propene concentration is thus higher when 

including these reactions. 1-butene and 2-butene are both more formed in the case H-shift 

reactions are included in the kinetic model. Similarly, the concentration of the two pentene 

species is higher with taking H-shift reactions into account. The 1-hexyl radical concentration 

decreases due to the H-shift reactions, as can also be seen in Figure 13. This leads to a decrease in 

the 1-hexene concentrations while 2-hexene and 3-hexene are preferably formed compared to the 

kinetic model without H-shift reactions. The relative concentration of these compounds is also 

important for the formation of cyclic species. An important fraction of C6 ring structures 

originate from an intramolecular addition of an unsaturated 1-hexyl radical. As show in the rate 

of production analysis, the formation of 1,3- and 1,4-cyclohexadiene depends on the open chain 
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radical. Similarly, the formation of fulvene and cyclopentadiene depends strongly on these 

radicals.  

 
Figure 15: Mole fractions of ethene, propene, 1-butene, 2-butene, 1-pentene, 2-pentene, 1-hexene, 2-hexene, 

and 3-hexene as a function of the reactor temperature for the model of Genesys including the H-shift reactions 

(blue full lines) and excluding the H-shift reactions (red dashed lines). The reactor configuration and 

conditions are taken from the experimental data of Yuan et al.
9
. The simulations are performed using an ideal 

plug flow reactor model, see Eq. 5.8. The kinetics can be found on 

S:\vakgroep\ea12archief\SoftLib\r\ruvdvijv\1\. 

5.5 Conclusions  

A microkinetic model for the thermal decomposition and steam cracking of n-heptane has been 

automatically generated using the Genesys software. Most of the kinetic data originate from 

group additivity, of which the group additive values are based on high level quantum chemical 

calculations. The model has been extended to account for the chemistry of small compounds and 

for aromatics formation using literature data. The resulting model, containing 4221 reactions 

between 691 species has been reduced to remove redundant species and reactions, yielding a 

kinetic model with 154 species reacting in 1043 elementary steps. 
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By comparing the kinetic model to two independently measured experimental datasets, a wide 

applicability of the model can be observed over a broad range of pressure and temperature. The 

conversion and the formation of the most of the experimentally determined products were well 

described by the model, and only a few compounds showed a higher deviation between 

experiments and simulations, such as propyne, allene, n-butane, and H2. Furthermore, a 

comparison was made with literature models for n-heptane combustion and pyrolysis. In general, 

the model of Genesys performs better than other models.  

Via a rate of production analysis, the important pathways to consume n-heptane and to form the 

major products were outlined. Most pathways are very strongly dependent on the applied 

conditions. For example, for short residence times, low pressures and high temperatures, n-

heptane consumption is driven by homolytic scissions whereas under milder conditions, 

hydrogen abstractions are more important. 

Finally, the necessity of considering H-shift reactions was evaluated by comparing the original 

kinetic model with a kinetic model excluding this reaction family. Several important differences 

were observed, such as the lower 1-heptyl radical concentration and higher 4-heptyl radical 

concentration in the case H-shift reactions are included. Also, 1-hexyl and 1-pentyl radicals can 

react to other hexyl and pentyl radicals giving very large concentration differences. Differences 

in radical concentrations are also projected onto the product yields. Small changes can be seen for 

ethene and propene, but large deviations have been observed for C5 and C6 olefins. The inclusion 

of H-shift reactions is thus definitely necessary.  

A few product yields were not well predicted by the kinetic model, such as H2 and propyne. 

Improvements to the model can thus still be made, in which both the search for new reactions as 

well as the updating of the kinetic data can be suggested. Also, more detailed experimental data 

for a more thorough comparison of simulations to these measurements could lead to additional 

insights on shortcomings of the kinetic model.  

The above conclusions show that, although reactions were taken from literature to account for the 

chemistry of small molecules and aromatics formation, Genesys is able to describe the thermal 

decomposition of n-heptane accurately.  

  



228   Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 

5.6 References  

1. Murata M, Saito S, Amano A, Maeda S. Prediction of Initial Product Distributions from 

Pyrolysis of Normal Paraffinic Hydrocarbons. Journal of Chemical Engineering of Japan. 

1973;6(3):252-258. 

2. Bajus M, Veselý V, Leclercq PA, Rijks JA. Steam Cracking of Hydrocarbons. 1. 

Pyrolysis of Heptane. Industrial & Engineering Chemistry Product Research and 

Development. 1979;18(1):30-37. 

3. Aribike DS, Susu AA. Kinetics and mechanism of the thermal cracking of n-heptane. 

Thermochimica Acta. 1988;127:247-258. 

4. Aribike DS, Susu AA. Mechanistic modeling of the pyrolysis of n-heptane. 

Thermochimica Acta. 1988;127:259-273. 

5. Pant KK, Kunzru D. Pyrolysis of n-heptane: kinetics and modeling. Journal of Analytical 

and Applied Pyrolysis. 1996;36(2):103-120. 

6. Held TJ, Marchese AJ, Dryer FL. A Semi-Empirical Reaction Mechanism for n-Heptane 

Oxidation and Pyrolysis. Combustion Science and Technology. 1997;123(1-6):107-146. 

7. Chakraborty JP, Kunzru D. High pressure pyrolysis of n-heptane. Journal of Analytical 

and Applied Pyrolysis. 2009;86(1):44-52. 

8. Garner S, Sivaramakrishnan R, Brezinsky K. The high-pressure pyrolysis of saturated and 

unsaturated C7 hydrocarbons. Proceedings of the Combustion Institute. 2009;32(1):461-

467. 

9. Yuan T, Zhang L, Zhou Z, Xie M, Ye L, Qi F. Pyrolysis of n-Heptane: Experimental and 

Theoretical Study. Journal of Physical Chemistry A. 2011;115(9):1593-1601. 

10. Olahová N, Bajus M, Hájeková E, Šugár L, Markoš J. Kinetics and modelling of heptane 

steam-cracking. Chemical Papers. 2014;68(12):1678-1689. 

11. Zámostný P, Karaba A, Olahová N, Petrů J, Patera J, Hájeková E, Bajus M, Bělohlav Z. 

Generalized model of n-heptane pyrolysis and steam cracking kinetics based on 

automated reaction network generation. Journal of Analytical and Applied Pyrolysis. 

2014;109:159-167. 

12. Vandewiele NM, Van Geem KM, Reyniers MF, Marin GB. Genesys: Kinetic model 

construction using chemo-informatics. Chemical Engineering Journal. 2012;207:526-538. 

13. Sabbe MK, Vandeputte AG, Reyniers MF, Waroquier M, Marin GB. Modeling the 

influence of resonance stabilization on the kinetics of hydrogen abstractions. Physical 

Chemistry Chemical Physics. 2010;12(6):1278-1298. 

14. Paraskevas PD, Sabbe MK, Reyniers MF, Papayannakos NG, Marin GB. Kinetic 

Modeling of a-Hydrogen Abstractions from Unsaturated and Saturated Oxygenate 

Compounds by Hydrogen Atoms. Journal of Physical Chemistry A. 2014;118(40):9296-

9309. 

15. Sabbe MK, Reyniers MF, Van Speybroeck V, Waroquier M, Marin GB. Carbon-centered 

radical addition and beta-scission reactions: Modeling of activation energies and pre-

exponential factors. Chemphyschem. 2008;9(1):124-140. 

16. Sabbe MK, Saeys M, Reyniers MF, Marin GB, Van Speybroeck V, Waroquier M. Group 

additive values for the gas phase standard enthalpy of formation of hydrocarbons and 

hydrocarbon radicals. Journal of Physical Chemistry A. 2005;109(33):7466-7480. 

17. Sabbe MK, De Vleeschouwer F, Reyniers MF, Waroquier M, Marin GB. First Principles 

Based Group Additive Values for the Gas Phase Standard Entropy and Heat Capacity of 



Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 229 

Hydrocarbons and Hydrocarbon Radicals. Journal of Physical Chemistry A. 

2008;112(47):12235-12251. 

18. Vandeputte AG, Sabbe MK, Reyniers M-F, Marin GB. Kinetics of alpha hydrogen 

abstractions from thiols, sulfides and thiocarbonyl compounds. Physical Chemistry 

Chemical Physics. 2012;14(37):12773-12793. 

19. Paraskevas PD, Sabbe MK, Reyniers MF, Papayannakos N, Marin GB. Kinetic Modeling 

of alpha-Hydrogen Abstractions from Unsaturated and Saturated Oxygenate Compounds 

by Carbon-Centered Radicals. Chemphyschem. 2014;15(9):1849-1866. 

20. Paraskevas PD, Sabbe MK, Reyniers MF, Papayannakos NG, Marin GB. Group Additive 

Kinetics for Hydrogen Transfer Between Oxygenates. Journal of Physical Chemistry A. 

2015;119(27):6961-6980. 

21. Paraskevas PD, Sabbe MK, Reyniers MF, Marin GB, Papayannakos NG. Group additive 

kinetic modeling for carbon-centered radical addition to oxygenates and -scission of 

oxygenates. Aiche Journal. 2016;62(3):802-814. 

22. Li Y, Zhou C-W, Somers KP, Zhang K, Curran HJ. The oxidation of 2-butene: A high 

pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene 

and 1-butene. Proceedings of the Combustion Institute. 2017;36(1):403-411. 

23. Gao CW, Allen JW, Green WH, West RH. Reaction Mechanism Generator: Automatic 

construction of chemical kinetic mechanisms. Computer Physics Communications. 

2016;203:212-225. 

24. Merchant S. Molecules to Engines: Combustion chemistry of Alcohols and their 

application to advanced engines, MIT; 2015, Ph. D. Thesis. 

25. Mohamed SY, Cai L, Khaled F, Banyon C, Wang Z, Al Rashidi MJ, Pitsch H, Curran HJ, 

Farooq A, Sarathy SM. Modeling Ignition of a Heptane Isomer: Improved 

Thermodynamics, Reaction Pathways, Kinetics, and Rate Rule Optimizations for 2-

Methylhexane. Journal of Physical Chemistry A. 2016;120(14):2201-2217. 

26. CHEMKIN Release 4.1.1 [computer program]. San Diego, CA, USA: Reaction Design, 

Inc.; 2007. 

27. Pepiot-Desjardins P, Pitsch H. An efficient error-propagation-based reduction method for 

large chemical kinetic mechanisms. Combustion and Flame. 2008;154(1–2):67-81. 

28. Herbinet O, Husson B, Serinyel Z, Cord M, Warth V, Fournet R, Glaude P-A, Sirjean B, 

Battin-Leclerc F, Wang Z, Xie M, Cheng Z, Qi F. Experimental and modeling 

investigation of the low-temperature oxidation of n-heptane. Combustion and Flame. 

2012;159(12):3455-3471. 

29. Zhang K, Banyon C, Bugler J, Curran HJ, Rodriguez A, Herbinet O, Battin-Leclerc F, 

B'Chir C, Heufer KA. An updated experimental and kinetic modeling study of n-heptane 

oxidation. Combustion and Flame. 2016;172:116-135. 

30. Cai L, Pitsch H, Mohamed SY, Raman V, Bugler J, Curran H, Sarathy SM. Optimized 

reaction mechanism rate rules for ignition of normal alkanes. Combustion and Flame. 

2016;173:468-482. 

 

  



230   Chapter 5: First principles based automated kinetic modeling of heptane pyrolysis 

 



Chapter 6: Conclusions and future outlook   231   

Chapter 6: Conclusions and future 

outlook 

6.1 Conclusions 

The current gradual shift from fossil to more renewable feedstocks in the (petro)chemical 

industry, in combination with more stringent environmental constraints and the push to higher 

energy efficiency are the key drivers for innovation in the 21th century. The chemical industry 

faces many challenges and proper estimations of the best scenarios need advanced, reliable, fast, 

predictive modelling tools and methods. Although in-silico process development is becoming 

important, still the combinations of accurate experimental measurements and theoretical 

calculations is considered the most reliable approach to come up with well-balanced answers for 

the future. This thesis aims at contributing to this sustainable development initiative by allowing 

an easier generation of accurate kinetic models, which are crucial to understand the underlying 

chemistry in a reactor, and in the end to do more with less. The approach developed in this work 

can also be used for innovation, design new solutions for many of today's chemical processes. 

One of the main hurdles that needs to be overcome is the large data gap to build kinetic models. 

Data entails among others thermodynamic and kinetic parameters as well as experimental data 

used for validation. One of the key objectives of this work is identifying and resolving the lack of 

thermodynamic and kinetic data. This is primarily motivated by the fact that the current 

calculation procedures in kinetic model generation tools can suffer from a low applicability 
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domain or low accuracy, and many new quantum chemical calculations are necessary for the 

generation of predictive kinetic models applicable under divergent conditions. Two different 

tools to calculate new data have been employed in this work.  

First, the KinBot software has been used to find reactions on the potential energy surface of the 

1-pentanol radicals. KinBot is a computer code that automatically identifies stationary points on a 

potential energy surface using ab initio methods. Such potential energy searches are important to 

identify the main pathways of molecules and radicals, and can serve as high level calculations for 

a limited number of rate coefficients. The interest in 1-pentanol originates from its advantageous 

characteristics as substitute for diesel in combustion engines. 1-pentanol can be formed via 

biological processes and is thus a sustainable and clean solution compared to the fossil resources 

for diesel. To illustrate capabilities of KinBot, the pyrolysis of n-pentanol has been investigated, 

because the pyrolysis chemistry needs to be understood to model its combustion behavior, which 

allows in its turn optimizing fuel blends and combustion engines. Using KinBot, the six different 

radicals of n-pentanol were automatically found, including all their isomerization reactions, β-

scission reactions and water elimination reactions. The β-scission of the β-radical, i.e. with the 

radical located in β position to the oxygen atom, leading to the hydroxyl radical and 1-pentene 

proved to be of special interest. When examining this reaction in the reverse direction, as the 

addition of the hydroxyl radical to 1-pentene, a barrierless step into a van der Waals-well is 

found. This is followed by an inner transition state leading to the β-radical of n-pentanol. An 

effective two-transition state model has been used to model this complex reaction. The resulting 

rate coefficients have been implemented in a kinetic model for the pyrolysis of n-pentanol built 

by Genesys, which showed good agreement to experimental data on n-pentanol pyrolysis.  

Second, when building a kinetic model, most of the important pathways are already known and 

potential energy surfaces are thus of lesser importance. Instead, methods to automatically 

calculate a set of rate coefficients is of great interest for kinetic models, where hundreds of 

reactions belonging to the same reaction family can be encountered. In this work, it was chosen 

to rely on high level quantum chemical calculations to serve this purpose. However, these 

calculations still required extensive user knowledge and expertise. Therefore, several automation 

procedures have been developed to minimize human interaction and allow fast generation of 

thermodynamic properties and reaction rate coefficients. Although these calculations are still 
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several orders of magnitude slower than for example group additivity, they can serve as training 

data to build new, more accurate, and more complete group additivity methods or other 

calculation methods such as Evans-Polanyi or Blowers-Masel relationships. Starting from solely 

connectivity information of the atoms in a molecule, 3D coordinates of the species and transition 

states can be build, for which this work relies on “distance geometry”. The initial 3D coordinates 

are used for several energy minimizations using commercial quantum chemical software. The 

initial energy minimization is a rough pre-optimization using semi-empirical methods. Next, 

conformers can be exhaustively searched for. Algorithms to scan the conformation space and 

ensure finding a global energy minimum, or at least a very low minimum have been created. The 

lowest energy conformers can subsequently be used for high level calculations, optionally 

followed by 1D hindered rotor calculations. All these steps are automatically performed, without 

the need for any manual intervention. The results of the ab initio calculations are used to obtain 

thermodynamic parameters and kinetic data using statistical thermodynamics. The above 

algorithms have been used for a set of species and a set of reactions and expected results are 

found, i.e. the final data is comparable to ab initio data “manually” calculated by kineticists.  

The automated calculation of a large set of intramolecular hydrogen abstraction reaction rate 

coefficients in hydrocarbon radicals proves the potential of the approach. A wide span of 

reactions is considered, 1ncluding 1-2 up to 1-7 H-shifts. The ab initio calculations show good 

agreement to experimental data as well as to theoretical data calculated using a similar level of 

theory. From these calculations, it proved to be relatively straightforward to develop a group 

additivity scheme, allowing the calculations of rate coefficients for many new intramolecular 

hydrogen abstractions. The latter is very beneficial for automatic kinetic model generation. The 

group additivity scheme includes the influence of ligands on the attacking and attacked carbon 

atoms as well as the influence of the carbon chain bonded in between both reactive carbon atoms. 

The ligands vary from hydrogen atoms to sp
3
, sp

2
 and sp carbon atoms. Each combination of 

these four ligands was considered. The group additivity scheme is able to reproduce most of the 

rate coefficients of reactions within a factor of 2 compared to the ab initio values.  

To verify the necessity and accuracy of the group additivity scheme, a kinetic model for the 

pyrolysis of n-heptane has been built. All reactions significant for the thermal decomposition of 

n-heptane have been automatically generated using four reaction families: Intramolecular 
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hydrogen abstractions, intermolecular hydrogen abstractions, and inter- and intramolecular 

radical additions to double bonds and their reverse β-scission reactions. The initiation chemistry, 

the behavior of small molecules and the formation of larger secondary products such as aromatics 

were taken from literature. The kinetic model has been compared to two independently obtained 

experimental datasets for comparison. The model was able to describe most of the response 

variables accurately, under very divergent pressure, temperature and conversion ranges. Rate of 

production analysis revealed the important pathways and highlighted the large dependence of the 

importance of a reaction pathway to the reactor conditions such as pressure and temperature. This 

also allowed to verify the role of intramolecular hydrogen abstractions, which was found to be 

significant for the radical concentrations inside the reactor as well as for the products yields.  

6.2 Future outlook 

The methodologies developed in this work can be the starting point to develop automation 

procedures to calculate more accurate data in several ways. Firstly, although the use of the level 

of theory is hard-coded in the software, the extension to higher levels of theory only requires 

small changes. G4 calculations, for example, have proven to yield better results compared to 

CBS-QB3. Although these G4 calculations are slower, an automatic framework to calculate them 

could be beneficial since no human interactions would be necessary anymore, and the 

calculations can run in the background. Other improvements of the level of theory could include 

coupled cluster calculations, which would further increase the calculation time. Although full 

automation is not possible yet due to the complexity of the calculations, it can become possible 

within the next decade(s).  

Secondly, improvements can be made on the approximations to obtain the thermodynamic and 

kinetic data. For example, 1D hindered rotor approximations are used to this point to treat 

internal rotors. Since many conformers are already at hand, these calculations could be replaced 

by multidimensional hindered rotor approximations. In the case where several rotors show strong 

coupling, multidimensional approximations are necessary to increase the accuracy of the results.  

Thirdly, if many conformers have been calculated, using Boltzmann averaging for the calculation 

of thermodynamic parameters can further improve the results. Finally, the inclusion of master 

equation calculations can become important when comparing the results to low-pressure and high 
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temperature experiments. Up to now, the code can only calculate high-pressure limit rate 

coefficients, and the fall-off region of reactions is completely ignored. Calculating rate 

coefficients as a function of pressure and temperature could enlarge the application range of the 

results.  

On the application side, although 1-pentanol pyrolysis has been studied and compared to 

experimental data, understanding its role in diesel engines will require additional simulations and 

experiments to (1) account for the combustion behavior of 1-pentanol and (2) include reactions 

between the n-pentanol combustion intermediates, and the ones from diesel combustion. New 

kinetic models are necessary to find the main pathways and search for optimal fuel blends and 

engine conditions.  

On the group additive level, the developed model constructed for intramolecular hydrogen 

abstraction reactions only considers open-chain hydrocarbon radicals. However, these reactions 

also play a role in several other molecules. In cyclic structures, for example, the formation of 

aromatics depends strongly on several hydrogen shift pathways. The kinetics of these reactions 

will be strongly influenced by the cyclic structure in the reactant, and a bicyclic transition state 

will be formed. Extending the group additivity scheme to include cyclic structures could thus be 

valuable for the pyrolysis of cyclic reactants, or for aromatics formation.  

For the modelling aspect, improvements are also still possible even for such a simple system as n-

heptane pyrolysis. The n-heptane models found in literature, as well as the newly developed one, 

show both good agreements with some of the response variables, but also lesser agreements for 

others. The reaction pathways of all the models need to be verified and compared to one another, 

and their kinetics need further study to allow the generation of a widely applicable model able to 

describe the formation of all important products and intermediates, independently of the 

conditions. Additional experiments with varying conversion and dilution can be helpful to reach 

this goal and correctly validate the kinetic model.  

Last but not least, one of the biggest challenges is related to the fact that most chemical processes 

are influenced by hetero-atomic species involving mainly oxygen, sulfur and nitrogen. These 

species can be present as impurities, e.g. originating from the fossil resources, or can be one of 

the reactants, which is often the case for biomass feedstocks or when using additives. 
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Intramolecular hydrogen abstraction rate coefficients will be strongly depending on the presence 

and the position of these hetero-atoms and extending the group additive model is required to 

account for this. For example, in the case of combustion, where oxygen is present in most of the 

reactive intermediates, an accurate description of the hydrogen shifts could help to understand the 

chemical behavior. For steam cracking, the presence of substantial amounts of hetero-atomic 

compounds, mainly containing oxygen, nitrogen and sulfur, poses many challenges to the safety, 

the operability and the quality of the product streams and an accurate understanding of the 

chemistry would be of great aid to overcome these challenges.  
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Appendix A: Hindered rotor treatment 
All the internal rotors have been treated as uncoupled rotors and relaxed scans have been done at 

the B3LYP/6-31+G level of theory. For a few rotors, the M06-2X/6-311++G(d,p) level of theory 

has also been used to assess the difference between the two calculations methods, which is 

visualized in Figure A-1. The rotors corresponding to the energy profiles are drawn above or in 

the graph; they include both rotors in transition states as well as radical species and an ethyl rotor, 

a methyl rotor and two hydroxyl rotors have been studied. The difference between the B3LYP 

energy profile and the M06 one is small, certainly around the equilibrium geometry of the 

species. This suggests that the influence of the level of theory for the hindered rotor profiles on 

the final rate coefficients is small.  

 

Figure A-1: Hindered rotor potentials for four rotational modes. 
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Appendix B: Correction factors for the OH + 1-

pentene addition kinetics 
Three corrections for the barrierless part of the OH + 1-pentene channel were included, one for 

the spin-orbit (SO) coupling of the OH radical on the state counts, one to account for the small 

basis set during the sampling, and one to estimate the effect of conformers on the capture rate 

coefficient. 

B.1 SO coupling 

The SO coupling of the OH radical (139.7 cm
−1

) should be considered in the state counts of the 

reactant and of the outer transition state, assuming that the conserved modes are separable from 

the transitional ones. (At the inner transition state the SO coupling effectively just increases the 

inner barrier height by 0.8 kJ mol
−1

, but that barrier needs to be fine-tuned anyway by more than 

this, see main text). The partition functions of the reactant OH and of the outer transition state 

directly at the canonical level was corrected.
1
 This treatment is free of an ad hoc interpolation 

scheme,
2
 and automatically preserves the correct value of the equilibrium constant, which in turn 

influences the dissociation rate coefficient of -R. Based on Refs.
2,3

 the temperature-dependent 

correction factor is 𝑐SO = 𝑄𝑒,𝑟
coup

/(𝑄𝑒𝑄𝑟), where 𝑄𝑒,𝑟
coup

 is the true, coupled partition function of 

OH, while 𝑄𝑒 and 𝑄𝑟 are the uncoupled electronic and rotational partition functions, respectively. 

𝑐SO is given in Table B-1. 

Table B-1: Canonical correction factor to account for the SO of OH (𝒄SO) and for the conformer dependency 

of the long-range attractive potential (𝒄conf). The outer TS of the OH + 1-pentene channel was corrected at the 

canonical level by the net 𝒄SO × 𝒄conf factor. 

T (K) 𝑐SO 𝑐conf 𝑐SO × 𝑐conf 

300 1.17 0.93 1.09 

350 1.14 0.94 1.07 

400 1.12 0.94 1.05 

450 1.11 0.94 1.05 

500 1.10 0.94 1.04 

550 1.09 0.94 1.03 

600 1.08 0.94 1.01 

650 1.07 0.94 1.00 

700 1.07 0.94 1.00 

750 1.06 0.93 0.99 

800 1.06 0.93 0.99 

850 1.06 0.93 0.99 

900 1.05 0.93 0.98 

950 1.05 0.93 0.98 

1000 1.05 0.93 0.97 
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B.2 Conformer-specific 1-D basis-set correction potentials  

There are two rotors in 1-pentene that generate conformers, rotor A and rotor B as shown in 

Figure B-1. Five conformers were found, not accounting for the non-identical mirror images. The 

conformer group 1, 2, and 3 differs from the 4 and 5 group in the dihedral A. Within the two 

groups dihedral B is different. Conformers 1, 2, 3, and 5 have non-identical mirror images, while 

conformer 4 has Cs symmetry. The ZPE-inclusive energies of the conformers at the M06-2X/6-

311++G** level is also shown in Figure B-1, with conformer 2 being the lowest one.  

 

Figure B-1: The five conformers of 1-pentene. A and B in structure 4 label the two bonds that generate them, 

while the subscript ‘2’ means that there is a non-identical mirror image that is not shown. 

Sampling the interfragmental potential at the CASPT2(5e,4o)/aug-cc-pVDZ level was unfeasible 

for the VRC-TST calculations, and instead, a 1-D correction potential and sample at the 

CASPT2(5e,4o)/cc-pVDZ level of theory had to be used. To this end, minimum energy paths for 

all five distinguishable conformers starting from their respective van der Waals wells on both 

sides of the plane defined by the alkene functional group were calculated. The distance between 

the O atom and the inner sp
2
 carbon was varied. The resulting potentials for the five conformers 

can be seen in Figure B-2a. The conformers’ MEP deviate below ~4 A, after which the lower-

energy branches all generally had the same value, i.e., the MEP was independent of the 

conformation in this coordinate. During the VRC-TST sampling, the correction from the side that 

had a lower CASPT2(5e,4o)/aug-cc-pVDZ energy for a given conformer was used, because it 

was not always possible to decide the energetically dominant side. The corrections are, therefore, 

somewhat noisy, as shown in Figure B-2b. 
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Figure B-2: (a) Interfragmental potential for the five conformers of 1-pentene. (b) Potential correction 

functions for the five conformers to go from CASPT2(5e,4o)/cc-pVDZ to CASPT2(5e,4o)/aug-cc-pVDZ level 

of theory. 

During the sampling up to 14 bohr, the pivot point was placed on the middle point of the double 

bond and 0.5 bohr outside the O atom along the O–H bond, while in an overlapping 10–20 bohr 

separation the center-of-mass pivot points were used. The significant overlap between the two 

types of sampling ensures variational flexibility in these calculations and removes the 

arbitrariness of the switching. For each conformer ~4000 geometries were used that converged 

the results to 5%. 

B.3 Presence of multiple conformers 

 In general, in the VRC-TST calculations the conserved and the transitional modes are treated as 

separable. The former ones are the internal vibrational modes of the fragments, while the latter 

ones are the ones that change from rotation to vibrations in the complex. The separability 

assumption implies that at the critical region of the barrierless potential the conserved internal 

modes are the same as the internal modes of the fragments at infinite separation. It has been 

previously shown
2
 that this part of the approximation is valid for alkene + OH reactions. 

However, typically the transitional modes are only evaluated for the lowest energy conformer of 

the fragments, and it is usually not investigated how the interfragmental potential, and thus the 

flux via the barrierless potential changes as one chooses another conformer. One can imagine that 

having several conformers close in energy (such as in the case of pentene) the differences in the 

attractive potential (see Figure B-2a) can lead to non-negligible corrections in the capture rate 

coefficient as a function of temperature.  

To investigate this, two test cases were used. In both, he hindered rotors of 1-pentene with the 

five separate conformers within the HO approximation was used, which is a relatively good 

approximation at low temperature where the outer TS plays a more significant role. In the first 

case it was assumed that the attractive potential is the same for all five conformers and it is that of 

the lowest energy conformer, #2. In the second case, for each channel, its own transitional mode 
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is used. Comparing the high-pressure rate coefficients, it was found that between 300 and 1000 K 

the assumed invariablity of the interfragmental potential causes an overestimation of the 

barrierless rate coefficient by 15-5%, with the larger numbers being at the lower temperature. The 

overestimation is 15% at 100 K. The resulting correction factors 𝑐conf are given in Table B-1 

along with the combined canonical corrections of 𝑐SO × 𝑐conf, which were in turn used in the 

calculations. 
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Appendix C: Coordinates embedding 
This section explains the weighted coordinates embedding procedure. This method has proven to 

be robust. In an embed algorithm, the coordinates that are a best-fit to the estimated distances can 

be found fast and reliable by eigenvalue methods. The most straight-forward way to fit 

coordinates to distances is to minimize either the in algebra so-called STRESS shown in Eq. C.1 

or the smoother SSTRESS shown in Eq. C.2. The STRESS function is a weighted error function, 

by defining the error as the difference between the actual distance between two atoms, and the 

distance from the distance matrix. The SSTRESS uses the squares of the distances instead of the 

distances themselves. In the equations below, 𝒙𝟏, …, 𝒙𝑵 are the coordinates, 𝑑𝑖𝑗
2
 the estimated 

squared distances, which will be renamed 𝐷𝑖𝑗, and 𝑤𝑖,𝑗 are weights larger than one.  

 ∑ (𝑤𝑖,𝑗(‖𝒙𝒊 − 𝒙𝒋‖ − 𝑑𝑖𝑗))
2

𝑁,𝑁

𝑙=𝑖<𝑗

 Eq. C.1 

 ∑ (𝑤𝑖,𝑗 (‖𝒙𝒊 − 𝒙𝒋‖
2

− 𝑑𝑖𝑗
2))

2
𝑁,𝑁

𝑙=𝑖<𝑗

 Eq. C.2 

The STRESS and SSTRESS functions cannot be minimized fast and reliably. Therefore 

SSTRESS is expanded resulting in Eq. C.3.  

 4 ∑ 𝑤𝑖,𝑗
2(𝒙𝒊 ∙ 𝒙𝒋) −

1

2
(𝒙𝒊

𝟐 + 𝒙𝒋
𝟐 − 𝐷𝑖𝑗)

2

𝑁,𝑁

𝑙=𝑖<𝑗

 Eq. C.3 

Eq. C.4, in which 𝑚𝑗 are the masses of the points and M the total mass of the species, is used to 

calculate the squared distances to the center of mass from the squared distances among the points. 

The distance between atom i and the center of mass is 𝐷0𝑖 . This way the dependency of the 

estimate of the inner products of the coordinates can be removed.  

 𝐷0𝑖 = 𝑀−1 ∑ 𝑚𝑗

𝑁

𝑗=1

𝐷𝑖𝑗 − 𝑀−2 ∑ 𝑚𝑗𝑚𝑘𝐷𝑗𝑘

𝑁,𝑁

1=𝑗<𝑘

 Eq. C.4 

It can be easily proven that the distances to the center of mass , i.e. center of mass coordinates, is 

exact if the estimated distances among the points are exact. Based on Eq. C.3 and Eq. C.4 and the 

restriction to weights of the form 𝑤𝑖𝑤𝑗 the algebraic STRAIN is now introduced, c.f. Eq. C.5. 

The STRAIN is a new error function in which, as opposed to the STRESS and SSTRESS 

functions, the distances are related to the center of mass of the molecule instead of the direct 

distance between two atoms. 
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1

2
∑ (𝑤𝑖𝑤𝑗(𝒙𝒊 ∙ 𝒙𝒋 − 𝑎𝑖𝑗))

2
𝑁,𝑁

𝑖,𝑗=1

 Eq. C.5 

 𝑎𝑖𝑗 ∶=
1

2
(𝐷0𝑖 + 𝐷0𝑗 − 𝐷𝑖𝑗) Eq. C.6 

The problem is now reduced to minimize the STRAIN. By introducing the matrices 𝑨, 𝑾, 𝑿, and 

𝑫, c.f. Eq. C.7 to Eq. C.10, the STRAIN can be expressed as a squared Frobenius norm, shown in 

Eq. C.11. It can be proven that 𝑨 and 𝑫 are related to each other by a so called two-sided 

projection (Eq. C.12). In which 𝑰 is the identity matrix. A similar relationship can be found for 

the matrices. 

 𝑨 ∶= [𝑎𝑖𝑗] Eq. C.7 

 𝑾 ∶= 𝒅𝒊𝒂𝒈(𝑤1 … 𝑤𝑁) Eq. C.8 

 𝑿 ∶= [𝒙𝟏 … 𝒙𝑵]𝑻 Eq. C.9 

 𝑫 ∶= [𝐷𝑖𝑗] Eq. C.10 

 𝐹(𝑿) =
1

2
‖𝑾(𝑿𝑿𝑻 − 𝑨)𝑾‖2 Eq. C.11 

 𝑨 = −
1

2
(𝑰 − 𝟏𝒎𝑻/𝑀)𝑫(𝑰 − 𝒎𝟏𝑻/𝑀) Eq. C.12 

 𝟏 ∶= [1, … , 1]𝑇 Eq. C.13 

 𝒎 ∶= [𝑚1, … ,  𝑚𝑁]𝑇 Eq. C.14 

The STRAIN can thus now be rewritten as Eq. C.15. 

 𝐹(𝒀) =
1

2
‖𝒀𝒀𝑻 − 𝑩‖2 Eq. C.15 

 𝒀 ∶= 𝑾𝑿 Eq. C.16 

 𝑩 ∶= 𝑾𝑨𝑾 Eq. C.17 

A necessary condition for the global minimum is that the gradient becomes zero.  

 [
𝜕𝐹

𝜕𝑦𝑖𝑗
] = (𝒀𝒀𝑻 − 𝑩)𝒀 = 𝟎 Eq. C.18 

 𝑩𝒀 = 𝒀(𝒀𝑻𝒀) Eq. C.19 

𝒀𝑻𝒀 is a 3x3 matrix named the tensor. It can be assumed that the coordinates are rotated in space 

so that the inertial tensor is diagonal.  

 𝒀𝑻𝒀 = 𝒅𝒊𝒂𝒈(𝜆1, 𝜆2, 𝜆3) Eq. C.20 
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The columns of 𝒀 are proportional to eigenvectors of the scaled estimated Gram matrix B and the 

moments of inertia 𝜆1, 𝜆2, 𝜆3  are the corresponding eigenvalues. Combining the previous two 

equations result in Eq. C.21.  

 𝒀𝑻𝑩𝒀 = (𝒀𝑻𝒀)2 = (𝒅𝒊𝒂𝒈(𝜆1, 𝜆2, 𝜆3))
2
 Eq. C.21 

The squared Frobenius norm is expanded as Eq. C.22.  

 

𝐹(𝒀) = 𝑡𝑟((𝒀𝒀𝑻 − 𝑩)2) 

𝐹(𝒀) = 𝑡𝑟((𝑩𝟐 − 𝟐𝒀𝒀𝑻𝑩 + 𝒀𝒀𝑻)2) 

𝐹(𝒀) = 𝑡𝑟(𝑩)2 − 𝑡𝑟(𝟐𝒀𝑻𝑩𝒀 − (𝒀𝑻𝒀)𝟐) 

Eq. C.22 

By making use of the expression resulting from the global minimum equation we can 

rewrite the Frobenius norm, c.f. Eq. C.23. 

 𝐹(𝒀) = 𝑡𝑟(𝑩2) − 𝜆1
2 − 𝜆2

2 − 𝜆3
2 Eq. C.23 

The global minimum 𝒀 is obtained by taking the three largest nonnegative eigenvalues of 𝑩 and 

scaling these by their square root. These are then transformed back to the original coordinates. 

 𝑿 = 𝑾−𝟏𝒀 Eq. C.24 

A variety of iterative methods can be used to find the three largest eigenvalues in an efficient way 

without fully diagonalizing the matrix.  
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Appendix D: Wilson B matrix 
Since Gaussian only prints out the normal modes in Cartesian coordinates, and automatic 

selection of frequencies corresponding to torsional modes requires the normal mode to be 

expressed in internal coordinates, a transformation is necessary. Internal coordinates are, 

according to Wilson et al.
4
, coordinates that are unaffected by translation and rotation of the 

molecule in its entirety. A typical representation, the so-called Z-Matrix coordinates, of a 

molecule with N atoms only uses the 3N-6 independent coordinates. This includes (N-1) bond 

lengths, (N-2) bond angle and (N-3) dihedral angles. For analysis of a normal mode, defining 

more (redundant) coordinates can be helpful. In this case, the number of bond lengths equals the 

number of chemical bonds in the molecule and all the possible bond angles are considered. 

Dihedral angles can be described in several ways. For example, one could enumerate all the 

combinations of four consecutively bonded atoms. This can lead to a large number of 

unnecessary parameters. Instead, per chemical bond, the atoms on both sides are listed, and one 

reference atom on one side is chosen to define all the dihedral angles on the other side. 

Furthermore, because out-of-plane motions can strongly affect dihedral angles, but are not 

torsional motions, these normal modes can be filtered out by adding the out-of-plane angles of 

planar structures of four atoms.  

The transformation from a displacement in Cartesian coordinates x to a displacement in internal 

coordinates q is straightforward by using Eq. D.1 in which B is the Wilson B matrix. 

 𝛿𝒒 = 𝐵 𝛿𝒙 
Eq. D.1 

The Wilson B matrix only depends on the geometry of the molecule, which should be in its 

standard orientation, i.e. the principle axes of inertia need to be aligned with the x, y and z-axes. 

The vector q is divided in four parts, bond stretching, angle bending, torsions and out-of-plane 

coordinates. Let St be one of the internal coordinates:  

 𝑆𝑡 = ∑ 𝐵𝑡𝑖𝑥𝑖

3𝑁

𝑖=1

 
Eq. D.2 

Although the form of Eq. D.2 is simple to obtain the internal coordinates, its use is less practical 

since Cartesian coordinates are expressed as a set of N vectors with 3 elements, rather than one 

3N dimensional vector. To account for this, Eq. D.2 is rewritten as Eq. D.3 in which an atom is 

denoted as α and stα contains the elements 3α-2 to 3α of the t
th

 row of the Wilson B matrix. stα is 

the vector that, given all the atoms are in their equilibrium position, will give the highest increase 

in St. 

 𝑆𝑡 = ∑ 𝒔𝒕𝜶 ∙ 𝒙𝜶

𝑁

𝛼=1

 
Eq. D.3 

For bond stretching internal coordinates, stα can be easily be calculated. When considering the 

bond between atoms α and β, stα equals the unit vector from β to α, i.e. eβα, whereas stα equals eαβ. 
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When three atoms α, β and γ form a bond angle between the bonds α- γ and β-γ, the vectors stα, 

stβ, stγ can be computed based on Eq. D.4, Eq. D.5, and Eq. D.6 with 𝜗 the equilibrium bond 

angle, rαβ is the distance between atoms α and β.  

 𝒔𝒕𝜶 =
cos 𝜗 𝒆𝜸𝜶 − 𝒆𝜸𝜷

𝑟𝛾𝛼 sin 𝜗
 

Eq. D.4 

 𝒔𝒕𝜷 =
cos 𝜗 𝒆𝜸𝜷 − 𝒆𝜸𝜶

𝑟𝛾𝛽 sin 𝜗
 

Eq. D.5 

 𝒔𝒕𝜸 =
[(𝑟𝛾𝛼 − 𝑟𝛾𝛽cos 𝜗)𝒆𝜸𝜶 + (𝑟𝛾𝛽 − 𝑟𝛾𝛼cos 𝜗)𝒆𝜸𝜷]

𝑟𝛾𝛼𝑟𝛾𝛽 sin 𝜗
 

Eq. D.6 

Out-of-plane internal coordinates can be obtained from the coordinates of four atoms: a central 

atom δ bonded to three other atoms, α, β and γ. 𝜃 is the angle between the vector 𝒆𝜹𝜶 and the 

plane through β, γ and δ. 𝜙1is the angle between the bonds β-δ and γ-δ.  

 𝒔𝒕𝜶 =
1

𝑟𝛿𝛼
(

𝒆𝜹𝜷 𝒆𝜹𝜸

cos 𝜃 sin 𝜙1
− tan 𝜃 𝒆𝜹𝜶) 

Eq. D.7 

 𝒔𝒕𝜷 =
1

𝑟𝛿𝛽
(

𝒆𝜹𝜸 𝒆𝜹𝜶

cos 𝜃 sin 𝜙1
−

tan 𝜃

𝑠𝑖𝑛2𝜙1
(𝒆𝜹𝜷 − cos 𝜙1 𝒆𝜹𝜸)) 

Eq. D.8 

 𝒔𝒕𝜸 =
1

𝑟𝛿𝛾
(

𝒆𝜹𝜶 𝒆𝜹𝜷

cos 𝜃 sin 𝜙1
−

tan 𝜃

𝑠𝑖𝑛2𝜙1
(𝒆𝜹𝜸 − cos 𝜙1 𝒆𝜹𝜷)) 

Eq. D.9 

 𝒔𝒕𝜹 = −𝒔𝒕𝜶 − 𝒔𝒕𝜷 − 𝒔𝒕𝜸 
Eq. D.10 

Finally, four atoms that are subsequently bonded to each other define a dihedral angle, let the 

order of the atoms be α, β, γ and δ. 𝜙1 and 𝜙2 are the angle between the bonds α-β and β-γ and 

the bonds β-γ and γ-δ, respectively. 𝜏 is the dihedral angle. The expressions (𝛼𝛿) and (𝛽𝛾) mean 

that the subscripts α and δ and the subscripts β and γ need to be permuted, respectively.  

 𝒔𝒕𝜶 =
𝒆𝜶𝜷 𝒆𝜷𝜸

𝑟𝛼𝛽 sin2 𝜙1
 Eq. D.11 

 𝒔𝒕𝜷 =
𝑟𝛽𝛾 − 𝑟𝛼𝛽cos 𝜙1

𝑟𝛽𝛾𝑟𝛼𝛽sin 𝜙1

𝒆𝜶𝜷 𝒆𝜷𝜸

sin 𝜙1
+

cos 𝜙2

𝑟𝛽𝛾 sin 𝜙2

𝒆𝜹𝜸 𝒆𝜸𝜷

sin 𝜙2
 

Eq. D.12 

 𝒔𝒕𝜸 = [(𝛼𝛿)(𝛽𝛾)]𝒔𝒕𝜷 
Eq. D.13 

 𝒔𝒕𝜹 = [(𝛼𝛿)(𝛽𝛾)]𝒔𝒕𝜶 
Eq. D.14 
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Appendix E: Test reactions 
Table E-1: Arrhenius parameters for the test reactions for 1-2 H-shifts regressed between 800 and 1200 and 

the comparison of the initial group additive model to the ab initio rate coefficients at 1000K. The pre-

exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. For thermo-neutral reactions, i.e. when 

the reactant and product are identical, the forward and rate coefficients are the same, and is only tabulated 

once. In the other case, the first line corresponds to the forward rate coefficient, the second line to the reverse 

rate coefficient. All pre-exponential factors include tunneling and the number of single events. 

Reaction logA Ea kGA/kAI 

 
13.6 183.1 0.95 

13.6 168.0 1.04 

 13.0 173.7 0.74 

 

13.7 181.9 0.62 

13.8 170.5 0.95 

 

13.1 149.3 0.83 

13.3 194.1 0.82 

 
13.7 183.1 0.74 

13.5 168.0 1.24 

 
13.0 141.7 0.94 

13.8 199.9 1.06 

 12.9 173.6 0.87 

 

13.9 183.8 1.08 

13.3 156.5 0.94 

 

13.4 180.4 2.30 

 
13.5 166.4 1.06 

13.6 183.4 0.96 

 
13.3 173.6 0.82 

13.2 173.0 0.93 

 

13.0 170.3 0.56 

13.6 171.2 1.02 

 

13.4 185.5 0.77 

13.5 153.0 1.12 

 

13.9 185.6 1.44 

13.4 160.2 1.12 

 

13.3 137.9 0.28 

14.1 194.8 0.39 
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(Table E-1 continued) 

 

13.4 159.7 0.64 

13.6 175.3 2.02 

 

13.4 161.8 0.49 

13.5 173.4 0.41 

 

13.6 173.7 1.22 

12.8 163.2 1.53 

Table E-2: Arrhenius parameters for the test reactions for 1-3 H-shifts regressed between 800 and 1200 and 

the comparison of the initial group additive model to the ab initio rate coefficients at 1000K. The pre-

exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. For thermo-neutral reactions, i.e. when 

the reactant and product are identical, the forward and rate coefficients are the same, and is only tabulated 

once. In the other case, the first line corresponds to the forward rate coefficient, the second line to the reverse 

rate coefficient. All pre-exponential factors include tunneling and the number of single events. 

Reaction logA Ea kGA/kAI 

 12.5 172.6 1.00 

 
12.6 146.9 0.94 
13.6 206.1 0.94 

 

12.8 153.8 0.68 
13.0 195.2 0.61 

 
12.8 163.9 1.11 
13.0 180.8 1.03 

 12.6 170.1 0.54 

 
13.4 173.5 0.32 

 

13.0 135.0 0.84 

12.7 207.7 0.97 

 

12.3 140.4 2.26 

13.4 214.2 3.31 

 
13.2 171.5 0.55 

 

12.6 150.2 0.87 

12.9 178.4 1.22 

 

13.0 166.1 0.75 

 

12.7 155.8 0.61 

13.0 173.1 0.96 
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(Table E-2 continued) 

 

12.6 127.8 1.19 

13.2 237.2 2.42 

 

13.6 169.0 0.53 

 

13.4 126.9 0.73 

14.3 231.8 0.64 

 

13.2 138.5 0.64 

13.4 201.4 1.36 

 

13.1 164.4 0.38 

 

12.3 134.9 2.57 

13.7 219.3 2.40 

 

12.9 137.1 1.39 

13.7 214.0 3.28 

 

11.8 128.3 3.06 

13.4 222.6 1.65 

Table E-3: Arrhenius parameters for the test reactions for 1-4 H-shifts regressed between 800 and 1200 and 

the comparison of the initial group additive model to the ab initio rate coefficients at 1000K. The pre-

exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. For thermo-neutral reactions, i.e. when 

the reactant and product are identical, the forward and rate coefficients are the same, and is only tabulated 

once. In the other case, the first line corresponds to the forward rate coefficient, the second line to the reverse 

rate coefficient. All pre-exponential factors include tunneling and the number of single events. 

Reaction logA Ea kGA/kAI 

 

11.4 97.3 0.93 

 11.3 99.4 0.86 

 

11.9 96.7 0.78 

11.8 94.9 0.66 

 
11.3 79.2 0.79 

11.5 120.6 0.95 

 
10.9 77.1 0.67 

12.1 135.1 0.93 
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(Table E-3 continued) 

 

11.8 92.4 0.57 

11.8 92.1 0.48 

 
11.4 92.2 1.47 

11.9 110.0 1.48 

 

10.7 92.8 4.81 

 

11.0 49.2 1.66 

12.5 170.5 4.75 

 

11.8 91.2 0.60 

12.1 89.6 0.80 

 

11.7 87.6 0.84 

11.8 87.5 0.71 

 

11.8 92.7 0.60 

 

11.4 54.6 0.52 

11.3 132.0 0.97 

 

11.1 55.3 0.45 

11.6 146.9 1.31 

 

11.4 63.7 0.78 

12.1 139.4 0.75 

 

12.0 98.9 0.32 

11.9 96.4 0.36 

 

11.1 59.6 0.49 

12.3 147.0 1.40 

 

11.8 91.2 0.47 

11.9 90.0 0.29 

 

12.0 76.8 0.21 

11.9 98.3 0.59 
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Table E-4: Arrhenius parameters for the test reactions for 1-5 H-shifts regressed between 800 and 1200 and 

the comparison of the initial group additive model to the ab initio rate coefficients at 1000K. The pre-

exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. For thermo-neutral reactions, i.e. when 

the reactant and product are identical, the forward and rate coefficients are the same, and is only tabulated 

once. In the other case, the first line corresponds to the forward rate coefficient, the second line to the reverse 

rate coefficient. All pre-exponential factors include tunneling and the number of single events. 

Reaction logA Ea kGA/kAI 

 
10.7 60.7 1.16 

10.8 77.6 0.77 

 10.5 68.0 0.96 

 

10.9 64.3 1.11 

10.8 65.2 1.36 

 
10.5 63.4 0.68 

 
10.2 50.3 0.71 

10.4 89.8 1.04 

 

10.8 66.6 1.25 

10.8 69.5 1.24 

 

10.9 67.4 0.59 

10.8 63.7 0.76 

 

11.0 64.0 0.84 

11.1 67.2 0.85 

 

10.7 64.3 1.19 

10.8 64.1 1.02 

 
10.2 50.0 0.43 

11.2 106.6 0.66 

 

10.9 66.9 0.86 

 
10.2 57.0 1.69 

 

10.9 57.5 0.79 

11.3 62.8 0.80 

 

9.8 28.0 2.16 

11.3 149.0 1.19 

 

11.6 57.1 0.43 

11.6 62.4 0.33 
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(Table E-4 continued) 

 

11.2 52.3 0.36 

11.3 62.6 0.44 

 

10.9 49.5 1.69 

11.4 66.3 5.82 

 

10.2 27.0 1.68 

11.4 132.8 0.73 

 

11.0 59.7 1.31 

10.8 58.0 0.75 

 

10.9 67.9 0.52 

10.9 67.0 0.68 

 

10.3 23.1 0.56 

11.5 135.0 0.91 

 

10.2 36.3 1.52 

11.3 108.7 0.62 

 

10.0 31.4 1.11 

11.4 119.1 1.07 
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Table E-5: Arrhenius parameters for the test reactions for 1-6 H-shifts regressed between 800 and 1200 and 

the comparison of the initial group additive model to the ab initio rate coefficients at 1000K. The pre-

exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. For thermo-neutral reactions, i.e. when 

the reactant and product are identical, the forward and rate coefficients are the same, and is only tabulated 

once. In the other case, the first line corresponds to the forward rate coefficient, the second line to the reverse 

rate coefficient. All pre-exponential factors include tunneling and the number of single events. 

Reaction logA Ea kGA/kAI 

 

9.9 42.2 0.20 

9.8 97.3 0.33 

 

9.5 38.3 0.99 

10.5 118.6 1.63 

 

10.1 66.3 0.77 

9.9 58.7 0.70 

 

10.1 59.0 0.83 

10.1 68.3 0.87 

 

10.1 52.3 0.45 

10.5 58.7 0.79 

 

10.1 68.0 1.01 

10.3 64.6 0.54 

 

10.4 52.2 0.47 

10.6 67.6 0.33 

 

10.0 60.3 0.52 

10.0 55.5 0.44 

 

8.9 51.8 0.78 

 

10.6 64.3 0.49 

 

9.5 19.4 0.21 

10.1 127.3 0.64 

 

10.0 59.8 0.69 

9.9 66.5 1.01 
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(Table E-5 continued) 

 

10.3 72.9 0.92 

10.1 53.2 0.72 

 

9.4 38.1 1.41 

10.0 110.8 0.95 

 

9.9 71.7 1.51 

9.9 47.5 0.88 

 

10.5 51.8 0.34 

10.3 66.3 0.49 

 

9.4 23.5 0.43 

10.6 135.0 0.82 

 

8.6 25.3 2.15 

10.4 144.9 1.16 

 

9.8 68.3 1.04 

9.7 45.8 1.09 

 

10.7 50.5 0.38 

10.4 67.3 1.01 

 

9.3 36.2 0.37 

10.8 121.7 0.43 

 

10.1 64.3 0.59 

10.0 62.7 0.88 

 

9.0 47.0 1.99 

9.3 74.0 4.90 
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Table E-6: Arrhenius parameters for the test reactions for 1-7 H-shifts regressed between 800 and 1200 and 

the comparison of the initial group additive model to the ab initio rate coefficients at 1000K. The pre-

exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. For thermo-neutral reactions, i.e. when 

the reactant and product are identical, the forward and rate coefficients are the same, and is only tabulated 

once. In the other case, the first line corresponds to the forward rate coefficient, the second line to the reverse 

rate coefficient. All pre-exponential factors include tunneling and the number of single events. 

Reaction logA Ea kGA/kAI 

 

8.9 72.6 0.37 

9.2 70.6 0.34 

 
8.6 62.5 1.00 

8.4 78.7 3.00 

 

8.9 74.5 1.19 

8.7 61.8 0.53 

 9.3 71.6 0.56 

 

8.0 42.7 0.72 

7.8 97.1 3.81 

 

9.4 79.5 0.58 

9.2 65.7 0.30 

 

7.9 47.0 0.33 

8.4 116.9 3.43 
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Appendix F: Initial group additive values 
Table F-1: Primary group additive values ΔGAV° for 1-2 to 1-7 intramolecular hydrogen abstractions deduced from the training set.. The index i 

depends on the H-shift. For 1-2 H-shifts, i equals 2, for 1-3 H-shifts 3, etc. The units for ΔGAV°Ea values are kJ mol
-1

. For the reference reaction, the 

single-event pre-exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. The reference reaction pre-exponential factor does not include 

tunneling nor the number of single events. 

 1-2  1-3  1-4  1-5  1-6  1-7  

 logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea 

Reference 12.78 177.3 12.04 176.2 10.82 106.0 9.94 73.1 9.12 69.3 7.89 76.0 

C1-(C)(H)2 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 

C1-(C)2(H) -0.09 6.3 0.08 5.6 0.03 4.6 -0.04 5.7 0.06 4.8 0.22 4.3 

C1-(Cd)(C)(H) 0.61 33.7 0.95 41.3 0.69 42.5 0.71 47.0 0.85 48.5 0.45 47.0 

C1-(Ct)(C)(H) 0.08 29.3 0.17 30.9 0.19 28.0 0.13 31.5 -0.50 33.2 0.14 31.0 

C1-(C)3 -0.06 6.5 -0.03 6.3 0.04 5.1 -0.27 5.4 -0.28 5.7 -0.35 5.9 

C1-(Cd)(C)2 0.55 37.9 0.85 45.0 0.68 46.1 0.47 50.2 0.50 57.9 0.36 54.6 

C1-(Ct)(C) -0.04 34.4 -0.11 37.1 -0.10 34.5 -0.03 38.1 -0.28 35.6 0.17 41.2 

C1-(Cd)2(C) 0.49 56.4 0.96 65.1 0.68 69.4 0.36 78.1 0.69 85.3 0.24 79.2 

C1-(Cd)(Ct)(C) 0.58 57.5 0.81 63.1 0.71 62.5 0.71 66.9 0.47 67.3 0.59 67.4 

C1-(Ct)2(C) 0.13 56.4 0.13 59.2 0.24 55.9 0.21 60.4 -0.06 60.6 0.11 60.4 

Ci-(C)(H)3 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 

Ci-(C)2(H)2 0.05 -9.9 0.18 -9.8 0.13 -12.4 0.17 -10.3 -0.02 -12.3 0.00 -12.5 

Ci-(Cd)(C)(H)2 -0.15 -41.7 0.12 -32.2 -0.42 -31.1 -0.31 -26.5 -0.07 -24.9 -0.30 -26.6 

Ci-(Ct)(C)(H)2 -0.02 -32.6 0.19 -25.3 0.03 -28.8 0.01 -24.1 -0.48 -24.8 -0.03 -24.2 

Ci-(C)3(H) 0.05 -20.1 0.19 -18.7 0.21 -21.3 0.03 -21.0 -0.35 -21.5 0.01 -19.7 

Ci-(Cd)(C)2(H) -0.28 -49.7 0.05 -38.4 -0.17 -39.2 -0.32 -34.4 -0.76 -32.1 -0.97 -31.4 

Ci-(Ct)(C) (H) -0.04 -41.3 0.18 -33.0 0.04 -37.3 0.05 -32.6 -0.29 -35.1 -0.38 -32.1 

Ci-(Cd)2(C)(H) -0.54 -62.3 -0.01 -50.0 -0.15 -49.4 -0.15 -38.0 -0.30 -36.0 -0.80 -37.4 

Ci-(Cd)(Ct)(C) (H) -0.24 -62.7 0.10 -47.2 -0.02 -50.0 -0.07 -43.6 -0.50 -44.0 -0.53 -43.9 

Ci-(Ct)2(C)(H) -0.07 -62.0 0.17 -46.1 0.10 -50.7 -0.01 -42.3 -0.51 -43.0 -0.04 -43.1 
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Table F-2: Secondary group additive values ΔGAV° for 1-2 to 1-7 intramolecular hydrogen abstractions deduced from the training set. The units for 

ΔGAV°Ea values are kJ mol
-1

. For the reference reaction, the single-event pre-exponential factors are expressed in s
-1

 and Ea is expressed in kJ mol
-1

. 

 1-3 1-4 1-5 

 i=2 i=2 i=3 i=2 i=3 i=4 

 logÃ Ea logÃ Ea logA Ea logÃ Ea logÃ Ea logÃ Ea 

Ci-(C)2(H)2 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 
Ci-(C)3(H) 0.10 -1.7 -0.02 -5.6 0.02 -2.2 -0.09 -5.4 0.08 -5.8 -0.01 -2.2 
Ci-(Cd)(C)2(H) -0.01 -3.3 -0.02 -6.7 0.01 -4.4 0.05 -5.1 0.18 -4.2 0.07 -2.8 
Ci-(Ct)(C)2(H) -0.07 -5.7 -0.11 -8.2 0.09 -2.6 -0.07 -5.9 0.07 -1.9 -0.05 -0.5 
Ci-(C)4 0.17 -4.7 -0.03 -8.1 -0.02 -3.4 -0.01 -7.2 -0.09 -6.4 0.00 -3.0 
Ci-(Cd)(C)3 0.00 -6.3 -0.02 -10.7 -0.10 -5.4 0.12 -9.3 0.13 -7.9 0.15 -5.5 
Ci-(Ct)(C) 3 0.01 -6.7 0.00 -9.1 0.06 -3.3 0.02 -10.1 0.06 -9.0 0.14 -4.8 
Ci-(Cd)2(C)2 0.20 -8.8 -0.08 -10.8 -0.03 -2.1 0.17 -11.5 0.34 -10.7 0.18 -4.9 
Ci-(Cd)(Ct)(C)2 0.20 -8.2 0.02 -12.2 0.05 -4.8 0.13 -11.0 0.10 -4.8 0.15 -3.8 
Ci-(Ct)2(C)2 -0.01 -8.9 0.00 -11.6 -0.02 -2.8 0.03 -8.7 -0.03 -4.0 0.17 0.7 

 

 1-6 1-7 

 i=2 i=3 i=4 i=5 i=2 i=3 i=4 i=5 i=6 

 logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea 

Ci-(C)2(H)2 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 0.00 0.0 
Ci-(C)3(H) -0.06 -4.0 -0.04 -3.0 0.02 -3.4 -0.03 -1.3 0.04 -3.9 0.10 -2.3 0.35 -3.7 -0.13 -1.6 -0.20 -1.9 
Ci-(Cd)(C)2(H) -0.17 -4.5 0.24 -0.8 0.11 -1.1 -0.09 -1.9 0.03 -4.7 0.03 -1.3 0.53 -2.0 0.10 -1.7 -0.40 -2.4 
Ci-(Ct)(C)2(H) -0.28 -6.5 0.08 -1.8 -0.13 -1.7 -0.13 -0.3 -0.07 -4.5 0.12 -3.4 0.46 3.2 0.08 -2.0 0.06 2.1 
Ci-(C)4 -0.21 -6.1 0.05 -2.6 0.12 -3.8 -0.06 -0.9 0.19 -6.8 0.73 -1.3 0.06 4.1 0.15 -5.6 0.31 0.3 
Ci-(Cd)(C)3 -0.12 -8.1 0.30 -2.8 0.36 -3.8 -0.03 -3.1 0.36 -3.5 0.44 -6.4 1.25 -0.3 0.55 -6.9 0.05 0.8 
Ci-(Ct)(C) 3 -0.15 -7.4 0.23 -6.6 0.19 -5.5 0.02 -1.6 0.15 -2.7 0.30 -5.2 0.84 1.5 0.22 -3.9 0.43 3.9 
Ci-(Cd)2(C)2 -0.07 -10.6 0.38 -6.0 0.59 -4.8 -0.17 -4.1 0.24 -6.1 0.43 -10.2 1.08 -4.6 0.43 -9.7 0.67 -1.1 
Ci-(Cd)(Ct)(C)2 -0.12 -11.6 0.26 -2.3 0.34 -3.4 -0.05 -3.4 0.13 -5.7 0.22 -1.0 1.01 2.1 0.30 -0.9 -0.26 2.4 
Ci-(Ct)2(C)2 -0.19 -8.9 0.13 -4.1 0.17 -1.0 -0.02 2.7 0.28 -3.0 0.24 -6.3 0.96 1.6 0.34 -1.6 0.41 7.5 
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Appendix G: Uncertainty on ΔGAV°’s 
Table G-1: Uncertainties on the primary group additive values defined by the 95% confidence intervals 

 1-2  1-3  1-4  1-5  1-6  1-7  

 logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea 

C1-(C)2(H) 0.077 2.03 0.173 1.92 0.111 2.22 0.133 2.04 0.146 1.96 0.323 2.08 
C1-(Cd)(C)(H) 0.171 4.52 0.230 2.56 0.176 3.51 0.194 2.97 0.261 3.50 0.720 4.65 

C1-(Ct)(C)(H) 0.121 3.19 0.261 2.90 0.176 3.51 0.194 2.97 0.261 3.50 0.720 4.65 

C1-(C)3 0.106 2.81 0.235 2.62 0.145 2.89 0.211 3.22 0.219 2.94 0.720 4.65 

C1-(Cd)(C)2 0.141 3.71 0.313 3.48 0.175 3.50 0.193 2.95 0.271 3.63 0.534 3.45 
C1-(Ct)(C) 0.126 3.31 0.324 3.60 0.175 3.50 0.188 2.88 0.271 3.63 0.534 3.45 
C1-(Cd)2(C) 0.185 4.88 0.313 3.48 0.182 3.63 0.211 3.22 0.262 3.52 0.720 4.65 

C1-(Cd)(Ct)(C) 0.171 4.52 0.324 3.60 0.193 3.85 0.188 2.88 0.262 3.52 0.720 4.65 
C1-(Ct)2(C) 0.185 4.88 0.313 3.48 0.182 3.63 0.204 3.12 0.262 3.52 0.720 4.65 

Ci-(C)2(H)2 0.077 2.03 0.173 1.92 0.111 2.22 0.133 2.04 0.146 1.96 0.323 2.08 
Ci-(Cd)(C)(H)2 0.171 4.52 0.230 2.56 0.176 3.51 0.194 2.97 0.261 3.50 0.720 4.65 
Ci-(Ct)(C)(H)2 0.121 3.19 0.261 2.90 0.176 3.51 0.194 2.97 0.261 3.50 0.720 4.65 

Ci-(C)3(H) 0.106 2.81 0.235 2.62 0.145 2.89 0.211 3.22 0.219 2.94 0.720 4.65 

Ci-(Cd)(C)2(H) 0.141 3.71 0.313 3.48 0.175 3.50 0.193 2.95 0.271 3.63 0.534 3.45 
Ci-(Ct)(C) (H) 0.126 3.31 0.324 3.60 0.175 3.50 0.188 2.88 0.271 3.63 0.534 3.45 
Ci-(Cd)2(C)(H) 0.185 4.88 0.313 3.48 0.182 3.63 0.211 3.22 0.262 3.52 0.720 4.65 
Ci-(Cd)(Ct)(C) (H) 0.171 4.52 0.324 3.60 0.193 3.85 0.188 2.88 0.262 3.52 0.720 4.65 

Ci-(Ct)2(C)(H) 0.185 4.88 0.313 3.48 0.182 3.63 0.204 3.12 0.262 3.52 0.720 4.65 
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Table G-2: Uncertainties on the secondary group additive values defined by the 95% confidence intervals 

 1-3 1-4 

 i=2 i=2 i=3 

 logÃ Ea logÃ Ea logA Ea 

Ci-(C)3(H) 0.223 2.477 0.105 2.099 0.105 2.099 

Ci-(Cd)(C)2(H) 0.290 3.219 0.144 2.872 0.144 2.872 

Ci-(Ct)(C)2(H) 0.256 2.848 0.175 3.495 0.175 3.495 

Ci-(C)4 0.236 2.628 0.193 3.850 0.193 3.850 

Ci-(Cd)(C)3 0.236 2.628 0.193 3.850 0.193 3.850 
Ci-(Ct)(C) 3 0.211 2.349 0.193 3.850 0.193 3.850 

Ci-(Cd)2(C)2 0.270 2.999 0.193 3.850 0.193 3.850 
Ci-(Cd)(Ct)(C)2 0.290 3.219 0.193 3.850 0.193 3.850 
Ci-(Ct)2(C)2 0.264 2.934 0.193 3.850 0.193 3.850 

 

 1-5 

 i=2 i=3 i=4 

 logÃ Ea logÃ Ea logÃ Ea 

Ci-(C)3(H) 0.094 1.44 0.126 1.93 0.094 1.44 

Ci-(Cd)(C)2(H) 0.188 2.88 0.155 2.37 0.188 2.88 

Ci-(Ct)(C)2(H) 0.188 2.88 0.155 2.37 0.188 2.88 

Ci-(C)4 0.211 3.22 0.182 2.79 0.211 3.22 

Ci-(Cd)(C)3 0.204 3.12 0.182 2.79 0.204 3.12 

Ci-(Ct)(C) 3 0.204 3.12 0.182 2.79 0.204 3.12 

Ci-(Cd)2(C)2 0.204 3.12 0.182 2.79 0.204 3.12 

Ci-(Cd)(Ct)(C)2 0.204 3.12 0.182 2.79 0.204 3.12 

Ci-(Ct)2(C)2 0.204 3.12 0.182 2.79 0.204 3.12 

 

 1-6 

 i=2 i=3 i=4 i=5 

 logÃ Ea logÃ Ea logÃ Ea logÃ Ea 

Ci-(C)3(H) 0.235 3.14 0.235 3.14 0.235 3.14 0.235 3.14 
Ci-(Cd)(C)2(H) 0.228 3.06 0.271 3.63 0.271 3.63 0.228 3.06 
Ci-(Ct)(C)2(H) 0.228 3.06 0.271 3.63 0.271 3.63 0.228 3.06 
Ci-(C)4 0.271 3.63 0.224 3.00 0.224 3.00 0.271 3.63 
Ci-(Cd)(C)3 0.205 2.75 0.246 3.29 0.246 3.29 0.205 2.75 
Ci-(Ct)(C) 3 0.198 2.65 0.262 3.52 0.262 3.52 0.198 2.65 
Ci-(Cd)2(C)2 0.246 3.29 0.246 3.29 0.246 3.29 0.246 3.29 
Ci-(Cd)(Ct)(C)2 0.246 3.29 0.246 3.29 0.246 3.29 0.246 3.29 
Ci-(Ct)2(C)2 0.246 3.29 0.246 3.29 0.246 3.29 0.246 3.29 
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(Table G-2 continued) 

 1-7 

 i=2 i=3 i=4 i=5 i=6 

 logÃ Ea logÃ Ea logÃ Ea logÃ Ea logÃ Ea 

Ci-(C)3(H) 0.429 2.77 0.534 3.45 0.720 4.65 0.534 3.45 0.429 2.77 
Ci-(Cd)(C)2(H) 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 
Ci-(Ct)(C)2(H) 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 
Ci-(C)4 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 
Ci-(Cd)(C)3 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 
Ci-(Ct)(C) 3 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 
Ci-(Cd)2(C)2 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 
Ci-(Cd)(Ct)(C)2 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 
Ci-(Ct)2(C)2 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 0.720 4.65 
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