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 Samenvatting 

Nematoden van de familie Tylenchidae komen met een grote densiteit en diversiteit in de 

bodem voor. Ecologisch zijn ze belangrijke bodemfaunaen ze kunnen tot 30% van de 

nematoden in een bepaald bodemmonster vormen. In tegenstelling tot de meeste andere 

Tylenchomorpha, omvatten Tylenchidae geen economisch belangrijke plantenparasieten. Ze 

worden ook gekenmerkt door primitieve kenmerken zoals bijvoorbeeld een beperkt ontwikkeld 

stylet, een ongedifferentieerde, niet gespierde farynx en een filiforme staart. Hun kleine 

lichaamsgrootte en onduidelijk morfologische eigenschappen bemoeilijken het opstellen van 

een systematisch kader. Als gevolg hiervan blijft de afbakening van taxa in deze groep slecht 

gedocumenteerd en zeer onzeker. Bovendien blijft de kennis van hun voedselbronnen 

beperkt.Nochtans is dit belangrijk voor trofische analysenen bodemkwaliteitsevaluatie, zeker 

gezien hun numerieke belang. 

In deze studie werden verschillende vertegenwoordigers van Tylenchidae geselecteerd 

met nadruk op het genus Malenchus, geselecteerd uit circa 120 monsters van 90 locaties 

wereldwijd. De gedetailleerde morfologie werd bestudeerd met behulp van lichtmicroscopie, 

scan- en transmissie-elektronenmicroscopie. Moleculaire data werden verkregen door 

sequentiebepaling van 18S en 28S rRNA genen en dit resulteerde in 92 nieuwe sequenties. 

Vervolgens werden fylogenetische analyses uitgevoerd gebaseerd op diverse methoden. 

Tenslotte werden de uitgebreide morfologische gegevens geëvalueerd in een fylogenetisch 

kader en dit bracht de evolutionaire complexiteit van deze structureel minimalistische groep 

van nematoden naar voor. 

Twintig bekende verschillende genera van de familie Tylenchidae werden voor het eerst in 

China waargenomen en gekenmerkt door morfologische en morfometrische gegevens. Twee 

nieuwe soorten, Malenchus sexlineatus sp. n. en Malenchus cylindricus sp. n. werden ontdekt 

uit respectievelijk de Filippijnen en België, en deze werden beschreven op basis van 

morfologische en moleculaire data. Een nieuw genus, Labrys chinensisgen. n., sp. n., werd 

beschreven met behulp van een integratieve aanpak: een combinatie van morfologie 

(lichtmicroscopie, elektronenmicroscopie en 3D-reconstructie), moleculaire fylogenie en 

populatiegenetica.  

Het genus Malenchus is geherdefinieerd op basis van een combinatie van nieuw materiaal, 

type-materiaal en literatuurgegevens. Wij hebben inter- en intraspecifieke variaties vergeleken 
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en daaruit taxonomische informatieve eigenschappen bepaald. Gewijzigde definities van 

Malenchus en het nauw verwante genus Ottolenchus werden weergegeven op basis van een 

combinatie van morfologie en recente moleculaire data, en hun fylogenetische posities werden 

geanalyseerd ten opzichte van andere Tylenchidae. Daarnaast werden verschillende schimmels 

en mossen getest als mogelijke voedselbron van Malenchus. 

Fylogenetische resultaten tonen aan dat het genus Filenchus polyfyletisch is in zowel de 

18S- als 28S-rRNA-fylogenie, terwijl Malenchus polyfyletisch en monofyletisch blijkt, 

gebaseerd op respectievelijk 28S rRNA en 18S rRNA. Een ultrastructurele studie toont aan dat 

specifieke aspecten van laterale lijnen, cuticula-lagen en de foveavan de amfiden verrassend 

congruent zijn met de verkregen moleculaire fylogenieën, terwijl klassieke kenmerken zoals 

lichaamsannuleringen evolutionair bijzonder variabel zijn. De studie onthult ook de 

ontoereikendheid van D2 / D3 domein in 28S rRNA als een fylogenetische merker voor vroeg 

divergerende Tylenchomorpha (= tylenchiden met vermoedelijk voorouderlijke kenmerken). 

Ook werd een vertegenwoordiger van Sphaerularioidea onderzocht, een taxon dat nauw 

verwant is aan Tylenchidae. De schimmel-etende vrouwtjes werden bekomen van het oude 

vruchtenlichaam van het elfenbankje Trametessp. groeiend op verrottend hout. Abursanema 

quadrilineatum n. sp. werd beschreven met behulp van lichtmicroscopie, scanning 

elektronenmicroscopie, transmissie-elektronmicroscopie en moleculaire data gebaseerd op 18S 

en 28S rRNA. De secundaire structuren van het D2 en D3 domein van 28S rRNA werden 

gemodelleerd voor de nieuwe soort en een algemene structuur voor desuperfamilie 

Sphaerularioidea werd gemodelleerd om een vergelijkende analyse mogelijk te maken. De 

ultrastructuur van de cuticula, spermacellen en oocyten werd onderzocht en de cuticula-lagen 

werden gedefinieerd. Naaldvormige kristallen werden teruggevonden in de darm en 

spermatheca van het vrouwelijke schimmel-etende stadium. Verschillende chemische tests en 

de ultrastructurele studie konden echter geen uitsluitsel geven over de functie ende structuur 

van deze kristallen. 

Daarnaast werden 3D modellerings- en printtechnologieën uitgewerkt en opgenomen in de 

beschrijving van Labrys chinensis gen. n., sp. n. en Malenchus spp. als aanvulling op beelden 

en tekeningen en in het bijzonder om complexe 3D-structuren te illustreren. Ook de typische 

kop-regio van mononchiden en verschillende genera van Tylenchidae werden in 3D geprint en 

gebruikt voor onderwijsdoeleinden. Tenslotte werden de prestaties van verschillende 

3D-printmaterialen vergeleken en getest, waarbij resin hars naar voor wordt geschoven als de 

meest geschikte optie voor het zoölogische veld. 
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Trefwoorden: Filenchus, Malenchus, Lelenchus, Tenunemellus, Miculenchus, 

Scanning-elektronmicroscopie, transmissie-elektronmicroscopie, nieuwe soorten, nieuw genus, 

3D-modellering, 3D-printen. 
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Summary 

Nematodes of the family Tylenchidae are abundant and diverse. Ecologically, they are 

important soil fauna which may constitute up to 30% of the nematodes in any given soil 

sample. In contrast to most other Tylenchomorpha, Tylenchidae do not comprise economically 

important plant-parasites and are also characterized by ancestral traits, for example a weak 

stylet, an undifferentiated non-muscular pharyngeal corpus and a filiform tail. Their small 

body size prevented us from deriving a consistent systematic framework. As a result, the 

delimitation of taxa in this group remains poorly documented and highly uncertain. 

Furthermore, knowledge of their food resources remains limited, albeit, given their numeric 

importance, this subject is important for trophic guild analysis or soil quality evaluation.  

In this study several representatives of Tylenchidae (c.a. 90 locations worldwide 

representing 120 samples) were selected with focus on the genus Malenchus. Detailed 

morphology was recovered using light microscopy, scanning- and transmission- electron 

microscopy. Molecular data were obtained by sequencing 18S and 28S rRNA genes, resulting 

in 92 new sequences, and phylogenetic analyses were conducted with multiple approaches. 

Comprehensive morphological data are evaluated in the context of a molecular framework, 

thus highlighting the phylogenetic and evolutionary complexity of this structurally 

minimalistic group.  

Twenty known species belong to different genera of Tylenchidae were first recorded 

from China. Two new species, Malenchus sexlineatus n. sp. and Malenchus cylindricus sp. n. 

discovered from the Philippines and Belgium respectively, were described based on 

morphological and molecular data. A new genus Labrys chinensis gen. n., sp. n. was described 

using an integrative approach: morphology, molecular phylogeny and population genetics. 20 

known species belonging to different genera of Tylenchidae were for the first time recorded 

from China and characterised by morphological and mophometric data. 

The genus Malenchus has been redefined based on a combination of new material, type 

material and literature data. We have compared inter- or intraspecific variations and extracted 

taxonomically informative traits. Amended definitions of Malenchus as well as the closely 

related genus Ottolenchus were given based on a combination of morphology and recent 

molecular data, and their phylogenetic positions were analysed in a context of Tylenchidae. 
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Furthermore, we tested different fungi and moss as a food resource of Malenchus and their 

feeding behavior is also discussed. 

Phylogenetic results show that the genus Filenchus is polyphyletic in both the 18S and 

28S rRNA phylogeny, while Malenchus is polyphyletic and monophyletic in the 28S rRNA 

and the 18S rRNA, respectively. An ultrastructural study demonstrates that specific aspects of 

lateral cuticular incisures, cuticular layering and the amphideal fovea are surprisingly 

congruent with the obtained molecular phylogenies, while classical characteristics such as 

cuticle annulations are evolutionary highly plastic and mosaic in distribution. The study also 

reveals the inadequacy of D2/D3 domain in 28S rRNA as a phylogenetic marker for early 

diverging (=tylenchs with supposedly ancestral characters) Tylenchomorpha. 

Also a representative of Sphaerularoidea was investigated, a taxon that is closely related 

to Tylenchidae. The mycophagous females were recovered from the old fruiting body of 

bracket fungus Trametes sp. growing on decaying wood. Abursanema quadrilineatum n. sp. 

was described morphologically from light microscopy, scanning electron microscopy and 

transmission electron microscopy and molecularly based on 18S and 28S rRNA. The 

secondary structures of the D2 and D3 domain of 28S rRNA were predicted for the new 

species and a general model for the superfamily Sphaerularioidea was built for comparative 

analysis. The ultrastructure of the cuticle, sperm cells and oocytes was examined and cuticle 

layers were defined. Needle-shaped crystals were recovered in the intestines and spermatheca 

of mycophagous females. However, chemical tests and the ultrastructural study could not 

reveal the identity and structure of these crystals. 

In addition, 3D modeling and printing technologies were incorporated in the description 

of Labrys chinensis gen. n., sp. n. and Malenchus spp. as a complement to pictures and 

drawings to illustrate complex 3D structures. Also the typical cephalic region of mononchids 

and several different genera of Tylenchidae were printed and used for education. Hereby, we 

also tested the performance of different printing materials and forwarded resin as the most 

suitable option for the zoological field.  

Keywords: Filenchus, Malenchus, Lelenchus, Tenunemellus, Miculenchus, Scanning 

electron microscopy, transmission electron microscopy, new species, new genus, 3D modeling, 

3D printing.
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Background  

Tylenchidae is one of the most important soil inhabiting nematode family (Andrássy, 

1981), and species belonging to Tylenchidae may constitute up to 30% of the nematode 

individuals in a soil sample (Yeates & Bird, 1994; Ferris & Bongers, 2006). As early 

diverging Tylenchomorpha (=tylenchs with supposedly ancestral characters), they do not 

comprise economically important plant-parasites and are characterized by ancestral characters 

(Luc et al., 1987; Siddiqi, 2000; Bert et al., 2008). Knowledge of their food resources remains 

limited, albeit, given their numeric importance, this subject is important for trophic guild 

analysis or soil quality evaluation. Furthermore, their small body size and a lack of clearly 

homologous characters prevented us from deriving a consistent systematic framework. As a 

result, the delimitation of taxa in this group remains poorly documented and highly uncertain 

(Bongers & Bongers, 1998; Yeates, 2003; Ferris & Bongers, 2006).  

Classification 

Nematodes of the suborder Tylenchina sensu De Ley and Blaxter (2002) include four 

infraorders: Panagrolaimorpha, Cephalobomorpha, Drilonematomorpha and Tylenchomorpha 

(Fig. 1). They are an ecologically and morphologically diverse array of species that range 

from soil dwelling bacteriovores to highly specialized plant-parasites. Tylenchomorpha is the 

most intensively investigated infraorder within the Tylenchina, and five superfamilies are 

included: Aphelenchoidea; Criconematoidea, Sphaerularioidea, Tylenchoidea and 

Myenchoidea (De Ley & Blaxter, 2002). The Tylenchomorpha without Aphelenchoidea are 

popularly called tylenchs or tylenchids and Aphelenchoidea as aphelenchs or aphelenchids 

(without hierarchical position of the taxa, in order to avoid confusion by different taxonomic 

system), the latter representing Aphelenchoidea while the former refer to other superfamilies 

(Fig. 1). Aphelenchoidea contains plant-parasitic and fungivorous nematodes. 

Criconematoidea and Tylenchoidea (Hoplolaimidae, Meloidogynidae, Pratylenchidae, 

Belonolaimidae and Tylenchidae) comprise the largest and economically most important 

group of plant-parasitic nematode; Sphaerularioidea have complex fungi-insect interactions or 

are parasites of aerial parts of plants. Myenchoidea comprise of parasites of leeches or frogs 

and may represent a separate origin of parasitism (Siddiqi, 2000). 

Within Tylenchoidea, The family Tylenchidae was proposed by Örley (1880). It contains 

tylenchs characterized by relatively short body and long tail (conoid to filiform shape), not 
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overlapping pharynx and short, delicate stylet. The Female reproductive system in 

Tylenchidae sensu Geraert (2008) is predominantly monodelphic, but also rarely didelphic 

(Atetylenchus, Antarctenchus, Psilenchus). Bursa is adanal, small, rarely absent. It is the only 

family where amphidial apertures can be seen on the lateral side of the head. 

The taxonomy in Tylenchidae is problematic: most species combine a low observational 

resolution with high intraspecific variability in measurements, and DNA sequences of most 

species are not available. As a result, there is no consensus regarding their classification from 

species level up to family level (Brzeski, 1998; Siddiqi, 2000; Andrássy, 2007; Geraert, 2008). 

The main dispute of Tylenchidae classifications are the placements of four didelphic 

genera: Atylenchus, Antarctenchus, Atetylenchus, Psilenchus. They are either considered to 

belong to Tylenchidae (Atylenchus and Antarctenchus were included in subfamily 

Atylenchinae while Atetylenchus and Psilenchus belongs to Boleodorinae) (Geraert & Raski, 

1987, Geraert, 2008) or outside of Tylenchidae as two separated families (Atylenchus and 

Eutylenchus as family Atylenchidae characterized by cephalic setae while Antarctenchus, 

Atetylenchus and Psilenchus constitute family Psilenchidae) (Siddiqi, 2000; Andrássy, 2007). 

Table 1 The placement of family Tylenchidae according to the most authorative 

classifications.  

Rank 

Maggenti, Luc, Raski, 

Fortuner & Geraert, 

1988 

Siddiqi, 2000 De Ley and Blaxter, 2002* 

Order Tylenchida Tylenchida Rhabditida 

Suborder Tylenchina Tylenchina Tylenchina 

Infraorder - Tylenchata Tylenchomorpha 

Superfamily Tylenchoidea Tylenchoidea Tylenchoidea 

* The placement of Tylenchidae follows De Ley and Blaxter (2002) in this thesis. 

Table. 1 Comparison of the taxonomic content of Tylenchidae according to four widely used 
classifications. 

Authors 

Maggenti, Luc, 

Raski, Fortuner, 

& Geraert, 1988 

Siddiqi, 2000 Andrássy, 2007 
Geraert, 

2008* 

Genera 33 genera 25 genera 29 genera 42 genera 
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Subfamilie

s 

Atylenchinae, 

Boleodorinae, 

Tylenchinae, 

Ecphyadorinae, 

Tylodorinae 

Boleodorinae, 

Duosulciinae,Tanza

niinae, Thadinae, 

Tylenchinae 

Boleodorinae, 

Duosulciinae, 

Thadinae,Tylenchina

e, Tylodorinae 

Atylenchinae, 

Boleodorinae, 

Ecphyadorina

e, 

Tylenchinae, 

Tylodorinae 

* The classification system of Geraert (2008) is used at family and genus level in this thesis. 

Ecphyadophorinae and Tylodorinae sensu Geraert (2008) are divergent from the typical 

Tylenchidae species and their placements are also controversial. Species belonging to 

Ecphyadophorinae have extreme slender bodies, they were considered as a subfamily in 

family Tylenchidae, consisting of nine genera (Chilenchus, Ecphyadophora, 

Ecphyadophoroidea, Epicharinema, Lelenchus, Mitranema, Tenunemellus, Tremonema and 

Ultratenella) (Raski, Koshy & Sosamma, 1982; Geraert 2008) or considered a separate family 

with eight genera (similar with above except of Epicharinema) (Siddiqi, 2000; Andrássy, 

2007). The Tylodorinae consists of five (Arboritynchus, Campbellenchus, Cephalenchus, 

Eutylenchus and Tylodorus) (Geraert, 2008) or six genera (Arboritynchus, Campbellenchus, 

Cephalenchus, Pleurotylenchus, Gracilancea and Tylodorus) (Andrássy, 2007).The general 

morphology of Tylodorinae is similar to some Dolichodoridae (e.g. Dolichodorus, 

Macrotrophurus and Belonolaimus) but Dolichodoridae are didelphic and have a distinct 

phasmid in the tail region. It belongs to Tylenchidae by the locations of the prophasmids 

(outside the lateral fields and lack of a phasmid) and filiform tail, but differs from other 

subfamilies by having a strong stylet measuring about as long as or longer than the procorpus. 

Currently,  

In this study we follow the taxonomic system of Geraert (2008) and five subfamilies are 

recognized with family Tylenchidae: Tylenchinae, Ecphyadophorinae, Tylodorinae; 

Atylenchinae and Boleodorinae. Aside from 42 valid genera listed by Geraert (2008), two 

new genera were recently described (Yaghoubi et al., 2016; Qing & Bert, 2017) and thus a 

total of 44 genera are included in Tylenchidae: 

Order Rhabditida 

Suborder Tylenchina 

Infraorder Tylenchomorpha 

Family Tylenchidae 
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Subfamiliy Atylenchinae 

Genus Aglenchus Andrássy, 1954 

Genus Antarctenchus Spaull, 1972 

Genus Atylenchus Cobb, 1913 

Genus Coslenchus Siddiqi, 1978 

Genus Pleurotylenchus Szczygiel, 1969 

Subfamily Boleodorinae 

Genus Atetylenchus Khan, 1973 

Genus Basiria Siddiqi, 1959 

Genus Boleodorus Thorne, 1941 

Genus Discopersicus Yaghoubi, Pourjam, Alvarez-Ortega, Liebanas, Atighi 

and Pedram, 2016 

Genus Neopsilenchus Thorne & Malek, 1968 

Genus Neothada Khan, 1973 

Genus Psilenchus de Man, 1921 

Genus Ridgellus Siddiqi, 2000 

Genus Thada Thorne, 1941 

Subfamily Ecphyadophorinae 

Genus Chilenchus Siddiqi, 2000 

Genus Ecphyadophora, de Man, 1921 

Genus Ecphyadophoroides, Corbett, 1964 

Genus Epicharinema Raski, Maggenti, Koshy & Sosamma, 1982 

Genus Lelenchus Andrássy, 1954 

Genus Mitranema Siddiqi, 1986 

Genus Tenunemellus Siddiqi, 1986 

Genus Tremonema Siddiqi, 1994 

Genus Ultratenella, Siddiqi, 1994 

Subfamily Tylenchinae 

Genus Allotylenchus Andrássy, 1984 

Genus Cervoannulatus Bajaj, 1997 

Genus Cucullitylenchus Huang & Raski, 1986 

Genus Discotylenchus Siddiqi, 1980 

Genus Filenchus Andrássy, 1954 

Genus Fraglenchus Siddiqi, 2000 
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Genus Gracilancea Siddiqi, 1976 

Genus Irantylenchus Kheiri, 1970 

Genus Labrys Qing & Bert, 2017 

Genus Malenchus Andrássy, 1968 

Genus Miculenchus Andrássy, 1959 

Genus Polenchus Andrássy, 1980 

Genus Sakia Khan, 1964 

Genus Silenchus Andrássy, 2001 

Genus Tanzanius Siddiqi, 1991 

Genus Tylenchus Bastian, 1865 

Subfamily Tylodorinae 

Genus Arboritynchus Reay, 1991 

Genus Campbellenchus Wouts, 1977 

Genus Cephalenchus Goodey, 1962 

Genus Eutylenchus Cobb, 1913 

Genus Tylodorus Meagher, 1964 

Ecology 

Allocation of the feeding habitats in Tylenchidae is one of the most important discussion 

points amongst nematologists (Bongers & Bongers, 1998). Normally they are treated as root 

hair feeders (Bongers & Bongers, 1998) or algal, moss and fungal feeders (Siddiqi, 2000; 

Okada, 2002). Although they may also be parasites of lower and higher plants (Siddiqi 1986, 

2000; Andrássy, 2007), they do not cause economic losses to crops. The available studies 

show contrasting information about their feeding behaviors: Malenchus bryophilus (as 

Tylenchus bryophilus in Khera & Zuckerman (1963)), Aglenchus (as T. Agricola) (Khera & 

Zuckerman, 1963), Coslenchus costatus (Wood, 1973, Andrássy, 1976), Cephalenchus 

emarginatus (Hooper, 1974; Sutherland, 1967; Gowen, 1971) and Tylodorus fisheri (Reay, 

1991) have been described to feed on roots of higher plant; Ottolenchus cabi is associated 

with a lichen (Cladonia glauca) (Siddiqi & Hawksworth, 1982); M. pachycephalus probably 

feed on moss (Qing & Bert, 2017); and Filenchus spp. can be grown in multiple fungi species 

(Okada, 2002, 2003, 2005). Therefore, feeding behavior in Tylenchidae is genus or even 

species specific. 
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Fig. 1 The Phylogeny and evolution of Nematoda and showing the position and composition 

of Tylenchomproha.  
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Fig. 2 The Ancestral state reconstruction of feeding strategy of Tylenchomorpha 

superposed on a ribosomal DNA-based phylogenetic backbone (Bert et al., 2011). 

Phylogeny and evolution 

Tylenchidae show many supposedly primitive morphological characters (e.g. weak stylet 

and median bulb, basal bulb with full complement of nonglandular cells, monodelphy, 

elongate tails, uterus cells that are arranged in 4 rows = quadricolumella.) (Siddiqi, 2000; 

Baldwin et al., 2001; Bert et al., 2008), supposedly primitive feeding habitats (algal and moss 

feeding) (Siddiqi, 1986, 2000) and the embryology of Tylenchidae (including Psilenchus) is 

similar to that of the Cephalobidae: an asynchronous division order and a partially linear 

blastomere arrangement vs a synchronous division order and a completely linear blastomere 



Chapter I General introduction 

15 
 

arrangement in Meloidogynidae, Pratylenchidae, Belonolaimidae, Hoplolaimidae and 

Criconematoidea) (Dolinski et al., 2001). Consequently, tylenchids nematodes were divided 

into early diverging tylenchs (=tylenchs with supposedly ancestral characters) groups 

including Tylenchidae, Anguinidae and Sphaerularioidea and more derived groups (=tylenchs 

with supposedly derived characters) that include the remaining tylenchid taxa (e.g. Siddiqi, 

2000). Current molecular phylogeny inferred from small subunit ribosomal DNA shows 

different pictures: either congruent with classical views (Bert et al., 2008) or Tylenchidae as 

sister to Criconematoidea within other derived nematodes (Holterman et al., 2008; van Megen 

et al., 2009). Recently, a phylogeny based on the concatenated data of SSU and large subunit 

(LSU) ribosomal DNA phylogeny suggest that the early diverging tylenchs (Tylenchidae, 

Anguinidae and Sphaerularioidea) are well separated from tylenchs with more derived traits, 

with exception of Malenchus pressulus which is placed as sister to Criconematina (Fig. 3) 

(Pereira et al., 2016). However, the support values for the backbone in these studies are very 

lower and deep subdivision at the early diverging Tylenchomorpha remains unresolved (Figs. 

1, 2).  
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Fig. 3 Phylogenetic analysis of the family Tylenchidae. Bayesian 50% majority rule 

consensus tree inferred from sequences of the D2-D3 domains of the 28S rRNA gene. Branch 

support values are given in the following order: BI, ML, and MP. An asterisk (*) in any 

position denotes maximum branch support for that method; – indicates no branch support in 

MP (Atighi et al., 2013).  

Within these tylenchs, the relationship of Tylenchidae, Anguinidae and Sphaerularioidea 

is subject to discussion. Morphology-based phylogenetic concepts suggested Tylenchidae to 
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be either more closely related to Anguinidae distantly related to Sphaerularioidea (e.g. 

Maggenti et al., 1987; Brzeski, 1998; Siddiqi, 2000, Andrássy, 2007), sister to 

Sphaerularioidea+Anguinidae (e.g. Siddiqi, 1986; Ryss, 1993) or a broader concept of the 

Tylenchidae that includes Anguinidae and at least part of the Sphaerularioidea (Raski and 

Maggenti, 1983). However, molecular phylogeny rejects monophyly for three groups and 

support values to establish the relations between these groups are generally low (Bert et al., 

2008; Holterman et al., 2009; van Megen et al., 2009) (Fig. 2) . 

Also within Tylenchidae, the phylogenetic resolution is problematic. Hence, at this 

moment a more definitive framework cannot be established and we summarized some of 

available knowledge on Tylenchidae phylogeny: 

1. Tylenchidae is heterogeneous group, all available 18S and 28S rRNA genes based 

analyses suggested it is polyphyletic (e.g. Holterman et al., 2006; Subbotin et al., 2006; Bert 

et al., 2008; van Megen et al., 2009). 

2. Boleodorinae is polyphyletic. However, except for two didelphic genera (Psilenchus 

and Atetylenchus), other genera (represented by Boleodorus, Basiria, Neopsilenchus, 

Neothada) form a well-supported monophyletic clade (e.g. Yaghoubi et al., 2015). In fact, 

genus Psilenchus is the subject of longstanding discussions if it is either a early diverging 

genus (=with supposedly ancestral characters, e.g. Luc et al., 1987) or a genus with derived 

position (=with supposedly derived characters, e.g. Siddiqi, 2000) and has been removed from 

Tylenchidae in several studies (Siddiqi, 2000, Andrássy, 2007). 

3. Atylenchinae represented by Aglenchus and Coslenchus is monophyletic (e.g. Atighi 

et al., 2013). 

4. Tylenchinae is the most heterogeneous subfamily in Tylenchidae. Malenchus has 

divergent position with other Tylenchinae and several genera are polyphyletic (e.g. Filenchus, 

Tylenchus) (Bert et al., 2008; Atighi et al., 2013). 

5. Little is known for Ecphyadophorinae, at this subfamily is considered as a 

heterogeneous group (Siddiqi, 2000; Geraert, 2008). 

6. Tylodorinae is represented by only two genera (Eutylenchus and Cephalenchus) and is 

monophyletic, but in a divergent clade which is not related to other Tylenchidae (Pereira et al., 

2016) (Fig. 3). 
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General morphology 

The general terminology for the main parts used in the thesis is indicated in Fig. 4. 

 

Fig.4. The general terminology for the main parts of Tylenchidae  

Lip region 

Lip regions in Tylenchidae are usually round, but laterally elongated (dorso-ventrally 
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flattened) in Malenchus, Lelenchus, Ecphyadophoroides, Epicharinema and Tenunemellus. 

Sensilla 6 inner labial papillae + 4 outer labial papillae, but the former is usually invisible. 

Amphidial aperture varies from pore to long slit. Amphidial foveas are considered 

taxonomically important at generic level (Qing et al., 2017a), in most genera they are 

invisible, but can be pouch-like in Malenchus, Lelenchus, Ecphyadophoroides and 

Tenunemellus. Geraert and Raski (1987) classified the lip regions into seven patterns and 

highlighted its taxonomic importance. Such assignment was rejected by Siddiqi (2000) and 

Andrássy (2007) but concur with recent molecular based phylogeny (Qing and Bert, 2017). 

Although the fine structure of lip region can vary intraspecifically, its main patterns 

(amphidial aperture shape and location, labial plat shape, sensilla arrangement) are conserved. 

Currently eight patterns are recognized (Fig. 5). 

 
Fig. 5 Illustrations indicate lip region arrangement in different genera of Tylenchidae (A-J). A: 

front plate laterally elongated, undivided, carries al1 the sensillae. The amphidial apertures are 

entirely within the plate, typical for genus Aglenchus and Coslenchus; B: Amphidial apertures 
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are not confined to the oral plate but continue on the lateral side as longitudinal slits. The 

end-on view is round to quadrangular, typical for most species belonging to genus Filenchus, 

including type species F. vulgaris; C: Similar with II-a except for a dorso-ventrally flattened 

end-on view, typical for genus Malenchus; D: Slit-like amphidial apertures confined to the 

oral plate but the slits are dorso-ventrally directed, typical for few species in genus Filenchus, 

e.g. F. misellus, F. ditissimus and F. neonanus; E: Offset oral disc, the cephalic region is 

dorso-ventrally flattened. The amphidial aperture is very long and mostly sinuous, it starts at 

oral disc and continues longitudinally on the narrow lateral side of the cephalic region, typical 

for genus Lelenchus, Tenunemellus, Epicharinema, Chilenchus, Ecphyadophoroides; F: 

amphidial slits start immediately at the oral disc, laterally directed but are only found on the 

front end of the cephalic region. The amphidial apertures are surrounded by a plate that bears 

the four cephalic papillae, that plate is constricted dorso-ventrally to form lobes, typical for 

Cephalenchus; G: similar with V-a but labial plate is constricted to form a cleft and with seta, 

typical for Eutylenchus; H: Labial plate undivided, four prominent cephalic papillae 

dome-shaped, outside of anterior surface. Amphidial apertures start between or outside the 

four cephalic papillae and are simple oblique slits or have an inverted V-shape, typical for 

Basiria and Boleodorus; I: with very small pore-like amphidial apertures, typical for 

Ecphyadophora; J: Labial plate offset and constricted dorso-ventrally, forming four lobes, 

taping towards tip and detached from adjacent cuticle, typical for genus Labrys.  

Cuticle and lateral region 

The cuticle in Tylenchidae generally has six patterns: (1) cuticle only marked with 

transverse annuli. The width, thickness of the annuli and presence of grooves between two 

annuli vary among genera. It is the predominant pattern and present in most genera in 

Tylenchidae (Fig.6A). (2) Cuticle with deep, transverse zigzag striae. This character is unique 

for Miculenchus (Fig. 6B). (3) Cuticle coarsely annulated, with longitudinal ridges: the cuticle 

surface outside the lateral fields shows minute squares or rectangles. The number of these 

longitudinal ridges is either fixe at genus level (e.g. Eutylenchus has 10, excluding lateral 

ridges) or intragenerically vary (e.g. Coslenchus has 10-34 and Neothada has 12-20, 

excluding lateral ridges) and been used as species delimitation character (Fig. 6C). (4) Cuticle 

smooth in LM, but faintly annulated in SEM. It has been used as generic character for 

Polenchus (Fig. 6D). (5) Cuticle with pronounced annulation only in lip region, annuli 

extending twice as far posteriorly in the lateral as in the dorsal and ventral zones, but not past 
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base of stylet. The rest of the body marked with longitudinal ridges and deep grooves 

in-between. This pattern is only known for Campbellenchus (Fig. 6E). (6) The surface of 

cuticle has longitudinal striae but very faint (probably only in epicuticle) and is only visiable 

in SEM. This presents in some of Malenchus species (Fig. 6F). 

       
Fig. 6 The cuticle annulation patterns in Tylenchidae. A. cuticle only marked with transverse 

annuli: this is the most common pattern in Tylenchidae. B: the zigzag transverse annuli: only 

found in Miculenchus. C: cuticle with longitudinal ridges or grooves that divide the surface 

into minute squares or rectangular blocks: this pattern is presented in Atylenchus, Coslenchus, 

Ecphyadophoroidea, Eutylenchus, Neothada, Pleurotylenchus, Ridgellus and Tanzanius. D: 

cuticle appears smooth without annulation: this pattern is found in Allotylenchus, Polenchus 

and Lelenchus. E: the distinct transverse annuli only in lip region, other part of body marked 

by longitudinal ridges: this pattern is only known for Campbellenchus. F: cuticle marked with 

transverse annuli but surface has shallow longitudinal striae: this is represented in some of 

Malenchus species, e.g. M. nanellus and M. parthenogeneticus.  

The lateral regions in Tylenchidae are very heterogeneous. Generally, there are five 

patterns: (1) Lateral region with four incisures, resulting from two elevated ridges separated 

by wide grooves (e.g. Campbellenchus filicauda and most species in Aglenchus, Coslenchus, 

Fig. 7 A, C, D) or three ridges separated by narrow grooves (e.g. Filenchus vulgaris and 
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Basiria hiberna, Fig. 7 G, N, F); the latter is the most common pattern. (2) Lateral region with 

two incisures, resulting from one broad (e.g. Filenchus discrepans, Fig. 7 M) or narrow 

(Filenchus arcutus, Fig. 7 O) ridge. (3) Lateral region invisible in LM: however, in SEM 

lateral region appears with shallow incisures (e.g. Lelenchus leptosome and many species 

belong to Ecphyadophorinae, see Fig. 7 H). (4) Lateral region with one offset ridge with 

several sub-ridges forming 14-22 incisures: in LM only one offset ridge with two incisures is 

visible: this pattern is typical for most species in Malenchus (Fig. 7 L). (5) Lateral region with 

five ridges forming six incisures: this pattern is present in most species of Cephalenchus (Fig. 

7 K), some species in Boleodorus and in M williamsi. The number of incisures in Tylenchidae 

is largely convergent: a similar number can be found in different genera while it’s common 

that one genus has a variable number of incisures (e.g. two vs four incisures in Basiria, four 

vs six incisures in Cephalenchus). 
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Fig. 7 Cross section of different genera in Tylenchidae. A: Aglenchus agricola B: Atylenchus 

decalineatus; C: Coslenchus japonicas. D: Coslenchus oligogyrus. E: Pleurotylenchus minor. 

F: Campbellenchus filicauda. G: Tanzaniu coffeae. H: Lelenchus leptosome. I: Ridgellus 

elenae. J: Basiria hiberna. K: Cephalenchus hexalineatus. L: Malenchus pachycephalus. M: 

Filenchus discrepans. N: Filenchus vulgaris. O: Filenchus acutus 

Stylet  

Stylets in Tylenchidae are generally thin and short, but can also be robust and long in few 

species (Fig. 8). The length of the stylet ranges from 4 μm (Filenchus infirmus) to 120 μm 

(Tylodorus spp.). It consists of three parts: cone, shaft and knob. The cone part is usually 

shorter than or equals shaft but can be longer in Tylodorus. In most species, the cone is 
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straight, connects to shaft with comparable width and tapers sharply anteriorly. However, 

some species in Neopsilenchus have a cylindrical, dorsally or ventrally bent cone (e.g. N. 

magnidens, N.minor, N.affinis and N. similis, Fig 8 L). The knobs vary greatly in 

absence/presence, size, shape, direction (Fig. 8): the most common knobs are round in shape, 

they are perpendicular to shaft (e.g. some of Coslenchus Aglenchus and Filenchus), directed 

backwards (e.g. Malenchus, most of Tylenchus and Filenchus) or anteriorly directed (e.g. 

some of Aglenchus).  In some cases the stylet is cylindroid and knobs are completely absent, 

this is the case for Psilenchus, Neopsilenchus, Chilenchus, Atetylenchus and few species in 

Basiria (e.g. B. gracilis); more rarely, Irantylenchus and Antarctenchus have amalgamated or 

flange-like stylet knob and Cephalenchus and Tanzanius have a stylet with large, 

flatted/elongated, knobs.  

 
Fig. 8. Stylet in different genera of Tylenchidae. A: Filenchus discrepans. B: Ultratenella 

vitrea. C: Tenunemellus graminis. D: Filenchus macramphis. E: Chilenchus elegans. F: 

Lelenchus leptosoma. G: Atetylenchus abulbosus. H: Tanzanius coffeae. I: Malenchus exiguus. 

J: Malenchus andrassyi. K: Filenchus thornei. L: Neopsilenchus magnidens. M: 

Cephalenchus hexalineatus. N: Tylenchus davainei. O: Irantylenchus clavidorus. P: 

Coslenchus costatus. Q: Aglenchus agricola. R: Tylenchus maius. S: Basiria duplexa. T: 
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Basiria paragracilis. U: Antarctenchus hooperi. V: Gracilancea graciloides. W: 

Epicharinema keralense. X: Tylodorus acuminatus. Scale bar: A-W=10 μm, X=20 μm. 

Female reproductive system 

The female gonad cellular architecture of the female gonad in Tylenchidae is presented 

in Figs 9, 10. Generally, the female reproductive system is predominantly monodelphic, 

prodelphic, but also rarely didelphic, amphidelphic (viz. Antarctenchus, Psilenchus, 

Atetylenchus). The ovary is outstretched with oocytes arranged in a single row. In few 

occasions, oocytes are arranged in two rows and this can be used as a species specific 

character (e.g. Boleodorus acurvus and B. clavicaudatus). The oviduct in Tylenchidae 

comprises of two rows of three to seven cells. The oviduct of Tylenchus, Filenchus, 

Coslenchus and Aglenchus is composed of two rows of three or four cells. In Basiria, 

Boleodorus, Neopsilenchus and Psilenchus, five (exceptionally six) cells per row are present 

with the most proximal oviduct cells usually being slightly larger; Cephalenchus is 

characterized by a longer and slightly bent oviduct that comprises two rows of five, six or 

seven cells. The spermatheca is offset (e.g. most species in Filenchus and Tylenchus, 

Boleodorus thylactus) or axial (e.g. most of Basiria, Boleodorus and Cephalenchus, 

Coslenchus costatus). The spermatheca shows several variations in cellular architecture 

within the Tylenchidae, but usually comprises 10 to 16 cells, except the spermatheca of 

Psilenchus aestuarius is known to have 18-20 cells. Two large cells are usually present 

connecting the spermatheca to the uterus. The uterus cells are arranged in irregular rows, each 

comprising 38 to 55 cells (Bert et al., 2006) as four regular rows (= quadricolumella). A 

constriction may be present between the uterus and the uterine sac (Fig. 9A). Uterine sac is 

presented anterior to the vagina/vulva. The post-vulval uterine sac (PUS) is rudimentary, 

usually about half to one of vulval body width, but absent in Aglenchus, Coslenchus, 

Fraglenchus, Gracilancea and some of Filenchus (species belong to the former Duosulcius 

and Zanenchus) and this has been used as generic character. 

The vulva in Tylenchidae is delimited by a gradual depression of the cuticle that forms a 

wide sunken (e.g. Coslenchus, Aglenchus, Malenchus, Fig. 11 A-E), a sharp and narrow sink 

of one annulus (most common type, e.g. Filenchus, Lelenchus, Basiria, Boleodorus, Fig. 11 J) 

or an elevated cone (only in Eutylenchus, Fig 11 F). Epiptygmata are considered as cuticular 

protrusions of the vaginal wall (Siddiqi, 2000). When present they are usually small, 

sometimes only visible in SEM (Aglenchus, Coslenchus, Fraglenchus, Gracilancea and 
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Malenchus). However, Silenchus has a large epiptygmata which forms a distinct beak-like 

projection in all studied specimens (Fig. 11 G). The vulva is mostly open, but can also be 

covered by a longitudinal flap (Atylenchus) or bordered by lateral flaps which are either wide 

(Aglenchus, Coslenchus, Fraglenchus, Gracilancea, Eutylenchus and Cephalenchus) or small 

(Malenchus). The thickness of muscles attached to vagina wall is an important generic 

delimitation character in some genera (Qing et al. 2017). It is thin in most species, but 

swollen either in the more distal part (Aglenchus and Coslenchus, Fig. 11 A-D,) or in the 

proximal to middle part of the vagina (Malenchus, Fig. 11 E).   

 

Fig. 9 The cellular architecture of oviduct, spermatheca and uterus of Tylenchus spp. and 

Filenchus spp. These species all have four rows of uterus, two rows of oviduct and offset 



Chapter I General introduction 

27 
 

spermatheca, but different in spermatheca cell numbers. A: T. arcuatus. B: T. davainei. C: T. 

elegans. D: F. vulgaris. E: F. vulgaris. F: F. thornei. G: F. orbus. H: F. facultativus. I: F. cf. 

terrestris. J: F. cf. facultativus. ova.: proximal end of ovary; ovi.: oviduct; sp.: spermatheca; 

ut.: uterus; con.: constriction between uterus and uterine sac. Scale bars = 10 μm (Bert et al., 

2006) 

 

 
Fig. 10 The cellular architecture of oviduct, spermatheca and distal part uterus of 

Boleodorinae. These species all have four rows of uterus, two rows of oviduct. Most known 

species in Boleodorinae have an axial spermatheca (A-D, F, G), but spermatheca can also be 

present (E). A: Basiria gracilis. B: B. graminophila. C: B. graminophila D: B. duplexa. E: 

Boleodorus thylactus. F: Neopsilenchus magnidens. G: Psilenchus aestuarius. ova.: proximal 

end of ovary; ovi.: oviduct; sp.: spermatheca; ut.: uterus. Scale bars = 10 μm. (Bert et al., 
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2006) 

 
 
Fig. 11 Vulva regions in different genera of Tylenchidae. A-C: vulva with wide flap, vagina 

with swollen muscle in distal part, present genus Aglenchus and Coslenchus. D, E. vulva with 

small or without flap, vagina with swollen muscle in more proximal or middle part, present in 

Malenchus. F: vulva elevated, with flap, present in Eutylenchus. G: epiptygmata large, 

forming a distinct beak-like projection, vagina with swollen muscle in proximal or middle 

part, present in Silenchus. H: vulva covered by a longitudinal flap, present in Atylenchus. I: 

vulva with wide flap, vagina not or slightly swollen, present in Cephalenchus. J: vulva 

without flap, thin and straight wall without swollen muscle attached. This is the most common 

type in Tylenchidae, e.g. Filenchus, Tylenchus. 

Male copulatory system 

The male reproductive system in Tylenchidae is similar to the other tylenchs. The most 

remarkable character is the variation of male bursa (Fig. 12): most species have a short, 

adanal, leptodern bursa. In some genera bursa is absent (Miculenchus, Atylenchus and 

Tanzanius). In Ecphyadophorinae, the bursa is lobed, the flaps are rectangular to narrow, 

projecting outwards and backwards (e.g. Tenunemellus, Tremonema) or large, elongate-oval 
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shape (Epicharinema). In Silenchus the bursa is long, reaching almost to midway on tail and 

this has been considered as a generic character.  

 
Fig. 12 Male tail region showing the variation of bursa in different genera of Tylenchidae. A. 

the short adanal bursa, present in most genera of Tylenchidae. B: large and long bursa, 

reaching almost to midway on tail, present in Silenchus. C: Male without bursa, present in 

Miculenchus, Atylenchus and Tanzanius. D, E: bursa flaps rectangular, lobed, projecting 

outward and backward, presented in Tenunemellus. F: Bursa narrow, lobed with narrow timp, 

projecting outward and backward, presented in Tremonema. G, H: bursa large, elongate-oval, 

flap-like in outline, presented in Epicharinema. Drawings adapted from Husain & Khan 

(1968); Siddiqi (1994); Raski et al. (1982); Raski & Geraert (1984) and Andrássy (2001). 

Tail 

The tail in Tylenchidae is generally filiform but rich in variety. It is one of the most important 

characters for the family. The Filenchus is the most heterogeneous genus regarding the tail 

morphology: a tail length from around 30 μm (in some of F. misellus and F. sandneri 

populations) to 300 μm; from attenuated (e.g. F. crassacuticulus, c=8.2-8.9, c’=5.3-7) to 
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extremely filiformed (e.g. F. flagellicaudatus, c=2.4-2.6, c’=32-37). In most of Boleodorinae 

(e.g. Basiria, Boleodorus and Neothada) the tail is shorter, mostly ranging from 50 to 80 μm 

with c value from 5 to 13, although B. dolichura has a long filiform tail of 220 to 276 μm. 

Also in Malenchus and Tylenchus, the tail is shorter in most species, between 12 to 60 μm 

with c value about 4 to 7, and the ventrally curved tail tip is typical for Tylenchus in 

comparison to Filenchus. Conversely, species belonging to Ecphyadophorinae are extremely 

slender, their tails are thin and long and can reach up to 350 μm (e.g. Chilenchus, 

Epicharinema) with c value that can be less than 2 (some of Lelenchus leptosoma 

populations), only with few shorter exceptions (e.g. tail in Ecphyadophora caelata is around 

50 μm). The Tylodorinae also have long tails, in Campbellenchus the tail can reach up to 450 

μm which is the longest tail in Tylenchidae. 
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Fig.13 The tail in different genera of Tylenchidae. A, B: Filenchus flagellicaudatus. C: 

Tenunemellus sheri. D, E: Epicharinema keralense. F, G: Malenchus exiguus. H, I: 

Boleodorus clavicaudatus. G: Psilenchus hilarulus. K, L: Basiria tumida. M, N: Filenchus 

misellus. O, P: Lelenchus elegans. Q, R: Ecphyadophoroides annulatus. S, T: Filenchus 

terrestris. U, V: Aglenchus agricola. W, X: Tylenchus davainei. Scale bar = 50µm. 
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Objectives and outline of the thesis 

Objectives 

The general aim of the thesis is to contribute and update several aspects of the family 

Tylenchidae (Nematoda: Tylenchomorpha), including: 

1: Obtain more data on diversity and distributions of Tylenchidae, especially the data 

from neglected habitats (natural ecosystem) and regions (e.g. China and Philippines). 

2: Extract detailed morphological characters for some of important/problematic genera 

and examine their significance in generic delimitation. 

3: Expand the molecular database by adding DNA sequences of Tylenchidae and use 

these sequences to study the phylogenetic relationship for each of genera. 

4: Add more data for other closely related tylenchs which have supposedly ancestral 

characters (Sphaerularioidea) as references to study the origin and evolution of Tylenchidae. 

5: Explore and apply new techniques to improve visualization and presentation of the 

complex morphological characters in Tylenchidae. 

Outline 

Chapter I comprises a general introduction of Tylenchidae, including a taxonomical 

background, current knowledge of the Tylenchidae phylogeny and morphological diversity in 

its different genera. 

Chapter II focuses on the described diversity of Malenchus. started with study of diversity: A 

new species Malenchus sexalineatus n. sp. was discovered from Philippines, and described 

based on morphological and molecular data; three known species of this genus namely M. 

exiguus M. nanellus and M. pachycephalus, all being first records and first representative 

from China were characterized by their morphological data.  

Chapter III presents a molecular phylogeny of Tylenchidae using 58 newly obtained 18S and 

28S rRNA sequences. The light microcopy and transmission electron microscopy were used 

to provide details on morphological features. For the first time comprehensive morphological 

data are evaluated in the context of a molecular framework, thus highlighting the phylogenetic 

and evolutionary complexity of this structurally minimalistic group. The study also reveals the 

shortage of D2/D3 domain in 28S rRNA as a phylogenetic marker for early diverging 
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Tylenchomorpha (=tylenchs with supposedly ancestral characters). 

Chapter IV redefines the generic characters of Malenchus, Ottolenchus and Filenchus in 

light of the phylogenetic study in Chapter II. A total of 22 populations including 12 

type/paratype species were examined. The detailed morphology was recovered using light 

microscopy, scanning- and transmission- electron microscopy. All population and type slides 

were recorded as picture and video vouchers and provided, which are available online. Inter- 

or/and intraspecific variations and taxonomically informative traits are extracted.  

In Chapter V, a new genus Labrys chinensis gen. n., sp. n. in Tylenchidae was described 

using an integrative approach: detailed morphology based on light- and electron microscopy, 

phylogenetic position as revealed from two ribosomal RNA genes, generic traits were tested 

for homoplasy, and the intra- and inter-population variations of four recovered populations 

were analyzed. For the first time, 3D printed models were incorporated in the description of a 

new genus as a complement to pictures and drawings to illustrate complex 3D structures and 

to be used in education. Hereby, we also tested the performances of different printing 

materials and forwarded resin as the most suitable option for the zoological field.  

In Chapter VI The generic definitions presented in chapter II and Chapter III are applied to 

describe a new Malenchus species. Aside from Malenchus, three rare genera of Tylenchidae 

viz. Miculenchus, Tenunemellus and Lelenchus, are examined. Detailed morphology of all 

nematode species are provided using light microscopy (LM) and scanning electron 

microscopy (SEM).  

Chapter VII presents a the diversity study of Tylenchidae in China. A country-wide sampling 

from terrestrial natural ecosystem in China revealed 25 species that belong to Tylenchidae, 17 

species and 5 genera are new records for China. The detailed morphometric data are provided 

for these recovered populations.  

In Chapter VIII Our research extends to the Sphaerularioidea, which also belong to the 

putative early diverging Tylenchomorpha (=tylenchs with supposedly ancestral characters) 

and are phylogenetically related to Tylenchidae. Abursanema quadrilineatum n. sp. was 

recovered from mushroom and described both morphologically from LM, SEM and TEM and 

molecularly based on 18S and 28S rRNA. In this chapter, secondary structures of the D2 and 

D3 domain of 28S rRNA were predicted for the new species and a general model for the 

superfamily Sphaerularioidea was built for comparative analysis.  

In Chapter IX we summarized the 3D modeling and printing techniques that can improve the 
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morphology research and education. A relatively simple time-saving method using Autodesk 

Maya was proposed.  

In the last part, Chapter X provides general comments on taxonomy, phylogeny and 

evolution of Tylenchidae. The problems of current molecular phylogeny are summarized and 

suggestions are provided given on marker gene selection, primer design and tree construction. 

In addition, the possible applications of new visualization techniques in nematology are 

discussed. Finally, the general conclusion, lists the major findings and future directions of 

taxonomy and phylogeny in Tylenchidae are provided.  
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Abstract 

A new species, Malenchus sexalineatus n. sp. discovered from Philippines is described 

based on morphological and molecular data. The new species is unusual among the genus by 

having six lateral lines and characterized by having an exceptionally short body (270-288µm) 

and narrow annulations (0.7-0.8 µm). Morphological comparisons with closely related species 

are discussed. Furthermore, three known species of this genus namely M. exiguus M. nanellus 

and M. pachycephalus, all being first records and first representative from China were 

characterized by their morphological data. The new species was placed in a robustly supported 

clade containing two other Malenchus spp. and M. exiguus. Interestingly, M. pressulus was 

placed in a separate unresolved phylogenetic position. However, the phylogenetic position of 

these clades could not be resolved within Tylenchidae. The shapes of the amphidial aperture 

and fovea within Malenchus are also compared and its possible developmental process is 

illustrated and discussed.  

Key Words: new species, phylogeny, SEM, taxonomy, Tylenchomorpha 
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Introduction 

The genus Malenchus is one of the most specious genera within Tylenchidae and has 

been reported worldwide (Andrássy, 1981). This genus was established by Andrássy (1968) 

and is characterized by prominent annulations and dorso-ventrally flattened lip region, with M. 

machadoi as type species (formerly Aglenchus machadoi Andrássy, 1963). Several taxonomic 

changes have occurred within this genus and the first reviews by Knobloch (1976) and Siddiqi 

(1979) have led to the description of two species (M. bryanti and M. truncatus) and the 

erection of Neomalenchus with two species respectively. 

Andrassy (1981) performed a comprehensive and detailed study of Malenchus and the 

description of seven new species and proposed Neomalenchus as a junior synonym of 

Malenchus, an action that was followed by Geraert and Raski (1986). Later, Siddiqi (2000) 

considered Neomalenchus as a valid subgenus and introduced another subgenus 

(Telomalenchus) to accommodate three species with straight amphidial aperture and fewer 

lateral lines (4 or 6 vs 12 or more in other Malenchus species), namely M. williamsi Geraert & 

Raski, 1986, M. parthenogeneticus Geraert & Raski, 1986 and M. leiodermis Geraert & Raski, 

1986. Despite the flattened lip region and the long amphidial slit, Andrássy (2007) 

synonymized Malenchus with Fraglenchus Siddiqi, 2000 which has a rounded lip region and 

a short amphidial slit. Sumenkova (1988) erected the genus Paramalenchus for the species P. 

anthrisulcus Sumenkova, 1988. However, it was synonymized with Malenchus Ebsary (1991), 

an action that was followed by Siddiqi (2000) and Geraert (2008). Malenchus novus Mukhina 

& Kazachenko, 1981 was initially assigned to the genus Malenchus but later moved to the 

genus Mukzia mainly based on its unusually large body size (Siddiqi, 1986). The validity of 

the latter genus was not accepted by Geraert (2008) as the body size was the only used 

differentiating character. In this study we follow Geraert (2008) who listed 35 valid species 

and 3 nomina nuda under two subgenera (Malenchus and Telomalenchus). 

Despite its importance of the genus from a phylogenetic aspect as an early diverging 

branch within Tylenchomorpha (=tylenchs with supposedly ancestral characters) (De Ley & 

Blaxter, 2002), little is known about the phylogenetic status of the genus and its inter- and 

intra-genus affinities. In the present study, the genus Malenchus is studied in China for the 

first time. A new species, Malenchus sexalineatus n. sp., is described and its phylogenetic 

affinities with other species and genera are depicted. Furthermore, three known species of the 

genus, all being first reported from China, are illustrated in detail, and the development of the 
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amphidial aperture of the genus is discussed.  

Materials and methods 

Samples collecting and processing 

Samples were collected in four locations in 2012 and 2013: Mt. Hamiguitan, Philippines 

in August of 2012; Shimen, Hunan, China; Pingwu, Sichuan, China and Mt. Taibai, Shaanxi, 

China in August of 2013 (for additional details, see below). Nematodes were extracted from 

soil samples using a Baermann tray, collected and concentrated using a 500 mesh sieve (USA 

standard mesh numbers, equal to 25μm opening). After removing water, nematodes were 

rinsed with DESS solution and transferred to glass vials (Yoder et al., 2006). DESS-preserved 

specimens were rinsed several times with deionized water and then transferred to anhydrous 

glycerin, following the protocol of Seinhorst (1962) modified by Sohlenius & Sandor (1987). 

Morphological characterization 

Measurements and drawings were prepared manually with a drawing tube mounted on an 

Olympus BX51 DIC Microscope (Olympus Optical, Tokyo, Japan), equipped with an 

Olympus C5060Wz camera for photography. The holotype of the new species, examined 

Chinese population and paratype slides of M. williamsi Geraert & Raski, 1986 

(UGMD103427, UGMD103427, UGMD103427), M. leiodermis Geraert & Raski, 1986 

(UGMD103431) and M. parthenogeneticus Geraert & Raski, 1986 (UGMD103432) were 

recorded as a video clips mimicking a multifocal observation through a light microscope (LM) 

developed by De Ley and Bert (2002). The resulting digital specimen vouchers are available 

at http://www.nematology.ugent.be/vce.html.  

Illustrations were prepared using GNU Image Manipulation Program, GIMP 2.810 and 

Adobe Illustrator CS3 based on light microscope drawings. 3D models were reconstructed 

using Autodesk® Maya® following the procedure of Qing et al. (2015). For scanning electron 

microscopy (SEM), specimens from DESS were gradually washed with water and post 

fixated with 2% PFA+2.5% Glutaraldehyde in 0.1M Sorensen buffer, then washed and 

dehydrated in ethanol solutions and subsequently critical point dried with CO2. After 

mounting on stubs, the samples were coated with gold following the procedure detailed by 

Steel et al. (2011) and observed with a JSM-840 EM (JEOL, Tokyo, Japan) at 12 kV. 
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Molecular characterization 

Genomic DNA was extracted from DESS preserved specimens with Worm Lysis Buffer 

(Yoder et al., 2006). PCR reaction and sequencing of the D2-D3 domains of the LSU rRNA 

was done following the protocol of (Múnera Uribe et al.,2010). De novo sequences were 

deposited in GenBank under the accession numbers KR818869 (Malenchus sexalineatus n. 

sp.), KR818870 (Malenchus sp. P9) and KR818871 (Malenchus sp. P4). These sequences 

were compared with other relevant available sequences in GenBank. Multiple alignments of 

the different genes were made using the Q-INS-i algorithm of MAFFT v. 7.205 (Katoh & 

Standley, 2013) which accounts for secondary RNA structure. Poorly aligned positions and 

divergent regions were selected and deleted by Gblocks 0.91b (Castresana, 2000) with all 

three less stringent options. The best-fitting substitution model was estimated using AIC in 

jModelTest v. 2.1.2 (Darriba et al., 2012) and GTR+I+G was selected as best scored model. 

Maximum likelihood (ML) analysis was performed with 1000 bootstrap (BS) replicates under 

the GTRCAT model using RAxML 8.1.11(Stamatakis, 2006; Stamatakis et al., 2008). 

Bayesian phylogenetic analysis (BI) was carried out with the GTR+I+G model using 

MrBayes 3.2.3 (Ronquist & Huelsenbeck, 2003). Analyses were run for 5×106 generations 

and Markov chains were sampled every 100 generations. Burnin was arbitrarily chosen to be 

25% of the results, and evaluated using a generation/Log-likelihood scatter plot. The ML and 

BI analyses were performed at the CIPRES Science Gateway (Miller et al., 2010). Gaps were 

treated as missing data for all phylogenetic analysis. A Bayesian consensus tree was created 

by collapsing all clades with a posterior probability (PP) below 95 or BS below 70, using 

TreeView v. 1.6.6 (Page, 1996). ML BS values and Bayesian posterior probabilities (PP) were 

summarized on the consensus tree using Adobe Illustrator CS3. To assess the significance of 

monophyly of the genus Malenchus, a constrained Bayesian analysis was ran in MrBayes 

3.2.3 using the same parameters as the original analysis. Site-specific likelihoods were 

calculated for the unconstrained and constrained Bayesian trees using PAML v4.8 (Yang, 

2007), with the same models used in the original analyses, but with the model parameters 

optimized by baseml. These likelihoods were compared based on Shimodaira–Hasegawa (SH) 

and approximately unbiased (AU) tests (Shimodaira & Hasegawa, 1999; Shimodaira, 2002) 

using CONSEL v. 01i (Shimodaira & Hasegawa, 2001). 
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Fig. 1. LM picture of Malenchus sexalineatus n. sp. (A, E, F), M. nanellus (B, D, H) and M. 

pachycephalus (C, G, I, J, K, L, M). A-C: Female anterior end; D: Amphidial fovea; E: 

Lateral view of vulva region; F, G: Female habitus. H: Spicules and protruding cloacal lips; I: 

Vulva and spermatheca; J: annules on female tail; K: crenate female lateral lines; L: Ventral 

view of vulva; M: Female ventral view, arrow shows prophasmid. (Scale bar: A-E, H-M = 10 

µm, F-G = 50 µm.) 
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Fig. 2. Illustration of Malenchus sexalineatus n. sp. from the Philippines, female holotype and 

male paratype (A, B, F, G, H, L, M, N, O, P) and Chinese population of  M. nanellus Siddiqi, 

1979 (C, D, E, I, J, K, P). A: Female anterior body; B: Male anterior body; C, D: Female 

anterior body; E: Male tail; F: Female stylet; G: Male tail shows spicule, gubernaculum and 

bursa; H, I: Female reproductive system, showing sunken vulva, epiptygmata, thicken vaginal 

wall and PUS; J: Posterior male body shows spicule, gubernaculum; K, L: Female habitus; M: 

Male habitus shows dorsally bent tail; .N: tail tip; O: Cross-section of body shows one 

elevated ridge in lateral region; P: Annules. (Scale bar A-E, G-M = 10 µm, F = 20 µm.) 
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Fig. 3. SEM of female Malenchus sexalineatus n. sp. from Philippines. A: lip region; B: en 

face view; C: Ventral view of vulva shows epiptygmata; D: Anus (an=opening of anus); E: 

Tail. F: Lateral view of vulva (pp=prophasmid); G: Six incisures in lateral region; H: The 

hook shape tail tip. (Scale bar: A-D, F-H = 1 µm, E = 5 µm.) 
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Fig. 4. LM picture of M. exiguus (A, B, G, H, J) and Malenchus sp. (C, D, E, F, I, H). A, B: 

Female anterior body; C: Ventral view of female anterior body (arrow shows amphidial 

fovea); D: Female reproductive system shows sunken vulva, thicken vaginal wall; E: Female 

lip region (arrow shows amphidial aperture); F: Prophasmid; G. Lateral region with offset 

ridge; H: Female reproductive system shows part of ovary, spermatheca, uterus, vagina and 

sunken vulva; I: Ventral view of vulva. J, K: Female body habitus. (Scale bar: A-I = 10 µm, J, 

H = 100 µm.) 
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Result 

Malenchus exiguus (Massey, 1969) Andrássy, 1980 

(Figs 4A, B, G, H, J; Figs 5A, B, D, E, F, G, I, J, M, N, O, R) 

MEASUREMENTS 

   See Table 1 

DESCRIPTION 

Female 

Body small to middle sized. Lip region typical of the genus, dorso-ventrally flattened. 

Lateral lines consisting of 2 incisures, slightly crenated, starting closed to median bulb (about 

21-26 annuli from posterior to the end of lip region) and ends until half of tail. Amphidial 

aperture sinuous-shaped. Stylet slender, cone about one third of stylet length. Median bulb 

oval, valvular apparatus round, conspicuous. Prophasmid inconspicuous, 9-13 annuli anterior 

to vulva. Reproductive system monodelphic-prodelphic, ovary outstretched, uterus four rows 

with five cells in each row. Vulva sunk in body, vagina thickened, lateral flap distinct, 2-3 

annuli. Spermatheca rounded, simple/unilobed, offset, filled with sperm. Tail ventrally 

bended, filiform with pointed terminus. 

Male 

Less common than females. Generally similar to female but with more elevated lip 

region, more delicate stylet and more elongated valvular apparatus in median bulb. Testis 

long, spermatids spindle shape, sperm cells round. Bursa about 30µm long, starting at the 

level of spicules’ capitulum. Spicules and gubernaculum tylenchoid. 

HABITAT AND LOCALITY 

Collected from a deciduous forest around the roots of Betula sp. at 2772 m.a.s.l. in Mt. 

Taibai (34°00'46"N, 107°43'33"E), Shaanxi, China. 

Remarks 

Malenchus exiguus was originally described by Massey (1969) as Aglenchus exiguus and 

this species was later moved to the genus Malenchus by Andrássy (1980). The studied 

population fits the morphology, morphometry and ratios of M. exiguus, except for a slightly 

shorter stylet (7.7-8.5 vs 9.0-10 µm). Although, the key of Geraert (2008) brought us initially 

to M. acarayensis Andrássy, 1968, clear differences with type material of M. acarayensis, 
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include a higher tail/vulva-anus ratio (1.6-1.7 vs 1.3-1.4 µm), narrower annuli (1.0-1.1 vs 

1.5-1.7 µm) and broader lip region (relatively round vs more compressed and flattened).  

 

Fig. 5. Illustration of M. exiguus (A, B, D, E, F, G, I, J, M, N, O, R) and Malenchus sp. (C, H, 

K, L, P, Q). A: Female anterior body; B: Male anterior body; C: Ventral view of female 

anterior body; D: Male reproductive system; E. Female reproductive system; F: Spermatids 
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from vesicula seminalis; G: Sperm cells from vesicula seminalis; H: Female reproductive 

system; I: Male habitus; J-L: Female habitus; M: Male median bulb shows elongated valvular 

apparatus; N: Female median bulb shows round valvular apparatus; O, P: Folded cuticle; Q: 

Lateral view of lip region shows amphidial aperture and fovea; R: Male tail. (Scale A, B = 10 

µm. C, D, E, H, R = 20 µm, I-L = 100 µm.) 

Malenchus sexalineatus∗

Body very small (one of smallest known nematode species), ventrally arcuate after 

fixation. Body tapers slightly toward posterior end. Cuticle thick, folded between annuli, 

annulations exceptionally narrow (0.7-0.8µm). Lateral field prominent, origins at half of or 

one stylet length behind stylet knobs ending at middle of tail, with 6 incisures in an elevated 

ridge with relatively smooth margin (not crenate). Number of incisures can occasionally 

increase to eight by irregularly short insertion of short bands. Lip region elevated, 

dorso-ventrally compressed, 3.52-4.15 µm wide. Oral opening surrounded by six labial 

papillae, which is set on a slight protuberated oral plate. Amphidial apertures S-shaped, 

starting at the labial plate. Labial framework weak. Stylet slender and delicate, cone about one 

third of total length, cone width half of anterior shaft width and one third of posterior shaft 

width. Median bulb oval and weakly developed, with slightly or not sclerotized valve. 

Isthmus long and slender. Terminal bulb short and pyriform. Excretory pore at the level of 

anterior part of pharyngeal bulb. Hemizonid 2-3 annuli long and 2-3 annuli before excretory 

pore. Deirids at the level of excretory pore. Rectum very thin, anus inconspicuous. 

Reproductive system monodelphic, prodelphic, ovary outstretched with oocytes arranged in a 

single row. Spermatheca rounded to elongated; offset, globular sperm limited in spermatheca 

or also in proximal part of uterus. Uterus has four rows with five cells in each row. Uterus sac 

spacious with thickened wall, egg not observed (not gravid). Vulva sunken in body contour, 

 n. sp. 

(Figs 1A, E, F; Figs 2A, B, F-H, L-P; Fig. 3) 

MEASUREMENTS 

   See Table 1 

DESCRIPTION 

Female  

                                                             
∗ Etymology: the specific epithet “sexalineatus” refers to the number of lines in the lateral field under SEM, 

“six” (Latin prefix, “sex-”) and “lined” (Latin “lineatus”). 
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lateral flaps absent or one annuli long. Epiptygmata present. Vagina perpendicular to body 

with thickened vaginal wall. Prophasmid 14-16 annuli anterior to vulva. Tail tapering 

gradually to more or less pointed hook-shaped tip. 

Male 

Less frequent than females. General morphology similar to that of female except 

reproductive system and more slender body. Testis single, located along ventral side of body. 

Spermatogonia arranged in one row, spermatids few, hardly visible, spermatozoa round, 

filling proximal part of vesicula seminalis. Vas deferens separated from other parts of gonad. 

Tail strongly and dorsally bent after cloaca, giving the tail a total curvature of 130-140° to 

adjacent body anterior to spicule, which is unique in the genus. Cloacal opening on prominent 

cone with protruding lips. Bursa short but prominent, adanal, starts at the same level of 

spicules’ capitulum. Spicules paired, slightly bent ventrally, capitulum part rounded, shaft and 

blade slightly tapering. Gubernaculum short and very thin. 

TYPE HABITAT AND LOCALITY 

Recovered from Mount Hamiguitan (6°43'51.8"N, 126°10'05.3"E), Philippines, at an 

altitude of 950m under the litter of Lithocarpus llanosii Rehder (Fagaceae). 

TYPE MATERIAL 

Holotype female, four female paratypes and one male paratype were deposited at the 

Museum Voor Dierkunde (Collection number UGMD 104304), Ghent University, Ghent, 

Belgium. Additional paratypes are available in the UGent Nematode Collection (slide 

UGnem144) of the Nematology Research Unit, Department of Biology, Ghent University, 

Ghent, Belgium. The new generic name has been registered in ZooBank (zoobank.org) under 

the identifier 6EE3BA51-E178-43C6-AD88-056083AA3D82. 

DIAGNOSIS AND RELATIONSHIPS 

Despite that only 12 species out of 35 listed valid species by Geraert (2008) have SEM 

image (7-12 lines have been detected), and that LM is unable to discern the exact number of 

lateral lines, still the unique combination of features in M. sexalineatus n. sp. differentiate it 

from all other Malenchus (Malenchus) species. The new species is described based on species 

concept that emphasis morphological difference. It is characterized by having six lines at 

lateral fields, exceptionally short body (270-288 µm), narrow annulations (0.7-0.8 µm) and a 

dorsally bent male tail after DESS relaxation.  

Malenchus sexalineatus n. sp. is assigned to the genus Malenchus based on the 
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combination of the following morphological features: dorso-ventrally compressed and 

anteriorly flattened lip region, very prominent cuticle annulations, protruding and conspicuous 

lateral field and markedly narrowing body behind vulva. On subgenus level, the few lateral 

lines point to Telomalenchus Siddiqi, 2000, however, this subgenus is characterized by 

straight amphidial apertures while S-shaped amphidial aperture is typical for the subgenus 

Malenchus (Siddiqi, 2000). Furthermore, all Telomalenchus paratypes (M. williamsi Geraert 

& Raski, 1986, M. leiodermis Geraert & Raski, 1986, M. parthenogeneticus Geraert & Raski, 

1986) examined by LM in the present study showed many differences with the proposed new 

species in morphological characters like annulations (relatively weak annulations vs 

prominent cuticle annulations), vulva flap (four or more annuli long vs invisible), lateral lines 

(four or more well separated lines in LM vs two lines in LM) and stylet shape (much longer vs 

short). Finally, the presence of six lateral lines differentiate the new species from all SEM 

available species in the subgenus Malenchus which have numerous lateral lines. Nevertheless, 

M. sexalineatus n. sp. comes closer to the subgenus Malenchus because of the 6 incisures that 

are tightly arranged in one protruding band (two lines in LM) and the S-shaped amphidial 

aperture. Therefore, phylogenetic analyses are needed to verify/test the position of this species 

and other species in this subgenus. 

Malenchus sexalineatus n. sp. is distinguished from M. williamsi Geraert & Raski, 1986, 

the only species in the genus with six lateral lines (based on currently available SEM data), by 

a shorter body and weaker stylet vs. relatively longer body and longer stylet; narrower 

annulations vs. broader annulations; one protruding ridge vs. incisures in later region well 

separated in LM resembling the lateral lines in genus Cephalenchus Goodey, 1962; the 

presence of a S-shaped vs. straight amphidial aperture, and absence or one annuli of vulval 

flaps vs. distinct vulval flap. By having an exceptionally short body, M. sexalineatus n. sp. 

comes close to M. parvus Brzeski, 1989, M. bryanti Knobloch, 1976 and M. acarayensis 

Andrássy, 1968. However, there are significant differences in the lateral lines, annuli width 

and most morphometric ratios. The morphological and morphometric differential traits of 

above mentioned species are compared in Table 2.  

MOLECULAR CHARACTERIZATION 

Tree topologies inferred by ML and BI were largely congruent, except for several 

unresolved clades which were collapsed (original BI and ML tree available at 

http://nematodes.myspecies.info). Bootstrap values and posterior probabilities are 

summarized on the Bayesian consensus tree (see Fig. 7.). 

http://nematodes.myspecies.info/�
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In all analyses, M. sexalineatus n. sp. was robustly supported (PP=100, BS=98) as sister 

taxa to M. exiguus (Massey, 1969) Andrássy, 1980. However, these two species are 

morphologically separated. This clade together with two Malenchus spp. P4 and P9, M. 

labiatus Maqbool & Shahina, 1985 and Lelenchus leptosoma (de Man, 1884) Andrássy, 1954 

form a fully supported clade (PP=100, BS=100) where P4 and P9 (unidentified due to only 

two juveniles in total, recovered at ca. 500 m distance from the new species location) showed 

no genetic distance and only differed in sequence length. However, our phylogenetic analysis 

could not reveal supported relationships of this clade with other taxa in Tylenchidae. 

Surprisingly our analyses did not prove the monophyly of the genus Malenchus, as M. 

pressulus (Kazachenko, 1975) Andrássy, 1981 is placed in a separate unresolved position. 

The result also supports M. pressulus to be Malenchus instead of its original description as a 

species of Aglenchus. but also that relationship is not supported. The alternative topology 

showing the monophyly of the genus was tested (graphical representation of the topology of 

constrained tree is given in Fig. 8B) and this morphologically based hypothesis was rejected 

based on SH and AU tests (SH test p = 0.031, AU test p = 0.026).  
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Fig. 6. SEM of female and juvenile of M. nanellus from China, and the possible development 

process of amphidial aperture. A: en face view of female shows oval hole in anterior part of 

amphidial aperture; B: Anterior part of female; C: Lateral view of female lip region; D: Lip 

region of juvenile; E: Possible development process of amphidial aperture. (Scale bar: A, C, 

D = 10 µm, B = 50 µm.) 

Malenchus nanellus Siddiqi, 1979 
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(Figs 1B, D, H; Figs 2C, D, E, I, J, K, P; Fig. 6) 

MEASUREMENTS 

   See Table 1 

DESCRIPTION 

Female 

Body short. Lip region typical of the genus, dorso-ventrally flattened. Cuticle strongly 

annulated. SEM shows fine, longitudinal striae on annuli (Fig. 6). Lateral field smooth, about 

1/6 body width, starts at mid-way of procorpus or 16 annuli from anterior end (or about one 

stylet length behind stylet base) and ends 3/4 of tail. SEM shows large amphidial holes at the 

lateral borders of labial plate, which continues as sinuous slit along lateral side of the lip 

region. Stylet slender, cone about 1/3 of total length, cone width 1/3 of anterior shaft and 1/4 

in posterior shaft. Median bulb oval with distinct valve. Excretory pore located midway 

between nerve ring and basal bulb. Deirid at the level of excretory pore. Prophasmid 9-10 

annuli anterior to vulva. Reproductive system monodelphic, prodelphic, ovary outstretched 

with oocytes arranged in a single row. Uterus has four rows with five cells in each row. 

Uterus sac spacious with thickened wall. Vulva sunken in body, epiptygmata indistinct, 

vagina slightly sloping, lateral flap small but visible, 2-3 annuli wide. Spermatheca small, 

offset, simple, rounded to elongated (only one elongated spermatheca observed, 10µm in 

length and 6.6µm in width), and with oval sperm cells. Tail 67-91µm, tail tip fine, ventrally 

bent.  

Male 

Less common than female. Resembles female in most features except for genital system 

and more narrower annulations. Bursa about 28µm long, starts at the level of spicules’ 

capitulum. 

HABITAT AND LOCALITY 

Recovered from soil around roots of fern and moss in forest of Pingwu (N 32°25'26.2" E 

104°37'02.4"), Sichuan province, China, 552 m.a.s.l.. 

Remarks 

M. nanellus was originally described by Siddiqi (1979) from maize rhizosphere from 

Nigeria. It has been reported from Hungary (Andrássy, 1981), India (Siddiqui & Khan, 1983), 

Pakistan (Maqbool & Shahina, 1985), Colorado, USA (Geraert & Raski, 1986), Papua New 
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Guinea (Troccoli & Geraert, 1995) and Poland (Brzeski, 1998). This is the first report of M. 

nanellus from China. The general morphology and measurements of the Chinese population 

fits with the description of the type material from Nigeria, but some minor differences 

including slightly wider annulations (1.1-1.3 vs 0.8-0.9), shorter tail (67-91vs 80-90) and 

some variation of MB (46-52 vs 42-45).  

The study of amphidial aperture shows that the lateral slit is not visible using LM in 

early juvenile stages, indicating the presence of only oval holes in the labial plate (Fig. 6E1). 

In late juvenile stages very narrow sinuous slits are visible both in SEM (Fig.6 D) and LM, 

indicating a gradually laterally expansion of the slit (Fig. 6 E2-3). In the adult stage, the width 

of this S-shape slit increases (Fig. 6 E4). 

Notably, although the starting point of the lateral field was used as species specific 

character (Geraert & Raski, 1986), it shows remarkable variation according to several authors 

(Siddiqi, 1979; Andrássy, 1981; Siddiqui & Khan, 1983; Geraert & Raski, 1986; Troccoli & 

Geraert, 1995; Geraert, 2008) from stylet knob level, mid-region of procorpus to procorpus 

base. Since the level of these variations among populations is high enough to define multiple 

species listed in the species identification key (No. 7 and No.13) of Geraert (2008), the 

importance and reliability of this morphological trait for species delimitation remains under 

open question mark. However, in spite of some variation in the starting point of lateral lines, 

it is always located at more or less the mid-region of procorpus in present Chinese population, 

indicating that this feature is stable within the studied population herein.  

Malenchus spermatheca’s shape has been described with intra-specific variation, as 

simple offset, rounded to elongated (Siddiqi, 1979; Geraert & Raski, 1986) or bilobed 

(Andrássy, 1981; Troccoli & Geraert, 1995). The variability of the spermatheca shape in 

Chinese population is high, i.e. from rounded to elongated; sperm only in spermatheca or also 

present in proximal of uterus which appearing as a bilobed spermatheca. Therefore, in 

agreement with (Geraert & Raski, 1986), we believe that spermatheca morphology 

(simple/unilobed or bilobed), is not a useful trait for species delimitation in Malenchus. 

Malenchus pachycephalus Andrássy, 1981 

(Figs 1C, G, I, J, K, L, M) 

MEASUREMENTS 

   See Table 1 

DESCRIPTION  
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Female  

General morphology typical of the genus. Body relatively large in genus, ventrally 

curved. Cuticular annulations coarse and wide. Lateral field consisting of 2 incisures as seen 

by light microscopy, deeply crenate, originating 3-4 annuli anterior to stylet base, end about 

half of tail length. Lip region less dorso-ventrally flatted than other species in genus. Stylet 

robust, cone about 1/3 stylet length, 1/4-1/5 width of shaft, knobs slightly asymmetrical with 

longer dorsal side. Median bulb weakly developed, valvular apparatus not distinct. Vulva 

sunk in body, epiptygmata present, vulva flap indistinct, about one annulus wide. Vagina 

perpendicular to body axis, about 10µm long. Spermatheca elongated, simple/unilobed or 

bilobed (sperm presence in proximal region of uterus), with round sperm cells, about 27-49 

µm long and 12-15 µm wide. Prophasmid around 11 annuli anterior to vulva. Tail slightly 

ventrally curved, tip sharply pointed. 

Male 

Not seen. 

HABITAT AND LOCALITY 

Soil samples were collected in deciduous forest at 1835 m.a.s.l in Shimen (30°01'55.2"N, 

110°39'54.0"E), Hunan province, China.  

Remarks 

M. pachycephalus was originally described by Andrássy (1981) from fern grass in South 

Carolina, USA. Later, it was reported from Hungary, Bulgaria, Italy (Andrássy, 1981) and 

Spain (Gómez-Barcina et al., 1992). This is the first report of the species from China. 

Morphology and morphometric data of this population strongly resemble those given in 

original description (Andrássy, 1981), except for a slightly longer tail (74-78 vs 65-72 µm) 

and ending point of lateral field (at 1/2 vs 1/3-1/4 of tail). This Chinese population also 

resembles the Spanish population (Gómez-Barcina et al., 1992), but has a longer tail (74-78 

µm vs 56-69 µm). 

Malenchus sp. 

 (Figs 4C-F, I, H; Figs 5C, H, K, L, P, Q) 

MEASUREMENTS 

   See Table 1 

DESCRIPTION 
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Female  

From this species only a single specimen was collected. Body large. Cuticle coarsely 

annulated and folded between annuli. Lateral field not crenate, consisting of 2 incisures, starts 

at 5 annuli posterior to stylet knobs and ends in the middle of tail. Lip region continuous, not 

elevated, not or slightly flattened or not, 9.1 µm wide at base. Amphidial aperture 

sinuous-shaped. Stylet prominent, cone occupied 5.93 µm in a total, cone base width 1/4 of 

anterior and 1/5 of posterior shaft width. Median bulb relatively robust in the genus. Basal 

bulb more rectangular, covered with sheath like structure. Vulva sunken in body contour, 

epiptygmata weak, flap absent, vagina wall thickened. Prophasmid conspicuous, 21-22 annuli 

anterior to vulva. Spermatheca small, round, offset. Tail straight but slightly dorsally bent at 

the end with a pointed terminus.  

Male  

Not seen. 

HABITAT AND LOCALITY 

Recovered from soil sample collected in deciduous forest near the root of Quercus sp. at 

1963 m.a.s.l. in Mt. Taibai (34°03'40"N, 107°41'09"E), Shaanxi, China.  

Remarks 

The single recovered specimen has an exceptional large body, which makes it closed to 

M. novus Mukhina & Kazachenko, 1985. This rare species was first and only described in 

eastern Russia in 1985. General morphology of single female fits well to original description 

except for a more muscular median bulb and minor difference in some measurements. 

However, it is not possible to assign species identity based on only one single specimen. 
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Fig. 7. Bayesian strict consensus phylogeny highlighting the phylogenetic position of M. 

sexalineatus n. sp. in relation with other relevant sequences from GenBank based on the 

D2-D3 domain of LSU rRNA sequences. Branch support is indicated in following order: PP 

value in BI analysis/ BS value from ML analysis. New sequences generated in this study are 

highlighted in bold. 
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Discussion 

Molecular characterization and phylogeny 

Recent studies (van Megen et al., 2009; Bert et al., 2010; Atighi et al., 2013) based on 

18S rRNA indicated that Malenchus is nested within Filenchus. However this was based on a 

single M. andrassyi Merny, 1970 sequence (AY284587), for which no morphological 

information nor geographic location was provided by (Holterman et al., 2006). Recently, a 

28S rRNA-based phylogeny indicated a moderately (PP=69) or robustly supported (BS=99) 

clade harboring all Malenchus spp. species and Lelenchus (Yaghoubi et al., 2015). However, 

this result is not reproducible (especially the high BS value), even with identical data and 

described methods; nevertheless, AU and SH tests cannot reject this topology at the 90% 

significance level (SH p=0.145, AU p=0.137) (Fig. 8). Here we could only demonstrate the 

relationship of M. sexalineatus n. sp., M. exiguus and an unidentified Malenchus species but 

the relationship of M. labiatus and Lelenchus leptosome, as well as the position of Malenchus 

within Tylenchidae could not be clearly established.  

Bert et al., (2010) mentioned that the grouping of M. andrassyi and certain Filenchus spp. 

shared the presence of a single ridge in the lateral field. However, M. presulus also has a 

single ridge and appears within non-single ridge Filenchus spp. in our phylogeny, indicating 

the multiple origin of a single offset ridge. This is in line with the heterogeneity of cuticle 

morphology. Although the folded cuticle and dorso-ventrally compressed lip region were 

traditionally considered as synapomorphies for the genus (Andrássy, 1981), these similarities 

may not be homologous since multiple cuticle folded patterns and lip region shape variations 

were observed in different Malenchus species of this study. This would be in agreement with 

the polyphyly of Malenchus showed in our phylogenetic analysis. Furthermore, AU and SH 

tests appear to reject the monophyly of the genus Malenchus at the 95% significant level (Fig 

8.). 

Thus, the characterization and the position of Malenchus within Tylenchidae is still 

unsettled. Moreover, morphological data in combination with very limited available 

molecular data do not permit corroboration of any alternative for the current generic definition. 

Hence, we have described M. sexalineatus n. sp. as a new species within Malenchus. 

Nevertheless, a wider and more comprehensive analysis using additional genetic markers is 

needed for this genus Malenchus, and for Tylenchidae in general, to define molecularly based 

clades and associated morphological apomorphies. 
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Fig. 8. Comparing alternative hypotheses using AU and SH test. The topological schemas 

(hypotheses) are compared with the originally obtained topology (Fig. 7). Clades containing 

Malenchus species are highlighted in gray. A: The hypothesis of paraphyly of Malenchus as 

robustly supported (BS=99) in the analysis of Yaghoubi et al., (2015). B: The hypothesis of 

monophyly of Malenchus. Δln L: the Log likelihood difference of the two alternative 

hypotheses. The two hypotheses are less likely than the original topology, but only hypothesis 

B can be significantly rejected. 

Remarks on amphidial aperture development  

The amphidial apertures of the genus Malenchus were generally described as large 

S-shaped openings reaching the lip region base with an also large fovea (Andrássy, 1981) or 

the opening was interpreted as very wide and covered by cuticular outgrowths, sheltering 

most part of fovea, resulting in finer zigzag clefts (Gómez-Barcina et al., 1992). On the other 

hand, Geraert and Raski (1986) introduced a second type, the straight-aperture found in three 

species that later on was used as basic trait to erect the subgenus Telomalenchus. Both 

amphidial aperture types were modeled following Qing et al. (2015) (Fig. 9.). As an internal 

structure, the amphidial fovea is generally invisible in family Tylenchidae, however, a 

conspicuous spindle shaped fovea is clearly visible in all studied Malenchus specimens in this 

work.  
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Fig. 9. 3D models of the lip region of the two subgenera in genus Malenchus. A-D: S-shaped 

amphidial aperture, subgenus Malenchus; E-H: straight amphidial aperture, subgenus 

Telomalenchus; I: Lateral view of amphidial fovea. 

Generally, present observations agree with studies of Andrássy (1981) and 

Gómez-Barcina et al. (1992) in which the aperture is a large round to oval-shaped hole, 

sharply narrowing to a slit and ending at the base of the lip region. Remarkably, inspecting of 

Chinese population of M. nanellus showed that the morphology of the amphidial aperture 

changes according to the life stage of the species (Fig. 6A, C, D, E). However, a straight 

aperture, as known for the subgenus Telomalenchus, was never observed and the original oval 

hole remained constant in all stages. This is an indication that the amphidial aperture 

morphology is not shaped by the cuticular outgrowths as noted by Gómez-Barcina et al., 

(1992) but the intrinsic shape of the subgenus Malenchus amphidial aperture, i.e. starting 

anteriorly within the labial plate as a hole and continuing at the lateral side of the lip region as 

longitudinal slits. The alterations during the development may be explained as adaptation to 

its multiple functions e.g. feeding habit, mating, moving, sensing chemicals or moisture 
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(Bumbarger et al., 2009) in different life stages or simply as structural changes in different 

developmental stages without functional link. 
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Abstract 

The family Tylenchidae is phylogenetically important to understand early diverging 

Tylenchomorpha (=tylenchs with supposedly ancestral characters) and to assess soil 

ecosystems. In the present study we focus on Malenchus and Filenchus as representatives of 

the Tylenchidae. Samples collected worldwide result in 58 new sequences and light 

microcopy and transmission electron microscopy provide details on morphological features. 

For the first time comprehensive morphological data are evaluated in the context of a 

molecular framework, thus highlighting the phylogenetic and evolutionary complexity of this 

structurally minimalistic group. Results show that the genus Filenchus is polyphyletic in both 

the 18S and 28S rRNA phylogeny, while Malenchus is polyphyletic and monophyletic in the 

28S rRNA and the 18S rRNA, respectively. Ultrastructural study demonstrate specific aspects 

of lateral cuticular incisures, cuticular layering and the amphideal fovea are surprisingly 

congruent with the obtained molecular phylogenies, while classical characteristics such as 

cuticle annulations are evolutionary highly plastic and mosaic in distribution. The study also 

reveals the shortage of D2/D3 domain in 28S rRNA as a phylogenetic marker for early 

diverging Tylenchomorpha. 

 

Key words: Tylenchomorpha; nematode; ultrastructure; transmission electron microscopy 
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Introduction 

Tylenchidae are abundant and diverse such that they may constitute up to 30% of the 

nematodes in any given soil sample (Yeates & Bird, 1994; Ferris & Bongers, 2006). Despite 

the abundance, the taxonomy of Tylenchidae is notoriously problematic: most species 

combine a low observational resolution with high intraspecific variability, and DNA sequence 

representing these taxa is usually not available. As a result, there is no consensus regarding 

their classification from species level up to family level (Brzeski, 1998; Siddiqi, 2000; 

Andrássy, 2007; Geraert, 2008). 

In the present study we focus on this neglected group, and select two common genera of 

differing appearance: Malenchus, supposedly characterized by the presence of a robustly 

annulated cuticle, and Filenchus, considered to be a catch-all genus lacking morphological 

synapomorphies (Bert et al., 2010). Malenchus was found to be monophyletic or polyphyletic 

on the basis of 28S rRNA (Qing et al., Yaghoubi et al., 2015) but 18S rRNA phylogeny is 

absent, while Filenchus is polyphyletic based on both 18S and 28S rRNA (Bert et al., 2010; 

Atighi et al., 2013). Representatives from these two genera and additional Tylenchidae 

representatives were collected from worldwide sources, resulting in 58 new DNA sequences. 

Light microscopy (LM) and transmission electron microscopy (TEM) provided detailed 

morphological observations that were evaluated in a phylogenetic context. This study aims to 

evaluate for the first time comprehensive morphological data within the context of a 

molecular phylogenetic framework of early diverging (=with supposedly ancestral characters) 

plant-parasitic nematodes, and to highlight the phylogenetic and evolutionary complexity of 

this structurally minimalist group. The study also aims to delineate the boundary between 

Malenchus and Filenchus, to distinguish morphological features that are potentially important 

for future generic delimitation in Tylenchidae and to evaluate the suitability of 28S and 18S 

rRNA genes as phylogenetic markers for early diverging Tylenchomorpha. 

Materials and methods 

Taxonomic sampling  

Analyzed specimens, voucher numbers, GenBank accession codes and site details are 

presented in supplement Table S1. Nematodes were extracted from soil samples using a 

Baermann tray and concentrated using a 500 mesh sieve (25µm opening). Samples collected 

outside Belgium were divided into two parts: fixed with 4% formalin for the morphological 
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analyses, and fixed with DESS solution (Yoder et al., 2006) at room temperature for 

molecular analyses. 

Morphological analyses 

Formalin fixed specimens were rinsed several times with deionised water and gradually 

transferred to anhydrous glycerin for permanent slides, following the protocol of Seinhorst 

(1962) as modified by Sohlenius and Sandor (1987). Slides were examined and photographed 

using an Olympus BX51 DIC Microscope (Olympus Optical, Tokyo, Japan), equipped with 

an Olympus C5060Wz camera. Specimens were identified to species level based on available 

keys (Andrássy, 1981; Geraert & Raski, 1986; Geraert, 2008) and original descriptions. 

Malenchus sp. P5, Filenchus sp. C103 and C102 could not be identified to species owing to 

the inadequate number of individuals (i.e. few juveniles and a single adult), while Malenchus 

sp. C163 is a species new to science and will be formally described elsewhere. 

To determine details of the layering of body wall cuticle, specimens were prepared for 

transmission electron microscopy (TEM) by fixing in 2.5% glutaraldehyde in 0.05M sodium 

cacodylate buffer (pH 7.4) for 30 min and rinsed by 0.05M cacodylate buffer. Post-fixation 

was in 1% osmium tetroxide in 0.05M cacodylate buffer for 2h followed by en bloc staining 

for 1 h in 1% uranyl acetate. The specimens were then dehydrated in an ethanol series 

followed by a propylene oxide series and embedded in a Spurr resin (EMS). The block face 

istrimmed with a Leica EM Trim device and ultra-thin sections were cut with a Leica UC7 

ultramicrotome (Leica, Vienna, Austria) with a diamond knife (Diatome Ltd., Biel, 

Switzerland). Sections are then stained in uranyl acetate and lead citrate using a Leica EM 

AC20. Sections were observed with a JEOL JEM 1010 (JEOL Ltd., Tokyo, Japan) and images 

were recorded on imagine plates from DITABIS (Pforzheim, Germany). 

Molecular analysis 

DNA extraction, amplification, and sequencing: Nematode morphological vouchers were 

prepared prior to DNA extraction. These vouchers were made with LM of temporary mount 

using a combination of video clips and photomicrographs (De Ley & Bert, 2002) and these 

are available online at http://www.nematodes.myspecies.info. Vouchered nematodes were 

subsequently picked from temporary mounts and each specimen was cut into pieces and 

transferred to a 500µl Eppendorf tube with 20µl of worm lysis buffer (50 mM KCl; 10 mM 

Tris pH 8.3; 2.5mM MgCl2; 0.45% NP 40 (Tergitol Sigma); 0.45% Tween 20) and frozen for 
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10 min at -20°C. 1µl proteinase K (1.2 mg/ml) was added to the samples before incubation, 1 

h at 65°C followed by 10 min at 95°C. PCR reaction and sequencing followed the protocol of 

Múnera Uribe et al. (2010) and Bert et al. (2008) respectively. The D2/D3 domains of 28S 

rRNA were amplified with primers D2A, D3B (De Ley et al., 2005), MalF (Wisniewska & 

Kowalewska, 2015), 1006R (Holterman et al., 2008) and 826R (this study, 

5’-CGATTTGCACGTCAGAACCG-3’). The 18S rRNA gene was amplified using G18S4, 

18P (Blaxter et al., 1998), TylF1 (This study, 5’-GCCTGAGAAATGGCCACTACG-3’) and 

TylR2 (This study, 5’-TGRTGACTCRCACTTACTTGG-3’).  

Phylogenetic analyses: The obtained sequences were analyzed with other relevant 

sequences available in GenBank. Multiple alignments of the different genes were made using 

the Q-INS-I algorithm of MAFFT v. 7.205 (Katoh & Standley, 2013). Post-alignment 

trimming was done using Gblocks 0.91b (Castresana, 2000), however, this does not affect the 

tree topologies outcome other than resulting in slightly lower branch support (results not 

shown). The substitution saturation was assessed by DAMBE5 (Xia, 2013) implementing the 

method described by Xia et al. (2003), with gaps treated as unknown states and proportion of 

invariant site (Pinv) set to 0.17. The best-fitting substitution model was estimated using AIC in 

jModelTest v. 2.1.2 (Darriba et al., 2012). Maximum Likelihood (ML) and Bayesian (BI) 

analysis was performed at the CIPRES Science Gateway (Miller et al., 2010), using RAxML 

8.1.11 (Stamatakis et al., 2008) and MrBayes 3.2.3 (Ronquist & Huelsenbeck, 2003), 

respectively. ML analysis included 1000 bootstrap (BS) replicates under the GTRCAT model. 

Bayesian phylogenetic analysis was carried out using the GTR+I+G model for both genes, 

analyses were run under 5×106 generations (two independent runs with four chains) and 

Markov chains are sampled every 100 generations and 25% of the converged runs were 

regarded as burnin. Gaps were treated as missing data for all phylogenetic analyses. ML 

bootstrap values and posterior probabilities (PP) were plotted on Bayesian 50% majority-rule 

consensus trees after editing with TreeView v. 1.6.6 (Page, 1996) and Illustrator CS3 (Adobe).  

Character evolution analysis: All analyses were performed in R version 3.2.5 (R 

Development Core Team). We used stochastic character mapping (Huelsenbeck et al., 2003) 

to sample possible histories of amphideal fovea. For each character in the stochastic mapping 

approach, 500 stochastic trees were generated and density map were plotted using phytools 

(Revell, 2012). Transition matrix Q is sampled by Bayesian MCMC method and α of the γ 

prior was set to β*empirical (Q) by using empirical parameter to avoid bias.  

To estimate the ancestral characters of body cuticle width within the genus Malenchus, 
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trees were rebuilt with taxa constrained to Malenchus. This excluded non-homolog cuticles in 

other genera (different in annulation shape, layer structures, see further discussion) thus 

allowing us to analyze intrageneric character evolution. Continuous traits were mapped onto 

the phylogeny tree using the function contMap by estimating the ancestral states at the 

internal nodes using Maximum Likelihood and interpolating the states along each edge using 

equation (2) of Felsenstein (1985). Prior to reconstruction, the tree was ultrametricized by 

applying the penalized likelihood method implemented in the chronopl function in the 

package ape (Paradis et al., 2004) with a lambda= 0. The character evolutions along branches 

of the tree, were visualized as a color gradient using the method of Revell (2013). An 

additional phenogram provided a projection of the phylogenetic tree in the space defined by 

phenotype and relative time in order to visualize the trait distributions and examine their 

degree of overlap between different clades. 

Results 

Ultrastructure of body cuticle and annulations 

The ultrastructure of the body cuticle reveals four different zones (Decraemer et al., 2003) 

from outer to inner: (1) epicuticle, (2) cortical, (3) median and (4) basal, the latter being 

bordered by the basal lamina. Within Tylenchomorpha the basal zone is characterized, except 

at the lateral fields, by radial striae formed by longitudinal and circumferentially oriented, 

interwoven laminae (striaes) at a constant periodicity in longitudinal and transverse sections. 

The detailed description of the different zones (exc. epicuticle) of the studied species 

combined with information from the literature of Tylenchidae species is listed in Table 1. In 

the studied taxa, the four zones are always present (cortical and median zone are not always 

clearly differentiated) except for Filenchus with either a missing or very narrow median zone 

in the dorsal and ventral body regions. This missing zone was also in many other tylenchid 

taxa (Decraemer et al., 2003). In the two studied species of Malenchus, the deep annulation 

results in a cortical zone extending nearly to the basal lamina (Fig. 1). As a result, the median 

zone becomes restricted to a ‘triangular’ area beneath mid-annulus and the basal zone with 

radial striae is interrupted into patches and minimal at level of the grooves in Malenchus 

acarayensis (Fig. 1 C, M). Surprisingly, in Malenchus pachycephalus the basal zone appears 

without radial striae and it is thick at the level of the annuli and thin within the region of 

grooves. 
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The annulations in the genus Malenchus are generally prominent and have been 

considered as a consistent and important generic character (Siddiqi, 1979; Andrássy, 1981; 

Geraert, 2008). However, results show distinct variations in i) shape, from a simple usually 

flattened annulus (Figs 2 A, B, G, H; 1 C) to a more complex strut-like annulus, with each 

slightly overlapping the adjacent annuli (Figs 2 C, D; 1 A); ii, thickness; and iii) degree of 

groove depth with respect to the cuticular zones. Thus, “prominent cuticular annulation” alone 

is a too variable and ambiguous to define and delimit genera. For example, cuticular 

annulations of Filenchus balcarceanus and Malenchus sp. C163 are intermediate in cuticle 

thickness and groove depth relative to those of other Filenchus spp. and Malenchus spp. The 

annulations of the other Filenchus species examined with TEM, Filenchus discrepans C172 

and Filenchus vulgaris C179 show less pronounced annulations, restricted to the upper layers 

of the cortical zone (Fig. 1 E-H, O-R), resembling those of other known Tylenchidae with 

respect to  low cuticle thickness and groove depth. Conversely, the genus Lelenchus that was 

once synonymized with Filenchus (Andrássy, 1976), has a smooth cuticle without annulations 

or transverse striae in LM (Figs 2 J; 1 I, J).  
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Fig. 1. The TEM of body cuticle in the genera Malenchus (A-D, K-N), Filenchus (E-H, O-R) 

and Lelenchus (I-J) and their diagrammatic representation (K-R). A, C, E, G, K, M, O, Q: 

longitudinal section at mid-body (left); B, D, F, H, J, L, N, P, R: transverse section of lateral 

field (right); I: transverse section of dorsal region. Scale bar A-G, I, J=0.5μm, H=1μm. 
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Fig. 2. LM variation of body cuticle annulation (ventrally or dorsally) in the species used in 

this study. A: Malenchus sp. P5; B: M. pressulus; C: M. pachycephalus C116; D: M. 

pachycephalus C161; E: M. bryophilus C171; F: M. undulatus; G: M. acarayensis C173; H: 

Malenchus sp. C163; I: F. balcarceanus C57; J: L. leptosoma C219; K: F. discrepans C172; L: 

F. vulgaris C179. Scale bar=10μm. 

Ultrastructure of lateral region 

The lateral field in Malenchus is prominent, visible as two incisures delimiting a single 

narrow elevated ridge (=protruding band) based on LM. In SEM, this ridge always shows 

multiple longitudinal incisures delineating small ridges, described as four, six, twelve or more, 

depending on the species (Geraert & Raski, 1986; Geraert, 2008; Qing et al., 2015). In the 

present TEM study, 14 ridges were observed in M. acarayensis C173 and an extension of the 

range to 22 small ridges were observed for M. pachycephalus C161 (Fig. 1 B, D). Remarkably, 
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similar small ridges have not been found in other genera of Tylenchomorpha (Baldwin & 

Hirschmann, 1975; Mounport et al., 1991, 1993a; Mounport et al., 1993b; Mounport et al., 

1997; Valette et al., 1997).  

The lateral fields in Filenchus are more heterogeneous with at least two distinct patterns. 

For example F. discrepans C172 has a single elevated ridge (Fig. 1 F, P) which cannot be 

differentiated, based on LM, from the ridge in Malenchus, while F. vulgaris C179 has a less 

elevated ridge including two shallow mid-way incisures (Fig. 1 H, R) resulting in four 

incisures or three ridges clearly visible in LM. In contrast, Lelenchus leptosoma C219 has a 

non-protruding lateral field without longitudinal incisures. 

Phylogeny of Malenchus and Filenchus 

In this study we use 28S and 18S rRNA genes that are the two most common regions in 

nematode phylogenetic studies. However, both regions have some limitations in analyses of 

Tylenchidae. The substitution saturation test based on the 28S rRNA has revealed a high 

substitution rate (Table S2), suggesting that 28S rRNA is only weakly informative. On the 

other hand, 18S rRNA data have an appropriate substitution rate (Table S3), but PCR success 

using traditional 18S primers is limited giving the considerable variation of these 

premier-binding regions. A successful PCR from a single specimen is challenging and 

sometimes has to be compromised by using a primer set with a shorter targeted sequence (see 

new primers used in this study). Limited PCR success most likely explains considerable 

length variation of the reference sequences in GenBank that result in a scarcity of homologous 

sites in an alignment (coverage limitations). Aside from sequence limitations, 28S and 18S 

rRNA produced different tree topologies, and therefore alignments are presented separately 

and not concatenated.  

The phylogeny trees were reconstructed separately (not concatenated) as the most 

available GenBank sequences from two genes do not representing same species. Trees 

inferred by ML and BI analyses are largely congruent, therefore only the Bayesian tree is 

shown, including the bootstrap values of the ML analysis. The tree topology based on 18S 

rRNA supports the monophyly of Malenchus (PP=1, BS=84) as a sister group to Filenchus 

species with two incisures in the lateral region (Filenchus clades group 2) (Fig.3 B). The 

Malenchus clade is further divided into two subclades: one well-supported (PP=1, BS=81) 

and a moderately supported (PP=0.65, not supported by ML). Within the well supported 

subclade, the Malenchus sequences are highly divergent (6-198 bp nucleotides difference) and 
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M. acarayensis and M. pachycephalus appear to be polyphyletic, indicating that morphology 

based identification is misleading and may overlook cryptic species or the less-likely 

alternative, M. acarayensis is an extremely variable species. However, due to a lack of 

information from type materials, no synonymization action will be taken. Based on 28S rRNA 

Malenchus is polyphyletic (Fig. 3 A, detailed tree see Fig. S1), with species in clade 1 (PP=1, 

BS=99) as sister of Filenchus + Lelenchus whereas species in clade 2 (PP=0.99, BS=96) are 

sister to Lelenchus. The Malenchus clades defined by both 18S and 28S analyses are not 

supported by morphological data. Indeed, combining morphology and phylogeny clearly 

demonstrate that the generic definitions in Tylenchidae are far from settled, displayed herein 

on the basis of the following four examples: (1) Two phenotypically ambiguous species are 

placed within the Malenchus clade 1: Malenchus sp. C163 fits the genus diagnosis based on 

the S-shaped amphideal aperture, distinct fovea and elevated head, but it is also similar to 

Filenchus spp. in having a relatively thin cuticle with relatively unpronounced annulations 

(Fig. 2 H) and an elongate-cylindrical body posterior to the vulva (instead of markedly 

tapered posterior to the vulva, which is a generic character for Malenchus as proposed by 

Siddiqi (1979, 2000)). Similarly, F. balcarceanus resembles Filenchus in having a lower head, 

elongate-cylindrical body posterior to vulva however with relatively pronounced annulations 

(Fig.2 I). This indicates that body markedly tapered posterior to vulva is convergent character: 

(2) the genus Filenchus consists of at least two independent well supported (PP=1, BS=100) 

clades: Filenchus clade 1, containing all species with four incisures in the lateral field, is 

sister (PP=1, BS=89) to the genus Coslenchus + Aglenchus whereas Filenchus clade 2 with a 

single elevated ridge is sister (PP=0.76, BS=69) to Malenchus clade 1. (3) Tylenchus 

naranensis is nested within Filenchus clade 1, the species shares similarities with the 

four-incisures Filenchus species (see also Panahandeh et al., 2015b; Geraert, 2008) except for 

proportion of stylet cone and shaft. (4) The genus Lelenchus, herein represented by different 

populations of L. leptosoma is paraphyletic. Specimens C114 and C118 are sister to 

Malenchus clade 1 + Filenchus clade 2 (PP=1. BS=97) whereas C219, and the GenBank 

sequence KP7300422 are sister to Malenchus clade 2 (PP=0.99, BS=95).  
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Fig. 3. Bayesian 50% majority rule consensus tree interfered on 28S (A) and 18S (B) rRNA 

genes. Details of 28S rRNA phylogeny see Fig. S1. New sequences original to this study are 

indicated in bold. Branch support is indicated as: PP value in BI analysis/BS value from ML 

analysis. Illustrations show cuticle structure in each clade (left: longitudinal at mid-body and 

right transverse at lateral field region). Malenchus clades 1 + 2 are characterized by small 

ridges; Filenchus clades group 2 share a two incisured lateral ridge; Filenchus clade 3 has a 

two or four incisured lateral ridge  (Raski & Geraert, 1986; Okada et al., 2002, Geraert, 

2008); Filenchus clade 1 is characterized by four incisures of lateral field. 
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Character evolution of annuli and amphideal fovea 

Annuli width and pouch-like amphideal fovea have been assumed to be taxonomic 

informative for Malenchus (Andrássy, 1981) and therefore their ancestral states and 

correspondence with clades as defined by molecular analyses have been analyzed (Fig. 4). For 

annuli width, 18S rRNA-based ancestral state reconstruction using likelihood method shows 

that the earliest node of Malenchus clade remains uncertain (Fig. 4 B). This result suggests 

that wide and narrow annuli have evolved several times. Consequently, no significant 

correspondence is found between annuli size distribution and molecular clades for 18S rRNA 

phylogeny (Fig 4C), thus further suggesting that annuli width does not define natural groups. 

Conversely, a pouch-like amphideal fovea has arisen twice, and it is very likely to be the 

ancestral state for Malenchus species although not for other closely related species (Fig. 4 A), 

therefore supporting its importance as a character for delimiting genera. 

 

Fig. 4. Stochastic character mapping for amphideal fovea (A) and maximum likelihood 
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ancestral state reconstructions for annuli width (B, C) inferred from 18S rRNA sequences. 

The annuli width based on specimens from this study, (average measurements of 10 

individuals), type material (M. truncates, M. neosulcus and M. andrassyi), Wiśniewska & 

Kowalewska (2015) and Panahandeh et al. (2014, 2015b) (M. pressulus, M. labiatus and M. 

exiguus). Traitgram (B, D) showing the projection of the phylogeny into a space defined by 

annuli width (y-axis) and relative time since divergence from the root (x-axis; not calibrated 

due to absent of informative fossil record). 

Discussion 

In the present study we focus on Malenchus and Filenchus as representatives of 

Tylenchidae to explore the informative value of both existing and new morphological 

characteristics, as well as analyze their taxonomic value in a phylogenetic framework. Our 

results highlight the difficulties associated with this taxonomically notorious group: 

morphological traits are difficult to observe consistently in very small animals; most species 

are not presently culturable under laboratory conditions; PCR success is variable, and the 

traditionally-used molecular markers often produce a conflicting signal. Discordance between 

different loci are also well known for other animal groups such as hominids (Ebersberger et 

al., 2007), cichlids (Takahashi et al., 2001), finches (Jennings et al., 2005), grasshoppers 

(Carstens & Knowles, 2007) and fruit flies (Pollard et al., 2006). For Nematoda, gene 

inconsistencies are usually found between mitochondrial and nuclear datasets (Nadler & 

Hudspeth, 2000; Nadler et al., 2006; Derycke et al., 2008; Park et al., 2011). In present study, 

the discordance between the two nuclear genes exists for both closely-related species and 

more distantly-related clades. The possible reasons for these conflicting signals are numerous, 

including incomplete lineage sorting (Degnan & Rosenberg, 2009), hybridization (Degnan & 

Rosenberg, 2009), horizontal gene transfers (Tian et al., 2015), recombination (Wiuf et al., 

2004; Than et al., 2006) and saturation effects (Dolphin et al., 2000). In our study, the 

substation saturation test confirmed that the 28S rRNA gene has multiple substitutions at the 

same sites, which may cause long-branch attraction (Felsenstein, 1978) and thus obscure the 

phylogenetic relationships among sequences (Arbogast et al., 2002). Hence, the reliability of 

28S rRNA phylogenies for Tylenchidae is limited, even with the use of likelihood methods, 

which are less sensitive to long-branch attraction (Felsenstein, 1981). However, the 28S rRNA 

gene has widely been used in phylogeny of Tylenchomorpha (Subbotin et al., 2005; Subbotin 

et al., 2006; Subbotin et al., 2007; Subbotin et al., 2008; Subbotin et al., 2011), and for 
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Tylenchidae three of the last five studies have been based on 28S rRNA alone (Atighi et al., 

2013; Panahandeh et al., 2015a; Panahandeh et al., 2015b; Qing et al., 2015; Yaghoubi et al., 

2015). Consequently, the obtained tree topologies should be interpreted with caution, and it is 

recommended that future phylogenetic studies of Tylenchidae do not solely rely on the 28S 

rRNA gene. 

The current study also supports that the use of morphology in conjunction with 

molecular approaches remains essential in formulating a powerful phylogenetic hypothesis 

(Jenner, 2004), at least by reciprocal illumination. In this study we demonstrate that some 

frequently-used morphological characteristics cannot delimitate genera in Tylenchidae, while 

others are surprisingly congruent with molecular phylogenies.  

We selected Malenchus as a genus with relatively well-defined morphology within 

Tylenchidae, particularly its prominent deep annulation in the body cuticle serving as a useful 

trait to delimitate the genus (Siddiqi, 1979; Andrássy, 1981; Geraert, 2008). However, we 

have demonstrated that this characteristic is much more variable than first assumed, and that 

the prominent and deep annulation is not a result of the same homologous underlying 

cuticular structure. Also we note that the width, groove depth and shape of the annuli are 

variable and that pronounced annules have independently evolved therefore being of limited 

use to delimitate Malenchus. 

A pouch-like amphideal fovea (or large inner sacks) was first observed with LM by 

Andrássy (1981) and further illustrated by Qing et al. (2015), but it has never been used as 

diagnostic trait. As it is present in all examined Malenchus species, and its stability is further 

supported by ancestral state reconstruction, we propose the use of pouch-like amphideal fovea 

as a generic diagnostic characteristic for Malenchus (vs indistinct amphideal fovea in others). 

Although the number of incisures in the lateral field has been considered highly variable 

at the genus level in Tylenchidae (e.g. four vs six in Cephalenchus; two vs four in Basiria; 

four vs six in Boleodorus; two vs four in Filenchus; absent, two and four in Lelenchus), we 

have shown that the type of lateral region remarkably corresponds to the molecular defined 

clades in both 28S and 18S rRNA phylogenies. Therefore, the number of lateral lines can be 

used to refine the “catch all” genus Filenchus. Although this characteristic has already been 

used by Siddiqi (1979, 2000) and Siddiqi and Lal (1992) to differentiate Ottolenchus from 

Filenchus (two vs four incisures), LM observations do not always provide clear information 

(e.g. F. balcarceanus was placed in Ottolenchus since it appears as two incisures in LM, but it 
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has six small ridges in SEM as shown by Torres and Geraert (1996). It is therefore necessary 

to identify and use detailed morphological (including SEM, TEM) and molecular traits in 

order to clarify generic definitions.  

On the ultrastructural level, the absence of radial striae in the basal layer is remarkable, 

since in most plant-parasitic Tylenchomorpha, all stages have basal radial striae except when 

physically constrained in some way. For example, radial striaes are always interrupted at the 

level of the lateral field, where they are replaced by fibrillar layers, allowing small changes in 

body diameter, and in other cases radial striae of the basal layer are confined to small patches 

as in obese females (Heteroderinae). Basal radial striae showing a constant periodicity play a 

role in an antagonistic mechanism to high inner body pressure and contraction of longitudinal 

body muscles that assists in body locomotion, and are thought to be responsible for the radial 

strength of the cuticle. Basal radial striae are formed when the elongation of the embryo is 

complete, and are considered to be necessary for maintaining body shape after elongation 

(Priess & Hirsh, 1986). Radial striae also protect the animals in hazardous environments and 

are characteristic of most free-living terrestrial juvenile stages of the clades III-V sensu 

Blaxter et al. (1998) that includes most parasitic taxa (vertebrate as well as plant-parasitic). 

Males and free-living J2 juveniles of Globodera rostochiensis have basal radial striae, 

although the endoparasitic stages do not (Bird, 1968). In M. acarayensis, the breaking up of 

the basal radial striae at the region of the deep grooves in the cuticle may afford some 

flexibility to the body cuticle at that level. Although comparison of distantly related 

nematodes suggest that several structural elements of the body cuticle have independently 

arisen several times (Decraemer et al., 2003), at the genus level such characters appear 

phylogenetically informative. 

In conclusion, although integrated approaches have been implemented and informative 

taxonomic characteristics are recovered, it has been herein demonstrated that current 

approaches cannot completely resolve neither the phylogeny nor generic definitions. It is clear 

that the use of some other, either existing or new technologies (e.g. TEM for other structures, 

multiple genes phylogeny, phylogenomics) are needed to extract more informative genes 

and/or morphological characters. Nevertheless, even with the newest techniques, nematode 

taxonomists still need to test and revise as warranted, the congruence of morphology-based 

systematics and molecular phylogenetics. For the time being, a comprehensive understanding 

of a taxonomically notorious group, such as Tylenchidae, including the embellishment of the 

major patterns and clades surely must be the key priority, rather than a compilation of a 
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never-ending catalogue of single taxonomic units (De Ley, 2000). 

Acknowledgements 

We thank Dr. Lifei Lin from Yunnan Honghe University, China and Dr. Ursula 

Eisendle-Flöckner for kindly providing samples. We are grateful to Dieter Slos for the help 

during sampling and Toon Janssen for his valuable suggestions in primer design. We thank the 

anonymous reviewers for their careful reading of our manuscript and their many insightful 

suggestions and corrections. The first author thanks the China Scholarship Council (CSC) for 

providing a Ph.D. grant.  



 

84 
 

 

Fig. S1. Bayesian 50% majority rule consensus tree interfered on 28S rRNA gene. New 

sequences original to this study are indicated in bold. Phylogenetic position of the genera 

Malenchus and Filenchus are highlighted. Branch support is indicated in following order: PP 

value in BI analysis/BS value from ML analysis. Illustrations based on TEM, unless 

mentioned otherwise, and representative of the cuticle structure in each clade. Left, 

longitudinal section of mid-body and right, transverse section of lateral field. A: Male of 
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Meloidogyne incognita (Meloidogynidae) based on Baldwin & Hirschmann (1975); B: 

Hirschmanniella oryzae (Pratylenchidae) based on Mounport et al., (1997); C: 

Helicotylenchus dihystera (Hoplolaimidae) based on Mounport et al., (1993a); D: F. vulgaris 

C179; E: Coslenchus franklinae based on Mounport et al., (1993b); F: Cephalenchus 

emaginatus based on Mounport et al., 1993b; G: M. acarayensis C173; H: M. pachycephalus 

C161; I: F. discrepans; J: Mesocriconema xenoplax based on De Grisse, A.T. (1972); K: M. 

sexlineatus lateral region unknown, illustration proposed based on SEM picture. L: L. 

leptosoma C219, longitudinal section unknown, but scheme based on LM. 

 

Table S1. List of sequences newly produced in the present study. 

Genus 
Species 

Vouc
her  

Locality Coordinates 
28S 
Accession 
no. 

18S 
Accession 
no. 

Malenchus 
acarayensis C31 Qingling, China 

N 34°03'40.3" 
E 107°41’9.59" 

- KX156288 

acarayensis 
C173, 
C175, 
C227 

Groenendaal, 
Belgium 

N 50°45'52.3"  
E 4°25'48.0" 

KX156313
KX156316
KX156325 

KX156282 

bryophilus C171 
Mt.Grossglockn
er, Austria 

N 47°04'08.9" 
E 12°45'10.6" 

KX156320 KX156299 

nanellus C48 Pingwu, China 
N 32°25'26.3" 
E 104°37’02" 

KX156310 
 

- 

ovalis 
C140 
C83 

Poeke, Belgium 
N 51°02'34.5" 
E 03°27'18.3" 

KX156308
KX156309 

KX156297
KX156298 

pachycephalus C116 Jinping, China 
N 22°58'48.9" 
E 103°23'34.1" 

KX156314 
KX156286
KX156287 

pachycephalus C161 Poeke, Belgium 
N 51°02'34.5" 
E 03°27'18.3" 

KX156318 
KX156291
KX156292 

pachycephalus C85 Poeke, Belgium 
N 51°02'35.4"  
E 3°26'56.3" 

- KX156290 

pressulus C226 
Göttingen, 
Germany 

N 51°31'41.6"  
E 9°58'07.6" 

KX156336 KX156280 

sexlineatus C99 
Mt. Hamiguitan, 
Philippines 

N 6°43'51.8" 
E 126°10'05.3" 

KX156319 KX156300 

undulatus 
C224 
C225 

Göttingen, 
Germany 

N 51°31'41.6"  
E 9°58'07.6" 

KX156333
KX156334 

KX156281 

sp. P5 
Mt. Hamiguitan, 
Philippines 

N 6°43'50.1" 
E 126°10'15.4" 

KX156332 KX156289 

sp. C163 Poeke, Belgium 
N 51°02'35.4"  
E 3°26'56.3" 

KX156312 KX156302 

Filenchus 
balcarceanus C57 Baishui, China 

N 35°14'39.6"  
E 109°28'31.6" 

KX156311 - 

discrepans C172 
Groenendaal, 
Belgium 

N 50°45'52.3"  
E 4°25'48.0" 

KX156321 KX156295 

discrepans C181 Qingling, China 
N 34°03'40.3" 
E 107°41’9.59" 

KX156317 KX156305 

discrepans C138 
Göttingen, 
Germany 

N 51°33'15.8"  
E 9°57'10.0" 

KX156315 KX156306 

hamuliger C101 Qingling, China 
N 34°03'40.3" 
E 107°41’9.59" 

KX156331 KX156304 

vulgaris C179 
Groenendaal, 
Belgium 

N 50°45'52.3"  
E 4°25'48.0" 

KX156337 KX156307 
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sp. 
C103 
C102 

Shimen, China 
N 29°56'08.3"  
E 110°47'13.1" 

KX156330 KX156303 

Lelenchus  
leptosoma C114 Ghent, Belgium 

N 51°02'31.9"  
E 3°41'11.8" 

KX156322 KX156294 

leptosoma C118 Qinling, China 
N 33° 57' 31.2" 
E 107°45'8.56" 

KX156324 KX156293 

leptosoma C219 
Groenendaal, 
Belgium 

N 50°45'57.8"  
E 4°25'18.4" 

KX156335 - 

Basiria 
graminophila C145  Ghent, Belgium 

N 51°02'09.3"  
E 3°43'18.9" 

KX156326 KX156301 

Neopsilenc
hus 

magnidens C132 
Göttingen, 
Germany 

N 51°33'16.0"  
E 9°57'19.7" 

KX156323 KX156296 

Coslenchu
s 

costatus B12 Ghent, Belgium 
N 51°02'09.3"  
E 3°43'18.9" 

KX156329 KX156285 

turkeyensis 
C128 
C137 

Ghent, Belgium 
N 51°02'31.9"  
E 3°41'11.8" 

KX156327
KX156328 

KX156283
KX156284 

 

Table S2. Substitution saturation test for 28S rRNA with all taxa included. 

No. subset samples Iss Iss Sym T P Iss Asym T P DF 
4 1.044 0.821 10.740 0.000 0.789 12.283 0.000 846 
8 0.906 0.789 6.643 0.000 0.684 12.623 0.000 846 
16 0.843 0.772 4.360 0.000 0.575 16.512 0.000 846 
32 0.824 0.749 4.757 0.000 0.445 24.144 0.000 846 

 

Table S3. Substitution saturation test for 18S rRNA with all taxa included. 

No. subset samples Iss Iss Sym T P Iss Asym T P DF 
4 0.799 0.841 2.613 0.009 0.815 1.021 0.307 1681 
8 0.663 0.823 10.620 0.000 0.728 4.337 0.000 1681 
16 0.654 0.806 11.200 0.000 0.633 1.575 0.115 1681 
32 0.634 0.790 11.928 0.000 0.520 8.699 0.000 1681 
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Abstract:  

Malenchus is the second specious genus in Tylenchidae. In the presented study we examined 

22 populations including 12 type/paratype species. Detailed morphology was recovered using 

light microscopy, scanning- and transmission- electron microscopy. All population and type 

slides were recorded as picture and video vouchers, which are available online. We have 

compared inter- or intraspecific variations and extracted taxonomically informative traits. 

Amended definitions of the Malenchus as well as the closely related Ottolenchus were given 

based on a combination of morphology and recent molecular data, and their phylogeny were 

analysed in a context of Tylenchidae. Furthermore, we test different fungi and moss as a food 

resource of Malenchus. 

Keywords: Duosulcius, Filenchus, morphology, Ottolenchus, taxonomy, Tylenchomorpha, 

Zanenchus 
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Introduction 

Tylenchidae is one of the most important soil inhabiting nematode groups (Andrássy, 

1981), and species belonging to Tylenchidae may constitute up to 30% of the nematode 

individuals in a soil sample (Yeates and Bird, 1994; Ferris and Bongers, 2006). As early 

diverging Tylenchomorpha (=tylenchs with supposedly ancestral characters), they do not 

comprise economically important plant parasites and are characterized by ancestral characters, 

such as weak feeding apparatus, undifferentiated non-muscular corpus, filiform tails, and four 

cell rows in uterus. (Luc et al., 1987; Siddiqi, 2000; Bert et al., 2008). Knowledge of their 

food resources remains limited, albeit, given their numeric importance, this subject is 

important for trophic guild analysis or soil quality evaluation. Furthermore, their small body 

size and a lack of clearly homologous characters prevented us from deriving a consistent 

systematic framework. As a result, the delimitation of taxa in this group remains poorly 

documented and highly uncertain (Bongers and Bongers, 1998; Yeates, 2003; Ferris and 

Bongers, 2006).  

In this study we focus on the cosmopolitan genus Malenchus, which is the second most 

specious (after Filenchus) in Tylenchidae. Although several species have been proposed, 

morphology details have been often only poorly described. The only genus review was made 

more than thirty years ago based on a limited number of morphological details (Andrássy, 

1981). Recently, molecular methods have revealed a phylogenetic position for the genus 

Malenchus (Yaghoubi et al., 2015; Qing et al., 2016; Qing et al., 2017), but the need for a 

review is growing. In this present study we examined type or paratype of 12 species together 

with 10 populations worldwide. We do not intend to establish new nor to synonymize current 

taxon but rather to summarize morphological variations and analyse the results in a 

phylogenical context, as most of the taxonomically important characters are generally absent 

or incomplete in the original description (Qing et al., 2017).  

Materials and methods 

All specimen examined in this study are listed in Table1. Classification of Malenchus 

and Tylenchidae follows Geraert (2008). Geographic distributions were plotted using QGIS 

2.82 based on original descriptions and other reports (Andrássy, 1981; Geraert and Raski, 

1986; Gómez-Barcina et al., 1992; Geraert, 2008; Holovachov, 2014; Mundo-Ocampo et al., 

2015; Panahandeh et al., 2015a; Panahandeh et al., 2015b; Yaghoubi et al., 2015; Qing et al., 

2016). Measurements and drawings from slides were prepared manually with a drawing tube 
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mounted on an Olympus BX51 DIC Microscope (Olympus Optical, Tokyo, Japan), equipped 

with an Nikon DS-FI2 camera (Nikon Corporation, Tokyo, Japan) for photography. All 

examined populations as well as type slides were recorded as a video clips mimicking a 

multifocal observation through a light microscope (LM) following the video capture and 

editing procedures (De Ley and Bert, 2002). The resulting virtual specimens are available at 

http://nematodes.myspecies.info. Extraction and examination of female reproductive system 

was based on the method of Geraert (1973) and Bert et al. (2008). Illustrations were prepared 

based on light microscope drawings and modified by Adobe Illustrator CS3 and Adobe 

Photoshop CS6. 

For scanning electron microscopy (SEM), specimens from DESS were gradually 

transfered to water, then dehydrated in a battery of ethanol solutions and dried by critical 

point dried with CO2. After mounting on stubs samples were coated with gold and observed 

with a JSM-840 EM (JEOL, Tokyo, Japan) at 12 kV. For transmission electron microscope 

(TEM), specimens were fixed, ultra-thin sections were cut and sections were stained as 

detailed by Qing et al. (2017). Sections were observed with a JEOL JEM 1010. 

To test the feeding type, four fungal species (Flammulina velutipes, Lepista nuda, 

Botrytis cinerea and Pleurotus sp.) were used as they represent different fungal groups, easily 

be cultured in lab condition and previous studies (Okada et al., 2002; Okada and Kadota, 2003; 

Okada et al., 2005) has suggested some of them can be feed by Filenchus spp. These fungal 

were inoculated on potato dextrose agar (PDA) medium with three repeats for each species 

and incubated at 25℃ for 10 days until the mycelium covered the culture plates. 40 

individuals of M. pachycephalus and M. acarayensis were transferred to each plate and 

nematodes were extracted by Baermann tray after two months. Since Malenchus species are 

frequently associated with moss, it is consider as a potential host. Eurhynchium sp. was 

isolated from soil habited by M. pachycephalus, rinsed 5 times with distill water to remove 

attached detritus and then carefully transplant to culture plates with 1% agar in tap water. 

Controls plates were made using 1% agar in tap water to compare with the two treatments. 

Forty individuals were transferred to each plate and directly checked in binocular every three 

days for two months. 

Result and discussion 

Taxonomic overview 

The genus Malenchus was established by Andrássy (1968) with M. machadoi (formerly 
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Aglenchus machadoi Andrássy, 1963) as the type species. Later several new genera have been 

erected and later synonymized with this genus, for details see Geraert (2008). Within the 

genus, three subgenera are valid: Malenchus, Neomalenchus and Telomalenchus. 

Neomalenchus was initially established as a genus for species with indistinct median bulb in 

Malenchus (Siddiqi, 1979), but this genus was synonymized (Andrássy, 1981) in his 

comprehensive review of Malenchus and later considered as a subgenus (Siddiqi, 2000). 

Malenchus subgenus Telomalenchus was introduced to accommodate three species (M. 

williamsi Geraert and Raski, 1986; M. parthenogeneticus Geraert and Raski, 1986 and M. 

leiodermi Geraert and Raski, 1986) with straight amphideal aperture and less lateral incisures 

(four or six) (Siddiqi, 2000). Although Andrássy (2007) synonymized subgenus 

Telomalenchus with genus Fraglenchus, such an action was rejected by Geraert (2008). 

Currently, Malenchus contains 36 valid species and 3 nomina nuda (Geraert, 2008; 

Mundo-Ocampo et al., 2015; Qing et al., 2016). 

Geographic distribution 

Malenchus is a cosmopolitan genus and is reported from all continents except for 

Antarctica (Fig. 1). Among them, M. bryophilus (Steiner, 1914) Andrássy 1981, and M. 

acarayensis Andrássy, 1968 are the most frequently encountered species, while 18 species are 

only reported once from their type location (M. angustus Talavera and Siddiqi, 1996; M. 

anthrisulcus (Sumenkova, 1988) Ebsary, 1991; M. fusiformis (Thorne and Malek, 1968) 

Siddiqi, 1979; M. gratiosus Andrássy 1981; M. holochmatus (Singh, 1971) Siddiqi, 1986; M. 

herrerai Mundo-Ocampo, Holovachov and Pereira, 2015; M. kausari Khan and Ahmad, 1991; 

M. macrodorus Geraert and Raski, 1986; M. nobilis Andrássy, 1981; M. pampinatus Andrássy, 

1981; M. paramonovi Katalan-Gateva and Alexiev, 1985; M. parvus Brzeski, 1988; M. 

sexlineatus Qing, Sánchez-monge, Janssen, Couvreur and Bert, 2016; M. shaheenae Khan and 

Ahmad, 1991; M. solovjovae Brzeski, 1988; M. subtilis Lai and Khan, 1988; M. truncates 

Knobloch, 1976; M. parthenogeneticus Geraert and Raski, 1986; M. williamsi Geraert and 

Raski, 1986).  
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Figure 1. World distribution of Malenchus species. Species are labeled with different 

colors. 1. M. acarayensis. 2. M. Andrassyi Merny, 1970. 3. M. angustus. 4. M. anthrisulcus. 5. 

M. bryanti Knobloch, 1976. 6. M. bryophilus (Steiner, 1914) Andrássy, 1981. 7. M. exiguus 

(Massey, 1969) Andrássy, 1981. 8. M. fusiformis. 9. M. gratiosus. 10. M. holochmatus. 11. M. 

herrerai. 12. M. kausari. 13. M. labiatus Maqbool and Shahina, 1985. 14. M. laccocephalus 

Andrássy, 1981. 15. M. leiodermis Geraert and Raski, 1986. 16. M. machadoi (Andrássy, 

1963) Andrássy, 1968. 17. M. macrodorus. 18. M. nanellus Siddiqi, 1979. 19. M. neosulcus 

Geraert and Raski, 1986. 20. M. nobilis. 21. M. novus Mukhina and Kazachenko, 1981. 22. M. 

ovalis (Siddiqi, 1979) Andrássy, 1981. 23. M. pachycephalus Andrássy, 1981. 24. M. 

pampinatus. 25. M. paramonovi. 26. M. parthenogeneticus. 27. M. parvus. 28. M. 

platycephalus (Thorne and Malek, 1968) Andrássy, 1981. 29. M. pressulus (Kazachenko, 

1975) Andrássy, 1981. 30. M. sexlineatus. 31. M. shaheenae. 32. M. solovjovae. 33. M. 

subtilis. 34. M. truncates. 35. M. undulates Andrássy, 1981 and 36. M. williamsi.  

General morphology 

The body size of Malenchus ranges from 250µm to 900µm, the largest species is M. 

novus, while M. sexlineatus, M. bryanti and M. parvus are the three smallest species (Fig. 2). 

A ventrally arcuate habitus is the most common appearance, but a straight or “S” shape can 

also occasionally be found. Body behind vulva usually tapers markedly so that width at anus 

is about half of that at vulva, but an elongated-cylindrical shape similar to that of other genera 
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in Tylenchidae is also possible (e.g. Malenchus sp. C163 nested within Malenchus clade 

[Qing et al., 2017] but with elongated-cylindrical shape behind vulva). 

 

Figure 2. Body habitus and size in genus Malenchus. Size measured in µm and shown in 

longitudinal axis. A. M. novus from China. B-C. M. pachycephalus C116 from China. D. M. 

williamsi from Chile. E. M. solovjovae, from Poland. F-G. M. pachycephalus from Spain. H-J. 

M. pachycephalus C161 from Belgium. K-L. M. exiguus from China. M. M. undulates, from 

Philippines. N-P. M. acarayensis from Spain. Q-R. M. tantulus, from Malawi. S-T. M. 

nanellus, from Nigeria. U. M. parvus, from Mexico. V-X. M. sexlineatus, from Philippines. 

Female ventral views. A, B, D, G, H, L, T. Female lateral views. C, E, F, I, K, N, O, P, R, S, U, 

V, X. Male later view. J, M, Q, W. 
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Figure 3 Selected anatomic structures in Malenchus pachycephalus (A-I, L, M), M. 

sexlineatus (J) and M. exiguus (K). A. lateral view of amphideal fovea. B. head region, arrow 

indicates ventral view of amphideal fovea. C. spicule, after dissection. D. gubernaculum, after 

dissection. E. anterior part of intestine, arrow indicates brown granule. F. female gonad after 

dissection. G. ventral view of spicule. H. ventral view of cloacal, arrow indicates distal end of 

spicule and gubernaculum. I. lateral view of vulva region, arrow indicates swollen vagina. J. 

folded cuticle of type 1. K. folded cuticle of type 2. L. folded cuticle of type 3. M. ventral 

view of vulva, arrow indicates epiptygmata. ova = ovarium. ovi = oviduct. sp = spermatheca. 

Scale bar: A-D, J = 5µm. E-I, K-M = 10 µm. 
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Figure 4 Diagrammatic example of cuticle layers in Malenchus (A) and the variation of the 

cuticle as observed based on LM observation (B-E). A. Illustration of ultrastructure in M. 

pachycephalus based on TEM, adapted from Qing et al. (2016). (1) epicuticle. (2) cortical 

zone. (3) median zone. (4) basal zone. (a) annuli width. (b) groove depth. (c) groove width. 

B-E. Schematically representation of the most common cuticle appearances in Tylenchidae. B. 

Filenchus type with indistinct annuli. C-E. cuticle types in Malenchus. 

Cuticle annulation 

The cuticle in genus Malenchus is generally thick and folded between annuli (Figs.3J-L; 

4C-E; 5A) (Andrássy, 1981), in contrast to the typical finely-striated Filenchus (Figs 4B; 6C, 

E, F). The cuticle surface is smooth in most species but longitudinal striae can be observed 

occasionally under SEM (Fig. 7I, J). Annulations are prominent with a width of 0.76 to 2.38 

µm, conspicuous even under low magnification. Although with some variations, the 

annulation number (especially from anterior to vulva/cloacal) and width shows different 

ranges interspecifically and is a taxonomically useful reference (see details in Table1). 

The cuticle has been considered as an important generic character ever since this genus 

was proposed (Siddiqi, 1979; Andrássy, 1981; Geraert, 2008). However, a recent study shows 

that annulations can vary from prominent and folded to rather faint (Qing et al., 2017). These 

variations can be explained by different combinations of annuli width (a in Fig. 4A), groove 

height (b in Fig. 4A) and groove width (c in Fig. 4A) and therefore can be roughly clustered 

into three groups: (1) with indistinct folded part (Figs. 3J; 4C), annuli narrow and groove 

hardly visible in LM (a>4c, usually annuli width less than 1.2 µm), represented by species M. 

sexlineatus, M. parthenogeneticus, M. leiodermis and Malenchus sp. C163; (2) with 
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moderated folded cuticle annuli width (Figs.3K; 4D), groove narrow but visible (4c<a<2c, 

usually annuli width 1.2-1.6 µm), with species M. parvus, M. acarayensis, M. exiguus, M. 

nanellus, M. ovalis; (3) cuticle prominently folded (Figs. 3L; 4E), with spacious grooves and 

wide annuli (a<2c, usually annuli wider than 1.6µm); typical species include M. 

pachycephalus, M. solovjovae, M. pressulus, M. novus.  

Within each type, the groove appears with a narrow opening, forming a nearly-enclosed 

space. In TEM this groove lumen was embedded by unknown organisms which resemble 

conidia, zoospore or hypha of fungus (Figs. 5B, C, E, F). Remarkably, we recovered 18S 

rRNA of the fungus Malassezia sp. from M. pachycephalus, the sequence similar to a fungus 

associated with Malenchus sp. in forest soil (Renker et al., 2003). Such fungal sequences have 

been obtained five times during our studies on Malenchus using “nematode specific” primers 

(Qing et al., 2017). Fungi from the genus Malassezia are opportunists, causing infection in 

humans and animals; they are commonly isolated from the skin and scalp of humans 

(Cunningham et al., 1990; Marcon and Powell, 1992; Hay and Midgley, 2010) and also from 

insects (Zhang et al., 2003). Although it has been reported from several species (Malenchus 

spp., Meloidogyne sp., Acrobeloides sp. and Cephalobus sp.) and assumed to be selectively 

associated with nematodes (Renker et al., 2003) as a vector (Karabörklü et al., 2015) or in 

random adherence (Adam et al., 2014), the relationship of Malassezia and nematodes remains 

unknown. In this study, the recovered unknown cuticula-associated organisms confirm the 

association of nematodes with another organism, and such an organism is likely to be 

Malassezia sp. 

Cuticle ultrastructure 

The ultrastructure in the cuticle was conventionally divided into four layers (Decraemer 

et al. 2003): (1) epicuticle, (2) cortical zone, (3) median zone, (4) basal zone (including basal 

lamina) and all of these layers are present in Malenchus (Fig. 4A). The epicuticle and cortical 

and median zones generally resemble those of other Tylenchomorpha, whereas the radial 

striae in the basal zone are reduced in M. pachycephalus and M. acarayensis (Qing et al., 

2017). Although the cuticle ultrastructure shows intergeneric variation within 

Tylenchomorpha (Johnson et al., 1970; Mounport et al., 1991; Mounport et al., 1993b; 

Mounport et al., 1997; Valette et al., 1997), a radially striated layer in the basal zone was 

considered to be always present (Decraemer et al., 2003; Geraert, 2006). Although several 

structural cuticular elements are homoplasious within Nematoda, at less inclusive taxonomic 
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levels (e.g. on a family or genus level) the cuticle appears to be a more reliable phylogenetic 

marker (Decraemer et al., 2003). Thus, the divergent cuticle structure supports Malenchus as 

an evolutionarily divergent lineage within Tylenchomorpha and this character therefore 

important to define the genus. 

 

Figure 5 Cuticle ultrastructure of M. pachycephalus C161. A. longitudinal section in female 

middle body. B, C, E, F. unknown organisms present in annulation grooves. D. Cross section 

in female middle body. Scale bar: A = 2 μm. B, C, E, F = 0.5 μm. D = 5 μm. 
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Figure 6 Ultrastructure of cuticle and lateral region in Malenchus and Filenchus. A, C. F. 

discrepans. B, F. F. vulgaris. D, E. M. acarayensis. A, B, D. cross section of female middle 

body. C, E, F. longtitudinal section in female middle body. Scale bar: A, D, E = 2μm, B = 4 

μm, C, F=1. 

Head region 

The head of genus Malenchus is generally elevated, dorso-ventrally compressed 

(Andrássy, 1981) but more continuous in some species such as M. exiguus, M. 

parthenogeneticus and M. williamsi) (Figs.8; 9). Stylet usually delicate, comparable to 

Filenchus, but can be robust in some species (e.g. M. macrodorus, M. novus, M. 

pachycephalus, M. solovjovae). Cone part of stylet always heavier sclerotized but distinctly 

shorter (1/3-1/2 vs shaft) and thinner than shaft (Fig. 3B). Basal knobs flattened, directed 

backwards, forming a triangle-like base in stylet.  
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Amphideal fovea is usually invisible in Tylenchidae but is conspicuous spindle shaped 

(=large inner sacks) in Malenchus (Fig. 3A, B), a trait that corresponds to molecularly defined 

lineages and thus potentially useful in Malenchus delimitation (Qing et al., 2017). The 

amphideal fovea is wrapped in cuticular outgrowths, which form the finer clefts 

(Gómez-Barcina et al., 1992) resulting in either an S-shaped (Andrássy, 1981) or straight 

(Geraert and Raski, 1986) amphideal aperture. Although the aperture shape can change during 

development by the modification of the two outgrowths, it never switches from S-shaped to 

straight (Qing et al., 2016). The most common S-shaped aperture varies among species and 

can be roughly divided into two groups: (1) aperture starts with large round to oval shaped 

hole, sharply narrowing to a slit and ending at head base, represented by M. macrodorus, M. 

nanellus, M. pachycephalus, M. solovjovae, and M. sexalineatus; (2) the aperture slit is 

equally wide throughout its length, represented by M. acarayensis. Interestingly, the S-shape 

aperture is also present in some Filenchus species, which have only two lateral field incisures 

such as F. normanjonesi, F. facultativus, and F. helenae (Raski and Geraert, 1986b), but not in 

F. fungivorous (Bert et al., 2010), and never in Filenchus with four incisures. This is in line 

with the molecularly-based observation that Filenchus species with two incisures are more 

closed related to Malenchus than Filenchus species with four incisures (Atighi et al., 2013; 

Qing et al., 2017).  
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Figure 7 SEM of female M. pachycephalus C116 (A-H) and M. nanellus (I, J). A. en 

face view. B. vulva. C. ventral view of tail. D. lateral view of female head. E. lateral view of 

vulva region. F. lateral view of middle body showing smooth cuticle surface. G. lateral view 

of tail. H. lateral region of tail showing small ridges are stopped or interrupted. I. lateral 

region appears slightly crenated due to the extension of the cuticle annulations until ridge 

beneath. J. ventral view of anus showing cuticle surface with longitudinal striae. Scale bar: A, 

D, F, H, I, J = 1 µm. B, C, E, G = 5 µm. 
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Figure 8 Anterior part of different species in genus Malenchus. All specimens are from 

examined type/paratypes, except for M. exiguus from Chinese population. More picture and 

video vouchers see http://nematodes.myspecies.info. A. M. exiguus. B. M. pachycephalus. C. 

M. parvus. D. M. leiodermis. E. M. nanellus. F. M. ovalis. G. M. solovjovae. H. M. tantulus. I. 

M. williamsi. J. M. acarayensis. K. M. macrodorus. L. M. novus. M. M. malawiensis. N. M. 

sexlineatus O. M. parthenogeneticus. Scale bar = 10 µm. 

http://nematodes.myspecies.info/�
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Lateral region 

The lateral region is prominent, two incisures delimit a single narrow but elevated ridge 

(= protruding band, by Geraert and Raski [1986]; Geraert [2008]). In LM it appears as a plain 

ridge but in SEM or TEM several small ridges can be discerned (Figs. 5D; 6D; 7F, H, I). This 

feature is different from genus Filenchus (Fig. 6A, B) as well as other known species in 

Tylenchomorpha (Baldwin and Hirschmann, 1975; Mounport et al., 1991, 1993a; Mounport et 

al., 1993b; Mounport et al., 1997; Valette et al., 1997). The number of these small ridges is an 

interspecific variable, ranging from 3 to 14 based on SEM (Geraert and Raski, 1986; Brzeski, 

1988; Gómez-Barcina et al., 1992; Mundo-Ocampo et al., 2015; Qing et al., 2016). However, 

even based on SEM the actual number can be underestimated, as small ridges can be present 

below the elevated ridge of the lateral region and these are hard to observe based on a single 

SEM image plane (Figs. 7I; 10B). Therefore, a cross section is crucial to determine the correct 

number of small ridges, which can be up to 22 based on TEM (Figs. 5D, 6D) (Qing et al., 

2017).  

The boundary of lateral lines sometimes appears to be a crenated margin, based on LM 

(Knobloch, 1976; Siddiqi, 1979; Andrássy, 1981; Geraert and Raski, 1986; Siddiqi, 2000). 

However, unlike other species, this crenated lateral field appears to correspond with the width 

of the ridge base, and if narrow then the crenation can extend below the lateral ridge that 

appears as a crenated margin from a lateral view (the longitudinal lateral ridge overlap with 

transversal crenation in two focus planes, see Fig. 10A-C), while if the base is wide there is 

no overlap and the margin of the lateral field is smooth (transversal crenation cannot reach to 

bottom of longitudinal ridge, see Fig. 10D-F).  

The beginning of the lateral field range from few annuli after the head to the median bulb 

level (Figs. 9; 11) and ends at 1/4 to 1/3 of the tail. Interestingly, at least two start patterns 

have been observed (Fig. 10G, H), and the number of small ridges can be reduced at the 

anterior- or posterior-most part (Fig. 10I-M); they are clearly dissimilar to Cephalenchus 

(Mizukubo and Minagawa, 1985; Raski and Geraert, 1986a), which start from single ridge 

then hierarchically split three times to form five small ridges (six incisures). The start position 

of the lateral field has been used in species diagnosis and is indeed, consistent 

intraspecifically and varies interspecifically, based on our observations of 22 examined 

populations over 18 species. However, interpopulation differences have also been observed, 

for example the lateral field of M. nanellus starts at knob level (Troccoli and Geraert, 1995), 
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the mid-region of procorpus (Siddiqi, 1979; Andrássy, 1981; Siddiqui and Khan, 1983; 

Geraert, 2008) or even at the base of the procorpus (Geraert and Raski, 1986). If this is a 

matter of real variation or the presence of cryptic species (the examined paratype start at 

mid-region of the procorpus, other different reports may be cryptic species) remains to be 

investigated, but based on our data the starting position of the lateral ridge is a consistent 

character and taxonomically informative. This also concurs with the key to species provided 

by Andrássy (1981) and Geraert (2008).  

 

Figure 9 Illustration of anterior part of five Malenchus species showing general head 

shape, stylet and start position of lateral lines. A. M. acarayensis. B. M. exiguus, C. M. 

pachycephalus. D. M. nanellus. E. leiodermis. F. M. labiatus. Adapt from Andrássy (1981), 

Geraert and Raski (1986) and Maqbool and Shahina (1985). Scale bar = 10 µm 
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Figure 10 Illustration of lateral region in genus Malenchus. A-C. longitudinal lateral 

ridge narrow at the base, forming overlap with transversal crenation at two image plane and 

appears as crenated margin. A, B. cross section of lateral ridge. C. lateral view of lateral ridge. 

D-F. transversal crenation cannot reach bottom of lateral ridge, no overlap from lateral view 

and appears as smooth margin. D, E. cross section of lateral ridge. F. lateral view of lateral 

ridge. G, H. anterior start of lateral ridge. I-K. lateral ridge with small ridges stopped or 

interrupted. L, M. posterior end of lateral ridge. 

Prophasmid 

The phasmid usually occurs in the lateral region of the tail, but In Tylenchidae it is 

situated postmedian, just outside the lateral fields and termed prophasmid (Siddiqi, 1978). In 

females, the position ranges from 2-8 annuli anterior to 4-5 posterior vulva. Andrássy (1981) 

considered the prophasmid position as taxonomically informative at species level, ignoring 

the considerable variation presented in the same paper. Similar variations are also observed in 

this present study (Fig. 12); the intraspecific variation is often as large as the interspecific 

variation. Even in the same specimen both prophasmids can differ in up to 5 annuli from one 

another. Hence, this character is not reliable to distinguish species, except for M. williamsi 

with an unusual but conserved prophasmid position (post- vulval vs anterior to vulva in other 
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species, see Fig. 12). 

 

Figure 11 The relative origin positions of lateral lines in genus Malenchus. A. anterior of 

stylet. B. mid-region of stylet. C. level of knob. D. anterior of procorpus. E：mid-region of 

procorpus. F. base of procorpus. G. median bulb region. 1. M. acarayensis. 2. M. andrassyi. 3. 

M. angustus. 4. M. bryanti. 5. M. bryophilus. 6. M. exiguus. 7. M. gratiosus. 8. M. herrerai. 9. 

M. kausari. 10. M. labiatus. 11. M. laccocephalus. 12. M. machadoi. 13. M. macrodorus. 14. 

M. nanellus. 15. M. neosulcus. 16. M. nobilis. 17. M. novus. 18. M. ovalis. 19. M. 

pachycephalus. 20. M. pampinatus. 21. M. parvus. 22. M. pressulus. 23. M. sexlineatus. 24. M. 

shaheenae. 25. M. solovjovae. 26. M. subtilis. 27. M. truncates. 28. M. undulates. 29. M. 

leiodermis. 30. M. parthenogeneticus. 31. M. williamsi.  
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Figure 12 The relative position of prophasmid in Malenchus. All prophasmids located 

dorsal side near lateral lines, bars here only shows range of phasmid locations measured by 

number of annulations anterior/posterior to vulva. A. M. acarayensis. B. M. andrassyi. C. M. 

bryanti. D. M. bryophilus. E. M. exiguus. F. M. sexlineatus. G. M. macrodorus. H. M. 

malawiensis. I. M. nanellus. J. M. nobilis. K. M. ovalis. L. M. pachycephalus (Andrassy’s 

population). M. M. pachycephalus C161. N. M. parthenogeneticus. O. M. parvus. P. M. 

pressulus. Q. M. solovjovae. R. M. williamsi. Based on data from Andrássy (1981), Geraert 

and Raski (1986) and Qing et al. (2016) and this study. 

TABLE 2. Detail counts of female gonad cellular architecture.a 

Species 
Oviduct Spermatheca Uterus 

Row
s 

Cells per 
row 

Cells Cell rows 
Cells per 

row 
M. pachycephalus 2 3 16 (+2) 4 5 

M. acarayensis 2 4 17 (+2) 4 5 
M. ovalis 2 3 14 (+2) 4 5 

Malenchus sp. 
C163 

2 4 10 (+2) 4 5 
a Numbers in brackets indicate connecting cells between spermatheca and uterus. 

Reproductive system 

Female reproductive system monodelphic, ovary outstretched with oocytes arranged in a 

single row. Uterine sac spacious with thickened wall, eggs only present exceptionally 

(non-gravid) (Brzeski, 1988), post-vulval uterine sac (PUS) about half of body width. Vagina 
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has well developed muscles, perpendicular to body or slightly anteriorly direct. Vulva sunken, 

cavity shape with epiptygmata and lateral flaps (=dikes in Andrássy [1981]). 

Based on dissected gonoducts, the oviduct comprises two rows of three (M. 

pachycephalus, M. acarayensis and M. ovalis) or four cells (Malenchus sp. C163), the 

spermatheca is offset, comprises 10 to 17 cells (Table 2) and is connected to the uterus by two 

cells (uterus except for M. ovalis), and the uterus cells are arranged in four regular rows 

(=quadricolumella) of five cells (Figs. 3F; 13; Table 2). Our observations concur with other 

gonoduct studies of Tylenchidae (Bert et al., 2006); the oviduct and uterus rows have been 

considered as an evolutionary stable structure: two oviduct cell rows were considered as an 

apomorphy of the order Rhabditida and four rows in uterus were typical for Tylenchidae and 

Anguinidae (Geraert, 1983; Bert et al., 2006; Geraert, 2006; Bert et al., 2008). The cell 

number of the spermatheca is intraspecifically consistent in all examined specimens, 

supporting spermatheca number as a species-specific indicator (Bert et al., 2006; Bert et al., 

2008). However, additional observations based on more species are necessary to validate this 

character for Malenchus species identification. According to in vivo observations, the 

spermatheca of Malenchus appear as rounded to elongated and offset or bilobed-offset. 

However, examination of the expelled M. ovalis gonoduct shows that the bilobed appearance 

is the result of the non-offset part of spermatheca being filled with sperm. This confirms the 

observations of Qing et al. (2016) who presumed that the observed bilobed structure is the 

effect of sperm cells in the proximal part of the uterus and further limits the use of this trait in 

species diagnosis (Geraert and Raski, 1986).  

The vulva is delimited by a depression of the cuticle, usually a gradual sinking that 

extends over two or three adjacent annuli, this in contrast to a sharp sink of one annulus in 

Filenchus. Lateral flaps (i.e. lateral dikes by Andrássy [1981] or vulval membranes by Carta 

et al. [2009]) are the cuticular outgrowths lateral and perpendicular to vulval slit. 

Two-annuli-long lateral flaps (Fig. 14B) is most common but they can be also indistinct (e.g. 

M. pachycephalus, M. solovjovae, M. macrodorus) or extend to 7-8 annuli (M. williamsi) (Fig. 

14C). Interestingly, lateral flaps usually reduced in species with wider annuli. Epiptygmata 

(Fig. 14A-C) are found in all studied specimens and are considered as cuticular protrusions of 

the vaginal wall (Siddiqi, 2000). Although indistinct in LM, they can be clearly distinguished 

in SEM (Fig. 7B). A vagina with swollen muscle (Figs. 3I, 15D, E) is most promising 

character we recovered. Although the level of swollenness can vary among species (can be 

less swollen, e.g. Fig. 15E), the muscles in Malenchus are always thicker and darker in LM 

compare with Filenchus. This character has been noticed by several authors (Siddiqi, 1979; 
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Andrássy, 1981; Geraert, 2008), none of them used it as generic delimitation character.  A 

swelling of the proximal or middle part of the vagina is presents in all examined Malenchus 

and we consider this character as an important generic character. In Aglenchus and 

Coslenchus the vulva is also swollen but more in the distal part (Fig. 15) and this trait may 

have evolved independently. 

The male is generally less frequent than the female. Testis single, spermatogonia 

normally arranged in one row, spermatids few, indistinct. Spermatozoa always round but size 

can differ among species, filling proximal part of vesicula seminalis. Cloacal opening bears 

prominent cone with protruding lips. Spicules are variable in size and shape and thus 

taxonomically important in some species (Nickle, 1970; Hechler, 1971; Geraert and De Grisse, 

1982; Adams and Nguyen, 2002). Within Tylenchomorpha spicule is less informative in 

species diagnosis, however four characters are potentially useful on genus level: (1) curvature; 

(2) the length/diameter ratio; (3) the presence/absence of a velum and (4) the shape of spicule 

tip (Geraert and De Grisse, 1982; Geraert, 2006). The typical “tylenchid-like” shape of 

capitulum, shaft and blade varies among the four examined species (Fig. 16). Remarkably, the 

spicule tip is twisted in M. pachycephalus and M. acarayensis, the edges curve in at level of 

blade but abruptly twist 180° and curve outwards at the end of the blade, which appears as a 

C-shape in the cross view of distal end (Figs. 3C, G; 16). Such a structure is unique to 

Tylenchidae. The gubernaculum is similar to other Tylenchomorpha (Clark et al., 1973; Wen 

and Chen, 1976; Wang and Chen, 1985), being centrally concave with ridge and two curved 

sides expanding laterally (Figs. 3D, H; 16E, F).  

 



Chapter IV Redefinition of genus Malenchus  

114 
 

Figure 13 Line drawings of the cellular composition of oviduct, spermatheca and distal part 

of uterus of representative of the genus Malenchus. A. M. pachycephalus. B. M. acarayensis. 

C. Malenchus sp. C163. D. M. ovalis. Scale bar: A-C = 10 µm, D = 5 µm.  

 

Figure 14 Ventral view of typical vulval flap and epiptygmata in the genus Malenchus. A. 

flap occupies one annulus without overlapping on vulva. B. flap occupies about two annuli 

slightly overlapping vulva. C. flap occupies more than four annuli covering half of vulva.  

 

Figure 15 Vagina with different types of swollen walls. A-C. vagina with swollen wall in 

distal part, present in Coslenchus and Aglenchus. D, E. vagina with swollen wall in more 

proximal or middle part, present in Malenchus. F. thin and straight wall, most common type in 

Tylenchidae. 
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Figure 16 Spicules and gubernaculum in four Malenchus species. A, E, F. M. 

pachycephalus. B, C. M. acarayensis. D. Malenchus sp. C163. A, B, D. Lateral view of 

spicule. C. Lateral-ventral view of spicule. E, F. Distal end of spicule and gubernaculum. 

Scale bar = 5 µm 

Revised generic definitions 

Genus Malenchus Andrássy, 1968  

Syn. Neomalenchus Siddiqi, 1979 

Mukazia Siddiqi, 1986 

Paramalenchus Sumenkova, 1988 

Body straight or ventrally arcuate, dorso-ventrally flatted in cross view. Cuticle thick, most 

species have prominent folded annuli, occasionally with faint annuli, 0.76 to 2.38 µm, 

conspicuous even under low magnification. Head can be dorso-ventrally compressed or more 

rounded, with pouch-like amphideal fovea. Amphideal aperture usually S-shaped, but can 

also straight. Basal plate of cephalic framework is not flat (appears as M-shaped). Stylet 

weakly sclerotized, cone part of stylet always heavier sclerotized but distinctly shorter 

(1/3-1/2 vs shaft) and thinner than shaft. Basal knobs flattened, directed backwards, forming a 

triangle-like base in stylet. Lateral field with offset ridge, comprising 6-22 small 

sub-ridges, starting from stylet to level of median bulb and ending at middle of tail. Pharynx 

slender, median bulb from very weak to moderately developed, valvular apparatus present. 

Basal bulb short, pyriform. Female reproductive system monodelphic, prodelphic, straight, 

post-vulval uterine sac about half of body width. Prophasmid dorso-lateral, usually anterior 
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but rarely posterior to vulva. Vulva sunken, usually in a definite vulval cavity. Lateral flaps 

often present in species with narrow annuli (less than 1.8µm), but reduced or absent in species 

with wider annuli (more than 1.8µm). Epiptygmata present but may obscure in LM. Vagina 

with swollen wall in proximal or middle part. Body behind vulva markedly tapering so that 

width at anus is about half of that at vulva in most species, but can also be elongated behind 

vulva. Tail similar in both sexes. Male less frequent than females. Cloacal lips protruding. 

Bursa adanal, short, heavily curved. Spicule ventrally curved, tip is twisted in some species. 

Gubernaculum small. 

TABLE 2.3. Comparison of generic definitions of Malenchus. a 

This study Andrássy, 1968 Siddiqi, 1979 
1: Most species have prominent folded 
annuli, occasionally with faint annuli. 
2: head can be dorso-ventrally 
compressed or more rounded, with 
pouch-like amphideal fovea. 
3: basal plate of cephalic framework is 
not flat (appears as M-shaped) 
4: lateral field with offset ridge, 
comprising many small sub-ridges 
5: vagina with swollen wall in 
proximal or middle part. 
6: body behind vulva markedly 
tapering in most species, but can also 
elongated. 

1: prominent annulations 
of cuticle 
2: elevated head, 
dorso-ventrally 
compressed 
3: no description about 
basal plate of cephalic 
framework. 
4: plain and conspicuous 
lateral fields 
5: no description about 
vagina wall 
6: markedly narrowing 
body behind vulva 

1: thicker and folded annuli 
2: cephalic region is elevated (about four 
or more adjacent annuli high, is striated 
and prominently compressed 
dorso-ventrally) 
3: basal plate of cephalic framework is not 
flat (appears as M-shaped) 
4: lateral fields with two closely spaced 
incisures, in cross-section each field 
appearing as a narrow, rounded ridge. 
5: no description about vagina wall 
6: body behind vulva markedly tapering so 
that width at anus is about half of that at 
vulva, overall shape is elongate-fusiform. 

a Most important generic characters proposed in this study are marked in bold. 

TABLE 2.4. Comparison of generic definitions of Ottolenchus. a 

This study Husain and Khan, 
1967 (as subgenus) 

Wu, 1970 Siddiqi, 1979 

1: annulations usually 
less prominent, but can 
be relatively smooth. 
2: lateral region with one 
offset ridge which forms 
two incisures. 
3: head with low cephalic 
region, smooth and not 
prominently compressed 
4: amphideal fovea 
indistinct in LM. 
5: vagina wall not well 
swollen, vulva not 
sunken. 
6: body behind vulva not 
markedly tapers, 
elongate-cylindrical 
overall body shape. 

1: Body cuticle 
strongly annulated 
2: Lateral field with 
only two crenate 
incisures 
3: Head rounded 
with a slight 
depression at the 
base of lip region, 
without clear 
annulations 
4: no description on 
amphideal fovea 
5: no description on 
vulva  
6: no description on 
body behind vulva 

1: body annulation 
generally coarse. 
2: lateral field with two 
incisures 
3: no description on 
cephalic framework, en 
face rectangular with four 
lips, two subdorsal and two 
subventral, lateral lip 
regions in the form of two 
depressed areas. 
4: no description on 
amphideal fovea 
5: no description on vagina 
wall, rudimentary 
membrane of vulva present 
or not distinct 
6: no description on body 
behind vulva 

1: cuticle less thick and 
annulation less prominent. 
2: lateral field with two 
incisures 
3: head with low cephalic 
region, smooth and not 
prominently compressed 
3: basal plat is somewhat flat 
and demarcates the cephalic 
region.  
4: no description on amphideal 
fovea 
5: no description on vagina 
wall, vulva closed  
6: body behind vulva not 
markedly tapers, 
elongate-cylindrical overall 
body shape. 

a Most important generic characters proposed in this study are marked in bold. 

Comments on amended generic definitions 
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Based on characters recovered in the present study as well as available molecular 

evidence (Qing et al., 2016; Qing et al., 2017), we propose an amended definition of the 

genus Malenchus emphasizing on amphideal fovea, lateral region and vaginal structure. The 

most important traits of Malenchus, in comparison with earlier definitions, are presented in 

Table 3.  

Ottolenchus are intimately related to Malenchus and Filenchus clades group 2 by sharing 

two incisures. Indeed, such a similarity has been noticed and repeatedly discussed (Siddiqi, 

1979; Brzeski and Sauer, 1982; Raski and Geraert, 1986b; Brzeski, 1998; Siddiqi, 2000; 

Geraert, 2008). The two prevailing opinions are either Ottolenchus as a valid genus 

distinguished from Filenchus spp. by two incisures and ventral curved amphideal aperture 

(Siddiqi, 2000) or a synonym of Filenchus due to the high variability of lateral incisures 

(some species show faint interrupted inner lines in SEM) and an amphideal aperture similar 

with other known Tylenchus spp. and Filenchus spp. (Raski and Geraert, 1987; Andrássy 2007; 

Geraert, 2008). Molecular analysis indicates the two-incisures Filenchus (Fig. 6A) is 

separated from four-incisures Filenchus (Figs. 6B; 17) and suggests the lateral region is an 

important character to define genus (Qing et al., 2017). In such a scenario, we consider 

Ottolenchus as a valid genus and revised definitions are listed in Table 4. Given that SEM and 

other informative character are largely unknown in Filenchus or Ottolenchus, any action 

allocating species to one of the genera is difficult. Here we forward three taxonomic proposals 

for current Filenchus/Ottolenchus species: (1) species that fit definitions listed in Table 3 

should move to Malenchus, (2) species with two clear incisures, no pouch-like amphideal 

fovea, and non-swollen vaginas should move to Ottolenchus (further splits into more genera 

are still possible, as several molecular lineage present, but so far without morphological 

support), (3) type species of Filenchus (F. vulgaris) bear four incisures, thus all four-incisures 

species should stay in Filenchus. Probably some Tylenchus species also need to be included in 

the latter group.  

Observations on ecology 

The species in genus Malenchus generally appears in an undisturbed environment, 

preferably forest soil, often associated with moss or litter or aquatic sediments (all known 

species have at least once reported from these habitats). Occasionally, Malenchus is also 

found in agricultural fields (Few populations from M. acarayensis, M. andrassyi, M. labiatus, 

M. laccocephalus and M. ovalis, details see Table 5). Allocation of the feeding behavior in 
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Tylenchidae is a recurrent discussion point among nematologists (Bongers and Bongers, 

1998). Normally, Malenchus species are considered as epidermal and root hair feeders 

(Bongers and Bongers, 1998) or algal, lichen and moss feeders and parasites of lower and 

higher plants (Siddiqi, 1986, 2000; Andrássy, 2007). The feeding studies in Tylenchidae 

(Okada et al., 2002; Okada and Kadota, 2003; Okada et al., 2005) suggested a fungal-feeding 

habit for three Filenchus species. Our feeding test on four different fungal species and one 

moss species failed to culture either M. pachycephalus or M. acarayensis. However, we 

observed numerous brown to green granules consistently presented in the anterior intestine of 

two analyzed Malenchus species, but not for other fungal feeding nematodes from the same 

sample (Fig. 3E). Interestingly, such pigments resemble to moss and/or soil algae and this is 

consistent with the most reported habitats of Malenchus, indicating that moss and/or algae are 

likely to be a natural food resource. However, the direct feeding on moss or algae was not 

observed, thus further study is necessary to understand the exact feeding behavior of 

Malenchus as well as other Tylenchidae. 
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Table1. Number of cuticle annules and width in different species or populations of the genus Malenchus. Annuli number is arranged as ♀/♂ when both gender are present. 
Annuli width is given in Average ± SD. All number counts start from anterior end. M. pachycephalus from Gomez-Barcina et.al., 1992 probably contain a mixed population, 
the counts marked with (?) are probably not belongs to M. pachycephalus. 
Species and voucher No. Specimen No. Pharynx Vulva/Cloacal Total Annules width  Material Slide No. 
M. acarayensis 2♀♀ 66,68 188, 207 320,356 1.26±0.08 Qinling, China XQ048 
M. acarayensis C173 5♀♀1♂ 59-64/83 163-166/231 280-291/303 1.23±0.10/1.03 Qing et.al. 2017 XQ148 
M. bryophilus C171 3♀♀ 55-70 203-219 351-382 1.38±0.13 Qing et.al. 2017 XQ149 
M. exiguus 3♀♀1♂ 72-74/81 194-198/310 330-333/426 1.14±0.09/1.01 Qing et.al. 2016 XQ090, XQ091 
M. leiodermis 1♀ 79 208 340 1.05 Paratypes, Geraert and Raski, 

1986 
UGMD103431 

M. macrodorus 3♀♀1♂ 72-75/79 180-185/229 304-320/311 1.43±0.24/1.68 Paratypes, Geraert and Raski, 
1986 

UGMD103434, 
UGMD103435 

M. malawiensis * 1♀1♂ 55/63 185/284 295/360 1.43/1.03 Paratypes, Siddiqi,1979 UGMD100230, 
UGMD100231 

M. nanellus 1♀1♂ 63/92 202/234 320/325 0.93/0.84. Paratypes, Siddiqi,1979 UGMD100223, 
UGMD100224 

M. novus 1♀ 60 236 378 1.71 Qing et.al., 2016 XQ088 
M. ovalis C140 3♀♀1♂ 62-64/68 162-164/314 263-277/380 1.19±0.11/1.06 Qing et.al., 2017 XQ155 
M. ovalis ** 1♀ 71 219 343 1.2 Paratype, Siddiqi,1979 UGMD 100229 
M. pachycephalus C116 3♀♀ 1♂ 46/50 115-118/177 194-196/260 2.34-2.38/1.68,1.96 Qing et.al., 2017 XQ156 
M. pachycephalus C161 3♀♀1♂ 48-51 129-132/152 209-220/210 2.38±0.15/2.03 Qing et.al., 2017 XQ157 
M. pachycephalus 3♀♀ 58-60 185(?),138-142 320(?),229-225 2.15±0.07 Gomez-Barcina et.al., 1992 UGMD103002 

UGMD103003 
UGMD103004 

M. parthenogeneticus 1♀ 66 199 293 1.02 Paratypes, Geraert and Raski, 
1986 

UGMD103432 

M. parvus 2♀ 51, 54 143-147 281-305 1.35±0.14 Paratypes, Brzeski,1988 UGMD 100851 
M. sexlineatus 4♀ 70-75 182-185 289-296 0.76±0.03 Holotype, Qing et.al., 2016 UGMD104304 
M. tantulus *** 1♀1♂ 64/70 173/245 308/334 1.4±0.31 Paratypes, Siddiqi,1979 UGMD100225 
M. solovjovae 4♀♀ 49-50, 59? 133-135,196? 230-241, 320? 2.3±0.3 Paratypes, Brzeski,1988 UGMD 100852 
M. undulatus 2♀♀ 50,51 139,141 251,273 1.81±0.05 Qing et.al. 2017 XQ158 
M. williamsi 1♀1♂ 67 194/294 320/395 1.6/1.2 Paratypes, Geraert and Raski, 

1986 
UGMD103428 

Malenchus sp. C163 3♀♀ 80-85 271-280 436-460 0.98±0.1 Qing et.al. 2017 XQ159 
Duosulcius acutus 1♀ 131 364 >550 0.97 Paratypes, Siddiqi,1979 UGMD 100227 
*Paratype of Neomalenchus malawiensis Siddiqi, 1979, synonym of M. malawiensis (Siddiqi, 1979) Andrássy, 1981 
**Paratype of Neomalenchus ovalis Siddiqi, 1979, synonym of M. ovalis (Siddiqi, 1979) Andrássy, 1981 
***Paratype of M. tantulus Siddiqi, 1979, synonym of M. acarayensis by Geraert and Raski (1986) 
Table 2. Recovered habitats of different species in genus Malenchus 
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Species Habitats Reference/Comments 
M. acarayensis Tropical rain forest litter Andrássy, 1968 

Sand dune forest Wasilewska, 1970 
Soil around white birch (Betula papyrifera) near bog and lake area. Knobloch, 1976 
Soil around roots of tomato Siddiqi, 1979, Syn. M. tantulus 
Grass root, park near lake Andrássy, 1981, Syn. M. cognatus 
Forest soil around root of Albizia prosera, Quercus incana and Terminallia belerica Lal and Khan, 1988 
Soil around root of Quercus rotundifolia Gomez-Barcina et al., 1992 

M. andrassyi Flooded rice field Merny, 1970 
Soil around pennisetum purpureum Siddiqi, 1979 
Soil around root of pear (Pyrus communis); mango (Mangifera indica); Wheat (Triticum aestivum). Maqbool and Shahina, 1985 

 Forest soil Coosemans, 2002 
M. angustus Soil around moss Talavera and Siddiqi, 1996 
M. anthrisculus Rhizosphere of Anthriscus sylvestris in flood land meadow Sumenkova, 1988 

Syn. Paramalenchus anthrisculus. 
M. bryanti Soil around white birch (Betula papyrifera) near bog and lake area. Knobloch, 1976 

Moss soil Andrássy, 1981 
M. bryophilus Arctic island Loof, 1971 

Moss from rock; near root of reed grass; root of willow; sandy soil in the vicinity lake; moss from soil; 
forest litter; forest soil. 

Andrássy, 1981 

Meadow, Moss Coomans, 1989 
Grassland Bert et al., 2003 

M. exiguus Root of grass in Picea engelmanni infected by Engelmann spruce beetle. Massey, 1969, Syn. Aglenchus exiguus 
Soil around maple tree (Acer saccharum); birch tree (Betula sp.); Dryas sp. near lake area; red cedar 
(Thuya plicata); spruce (Picea glauca); Douglas fir (Pseudotsuga menziesii); spruce (Picea engelmanni); 
trembling aspen (Populus tremuloides); alpine fir (Abies lasiocarpa); Pine (Pinus contorta); wet moss; 
grass 

Wu,1970, Syn. Ottolenchus sulcus 

Soil around root of horse chestnut (Aesculus hippocastanum). Siddiqi, 1979 
Root of strawberries near lake Szczygiel, 1974 
Soil from deciduous forest near the root of birch tree (Betula sp.) Qing et. al., 2016 
rhizosphere of Bromus sp. Panahandeh et al., 2014 

M. fusiformis Prairie soil Thorne and Malek, 1968 
Syn. Tylenchus fusiformis 

M. gratiosus Moss Sphagnum sp. from virgin forest Andrássy, 1981 
M. herrerai Epiphyte moss associated with coffee plants Mundo-Ocampo et al. 2015 
M. hexalineatus Tropical rainforest, litter under of Lithocarpus llanosii Qing et al., 2016 
M. holochmatus Rhizoids of moss Singh, 1971, Syn. Tylenchus holochmatus 
M. kausari Soil around roots of grass Cyanodon dactylon  Khan and Ahmad, 1989 
M. labiatus Soil near root of sugarcane (Saccharum officinarum) Maqbool and Shahina, 1985 
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rhizosphere of sugarcane Yaghoubi et al., 2015 
M. laccocephalus Moss from Muhapa tree; moss from trunks in rain-forest Andrássy, 1981 

Soil around root of pear (Pyrus malus) Maqbool and Shahina, 1985 
Syn. M. pyri 

M. leiodermis Freshwater soil beneath thick tundra Geraert and Raski,1986 
Volcanic soil of a pine-oak forest, Brzeski, 1988 

M. machadoi Moss from Moua tree Andrássy, 1963 
M. malawiensis Soil around roots of Eucalyptus saligna; around root of Pennisetum purpureum Siddiqi, 1979, Syn. Neomalenchus 

malawiensis 
M. nanellus Soil around root of maize (Zea mays) in experimental plot. Siddiqi, 1979 

Moss from trunk of a willow; Sand soil in the vicinity of a small lake Andrássy, 1981 
Soil near root of sugarcane (Saccharum officinarum) Maqbool and Shahina, 1985 
Benthos from stagnant brooklet, mud; border of mangroves under pandanus tree; sagu tree; coconut 
plantation, among grass; secondary rainforest, clay under leaves; cowpat puddle with duck-weed; Bank 
of swamp 

Troccoli and Geraert, 1995 

Soil around root of fern and moss in forest Qing et. al., 2016 
Rhizosphere of grasses Panahandeh et al., 2015b 

M. neosulcus Sphagnum sp. moss from virgin forest Geraert and Raski, 1986 
M. nobilis Soil around grass root from a garden Andrássy, 1981 
M. novus Soil near the root of Echinopanax elatum, Abies nephrolepis and Pinus koraiensis Mukhina and Kazachenko, 1981 

Deciduous forest soil around root of Quercus sp Qing et al., 2016 
M. ovalis Soil around roots of Chili (Capsicum annuum) Siddiqi, 1979, Syn. Neomalenchus ovalis 

Soil around root of Quercus rotundifolia Gomez-Barcina et al., 1992 
Wet humus from the base of a palm Andrássy, 1981 

M. pachycephalus Fern grass; soil around root of Alnus glutinosa; soil around grass root, dry moss Andrássy, 1981 
Soil around root of Quercus rotundifolia Gomez-Barcina et al., 1992 
Soil from deciduous forest Qing et al., 2016 
Moss mixed with soil from base of birch tree (Betula sp.) in forest Qing et al., 2017 

M. pampinatus Soil around grass root. Andrássy, 1981 
M. paramonovi Rhizosphere soil from mixed forest of scots pine (Pinus sylvestris) and spruce (Picea sp.) Katalan-Gateva and Alexiev, 1989 
M. 
parthenogeneticus 

Freshwater soil beneath thick tundra Geraert and Raski,1986 

M. parvus Sandy soil near Vaccinium sp. root Brzeski, 1988 
M. platycephalus Soil near root of grass and aquatic plants near river; brush thicket Thorne and Malek, 1968, Syn. Tylenchus 

platycephalus 
M. pressulus Soil of coniferous forest Kazachenko, 1975 

Syn. Aglenchus pressulus 
Soil of grass root Andrássy, 1981 
Beech forest soil Zell, 1988 
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Rhizosphere of Vaccinium sp. in forest Wisniewska and Kowalewska, 2015 
M. shaheenae Soil around root of unidentified wild trees in forest. Khan and Ahmad, 1991 
M. solovjovae Sandy soil near root of various shrubs, close to a lake; sandy soil near birch tree (Betula sp.) Brzeski, 1988 
M. subtilis Forest soil around root of Bakan (Melia azedirach) Lal and Khan, 1988 
M. truncatus Soil under moss and leaf litter in low, bog-like area near woods. Knobloch, 1976 
M. undulatus Rainforest litter; tropical, soil under leaf Andrássy, 1981 

Rhizosphere of grasses Panahandeh et al., 2015b 
Soil form moss  Qing et al. 2017 

M. williamsi Freshwater soil beneath thick tundra Geraert and Raski,1986 
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Abstract 

3D printing technology has showed its importance in many fields. In present study, the 

potential of such technique in zoological systematics was assessed. For the first time, 3D 

printed models were incorporated in the description of a new genus as a complement to 

pictures and drawings to illustrate complex 3D structures and to be used in education. Hereby, 

we also tested the performances of different printing materials and forwarded resin as the 

most suitable option for the zoological field. As a case study, Labrys chinensis gen. nov., sp. 

nov. was described using an integrative approach: detailed morphology based on light- and 

electron microscopy, phylogenetic position as revealed from two ribosomal RNA genes, 

generic traits were tested for homoplasy, and the intra- and inter-population variations of four 

recovered populations were analyzed. The new genus belongs to subfamily Tylenchinae, 

family Tylenchidae and infraorder Tylenchomorpha. It is characterized by unique labial plate 

that has four narrow lobes with tips detached from adjacent cuticle, laterally broad elongated 

amphidial apertures, a strong sclerotized excretory duct, round spacious postvulval uterine sac, 

and spicule with a sharp protrusion at blade.  

Keywords: 3D modeling – Nematode - new genus - new species - Tylenchidae. 
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Introduction 

Integrative taxonomy was introduced as a comprehensive framework to delimit and 

describe taxa by gathering together information from different types of data and 

methodologies (Dayrat 2005; Will et al. 2005) and has been considered as the most efficient 

and theoretically grounded approach to define robust species hypotheses (De Queiroz 2007; 

Samadi and Barberousse 2006). The commonly-used complementary perspectives include 

phylogeography, comparative morphology, population genetics, ecology, development and 

behavior. In present study we introduce 3D printing in generic description. Models are 

incorporated as a complement to pictures and drawings to illustrate complex 3D structures. 

Aside from taxonomy, we show its potential applications in linking research frontiers to 

education. We also compared the performance of printing materials and proposed the most 

suitable option. 

Nematodes belong to Tylenchidae are abundant and diverse. Ecologically, they are 

important soil fauna which may constitute up to 30% of the nematodes in any given soil 

sample (Ferris and Bongers 2006; Yeates and Bird 1994). However, it is taxonomically 

notorious as most species combine a low observational resolution with high intraspecific 

variability. As a result, many descriptions are ambiguous (mainly base on light microscopy) 

and several genera were polyphyletic (Qing et al. 2017). Here we add a new genus, Labrys 

chinensis gen. nov., sp. nov. Integrative approaches were applied to increase descriptive 

resolution: detailed morphology based on light microscopy (LM) and scanning electron 

microscopy (SEM); 3D models were built and printed; selected generic traits were tested for 

phylogenetic homoplasy; four populations were recovered and their intraspecific variation 

was analyzed. The results expanded our knowledge on Tylenchidae and provided an example 

for future species description in taxonomically difficult group. 
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Materials and methods 

Sample collecting and processing 

A total of 38 individuals were collected in four locations in China (Table 1). Soil 

samples were incubated for 48 h on plastic trys lined with paper towels. Nematodes were 

concentrated using a sieve (25 µm opening). After removing water, nematodes were rinsed 

with DESS solution and transferred to glass vials for preservation and transportation. 

DESS-preserved specimens were rinsed several times with deionised water and then 

transferred to anhydrous glycerin for morphological analyses (Yoder et al. 2006).  

Table 1. Sampling locations and GenBank accession numbers of four Labrys chinensis gen. 

nov., sp. nov. populations used in this study. 

Populations Individuals. 
GenBank accession number 

Locations 
28S 18S 

P1 13 
KY776621, KY776622, 

KY776623, KY776624  
KY776632 

Taibai, China (34° 03'40"N, 107° 41' 

9.6"E) 

P2 8 

KY776616, KY776617, 

KY776618, KY776619, 

KY776620 

KY776633 
Meixian, China (34°05'18.5" N 

107°47'26.6" E) 

P3 8 

KY776611, KY776612, 

KY776613, KY776614, 

KY776615 

KY776630 

Shimen, China (29°56'08.3" N 

110°47'13.1" E, 30°01'55.2" N, 

110°39'54.0" E) 

P4 9 

KY776625, KY776626, 

KY776627, KY776628, 

KY776629 

KY776631 
Zhouzhi, China (107°47'9.4" E, 

33°54'6.5" N) 

Morphological analyses 

Measurements and drawings were prepared manually with a drawing tube mounted on an 

Olympus BX51 DIC Microscope (Olympus Optical, Tokyo, Japan). The holotype of the new 

species was recorded as video clips mimicking LM multifocal observations (De Ley and Bert 

2002) and these are available online at http://www.nematodes.myspecies.info. Illustrations 

were prepared manually based on light microscope drawings and edited by Adobe Illustrator 

CS3 and Adobe Photoshop CS3. For SEM, specimens from DESS were gradually washed 
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with water and post-fixed with 2% PFA + 2.5% glutaraldehyde in 0.1M Sorensen buffer, then 

washed and dehydrated in ethanol solutions and subsequently critical point-dried with CO2. 

After mounting on stubs, the samples were coated with gold and observed with a JSM-840 

EM (JEOL Ltd., Tokyo, Japan) at 12 kV.  

Molecular phylogenetic analyses 

Genomic DNA was extracted from DESS-preserved specimens with worm lysis buffer 

(Yoder et al. 2006). The extracted samples were frozen for 10 min at 20 °C. 1 µL proteinase K 

(1.2 mg/mL) was added to the samples before incubation, 1 h at 65 °C followed by 10 min at 

95 °C. The D2D3 domains of 28S ribosomal RNAs (rRNA) were amplified with primers D2A 

(5’-ACAAGTACCGTGAGGGAAAGT-3’) and D3B 

(5’-TGCGAAGGAACCAGCTACTA-3’). The 18S rRNAs were amplified with primers 

TylF1 (5’-GCCTGAGAAATGGCCACTACG-3’) and TylR2 

(5’-TGRTGACTCRCACTTACTTGG-3’). The PCR conditions were 30 s at 94 °C, 30 s at 

54 °C and 2 min at 72 °C for 40 cycles. Newly obtained sequences were deposited in 

GenBank (Table 1). Multiple alignments of the different genes were made using the Q-INS-i 

algorithm implemented in MAFFT v. 7.205 (Katoh and Standley 2013) and alignments are 

available at TreeBASE (http://purl.org/phylo/treebase/phylows/study/TB2:S21161). The 

best-fitting substitution model was estimated using AIC in jModelTest v. 2.1.2 (Darriba et al. 

2012) and GTR+I+G was selected as best scored model for both markers. Maximum 

likelihood (ML) analysis was performed with 1000 bootstrap (BS) replicates under the 

GTRCAT model using RAxML 8.1.11 (Stamatakis et al. 2008) and Bayesian inference (BI) 

was carried out with the GTR+I+G model using MrBayes 3.2.3 (Ronquist et al. 2012). 

Analyses were run for 5 × 106 generations and Markov chains were sampled every 100 

generations. Burnin was arbitrarily chosen to be 25% of the results, and evaluated using a 

generation/Loglikelihood scatter plot. The ML and BI analyses were performed at the 

CIPRES Science Gateway (Miller et al. 2010). Gaps were treated as missing data for all 

phylogenetic analysis. All trees were visualized with TreeView v. 1.6.6 (Page 1996). ML BS 

values and Bayesian posterior probabilities (PP) were summarized on the consensus tree using 
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Adobe Illustrator CS3.  

Homoplasy test 

To provide an objective estimation on evolutionary conservation of lip pattern and its 

robustness as generic delimitation marker, we calculated the homoplasy indices, the retention 

index (RI), the consistency index (CI), the observed number of character transitions (obs.) and 

the permutation of character values (perm.) (Maddison and Slatkin 1991) across the BI 

consensus tree. We consider high RI and CI values (≥0.80) or low obs./perm. ratio (≤0.45) to 

be indicative that the analyzed traits evolved slowly enough to retain phylogenetic 

information and low homoplasy. All analysis was performed in Mesquite 3.10 (Maddison and 

Maddison 2016). 

Table 2. Homoplasy test for lip region arrangement. RI: retention index, CI: consistency 

index, obs: observed number of character transitions; permu, permutation number of character 

transitions. 

 18S  28S 
RI 0.91 0.96 
CI 0.80 0.87 
obs. 10 8 
perm.  28 29 
obs/perm. 0.36 0.27 

 

Table 3. Nucleotide diversity of 28S rRNA among four recovered populations (P1-P4) of 

Labrys chinensis gen. nov., sp. nov. In bold is nucleotide diversity between populations 

measured by Fst. In the diagonal: nucleotide diversity within each population measured by θπ 

and θS , indicated in order of θπ / θS. All FST estimates were highly significant at p<0.05. 

 P1 P2 P3 P4 
P1 0.50/0.54    
P2 0.89 1.4/0.96   
P3 0.92 0.93 9.8/2.9  
P4 0.94 0.94 0.93 2.8/1.9 
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Analyses of population genetic structure 

To visualize population structure and display conflicts in the data by taking into account 

incompatible phylogenetic signals, we generated phylogenetic networks by employing the 

NeighborNet algorithm (Bryant and Moulton 2004) with uncorrected pairwise p-distances in 

the program SplitsTree v4.10 (Huson and Bryant 2006). 1000 pseudo-replicates (result only 

showed among populations) bootstrap analysis was conducted to assess the support for splits 

in the network. We also estimated nucleotide diversity (θπ and θS) within population and 

genetic variation among the four populations by fixation index (Fst). All diversity and 

demographic analyses were performed using Arlequin 3.1 (Excoffier et al. 2005).  

3D modeling and printing 

To visualize important morphological characters and facilitate zoological education, 3D 

models were reconstructed by Autodesk Maya following the procedure of Qing et al. (2015). 

Next to the new genus, three other Tylenchidae genera (Tylodorus sp. Cephalenchus sp. and 

Cucullitylenchus sp.) were modeled in order to visualize intra-family lip region variations and 

test printing performance through a variety of nematode taxa. The constructed models were 

converted to .stl format and MiniMagics 3.0 was used to inspect bad edges and multiple shells. 

Each model was printed by three commercial materials: PLA (polylactic acid) and ABS 

(Acrylonitrile Butadiene Styrene) were printed by MakerBot Replicator 2 using FDM (fused 

deposition modeling) method, while resin was printed by RSPro 450 Industrial 3D printer 

using stereolithography method. All the model files and the printing video/pictures are freely 

available at worldwide 3D designer community Thingiverse (www.thingiverse.com), 

allowing our designs to be discussed and improved by the science community. 

Results 

Phylogenetics analysis and homoplasy test 

In both analyses the tree topologies regarding the major clades of Tylenchidae are 
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congruent with recently published studies (Atighi et al. 2013; Qing et al. 2017; Qing et al. 

2015). The monophyly of all Labrys chinensis gen. nov., sp. nov. populations is fully 

supported (BI=1, BS=100) across two genes. The new genus is sister to a clade containing 

Filenchus + Malenchus based on 28S (BI=1, BS=98) or to Filenchus misellus (Andrássy 1958) 

Raski & Geraert, 1987 based on 18S (BI=1, BS=91) (Figs 4, 5). As already noted by Qing et 

al. (2017), the polyphyly genus Filenchus contains at least 3 clades. Among these clades, F. 

misellus and F. chilensis Raski & Geraert, 1987 formed a separate clade, separated from the 

type species of the genus (F. vulgaris (Brzeski 1963) Lownsbery & Lownsbery 1985). Such 

separation is also morphologically supported by their unique amphidial aperture pattern 

(Brzeski and Sauer 1982; Karegar and Geraert 1998; Torres and Geraert 1996). Therefore, F. 

misellus and F. chilensis can be designated as one or even two separate genus/genera. 

However, this phylogenetic grouping is based on only few GenBank sequences without 

morphological vouchers, limiting the validity of further taxonomic actions.  

Tylenchidae taxonomy is controversial and problematic with several invalid or 

homoplastic generic characters (Qing et al. 2017) meaning that an objective selection for 

morphological characters that define phylogenetic clades is necessary. In this study 

homoplasy tests of lip region pattern in 18S and 28S rRNA phylogeny trees indicated strong 

phylogenetic signals (RI>0.85, CI≥0.80, obs/permu<0.45) (Table 2), indicating it is a 

relatively conserved character that can be used as generic character. 

Population structure 

The Neighbor-net analysis based on 28S rRNA revealed four major clades (Fig. 6A), 

supported by high inter-population genetic divergence (Fst>0.8) (Table 3) and with the 

geographic distribution: Population No. 1 (P1), Population No. 2 (P2) and Population No. 4 

(P4) are ca. 10-20 km far from each other and Population No. 3 (P3) is distantly separated 

from the other populations at around 600 km (Fig. 6B). The most interesting general result is 

the presence of multiple lineages (P1, P2, P4) occurring in a relatively small geographical 

region. Although the divergence is relatively low, and network analyses shows that historical 

admixture across the range may exist, all lineages are well separated. This suggests that either 

the contemporary gene flow was interrupted for an unknown reason or that ancestral 
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polymorphisms have been retained. The intra-population nucleotide also shows diversity, the 

lowest divergence in P1 (θπ=0.50, θS=0.54) and the highest in P3 (θπ=9.8, θS=2.9). However, 

all populations do not show morphological or morphometrical inter- or intra-population 

differences. 
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Figure 1. LM pictures of Labrys chinensis gen. nov., sp. nov. A-E: female cephalic region, 

arrow point lateral view of amphidial aperture. F: excretory pore and duct. G, H: vulva. I: 

ventral view of excretory pore. J: ventral view of vulva. K: ventral view of cloacal. L, M: 

ventral view of spicule, arrow point sharp protruding in spicule blade. N: male tail tip. O, P: 

female tail tip. Q, R: ventral view of spicule. S, U: female habitus. T: male habitus. 

 



Chapter V Description of Labrys chinensis  

138 
 

Figure 2. Line drawing of Labrys chinensis gen. nov., sp. nov. A, B: female anterior body. 

C-E: female cephalic region. F: excretory pore and sclerotized duct. G: male tail tip. H: 

female tail tip. I: male tail. J: female tail. K: vulva. L: anus. M: cloacal region. N: female 

gonad. O, P: lateral view of spicule. Q: ventral view of spicule. R: male habitus. S, T: female 

habitus.  

 

Figure 3. SEM of Labrys chinensis gen. nov., sp. nov.. A, B: en face view of cephalic region. 

C: ventral view of anterior body. Arrow indicates excretory pore. D: lateral view of anterior 

body. E: ventral view of vulva. F, G: lateral view of vulva. H, I: female tail. Scale bar: A, B=1; 

C, D, F, G = 5 µm; E, H, I=10 µm 

Taxonomy 

Labrys gen. nov. 
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DESCRIPTION 

Same with species description. 

DIAGNOSIS AND RELATIONSHIP 

The new genus belongs to subfamily Tylenchinae, family Tylenchidae. It is 

characterized by unique labial plate that has four narrow lobes with detached tips from the 

adjacent cuticle, visible in LM as two small protruding lips at the anterior end (Figs 1A, B; 2C, 

D). Geraert and Raski (1987) attributed the Tylenchidae lip region into seven patterns and the 

pattern in Labrys gen. nov. differs from all known lip patterns in Tylenchidae and is here 

considered as an eighth unique pattern. Beside, the wide, laterally broad and elongated 

amphidial aperture (Fig. 1D), the spicule with a sharp protrusion at the blade (Fig. 1M) and 

round spacious PUS are also very rare in Tylenchidae. The new genus resemble genera 

Allotylenchus, Lelenchus, Filenchus and Polenchus in general appearances, detailed 

comparisons the see Table 4. Genus Sakia also similar to presented new genus (broad cap-like 

cephalic region and the sclerotized excretory duct), though its validation is still in discussions 

(Fortuner and Raski 1987; Geraert 2008; Husain 1972; Siddiqi 1986,2000). The type species 

S. typica Khan (1964) was described without drawings but still shows several differences: 

small, oval slit amphidial aperture (vs broad and elongated aperture, obvious from laterally 

view), stylet with cone equal to shaft (vs shaft two times more than cone), spermatheca not 

set-off (vs spermatheca set-off) and a reduced PUS (vs round spacious PUS). Other species 

belong to Sakia are all have the anterior end without protruding lips, spicule without sharp 

protrusion and different in lateral incisures (absent/four in Sakia vs two in Labrys gen. nov.). 

ETYMOLOGY 

The selected genus name is derived from the shape of labial plate, which resembles a 

symmetrical double-bitted axe, one of the famous symbols of Greek civilization. 

TYPE AND ONLY SPECIES 

Labrys chinensis gen. nov., sp. nov.  

Labrys chinensis gen. nov., sp. nov. (Figs 1-3, Table 5). 

ZooBank (zoobank.org) identifier: CE6004B6-D242-4989-9ABE-1F000FA2AEFE. 

Holotype 

Female, from population P1, recovered from soil underneath Quercus aliena from Taibai 
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(34° 03'40"N, 107° 41' 9.6"E), China, at an altitude of 1963 m.a.s.l. Deposited at the Ghent 

University Museum, Zoology Collections, collection number UGMD 104322. 

Paratypes  

Four females and one male paratypes collected from the same location and same sample 

of holotype. Deposited at the Ghent University Museum, Zoology Collection, collection 

number UGMD 104323, Ghent University, Belgium. Additional paratypes are available in the 

UGent Nematode Collection (slide UGnem-162) of the Nematology Research Unit, 

Department of Biology, Ghent University, Belgium. 

TYPE HABITAT AND LOCALITY 

Type population P1 from soil underneath Quercus aliena from Taibai (34° 03'40"N, 

107° 41' 9.6"E), China, at an altitude of 1963 m.a.s.l. Three other populations were found in 

different locations in China (Table 1). 

DESCRIPTION  

Female: body slender, straight to ventrally arcuate. Cuticle appearing as bright lining in 

stereomicroscopy, smooth in LM but finely striated in SEM. Lateral field distinct, an elevated 

ridge forming two incisures, starts at level of metacorpus. Cephalic region rounded, 

continuous, framework weak, not sclerotized. Labial plate offset and constricted 

dorso-ventrally, forming four lobes, taping towards tip and detached from adjacent cuticle 

(Figs 3A, B; 4 type VIII). Labial papillae six, arranged as a circle in oral disc. Cephalic 

papillae invisible. Amphidial apertures broad slits, laterally elongated, confined in first 

annulation after labial plate, edge of apertures thicker than adjacent cuticle forming a elevated 

ring (Fig. 3A, B). Stylet knobbed, shaft about two times longer than cone. Dorsal pharyngeal 

gland orifice close to stylet base. Excretory pore wide 2.0-2.5 µm, excretory duct long, 

heavily sclerotized, generally at the level of pharyngo-intestinal junction. Deirids at the level 

of basal bulb. Hemizonid just above excretory pore. Corpus cylindroid, metacorpus 

elongated-fusiform, its cuticular valve weak, and gradually transiting to cylindrical isthmus. 

Basal bulb spindle-shaped. Vulva with small flap, one annulus wide. Vagina wall thin, 

perpendicular to body. Postvulval uterine sac (PUS) round, occupying full body width, one 

body diameter long. Female gonoduct monodelphic, prodelphic. Ovary outstretched, oocytes 
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in one row. Spermatheca offset, filled with spherical sperm cells. Uterus quadricolumellate, 

probably with five or six cells in each row.  

Male: Bursa ad-cloacal, slightly crenated. Spicules with velum, proximal part of blade 

sharply protruding, gubernaculum simple. Tails filiform, ending in a rounded terminus. 

ETYMOLOGY 

Species name is given after China, where it was recovered. 

 

Figure 4. 50% majority rule consensus tree of Bayesian phylogeny analysis of the 18S rRNA. 

Branch supports is indicated in the following order: PP value in BI analysis/BS value from 
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ML analysis. Illustrations indicate lip region arrangement in each clade and codes of each 

type (I-VII) follows Geraert & Raski (1987). I: front plate laterally elongated, undivided, 

carries al1 the sensillae. The amphidial apertures are entirely within the plate; II-a: Amphidial 

apertures are not confined to the oral plate but continue on the lateral side as longitudinal slits. 

The end-on view is round to quadrangular; II-b: Similar with II-a except for a dorso-ventrally 

flattened end-on view; III: Slit-like amphidial apertures confined to the oral plate but the slits 

are dorso-ventrally directed. IV: Offset oral disc, the cephalic region is dorso-ventrally 

flattened. The amphidial aperture is very long and mostly sinuous, it starts at oral disc and 

continues longitudinally on the narrow lateral side of the cephalic region; V-a: amphidial slits 

start immediately at the oral disc, laterally directed but are only found on the front end of the 

cephalic region. The amphidial apertures are surrounded by a plate that bears the four cephalic 

papillae, that plate is constricted dorso-ventrally to form lobes; V-b: similar with V-a but 

labial plate is constricted to form a cleft and with seta; VI: Labial plate undivided, four 

prominent cephalic papillae dome-shaped, outside of anterior surface. Amphidial apertures 

start between or outside the four cephalic papillae and are simple oblique slits or have an 

inverted V-shape; VII: with very small pore-like amphidial apertures. The lip region of 

Labrys chinensis gen. nov., sp. nov. is different from all known type thus considered as VIII.  

Table 4. Comparison of Labrys chinensis gen. nov. to other related genera in Tylenchidae.  

Genera 

Characters 

Anterior 

end 

Amphideal 

fovea 
Median bulb 

Flap in 

Vulva 

Excretory 

duct 

Spicule 

blade 

Labrys gen. 

nov. 

Two lips 

protruding 
Indistinct Elongated-fusiform Indistinct Sclerotized 

Sharply 

protruding 

Allotylenchus continuous Indistinct Well developed  Large Sclerotized 
Less 

protruding 

Polenchus continuous Indistinct Well developed Indistinct Weak 
Less 

protruding 

Filenchus continuous Indistinct 
Well developed  to 

Elongated-fusiform 
Indistinct Weak 

Less 

protruding 

Lelenchus continuous Pouch-like Elongated-fusiform Indistinct Weak 
Less 

protruding 
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Figure 5. 50% majority rule consensus tree of Bayesian phylogeny analysis of D2D3 domain 

of 28S rRNA. Branch supports is indicated in the following order: PP value in BI analysis/BS 

value from ML analysis. The lip region arrangement code in each clade corresponds to Fig 4.  

Table 5. Morphometric data for Labrys chinensis gen. nov., sp. nov. All measurements are in 

µm and in the form: mean ± s.d. (range). 

Characters 
Female Male 
Holotype Paratypes Paratypes 

n - 9 4 
L 636 616±24 (580-637) 611±12 (602-627) 
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a 41.6 44.1±3.9 (37.7-48.7) 35.1±1.6 (33.7-37.4) 
b 6.9 6.6±0.6 (5.4-7.3) 6.2±0.38 (5.6-6.5) 
c 3.8 3.8±0.23 (3.5-4.4) 3.6±0.20 (3.4-3.8) 
c’ 17.3 18.0±2.1 (13.3-20.3) 17.6±2.9 (14.8-21.5) 
V 56.5 56.6±1.5 (53.9-59.8) - 
V’ 76.5 77.1±1.0 (75.0-78.1) - 
Tail length/vulva-anus distance 1.5 1.6±0.12 (1.3-1.7) - 
Body diam. 15 14±1.3 (12-16) 17±0.91 (16-19) 
Stylet 8.5 9.3±0.42 (8.9-10) 9.4±0.54 (8.7-10) 
MB 49 43±4.2 (38-51) 44±1.2 (44-46) 
Excretory pore to anterior end 90 84±4.0 (76-87) 80±3.8 (76-84) 
Excretory duct length 19 20±4.1 (15-25) 22±3.3 (18-26) 
Pharynx 92 95±9.0 (82-108) 99±5.0 (96-106) 
Nerve ring 67 69±8.8 (58-89) 70±4.8 (64-76) 
Anus width/ cloacal width 9.6 9.2±0.83 (8.3-11) 9.7±0.87 (8.6-11) 
Spicule - - 16±1.3 (14-17) 
Post-uterine sac/gubernaculum 15 15±1.2 (13-17) 4.8±0.45 (4.4-5.4) 
Tail 166 164±12 (132-171) 169±13 (159-186) 
 

 

Figure 6. Phylogenetic network applied to four Labrys chinensis gen. nov., sp. nov. 

populations and their geographic distributions. A: Phylogenetic network applied to four 

parsimoniously informative (PI) sites using the Neighbor-net algorithm. Bootstrap values are 

indicated between populations. B: Geographic distribution. The black broking line upper right 

indicates the location in China. Wide grey dashed line in the main map represents the Qinling 
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Mountains. 

Discussion  

Currently, Tylenchidae consists of 44 genera (42 genera listed by Geraert (2008) one new 

recently described by Yaghoubi et al. (2016) and one by this study). In this study integrative 

approaches were used to describe Labrys chinensis gen. nov., sp. nov. Although the 

phylogeny of Tylenchidae remains unresolved, the results extended its diversity and 

highlighted the importance of detailed morphological analyses in such taxonomically difficult 

group. Given many of generic characters are only obvious in SEM (e.g. Labial patterns), the 

new species description should not solely based on LM.  

Although 3D printing technology has been around since the 1980s, it has only recently gained 

real momentum as a technique as the technology matures and awareness grows. Driven by 

new applications, the “printable” category keeps expanding into many fields such as medicine, 

architecture, education, fashion, manufacturing and food (Lombardi et al. 2014; Murphy and 

Atala 2014; Petrick and Simpson 2013; Qing et al. 2015; Sun et al. 2015; Thomas et al. 2016). 

Within zoology, it has already been showing great potential in functional morphology, pest 

detection, anatomy and physiology (Domingue et al. 2015; Greco et al. 2014; Igic et al. 2015; 

Porter et al. 2015; Thomas et al. 2016). Here we extend the application of 3D printing in the 

field of taxonomy and describe for the first time a new taxon together with a printed model 

(Fig.7). Although the accuracy of our models is not comparable to 3D reconstruction based on 

serial TEM (Transmission Electron Microscopy) sections or electron tomography techniques, 

the models are useful and time-efficient complements’ to pictures and drawings of species 

descriptions to illustrate complex 3D structures. Future taxonomical applications can also be 

extended to virtual reality approaches that allow observation and dissection without damaging 

precious specimens, which represents a promising direction for both taxonomy and education. 

Therefore, as we add 3D printing to the toolkit of taxonomical research, we also underline the 

relevance of its development as a synergic discipline link of frontier zoology research and 

zoological education. 
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In this study we also experienced the importance of selecting the optimal printing materials to 

achieve model quality. ABS and PLA are two effective commercial materials that combine 

mechanically desirable performance and low cost, whereas resin is considered a more 

advanced material that delivers the highest quality output but at a much higher price. Our tests 

based on four taxa reveal that thermoplastic polymers ABS and PLA gave similarly 

acceptable coarse surfaces in 8 cm scale, while all labial details were completely lost in 4cm 

print (see http://www.nematodes.myspecies.info). Conversely, resin provides highly resolved 

details, i.e. all papillae are clearly visible, even when model size is reduced to 4 cm (Fig. 7I-P). 

Therefore such high quality in small size print can compensate for the less competitive price 

of resin (usually 1.5-2 times that of PLA). Moreover, resin can be printed in light color, 

semi-opaque color or even transparent which facilities the visibility of internal structures. In 

conclusion, resin is highly recommended for zoological anatomy education and research 

while PLA/ABS is also useful but only for larger print size (8 cm or more). 
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Figure 7. 3D models (A-H) and printed resin models (I-P) of representatives of other genera 

in Tylenchidae. A, B, I, J: Labrys chinensis gen. nov., sp. nov.; C, D, K, L: Cucullitylenchus 

sp.; E, F, M, N: Cephalenchus sp.; G, H, O, P: Tylodorus sp. All models were printed by white 

resin in a height of 4 cm, performances of other materials see: 

http://www.nematodes.myspecies.info. Models are freely available to download from: 

www.thingiverse.com.  
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Fig. S1 The Comparsion of models printed by PLA (A) using FDM (fused deposition 

modeling) method and resin (B, C) using stereolithography method. A: cephalic region of 



Chapter V Description of Labrys chinensis  

151 
 

Labrys gen. nov. B: cephalic region of genus Cucullitylenchus. C: cephalic region of genus 

Cephalenchus.  
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Abstract 

The Tylenchidae family is one of most abundant and diverse nematode groups found in soil 

habitats. However, little is known with respect to its diversity and phylogeny. In this study an 

unusual new species Malenchus cylindricus sp. nov. was described based on light microscopy 

and scanning electron microscopy and molecular data were based on 18S and 28S of rRNA. 

The new species is characterized by elongate-cylindrical vulva-anus body shape and a narrow 

annulation. We updated the phylogeny of family Tylenchidae by adding first molecular data 

for the rare genera Miculenchus and Tenunemellus and new morphological data for genus 

Lelenchus. Additionally, we compared the effect of alignment methods on the tree topologies 

and supportive values to minimize any bias introduced by problematic molecular data. The 

results show that Tylenchidae phylogeny remains unresolved. The rare genera are molecularly 

and morphologically divergent from other Tylenchidae species and thus the position of 

subfamily Ecphyadophorinae needed to be discussed. The comparison of alignment methods 

suggests phylogenies inferred from sequence-based alignment are more similar but differs 

from secondary structure-aided methods and supportive values that not agree with each other 

can be reconciled by proper selection of alignment method.  

 

Additional Keywords: Miculenchus, Tenunemellus, Lelenchus, Ecphyadophora, 

Ecphyadophoroides, Ecphyadophorinae
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Introduction 

The Tylenchidae family is one of most abundant and diverse nematode groups found in 

soil habitats, where they may represent up to 30% of the nematode abundance in any given 

soil sample. However, little is known with respect to its phylogeny. Owing to their relatively 

short and weak stylet, they are considered as weak root feeders of higher plants or parasitizing 

lichens and mosses, although few species have been proven to feed on fungi. Current 

phylogenetic analyses based on DNA sequences of the 18S and 28S ribosomal RNA (rRNA) 

genes have shown that Tylenchidae is not monophyletic (Fig. 1). In particular, diverse 

Tylenchidae genera such as Filenchus and Malenchus might include species representing very 

divergent lineages in the Tylenchomorpha phylogeny. Uncertainty regarding the phylogenetic 

position of many Tylenchidae taxa underscores the need to reevaluate classical 

morphology-based systems in Tylenchomorpha. 

Within Tylenchidae, the genus Malenchus is the second most specious (after Filenchus) 

with 36 valid species. Recently, Malenchus was recognized as polyphyletic and monophyletic 

on the basis of the 28S and 18S genes of the ribosomal RNA (rRNA), respectively. As a result, 

the generic definition of Malenchus was recently amended in light of molecular and 

morphological evidence. Instead of using the presence of a coarsely annulated cuticle and 

markedly tapering body posterior to the position of the vulva, the new definition appointed 

the offset lateral region with small sub-ridges, pouch-like amphidial fovea and vagina with 

swollen wall to be generically important.  

In this study, a new species of Malenchus is discovered that is exemplary for the new 

Malenchus definition (Qing and Bert, 2017). This puzzling species that resembles both 

Malenchus and Filenchus is herein descried based on morphological and molecular data. 

Moreover, three rare genera of Tylenchidae viz. Miculenchus, Tenunemellus and Lelenchus, 

which are not commonly found in soil samples, especially in comparison with cosmopolitan 

genera such as Filenchus and Malenchus, were examined. These genera are presumed to be 

related to Malenchus, but molecular data are either absent or misleading. Detailed 

morphology of all studied nematode species were based on light microscopy (LM) and 
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scanning electron microscopy (SEM), and molecular data were based on 18S and 28S of 

rRNA. Additionally, we compared the effect of alignment methods on the tree topologies and 

supportive values to minimize any bias introduced by problematic molecular data in 

Tylenchidae (i.e. coverage limitations and/or high nucleotide substitution rate coverage). 

 

Fig 1. Overview of Tylenchomorpha phylogeny based on a concatenated analysis of the 18S 

and 28S rRNA genes (adapted from Pereira et al., 2017). The 80% majority rule consensus 

tree from the Bayesian analysis is presented. BPP ≥80% are given for appropriate clades. 

Tylenchidae taxa as defined in Geraert (2008) are highlighted in grey. Colored dashed lines 

indicate conflicting positions of some Tylenchidae taxa according to different studies (Blue: 

based on 28S rRNA and supported in Subbotin et al. (2006), Palomares-Rius et al. (2009), 
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Atighi et al. (2013); Red: based on 18S rRNA and supported in Bert et al. (2008), Holterman 

et al. (2009), and Van Megen et al. (2009); Green: based on 18S and 28S rRNA genes and 

supported in Palomares-Rius et al. (2009) and Pereira et al. (2017); Yellow: Based on 18S and 

28S rRNA genes and supported in Qing et al. (2017). 

Materials and methods 

Sampling and isolation of nematode specimens 

Nematodes were extracted from soil samples using a Baermann tray and concentrated 

using a 400-mesh sieve (37 µm opening). Samples collected outside Belgium (i.e. China and 

Mexico) were divided into two parts and fixed with 4% formalin and DESS solution for 

morphological analyses and molecular analyses, respectively.  

Morphological analyses 

Formalin fixed specimens were rinsed several times with deionised water and gradually 

transferred to anhydrous glycerin for permanent slides, following the methods of Seinhorst 

(1962) as modified by Sohlenius and Sandor (1987). Observations and drawings were made 

with an Olympus BX51 microscope (Olympus Optical, Tokyo, Japan) equipped with 

differential interference contrast (DIC). Digital vouchers including LM images and multifocal 

videos were captured from nematode specimens used for molecular procedures with a Nikon 

DS-FI2 camera (Nikon Corporation, Tokyo, Japan). Digital specimen vouchers are available 

at http://nematodes.myspecies.info. Female reproductive system was extracted and examined 

based on the methods of Geraert (1973) and Bert et al. (2008). Illustrations were prepared 

using Adobe Illustrator CS3 and LM drawings. 

For Scanning Electron Microscopy (SEM), fresh specimens were heated in a microwave 

in Trump’s fixative (2% paraformaldehyde + 2.5% glutaraldehyde in a 0.1 M Sorenson buffer) 

for a few seconds. Specimens were subsequently washed three times in double-distilled water 

and dehydrated through a series of graded ethanol (e.g. 30, 50, 75, 95%, 20 min each) and 3x 

in 100% ethanol (10 min each). Specimens were critical point-dried with liquid CO2, mounted 
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on stubs with carbon discs and coated with gold (25 nm) before observation with a JSM-840 

EM (JEOL, Tokyo, Japan) at 15 kV.  

Molecular and Phylogenetic analyses 

DNA extraction, amplification, and sequencing: DNA was extracted from fresh or DESS 

preserved nematode specimens. Briefly, single individuals were transferred to a PCR tube 

with a solution containing 10 µl NaOH and 1µl Tween20, inc ubated for 15 min at 95°C then 

40 µl of double-distilled water was added to each sample. The D2-D3 domains of 28S rRNA 

were amplified with primers D2A and D3B. The 18S rRNA gene was amplified using primers 

SSU 18A and SSU 26R. PCR reactions were carried out under following conditions: 30 s at 

94 °C, 30 s at 54 °C and 2 min at 72 °C for 40 cycles.  

DNA sequences representing Tenunemellus, Miculenchus and the new species of 

Malenchus were analysed together with additional Tylenchidae sequences in GenBank. 

Multiple alignments form both rRNA genes were made using the G-INS-i algorithm of 

MAFFT v. 7.205. To evaluate contradict node support values (see discussion) and minimize 

alignment-introduced errors, we preformed additional alignments with three methods: Muscle 

which is solely based the nucleotide sequences, Q-INS-i algorithm in MAFFT which use the 

four-way consistency objective function for incorporating secondary structure information, 

and RNAsalsa 1.4.2 which produce structure-based alignment taking both thermodynamic and 

compensatory⁄consistent substitutions into considerations. The consensus structure was 

predicted by PPfold and input structure acceptance level was set to 100% in RNAsalsa. To 

compare trees topology and branch length difference among different methods, we calculated 

Robinson-Foulds (RF) and Kuhner-Felsenstein (KF) distances in R version 3.25 (R 

Development Core Team) using the package Phangorn.  

For phylogeny reconstruction, the best-fitting substitution model was estimated using 

AIC (Akaike Information Criterion) in jModelTest v. 2.1.2. Maximum Likelihood (ML) and 

Bayesian Inference (BI) analyses were performed on the CIPRES Science Gateway, using 

RAxML 8.1.11 and MrBayes 3.2.3 respectively. ML analysis included 1000 bootstrap (BS) 

replicates under the GTRCAT model. Bayesian phylogenetic analysis was carried out using 



Chapter VI Description of Malenchus cylindricus 

158 
 

the GTR+I+G model with four independent chains for 1×107 generations in two runs. Markov 

chains were sampled every 100 generations and 25% of the converged runs were discarded as 

burnin. All alignments and phylogenetic trees are available at TreeBASE 

(http://purl.org/phylo/treebase/phylows/study/TB2:S21606) 

 

Fig. 2 LM micrographs of Malenchus cylindricus sp. nov. (A-K), M. exiguus (L) and M. 

pachycephalus (M). A, D-K: specimens in permanent glycerin slide; B, C: fresh specimens; 

A-C: female anterior body region. Arrow indicates amphidial fovea; D: female middle body; 

E, F: vulva region. Arrow indicates lateral view of vulva opening; G: spicule and 

gubernaculum; H: Lateral field in vulva region; I: female tail end; J: female habitus with 

elongate-cylindrical vulva-anus body; K: male habitus. L, M: examples of typical female 

http://purl.org/phylo/treebase/phylows/study/TB2:S21606�


Chapter VI Description of Malenchus cylindricus 

159 
 

body shape in Malenchus markedly tapered posterior to the vulva. For additional comparisons, 

readers are referred to Fig.2 in Qing and Bert (2017). va.= vulva, an.=anus. 

 

Fig. 3 SEM micrographs of female Malenchus cylindricus sp. nov. A: en face view. B: lateral 

view of anterior body region. C, D: vulva region. E: ventral view of anus. F: tail region. G: 

posterior end of lateral field. H: lateral view of anus region, showing the longitudinal striae in 

cuticle. I: lateral field with small ridges. Arrow indicates particles between annuli. Scale bar: 

A=1, B-F=5µm, G-I=2µm. 



Chapter VI Description of Malenchus cylindricus 

160 
 

 

Fig. 4 Line drawing of Malenchus cylindricus sp. nov. A, C, G, H, J: female; B, D-F, I: male. 

A, B: anterior body region; C, D: reproductive system; E: bursa; F, G: tail; H: head region 

showing amphidial fovea; I, J: body habitus; K: diagrammatic representation of cuticle 

annulations; L: diagrammatic representation of an elongate-cylindrical (broken lines) vs 

markedly tapered vulva-anus body shape (solid lines), the latter was proposed by Siddiqi 

(1979) as a generic character for Malenchus. 
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Result and discussion 

Malenchus cylindricus sp. nov. Qing and Bert, 2017 
=Malenchus sp. C163. Qing et al. 2017a, 2017b 

(Figs 2, 3, 4; Table 1) 

http://zoobank.org/urn:lsid:zoobank.org:act:26D037F3-3977-4DEB-9C7D-55B402A703B1. 

Material examined 

Type habitat and locality. Recovered from moss (Eurhynchium sp.) rhizosphere in the 

bank of several small streams, Poeke, Belgium. GPS coordinates: N 51°02'35.4" E 3°26'56.3". 

The cuticle surface is associated with particles as observed on LM and confirmed by SEM 

(Fig. 3I), which may be unknown bacteria or fungi, a similar association was also reported 

from M. pachycephalus. 

Type materials. Holotype female, four female paratypes and one male paratype were 

deposited at the Ghent University Museum, Zoology Collections (Collection numbers 

UGMD104320 and UGMD104321), Ghent University, Ghent, Belgium. Additional paratypes 

are available in the UGent Nematode Collection (slide UGnem144) of the Nematology 

Research Unit, Department of Biology, Ghent University, Ghent, Belgium.  

Description 

Measurements. See Table 1 

Female. Body size small and mostly ventrally arcuate. Vulva-anus body shape 

elongate-cylindrical (EC). Cuticle slightly folded between annuli as seen in permanent mount 

(Fig. 2A), although it appears smoother (and similar to the annulation pattern in Filenchus) in 

fresh specimen (Fig. 2B, 2C). Longitudinal striae in the cuticle can only be observed with 

SEM (Fig. 3A, 3B, 3G, 3H) but not in LM. Annulations narrow (0.85-1.1µm), groove (the 

depression between two annuli) hardly visible in LM, with indistinct folded part (type 1, Qing 

and Bert (2017)). Lateral field prominent, starting at half of procorpus and ending at middle 

of tail, with 12 incisures (or less at the most anterior and posterior body regions) in an 
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elevated ridge with smooth margin (Figs. 2H, 3C, 3G-I). Lip region elevated, dorso-ventrally 

compressed. Amphidial apertures S-shaped, starting at the labial plate with wide hole and 

extend until the third annuli. Labial framework weak. Stylet slender and delicate, cone about 

one third of total stylet length and much narrower (except for the cone base which slightly 

wider) than adjacent shaft. Stylet knobs oblong, posteriorly directed. Dorsal pharyngeal gland 

orifice (DGO) at base of stylet knob. Median bulb oval and weakly developed, sclerotized, 

and valve present. Isthmus long and slender. Terminal bulb short and pyriform. Excretory pore 

located at the level of anterior end of the pharyngeal bulb. Hemizonid not visible. Deirids at 

the level of excretory pore. Reproductive system monodelphic, prodelphic, ovary outstretched 

with oocytes arranged in a single row. Spermatheca rounded to elongated, offset, sperm 

globular. Crustaformeria with five cells in each row. Uterus sac spacious with thickened wall, 

egg not observed (not gravid). Vulva sunken in body contour, vulval lateral flaps present, two 

to three annuli long. Epiptygmata present. Vagina perpendicular to body with swollen vaginal 

wall. Prophasmid prominent, 9-13 annuli anterior to vulva (Fig. 3C). Tail tapering gradually 

to more or less pointed hook-shaped tip. 

Male. Less frequent than females. General morphology similar to that of female except 

genitals and a more slender body. Testis single, outstretched, located along ventral side of the 

body. Spermatogonia in one row, spermatids few, hardly visible, spermatozoa round, filling 

proximal part of vesicula seminalis. Vas deferens clearly differentiated. Tail straight, ventrally 

directed. Cloacal opening on prominent cone with small lips. Bursa short but prominent, 

adanal, starting at the level of spicules’ capitulum and ending at 1/5 to 1/4 of the tail. Spicules 

slightly bent ventrally but more straight in distal part, capitulum part rounded, shaft and blade 

slightly tapering. Gubernaculum short and very thin. 

Etymology  

The new species is name after its typical EC vulva-anus body shape. 

Diagnosis and relationships 

Recent studies have suggested that ridging of the lateral field, presence of distinct 
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amphidial fovea and vaginal wall swelling are informative traits that distinguish Malenchus 

(Qing et al,. 2017; Qing and Bert, 2017). Therefore, the new species is assigned to the genus 

Malenchus based on a combination of these morphological characters. 

The morphological and morphometric differential traits of M. cylindricus sp. nov. and 

related species (species with smooth annulations or with EC vulva-anus body shape) are given 

in Table 2. This new species is unique in Malenchus by the fact that it resembles Filenchus 

spp. and Ottolenchus spp., including a similar body shape, a cuticle with relatively smooth 

annulations, an EC vulva-anus body shape (instead of being markedly tapered, which is a 

generic character for Malenchus as proposed by Siddiqi (1979) (Fig. 4L). Along with the 

presence of relatively smooth annulations and EC vulva-anus body shape, the new species 

also differs from other morphologically similar Malenchus species based on morphometrical 

data (Table 2). The annulation and body shape can be misleading when identifying new 

species as Malenchus, especially under LM. However, Malenchus can be well separated (with 

or without SEM) by the revised generic delimitation characters proposed by Qing et al. 

(2017), i.e. the aforementioned distinct amphidial fovea, lateral region with small ridges and 

swollen vagina. 

Duosulcius and Zanenchus are either considered valid genera within Tylenchidae or 

synonymies of Filenchus. Based on their general body appearance, intermediate cuticle 

annulation (i.e., coarser than most of Filenchus spp. but weaker than Malenchus spp.), EC 

vulva-anus body shape and two lateral incisures as observed under LM, M. cylindricus sp. nov. 

is similar to the former genera. However, a prominent S-shaped amphidial aperture (vs 

indistinct in Duosulcius and Zanenchus) and the presence of a developed (vs absent or 

reduced) post uterus sac (PUS) differentiate the new species from those in Duosulcius and 

Zanenchus (Table 2). 

Phylogenetic placements 

In this study, phylogenetic analyses included only taxa traditionally (i.e. based on 

morphology) classified as Tylenchidae. Although Tylenchidae is herein recognized as not 

monophyletic (Fig.2), this strategy of using solely Tylenchidae taxa allows for a faster 
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comparison among the diverse tested alignment methods. In addition, molecular divergence 

among Tylenchidae representatives can be further and more straightforwardly quantified. 

Tree topologies inferred by ML and BI were largely congruent with Qing et al. (2017). 

Bootstrap values (BS) and posterior probabilities (PP) are summarized on the Bayesian 

consensus tree reconstructed from G-INS-I alignment (Figs 5, 6). In all analyses, based on 

different alignment methods, the genus Malenchus is either monophyletic (18S, PP=99, 

BS=30) or split into two well supported clades: Malenchus clade 1 (28S, PP=1, BS=99) and 

Malenchus clade 2 (28S, PP=0.9, BS=87). Similarly, M. cylindricus sp. nov. is either sister to 

M. undulatus (18S, PP=0.75, BS=64) or to M. acarayensis and M. bryophilus in clade 1 (28S, 

PP=1, BS=87).  
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Fig 5. Bayesian 50% majority-rule consensus tree interfered on 18S rRNA aligned with 

sequence-based method G-INS-I implemented in MAFFT. The section’s order of support 

value: PP/BS. The new species and new sequences original to this study are indicated in bold. 

Alternative support values from different alignment methods are listed in boxes at the node 

when the support values of ML and BI analysis are not in agreement (PP>0.98, BS<50 or 

PP<0.7, BS>80). 
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Fig 6. Bayesian 50% majority-rule consensus tree interfered on 28S rRNA aligned with 

sequence-based method G-INS-I implemented in MAFFT. The section’s order of support 

value: PP/BS. The new species and new sequences original to this study are indicated in bold. 

Alternative support values from different alignment methods are list in boxes at the node 

when the support values of ML and BI analysis are not in agreement (PP>0.98, BS<50 or 

PP<0.7, BS>80). Dashed lines show alternative placement of Miculenchus from different 

alignment methods (methods indicated in brackets). 

Table 1. Morphometric data for Tenunemellus sheri and Malenchus cylindricus sp. n. All 

measurements are in µm and in the form: mean ± s.d. (range). 

 Tenunemellus sheri Malenchus cylindricus sp. n. 

Female Holotype Paratype 

n 7♀♀ 1♀ 7♀♀ 3♂ 

L 808±37 (750-851) 386 381±26 (353-427) 341±5.8 (334-344) 

a 94±9.0 (79-103) 27 29±2.9 (26-34) 34±2.9 (31-37) 
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b 6.3±0.27 (5.9-6.8) 4.7 4.6±0.19 (4.4-4.9) 4.3±0.11 (4.1-4.4) 

c 3.6±0.17 (3.0-3.8) 5.6 4.9±0.43 (4.4-5.6) 4±0.02 (4.0-4.1) 

c’ 45±3.9 (38-49) 8.9 10±1.3 (8.9-12) 10±0.16 (10-10) 

V 58±0.73 (57-59) 66 65±1.2(63-66) - 

V’ 81±3.3 (78 -87) 80 79±6.4(66-83) - 

Tail /vulva-anus  1.9±0.33 (1.7-2.5) 1.1 1.2±0.19 (1.0-1.4) - 

Body diam. 8.6±0.50 (8.1-9.5) 14 13±1.5 (11-15) 10±0.71(9.3-11) 

Stylet 8.7±0.22 (8.5-9.1) 9.8 10±0.42 (9.8-11) 10±0.11 (10-10) 

MB 50±3.0 (47-55) 46 47±1.1 (46-49) 49±1.4 (48-50) 

Excretory pore to 

anterior end 

93±7.2 (81-100) 67 66±2.4 (62 -69) 54±4 (51-59) 

Pharynx 127±3.6 (123-134) 83 82±2.8 (78-86) 80±1.1 (79-81) 

Nerve ring 71±4.9 (67-81) 57 56±2.4 (54-61) 48±1.3 (47-49) 

Annuli width 1.1±0.3(0.6-1.5) 1.0 0.98±0.1 (0.85-1.1) 0.90±0.06 (0.83-0.95) 

Vulva/ spicule 470±12 (458-489) 255 248±19 (222-279) 17±0.15 (16-17) 

Anus/ cloacal  5.0±0.51 (4.4-6.0) 7.7 7.6±0.54 (6.9-8.2) 8.3±0.12 (8.2-8.4) 

PUS/gubernaculum 8.0±0.83 (6.4-8.7) 7.3 7.3±1.1 (6.11-8.2) 5.7±0.74 (4.9-6.2) 

Tail 222±15 (205-247) 69 79±7.9 (69-91) 84±1.9 (82-86) 

Table 2. Comparison of Malenchus cylindricus sp. n. with other morphologically similar 

species. Shape=vulva-anus body shape. T/VA=Tail /vulva-anus. All measurements are in µm. 

 Shape Annuli Stylet PUS Tail T/VA a c 

M. cylindricus sp. n. EC 0.8-1.1 9.8-11 present 69-91 1.0-1.4 26-34 4.4-5.6 

M. andrassyi* MT 1.0-1.2 10-11 present 88-106 1.1-1.5 24-34 4.1-5.2 

M. acarayensis MT 1.0-1.7 8.0-8.5 present 70-76 1.1-1.5 19-26 3.8-5.5 

M. nanellus MT 0.8-1.1 7.5-8.5 present 80-90 1.6-1.8 23-30 3.5-3.9 

M. sexlineatus MT 0.7-0.9 6.2-7.5 present 63-67 1.4-1.8 21-26 4.1-4.3 

Duosulcius acutus EC 0.8-0.9 6.0-7.0 absent 89-122 1.0-1.2 39-46 5.0-6.0 

Zanenchus zanclus EC 0.8-0.9 8.0-9.0 absent 74-92 0.7-0.8 36-40 5.7-6.1 

* The new species genus is assigned to M. andrassyi by the key of Geraert (2008). 

Tenunemellus sheri Raski et al., 1982  

(Figs. 7, 8, 9) 

Material examined 
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The description is based on Mexican samples recovered from moist soil with a high organic 

matter, on the edge of a creek at the Cañon de Doña Petra (GPS coordinates: 31° 54' 03"N, 

116° 36' 32"W), Ensenada, Baja California, Mexico. 

Description 

Measurements. See Table 1 

Female. Body very slender, straight, ventrally curved or S-shaped. Cuticle finely striated. 

Lateral field obscure but two incisures are visible in SEM (Fig. 7F). Head dorso-ventrally 

compressed, thus giving a laterally offset impression. Amphidial aperture distinct, long, 

slender-ovate shaped (Figs 7A-7C, 8H). Amphidial fovea exceptional spacious, appearing as a 

prominent chamber oval (laterally) or hemispherical (dorso-ventrally) shaped chamber. Labial 

framework weak. Stylet slender and delicate, cone about 1/3 of total length. Stylet knobs 

oblong, thin, perpendicular to the shaft (Figs 8C-8F, 9A-9D). In few specimens, dorsal knob 

sloping anteriorly while ventro-submedian ones sloping posteriorly (Fig. 9A). Dorsal 

pharyngeal gland orifice at base of stylet knobs. Median bulb weak, no valve present. 

Excretory pore at the level of anterior part of pharyngeal bulb. Hemizonid not visible. Deirids 

at the level of excretory pore. Reproductive system monodelphic, prodelphic, ovary 

outstretched with oocytes arranged in a single row. Spermatheca small, not filled with sperm 

cell, 1/2-1/3 to adjacent body width, offset, elongated. Uterus sac present, narrow, about one 

body diameter. Body contour around vulva slightly elevated, but sunken to form a vulva cave 

(Fig. 8I). Lateral flaps present, four annuli wide. Epiptygmata absent. Vagina perpendicular to 

body. Prophasmid not observed. Tail exceptional long, tapering gradually to a straight tail tip. 

Male. Not found. Probably not present in examined population, as sperm cells were not 

observed in spermatheca. 



Chapter VI Description of Malenchus cylindricus 

169 
 

 

Fig. 7 SEM micrographs of female Tenunemellus sheri. A-C: lateral view of head region; D: 

ventral view of head region; E: vulva; E: middle body, arrow indicates two indistinct lateral 

incisures. Scale bar: A,B=1μm, C-F=2μm. 
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Fig 8. Line drawing of female Tenunemellus sheri. A, B: anterior part of body. C-F: ventral 

view of head region in different image plans. G: lateral view of head region showing 

pouch-like amphidial fovea. H: lateral view of head region showing slender-ovate amphidial 

aperture. I: lateral view of vulva region. J, K: tail tips. L: ventral view of reproductive system. 

M: lateral view of reproductive system. N: posterior part of body. O: body habitus. 
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Fig. 9 LM pictures of female Tenunemellus sheri. A-H: head region. Arrows indicate 

pouch-like amphidial fovea. I: tail. J, K: body habitus 

Position and classification of Ecphyadophorinae 

Species belonging to Ecphyadophorinae are among the most remarkable of all 

Tylenchidae. Their long and extremely slender forms render their detection, handling and 

identification extremely difficult. The first genus in this group, Ecphyadophora, was proposed 

by de Man (1921), and Corbett (1964) later added the new genus Ecphyadophoroides, 

separated from the former by a dorso-ventrally flattened head (vs round head) and the 

gradually tapering female body (vs abruptly narrowing). Subsequently, Raski et al. (1982) 

used the long slit amphidial aperture as a generic character for Ecphyadophoroides (vs small 

oval amphidial aperture in Ecphyadophora). The most specious genus Tenunemellus was 

added by Siddiqi (1986) to accommodate Ecphyadophoroides species that lacked longitudinal 
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striae in the cuticle and did not have clear incisures in lateral field. The genus Lelenchus also 

belongs to Ecphyadophorinae, but differs significantly from all the above by the absence of a 

lobbed bursa. It was first proposed by Andrássy (1954) as a subgenus of Tylenchus with 

Tylenchus (Lelenchus) leptosoma de Man, 1880 designated as the type species and Lelenchus 

was subsequently raised to generic level by Mely (1961).  

Given the high variation in head shape, amphidial aperture, vulva, and bursa shape, 

Ecphyadophorinae is a heterogeneous group and no clear delimitation character has been 

found, except for the extremely slender body. In this study, molecular phylogenetic analyses 

support Lelenchus as being a separate clade rather than a genus or subgenus in Tylenchinae. It 

also suggests that the ecphyadophorid-like slender body shape may have evolved 

independently, as Ecphyadophora and Lelenchus are not sister taxa: in our analyses the 

former genus is nested in a robust clade (18S, PP=96, BS=99) together with Filenchus 

misellus, F. chilensis and Labrys chinensis while the latter is positioned in a clade together 

with Miculenchus or Tenunemellus and/or Miculenchus (depending on the analyses) (Figs 5, 

6). 

These findings contradict the current taxonomic classifications, which consider, on the 

basis of general body shape, Ecphyadophora, Ecphyadophoroides, Lelenchus and 

Tenunemellus as closely related genera within Ecphyadophorinae. Current molecular 

phylogenies further support the pouch-like amphidial fovea as an informative character to 

define clades in Tylenchidae. Ecphyadophora, embedded within Tylenchinae, has a small 

pore-like amphidial aperture lacking a prominent fovea, different from other ecphyadophorids 

such as Ecphyadophoroides, Lelenchus and Tenunemellus, which share a long slit-like 

aperture with pouch-like fovea. Hence, according to molecular data and shape of the fovea, 

Ecphyadophora should be transferred to Tylenchinae whereas Malenchus, Lelenchus and all 

other ecphyadophorids bearing a pouch-like fovea may represent a natural clade, and as such 

may be grouped in a separate family or subfamily. However, the unresolved phylogeny and 

limited availability of molecular data of ecphyadophorid genera reduce the conclusive power 

of this assumption. For the time being, therefore, no taxonomic actions will be taken to 

accommodate the ecphyadophorid genera, pending additional molecular and morphological 
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data so that a more complete and conclusive analysis can be provided.   

 

Fig 10. SEM micrographs of female Lelenchus leptosoma C114 isolated from Belgium. A, B: 

en face view. Arrow indicates S-shaped amphidial aperture; C: anterior body; D: tail; E: 

ventral-lateral view of vulva region; F, G: anus. Scale bar: A, B, E- G=1μm; C=5μm; 

D=10μm. 
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Fig 11. LM micrographs of two Lelenchus leptosoma populations isolated from Belgium 

C219 (A) and C114 (B-G). A: anterior of female. B: anterior of male. C: head region of 

female, arrow indicating S-shaped amphidial aperture. D: head region of female, arrow 

indicating pouch-like amphidial fovea. E, F: vulva region. sp.1=first spermatheca; 

sp.2=second spermatheca. Sperm cells present in both spermathecae. G: female body habitus. 

Morphology and taxonomy of Lelenchus  

In this study we examined two Lelenchus leptosoma populations from Belgium, both 

agreeing with the original description in terms of morphology and morphometrics. The SEM 

micrograph shows that population C114 has an S-shaped amphidial aperture: this is similar to 

Brzeski and Sauer (1982) and the Chilean population from Raski and Geraert (1985),but 

differs from the American population, which has a broader amphidial opening. 

The spermatheca from the examined populations is offset with two parts (three cells in 

spermatheca 1 and nine in spermatheca 2, Figs 11E, 12A). Based on LM in toto observation, 

Lelenchus is either bilobed as in L. brevislitus and L. leptosoma or single as in L. filicaudatus 

and L. schmitti. In the present study, based on careful dissections, it is confirmed that the 

spermatheca is bilobed. The bilobed spermatheca observed in LM can be the result either of 

the presence of two sacs (as in this study) or of an unusual sperm positioning (sperm in 

anterior part of uterus). Remarkably, sperms were only visible in the second part of the 

expelled spermatheca, although they were clearly present in both parts before dissecting. It is 

possible that that the second part of spermatheca offer higher internal pressure and the sperms 

of the first part are compressed into the second part after dissection. A possible evolutionary 

advantage of a bilobed spermatheca with differences in pressure is to facilitate a more diverse 

fertilization.  

Geraert and Raski (1987) proposed a dorso-ventrally flattened head together with a long 

slit amphidial aperture as identifying generic characters. However, these characters are 

problematic: given the slender body and small size, an accurate assessment of head 

dorso-ventral flatness is difficult in LM; a dorso-ventral flattened head is inconsistent among 

species; and a similar long slit amphidial aperture can also be present in Filenchus spp. Hence, 
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Bernard (2005) considered the above diagnostic characters not to be informative while a 

pouch-like amphidial fovea was put forward as being of greater utility.  

In addition to the fovea shape, we propose that the vulval region be used to supplement 

the current generic definition of Lelenchus, including the following three traits: (1) the body 

contours in the vulva region are straight (i.e. not sunken or protruding); (2) vaginal muscles 

are obscure and walls prominent with the same thickness (or slightly thinner) as the cuticle, 

comparable to the adjacent body cuticle in LM (similar light refraction); (3) the vagina is 

anterior directed, PUS extremely reduced.  

 

Fig 12. Line drawing based on dissected specimen of the cellular composition of oviduct, 

spermatheca and distal part of uterus of Lelenchus leptosoma (A), and Miculenchus salvus (B) 

from dissected specimen. Abbreviations: ovi.=ovary; ovd.=oviduct; sp.=spermatheca; 

sp.1=first part of spermatheca; sp.2=second part of spermatheca, in examined specimen sperm 

cell can present in both part or only in second spermatheca, only the latter case is illustrated. 

Morphology and phylogeny of Miculenchus 

In this study, Miculenchus salvus was recovered from moss rhizosphere soil in Belgium; 
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the general morphology and morphometrics are similar to the original description. One 

additional Miculenchus individual was found in fern rhizosphere soil in China but not 

identified to species due to inadequate morphology of the specimen. Molecular analyses 

inferred from 18S and 28S rRNA suggested that these two populations are closely related but 

divergent from known M. salvus sequences in GenBank (accession: FJ969129, KY119705 

and KY119922). The phylogenic position of Miculenchus is not straightforward: 28S 

phylogeny suggests a sister relationship to Malenchus clade 2 or Tenunemellus sheri 

(depending on the different alignment methods), while in the 18S phylogeny, Miculenchus is 

sister to Lelenchus and thus divergent from Malenchus (Figs 5, 6). Therefore, the 

phylogenetic position of Miculenchus remains uncertain and the effects of long branch 

attraction cannot be disregarded. 

The spermatheca of M. salvus comprises only eight cells and this cellular architecture is 

unusual compared to other Tylenchomorpha, which usually have ten or more spermatheca 

cells. The uterus is comprised of a quadricolumella with five cells in each rows and an oviduct 

with four cells in two rows, in agreement with its classification within Tylenchidae. 

Miculenchus is a rare genus and usually co-exists with Malenchus, albeit in much lower 

density. It is morphologically unique owing to its zigzag transverse cuticle, male without 

bursa and a round amphidial aperture in the labial plate (Fig 13). These morphological 

features suggest Miculenchus to be a unique lineage within Tylenchidae. Surprisingly, 

molecular analyses appointed Miculenchus to be nested within a well-supported Coslenchus 

clade and sister to C. franklinae. The sequence divergence between M. salvus (GenBank 

accession: FJ969129) and C. franklinae (GenBank accession: AY284583) is only 10 bp (about 

0.58%). Two additional 18S rRNA sequences deposited in GenBank were also assigned to M. 

salvus, although nematode ID assignment was only based on the highest sequence identity 

match from a BLAST search. Moreover, these two sequences (GenBank accessions: 

KY119705 and KY119922) are much shorter (about half or less) than the 18S multiple 

alignment, thus confining possible interpretations. The fact that our M. salvus sequences 

represent populations that clearly agree more with the morphological data (i.e. Miculenchus is 

clearly different from Coslenchus) suggests that previous DNA sequences were incorrectly 
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assigned to Miculenchus. Thus, we must consider the new Miculenchus sequences from this 

study as the first and only valid representatives of the genus for molecular analyses.   

 

Fig 13. LM micrographs of Miculenchus salvus. A, C-I, K-M: specimens in permanent 

glycerin slide; B, J: fresh specimens. A-C: female anterior part; D: lateral view of cuticle 

annulations; E, F: spicule without bursa; I, J: female body habitus; K, female tail tip; L: lateral 

region showing deirid; G, H: vulva region; M: middle body ventral view showing zigzag 
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transverse annulations. 

Comparison of alignment methods 

DNA sequences used for current Tylenchidae phylogenies are divergent, due to the 

scarcity of homologous sites (coverage limitations) and/or high nucleotide substitution rates. 

As a result, the chosen alignment method has a greater impact on the alignment quality of the 

sequence, and has a further effect on the phylogenetic power.  

In the present study, we experienced support values not in agreement (PP>0.98, BS<70 

or PP<0.7, BS>80) both in the 18S and in the 28S phylogenies (Figs 5, 6). Four alignment 

methods were used, in order to assess their effects, including two sequence-based (G-INS-I 

and Muscle) and two structure-aided methods (Q-INS, RNAsalsa). A total of 16 trees were 

built and compared by RF and KF distances. These distance methods offer a straightforward 

comparison between multiple trees, taking into account variations in topologies and branch 

lengths. The resulting trees are generally congruent both in topology and node support values. 

Among these trees, a lower RF and KF distance (indicating that two trees are more similar) 

suggest the Muscle alignment is more similar to G-INS-I compared with structure-aided 

methods (Table 3). Interestingly, Q-INS has relatively high PP and BS values in comparison 

with some poorly supported clades based on other methods (Figs 5, 6; Table 3). Since the 

secondary structural information has been forwarded to improve the alignment of rRNA 

sequences, the phylogeny based on these alignments may perform better during tree 

reconstruction.  

Table 3. Comparison of tree topologies generated from alternative alignment methods with 

G-INS-i measured by Robinson-Foulds (RF) and Kuhner-Felsenstein distance (KF). Section’s 

order: RF/KF. 

Construct methods Genes Muscle Q-ins-i RNAsalsa 

ML 
18S 7.0/0.13 23/0.55 15/0.29 
28S 7/0.43 17/0.46 15/0.53 

BI 
18S 10/0.11 28/0.59 16/0.27 
28S 10/0.43 16/0.49 14/0.56 
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Abstract 

A country-wide sampling from terrestrial natural ecosystem in China revealed 25 species that 

belong to Tylenchidae, 17 species and 5 genera are new records for China. The detailed 

morphometric data are provided for these recovered populations. The first Chinese checklist 

of Tylenchidae is presented, including the habitat of each species, based on current study and 

a literature review. The Chinese Tylenchidae comprise 56 species representing 11 genera.  

Key words: Nematodes, nematofauna, terrestrial, natural ecosystem 
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Introduction 

Tylenchidae are common soil dwelling species. They may constitute up to 30% of the 

nematode individuals in any given soil sample (Yeates and Brid, 1994; Ferris and Bongers, 

2006). Tylenchidae bear a hollow stylet similarly to what plant-parasitic nematodes use to 

puncture plant cells, however, this group do not comprise economically important 

plant-parasites and their exact feeding behavior is not fully understood. Compared with 

plant-parasitic nematodes, the Tylenchidae fauna is relatively poorly studied in China. 

Although 39 species have been reported (See Table 2), they were poorly described and 

published in national journals with a limited access. The majority of these reports majority 

originated from agro-ecosystems. However, Bert and Geraert (2000) demonstrated that more 

natural habitats and non-conventional crops contain an unknown diversity of tylenchid 

nematofauna. Therefore, in present study we mainly sample in natural ecosystem to explore 

the actual diversity of Tylenchidae. Sixty five samples from 30 locations were collected. 

Morphological and morphometric information of the retrieved nematodes was carefully 

examined and presented. The newly generated data together with other published data were 

compiled as a checklist in order to provide an improved insight into the diversity and 

distribution of the Tylenchidae in China. 

Materials and methods  

Nematodes were extracted from soil samples using a Baermann tray, concentrated using 

a 500 mesh sieve (25µm opening) and fixed with 4% formalin at 60℃ for the morphological 

analyses. The fixed specimens were rinsed with deionised water and gradually transferred to 

anhydrous glycerin for permanent slides. Slides were examined and photographed using an 

Olympus BX51 DIC Microscope (Olympus Optical, Tokyo, Japan), equipped with an 

Olympus C5060Wz camera. Morphological vouchers for all examined specimen were made 

using a combination of movies and photomicrographs (De Ley and Bert, 2002) and are 

available upon request from the first author. Specimens were identified to species level based 

on available keys (Raski and Geraert, 1986; Geraert, 2008) and confirmed with original 
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descriptions. The classification and species validation followed Geraert (2008), except for 

genus Psilenchus which was not included as it has been shown to be outside the Tylenchidae 

according to molecular data (Holterman et al., 2008; Bert at al., 2008).   

Results and discussion 

A list of Tylenchidae recorded in China, together with locations, corresponding habitats 

is presented in Table 1. The morphometric data are listed in table S2 in appendix.  

The Chinese samples from natural ecosystem reveal a high diversity of Tylenchidae. 

Twenty five different species belong to 10 genera were recovered, among which 5 genera 

(Boleodorus, Coslenchus, Lelenchus, Miculenchus and Neopsilenchus) and 17 species 

(Basiria duplexa, Boleodorus thylactus, Cephalenchus cephalodiscus, Coslenchus costatus, C. 

oligogyrus, Filenchus afghanicus, F. balcarceanus, F. discrepans, F. hamuliger, F. magnus, 

F. misellus, F. tenuis, Lelenchus leptosoma, Malenchus acarayensis, Miculenchus salvus, 

Neopsilenchus longicaudatus and N. magnidens) are new to the Chinese nematofauna. 

Filenchus is the most common genus and the most widespread species appeared to be F. 

vulgaris, F. heterocephalus and F. ditissimus. All newly-recovered genera and most 

newly-recorded non-Filenchus species are from natural ecosystems, concurring with Bert and 

Geraert (2000) that natural ecosystems are rich in tylench diversity. Therefore, further studies 

on Tylenchidae diversity should also include natural ecosystems rather than agro-ecosystem. 

Although we have list 56 species of Tylenchidae, the actual diversity is most likely still 

severely underestimated given the wide geographic area, diverse ecosystems and disparate 

vegetation in China. Further intensive sampling covering more locations need to be done to 

have a better understanding of the nematode diversity in China. 
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Table 1. The checklist of species from Tylenchidae reported from China. Numbers refer to the studies where the taxa are mentioned; 1: Luo et al., 2008; 2: Teng et al., 2012; 

3: Yin, 1995; 4: Xie et al., 1994; 5: Zhang et al., 2012; 6: Wu & Qin, 1999; 7: Jiang & Liu, 1999; 8: Xie & Feng, 1994; 9: Jin et al., 2010; 10: Xie & Feng, 1996b; 11: Huai et 

al., 2010; 12: Yan et al., 2005; 13: Zhao et al., 2004; 14: Zhou et al., 2005; 15: Qi et al., 2014; 16: Jiang & Liu, 2000; 17: Wu et al., 1994; 18: Xie & Feng, 1996c; 19: 

Guliasiman et al., 2007; 20: Lin et al., 2008; 21: Li et al., 2012; 22: Ding et al., 2015; 23: Xie & Feng, 1996a; 24: Duan et al., 1995; 25: Hu et al., 2012; 26: Li et al., 2009; 

27: Zhang et al., 2009; 28: Zhang et al., 2013; 29: Qing et al., 2015; 30: Li, 1996; 31: Xie et al., 2007; 32: Xie & Feng, 2001; 33: Xie & Feng, 1997; 34: Xie & Feng, 1995; 

35: this study. 

Genera/Species Habitats Location Ref. 

Genus Aglenchus     

A. agricola (de Man, 1884) Andrássy, 1954 Rhizosphere of Lycopersicon esculentum Benxi, Liaoning 1 

A. muktii Phukan et Sanwal, 1980 Soil of nursery garden Nanjing, Jiangsu 2 

Genus Basiria     

B. duplexa (Hagemeyer et Allen, 1952) Geraert, 1968 Soil from soybean field Baishui, Shaanxi 35 

B. graminophila Siddiqi, 1959 Rhizosphere of mango tree Guangzhou, Dongguan and Shenzhen, 

Guangdong 

3 

B. guangdongensis (Xie, et al. 1994) Siddiqi, 2000* Rhizosphere of Momordica charantia and 

Arachis hypogaea 

Shenzhen, Guangdong and Fuzhou Fujian 

Longyan, Fujian 

4, 5 

B. kashmirensis Jairajpuri, 1965 Rhizosphere of Platycodon grandiflorus Bozhou, Anhui 6 

B. parvamphidia Andrássy, 1963 Rhizosphere of Platycodon grandiflorus Bozhou, Anhui 6 

B. tumida (Colbran, 1960) Geraert, 1968 Soil from Solanum tuberosum field Dalian, Liaoning 7 

Genus Boleodorus     

B. thylactus Thorne,1941 Soil from Abies sp. forest Qinling, Shaanxi  35 

Genus Cephalenchus    

C. cephalodiscus (Sultan et Jairajpuri, 1982) Soil from Betula sp. forest  Qinling, Shaanxi  35 

C. concavus Xie et Feng, 1994 Soil around Pyrus sp.  Shenzhen, Guangdong 8 

C. leptus Siddiqi, 1963 Soil around Pyrus bretschneideri; Abies sp. from 

forest 

Bayizhen, Tibet; Qinling, Shaanxi 9, 35 
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Genus Coslenchus     

C. costatus (de Man, 1921) Siddiqi, 1978 Primary forest soil Zhangjiajie, Hunan 35 

C. oligogyrus Brzeski, 1987 Soil from soybean field Baishui, Shaanxi 35 

Genus Filenchus    

F. afghanicus (Khan et Khan, 1978) Siddiqi, 1986 Soil from Abies sp. forest  Qinling, Shaanxi  35 

F. australis Xie et Feng, 1996 Rhizosphere of Capsicum frutescens; Populus 

deltoids; banana plantation 

Dalong farm, Hong Kong; Sihong, Jiangsu; 

Nanning, Guangxi;  Xuwen, Guangdong 

10, 11, 

12 

F. balcarceanus Torres et Geraert, 1996 Soil from apple garden Baishui, Shaanxi 35 

F. butteus (Thorne et Malek, 1968) Raski et Geraert, 1987 

** 

Soil from vegetable field Lanzhou, Gansu 13 

F. capsici Xie et Feng, 1996 Rhizosphere of Capsicum frutescens Dalong farm, Hong Kong 10 

F. cylindricus (Thorne et Malek, 1968) Niblack et Bernard, 

1985 

Soil from Solanaceae field; apple garden Dalian, Liaoning; Baishui, Shaanxi 7, 35 

F. discrepans (Andrássy, 1954) Andrássy, 1972 Soil from forest with mixed tree species Yangling, Shaanxi 35 

F. ditissimus (Brzeski, 1963) Siddiqi, 1986 *** Rhizosphere of mango tree; vegetable field; 

flowers plantations of Spathiphyllum floribundum 

and Philodendron ensation 

Guangzhou, Dongguan and Shenzhen, 

Guangdong; Lintao and Lanzhou, Gansu; 

Xinyang, Henan; Shenyang, Liaoning 

Guangzhou, Guangdong; Shiyan, Hubei 

3, 13, 

14 

F. equisetus (Husain et Khan, 1967) Raski et Geraert, 1987 Soil from vegetable plantation Lianyungang and Yancheng, Jiangsu 15 

F. facultativus (Szczygiel, 1970) Raski et Geraert, 1987 Rhizosphere of Capsicum frutescens and Solanum 

tuberosum 

Pulandian, Liaoning 16 

F. hamatus (Thorne et Malek, 1968) Raski et Geraert, 1987  Rhizosphere of Panax ginseng and Panax 

quinquefolium 

Zuojia and Fusong, Jiling; Benxi and 

Shenyang, Liaoning; Laiyang, Shandong 

17 

F. hamuliger Brzeski, 1998 Quercus aliena forest soil Qinling, Shaanxi  35 

F. heterocephalus Xie et Feng, 1996 Soil from Solanum melongena, pomegranate, 

grape, apricot, Pyrus sp farm; Erigeron 

Dalong farm, Hong Kong; Shule, Awati and 

Akesu; Luxi, Yunan; Shiyan and Xianfeng, 

18,19, 

20, 21, 
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breviscapus; tobacco farm; vegetable plantation Hubei; Haikou, Hainan 22 

F. hongkongensis Xie et Feng, 1996 Rhizosphere of Ipomoea aquatica Dalong farm, Hong Kong 18 

F. magnus (Husain et Khan, 1977) Siddiqi, 1986 Primary forest soil and litter Jinping, Yunan 35 

F. misellus (Andrássy, 1958) Raski et Geraert, 1987 Primary forest soil Zhangjiajie, Hunan 35 

F. montanus Xie et Feng, 1996 Soil from sugarcane plantation Dayushan, Hong Kong 23 

F. neonanus Raski et Geraert, 1987 Rhizosphere of Capsicum frutescens and Solanum 

tuberosum 

Pulandian, Liaoning 16 

F. orientalis Xie et Feng, 1996 Rhizosphere of Ipomoea aquatica Jintian, Hong Kong 23 

F. orbus Andrássy, 1954 Rhizosphere of Phaseolus calcaratus; maize; 

Populus deltoids 

Changchun, Jilin; Shenyang, Liaoning; 

Sihong, Jiangsu 

11, 24 

F. sheri (Khan et Khan, 1978) Siddiqi, 1986 Soil from Pyrus bretschneideri, Helianthus 

annuus and Triticum aestivum; primary forest soil 

and litter 

Bayizhen, Lulangzhen, Linzhizhen, Tibet; 

Qinling, Shanxi 

9, 35 

F. tenuis (Siddique et Khan, 1983) Siddiqi, 1986 Soil from soybean field Baishui, Shaanxi 35 

F. uliginosus (Brzeski, 1977) Siddiqi, 1986 Soil from soybean field; garden plant seedlings Gongzhuling, Jilin; Jintan, Jiangsu 24, 25 

F. vulgaris (Brzeski, 1963) Lownsbery et Lownsbery, 1985 

**** 

Soil from mango tree, vegetable field; banana 

plantation; vegetable garden; maize field; nursery 

garden; Phalaenopsis amabilis; primary forest 

Guangzhou, Dongguan and Shenzhen, 

Guangdong; Lanzhou, Gansu; Nanning, 

Guangxi and Xuwen, Guangdong; Taigu, 

Shanxi; Nanjing, Jiangsu; Xiamen, 

Quanzhou and Longyan, Fujian; Zhangjiajie, 

Hunan; Yangling, Shaanxi 

2,3,12,1

3,26, 

27, 28, 

35 

Genus Lelenchus     

L. leptosoma (de Man, 1880) Andrássy, 1958 Soil from moss and fern in forest Shimen, Hunan 35 

Genus Malenchus    

M. acarayensis Andrássy, 1968 Soil from Quercus aliena forest  Qinling, Shaanxi  35 

M. exiguus (Massey, 1969) Andrássy, 1981 Soil from deciduous forest around the roots of Mount Taibai, Shaanxi 29 



Chapter VII Tylenchidae in China 

191 
 

Betula sp.  

M. pachycephalus Andrássy, 1981 Soil from deciduous forest Shimen, Hunan 29 

M. platycephalus (Thorne et Malek, 1968) Andrássy, 1981 Soil from sugarcane Fanyu, Guangdong 30 

M. nanellus Siddiqi, 1979 Soil around roots of fern and moss in forest Pingwu, Sichuan 29 

Genus Miculenchus     

M. salvus Andrássy, 1959 Soil from Abies sp. forest in snow mountain Qinling, Shaanxi 35 

Genus Neopsilenchus     

N. longicaudatus Sultan, Singh et Sakhuja, 1988 Soil around roots of grass and moss in forest Qinling, Shaanxi 35 

N. magnidens (Thorne, 1949) Thorne et Malek, 1968 Soil around roots of fern Shimen, Hunan 35 

Genus Tylenchus    

T. bhitai (Maqbool et Shahina, 1987) Soil from pomegranate, grape, apricot and Pyrus 

sp farm 

Shule, Awati and Akesu, Xinjiang 19 

T. davainei Bastian, 1865 Soil from bamboo root Huzhou, Zhejiang 31 

T. elegans de Man. 1876 Soil from Anthurium andraeanum Yanling, Henan 14 

T. exiguus de Man, 1876 Rhizosphere of mango tree Guangzhou, Dongguan and Shenzhen, 

Guangdong 

3 

T. guangdongensis Xie et Feng, 2001 Rhizosphere of Allium fistulosum Baoan, Guangdong 32 

T. luci Xie et Feng, 2001 Soil in maize farm Shenzhen. Guangdong 32 

T. minor Xie et Feng, 1997 Rhizosphere of Allium fistulosum Baoan, Guangdong 33 

T. stylolus Xie et Feng, 1995 Rhizosphere of Ananas comosus Daguling, Hong Kong 34 

T. paraminor Xie et Feng, 1997 Rhizosphere of Citrus reticulata Baoan, Guangdong 33 
* Reported as Rhabdotylenchus guangdongensis 

** Reported as Tylenchus cylindricollis  

*** Reported as Tylenchus paravissimus in Yin (1995) 

**** Reported as Tylenchus fusiformisin Yin (1995) 
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Abstract 1 

Abursanema quadrilineatum n. sp. was described both morphologically from light microscopy, 2 

scanning electron microscopy and transmission electron microscopy and molecularly based 3 

on 18S and 28S rRNA. The mycophagous stage of the new species recovered from fruiting 4 

body of Trametes sp. growing on decaying wood. The new species is unique in Abursanema, 5 

indicated by the presence of four lateral lines. The secondary structures of the D2 and D3 6 

domain of 28S rRNA were predicted for the new species and a general model for the 7 

superfamily Sphaerularioidea was built for comparative analysis. The ultrastructure of the 8 

cuticle, sperm cells and oocytes was examined and cuticle layers were defined, providing the 9 

first known information on cuticle ultrastructure in Sphaerularioidea. Needle-shaped crystals 10 

were recovered in female mycophagous female intestines and spermatheca, and chemical tests 11 

revealed that they are not constituted of calcium oxalate or proteins.   12 

Keywords: Abursanema, Hexatylina, Paurodontidae, phylogeny, Sphaerulariidae, 13 

Sphaerularioidea, taxonomy, ultrastructure14 
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Introduction 

Species belonging to Sphaerularioidea (sensu Siddiqi 2000) are taxonomically diverse, 

displaying a fascinating array of lifestyles: most species are primarily parasitic, feeding on 

insect or mite haemocoel but may have also a free-living mycophagous or plant-parasitic 

generation. They have widespread plasticity in morphology, exhibiting dimorphism or even 

tri- or tetramorphic females in different life stages (Siddiqi, 2000). Regardless of this diversity, 

their taxonomy and phylogeny are problematic: most species were only described based on 

light microscopy (LM) and the molecular backbone is missing. This situation continues even 

today for most species published recently (Golhasan et al., 2016; Nasira et al., 2013; Yu et al., 

2013; Yu et al., 2014) and consequently increases taxonomic confusion and hampers our 

understanding of their biology and ecology. Therefore, a detailed morphology combined with 

molecular data is essential for new species descriptions.  

Abursanema was recently described (Yaghoubi et al., 2014) in the family Paurodontidae 

(Sphaerularioidea). It has been characterized by its knob-less stylet, stem-like projection in 

intestine and by the absence of bursa in the male. Here we describe Abursanema 

quadrilineatum sp. n. as a second species of this genus, by combining both morphological and 

molecular analyses. Information about the secondary rRNA structure was included in our 

study, and comparative analysis was conducted for Sphaerularioidea. The ultrastructure of 

cuticle and sperm cells in the female was also examined, providing the first recorded 

knowledge on cuticle ultrastructure in Sphaerularioidea. Furthermore, needle-shaped crystals 

were found in the mycophagous female intestine and spermatheca, and their chemical and 

physical properties have been analysed and discussed for the first time.  

Materials and methods 

Sampling and isolation 

Nematodes from fungus-living stage were isolated from fruiting bodies of Trametes sp. 
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using the modified Baermann method (Hooper, 1986). Parasitic stage specimens were directly 

picked up from dissected Mycetophildae pupae collected from same sample. Nematodes were 

immediately used for molecular analyses or fixed with 4% formalin for the morphological 

analyses. 

Morphological studies 

Formalin fixed specimens were rinsed several times with deionised water and gradually 

transferred to anhydrous glycerin for permanent slides, following the protocol of Seinhorst 

(1962) as modified by Sohlenius and Sandor (1987). Observations and drawings were made 

with an Olympus BX51 (Olympus Optical, Tokyo, Japan) equipped with differential 

interference contrast (DIC). Light microscopic images and multifocal videos (De Ley and 

Bert, 2002) were taken with a Nikon DS-FI2 camera (Nikon Corporation, Tokyo, Japan). The 

resulting digital specimen vouchers are available at http://nematodes.myspecies.info. Female 

reproductive system was extracted and examined based on the method of Geraert (1973) and 

Bert et al. (2008). Illustrations were prepared using Adobe Illustrator CS5 and light 

microscope drawings. 

For Scanning Electron Microscopy (SEM), live animals were fixed in a microwave in 

Trump’s fixative (2% paraformaldehyde + 2.5% glutaraldehyde in a 0.1 M Sorenson buffer) 

for a few seconds. Specimens were subsequently washed three times in double-distilled water. 

The specimens were dehydrated by passing them through a graded ethanol concentration 

series of 30, 50, 75, 95% (20 min each) and 3x 100% (10 min each). The specimens were 

critical point-dried with liquid CO2, mounted on stubs with carbon discs and coated with gold 

(25 nm) before observation with a JSM-840 EM (JEOL, Tokyo, Japan) at 15 kV. To 

determine the ultrastructural morphology, specimens are prepared for observation by 

transmission electron microscopy (TEM) using JEOL JEM 1010, following the method 

detailed in Qing et al. (2017). 



Chapter VIII Description of Abursanema quadrilineatum 

199 
 

Intestinal crystal analysis 

To identify if the crystals contain protein the Bradford protein assay (Bradford, 1976) 

was applied. To test if the crystals consists of calcium oxalate we used a 5 % solution of 

sodium hypochlorite to dissolve the nematodes, followed by a treatment of 5% acetic acid to 

dissolve the calcium oxalate.  

DNA extraction, PCR and sequencing 

DNA was extracted from fresh specimens. The nematode was then transferred to a PCR 

tube with a solution containing 10 µl NaOH and 1µl Tween20, heated for 15 min at 95°C, and 

40 µl of double-distilled water was added. PCR reaction was done following the protocol of 

Qing et al. (2017) and Bert et al. (2008) respectively. The D2/D3 domains of 28S rRNA were 

amplified with primers D2A and D3B (De Ley et al., 2005). The 18S rRNA gene was 

amplified using SSU 18A and SSU 26R (Blaxter et al., 1998). 

Secondary structure analysis 

Secondary structures were predicted separately for the D2 and D3 domain of 28S rRNA. 

The secondary structure of our new species was built by RNAstructure 5.8 (Reuter and 

Mathews, 2010) using the energy minimization approach and the variation sites of 

Abursanema iranicum (KF885742) were mapped. For a comparative analysis of the 

Sphaerularioidea superfamily, we used the same sequences data as for the phylogenetic 

analysis except for Paurodontella parapitica (KU522237) due to its incomplete available D2 

domain. A Sankoff algorithm was used and simultaneous aligned and fold using LocaRNA 

(Smith et al., 2010) and RNAalifold (Bernhart et al., 2008) was used to build consensus 

structure. Structures were visualized using RnaViz (De Rijk et al., 2003) and drawn using 

Adobe Illustrator CS5. 

Phylogenetic analysis 

The obtained sequences were analysed with other relevant available sequences in 
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GenBank. Multiple alignments of the different genes were made using the E-INS-i algorithm 

of MAFFT v. 7.205 (Katoh and Standley, 2013). The best-fitting substitution model was 

estimated using AIC in jModelTest v. 2.1.2 (Darriba et al., 2012). Maximum Likelihood (ML) 

and Bayesian (BI) analysis were performed at the CIPRES Science Gateway (Miller et al., 

2010), using RAxML 8.1.11 (Stamatakis et al., 2008) and MrBayes 3.2.3 (Ronquist and 

Huelsenbeck, 2003) respectively. ML analysis included 1000 bootstrap (BS) replicates under 

the GTRCAT model. Bayesian phylogenetic analysis was carried out using the GTR+I+G 

model for 1×107 generations and Markov chains were sampled every 100 generations and 

25% of the converged runs were regarded as burnin. Gaps were treated as missing data for all 

phylogenetic analysis.  
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Figure 1. LM pictures of Abursanema quadrilineatum n. sp.. (A, D, E, H, J, M, N) early stage 

female. (B, F, I) ovoviviparous female. (C, G, K) male. (A-C) head region. (D) partial 

gonoduct showing spermatheca filled with sperm cells arranged in straight lines. E: posterior 

pharynx showing stem-like extension penetrating into intestine. F: hatched juvenile. (G) 

spicule. (H, I) lateral view of vulva. (J) anterior part of pharynx filled with needle-shaped 

crystals. (K, L) body habitus. (M, N) tail tip. 
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Figure 2. Mycophagous early stage female of Abursanema quadrilineatum n. sp. with empty 

uterus. (A, B) anterior body. (C) ovary. (D) ventral view of gonad distal part. (E) illustration 

of expelled gonoduct. (F) body habitus. (G) lateral view of vulva. (H) tail. Abbreviations: 

ova.=ovary; ovi.=oviduct; sp.=spermatheca; ut.=uterus 
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Result and discussion 

Taxonomy 

Abursanema quadrilineatum sp. nov. 

(Figs 1-6, Table 1) 

Specimen depositories 

Holotype: Female, collected in 16. Feb. 2016, from Blaarmeersen, Sport- and Recreation 

park, 51°02'26.6"N 3°41'16.0"E, Deposited in Zoology Collections, Ghent University 

Museum, Belgium. Slide number: UGMD 104318. 

Paratypes: 4 mycophagous stage ♀, 1 ♂, same collecting data as holotype, UGMD 

104319. 2 ♀, 2 ♂, same collecting data as holotype, Nematode Collection of the Nematology 

Research Unit, Department of Biology, Deposited in Ghent University, Ghent, Belgium. Slide 

number: UGnem-161.  

Registered in Zoobank with identifier: 

urn:lsid:zoobank.org:act:64FB846D-2DE1-431B-9C00-29E73C96EBEA 

Type habitat and locality. 

Mycophagous stage found in old fruiting body of Trametes sp. from decaying wood. 

Parasitic stage found in early pupa of Mycetophilidae recovered from the same old fruiting 

body of Trametes sp.  

Description 

Mycophagous early stage female (not gravid) (Figs. 1A, D, E, H, J, M, N; 2): Body 

slender, straight to ventrally arcuate in mycophagous stage. Cuticle finely striated. Lateral 

fields distinct, each with four incisures. Cephalic region low, continuous, framework slightly 

sclerotized, head 4.9-6.9 µm wide. Amphideal apertures indistinct in LM but slit visible in 

SEM (Fig. 3). Stylet short, shaft part longer than cone part, knobs absent or modified as rods, 

symmetrical or slightly asymmetrical (Figs. 1A-C; 2A, B; 4A; 5A, B). Dorsal pharyngeal 

gland orifice close to stylet base. Excretory pore generally at or near middle of basal bulb. 

Deirids at level of excretory pore. Pharynx non-muscular, corpus, isthmus, and 

spindle-shaped basal bulb well differentiated, the latter containing glands and with a 
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stem-like/tubular extension penetrating into intestine (Figs. 1E, 2A, B). Corpus cylindroid, 

metacarpus slightly swollen, cuticular valve absent but subventral gland duct orifice distinct. 

Vulva posterior, lips slightly protruding, not modified. Ovary monodelphic, prodelphic, 

usually outstretched until pharynx level, occasionally reflexed at anterior end. Oviduct two 

rows with five cells in each row (Fig. 2E). Spermatheca 15.7-26µm long and 9.7-14µm wide, 

arranged in line (axial). In few females filled with crystals (Fig. 4F). Sperm cells round, well 

arranged in line or randomly distributed. Uterus quadricolumella with nine cells in each row, 

empty (Fig. 2E). Postvulval uterine sac short, 1/3-1/2 body diameter. Rectum distinct, 

6.9-10µm long. Tail filiform.  

Mycophagous ovoviviparous female (Fig. 4): similar to early stage female but with 

slightly larger body size, indistinct spermatheca and uterus filled with 2-4 eggs and 1-2 

hatched juveniles (Figs.1F, I; 4C, D). 

Mycophagous male (Figs. 1C, G, K; 5): Male only observed in mycophagous stage, 

generally similar to female except for smaller body size. Bursa reduced or absent. Testis 

outstretched. Spicules and gubernaculum simple. 

Entomoparasitic adult not recovered. 

Etymology  

The species name refers to the primary distinguishing trait: four incisures on the lateral 

field of the mycophagous female. 

Diagnosis and relationship 

Abursanema quadrilineatum n. sp. belongs to the family Paurodontidae 

(Sphaerularioidea) because of the stem-like/tubular extension in pharynx which penetrates 

into intestine. It belongs to Abursanema because of the reduced or absent bursa in the male. It 

can be differentiated from A. iranicum, the only species of genus, by four incisures vs two 

incisures. This morphological difference also support by both 28S and 18S rRNA (Figs. 8, 9). 
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Figure 3. SEM of mycophagous early stage Abursanema quadrilineatum n. sp.. (A, B) female 

en face view. (C) female anterior end. (D) lateral view of cloacal region. (E) ventral view of 

cloacal region. (F) ventral view of vulva. (G) anus. (H, I) female tail. (J) Male lateral lines. (K) 
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Female lateral lines in vulva region. (L) Male lateral lines near cloaca. Scale bars: A, B=1µm; 

C, I =5µm; H=10µm; D-G, J -L=2µm. 

 

Figure 4. Mycophagous ovoviviparous (A-E) and early stage (F, G) female Abursanema 

quadrilineatum n. sp. with hatched juvenile. (A, B) anterior end of body. (C) gonad showing 

eggs and hatched juvenile. (D) posterior body. (E) tail. (F) spermatheca filled with sperm cells 

and short needle-shaped crystals. (G) ventral view of vulva. (H) illustration of en face view. 
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Abbreviation: cp=Cephalic papillae; aa=amphidial aperture; ld=labial disc; od=oral disc; 

oa=oral aperture; ilp=inner labial papillae.  

 

Figure 5. Male of Abursanema quadrilineatum n. sp. (A, B) anterior part. (C) testis. (D) 

intestine with needle-shaped crystals. (E) ventral view of tail region. (F) body habitus. (G) 

lateral view of spicule. (H) ventral view of spicule. 
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Cuticle and sperm ultrastructure 

The ultrastructure of the body cuticle differentiates into four distinct zones (Decraemer et 

al., 2003), described from outer most to inner most: (1) epicuticle, (2) cortical zone, (3) 

median zone and (4) basal zone bordered by the basal lamina. In Abursanema quadrilineatum 

n. sp., these four layers (Fig. 6I) are all present and generally resemble those of other species 

in Tylenchomorpha (Mounport et al., 1993a; Mounport et al., 1993b; Mounport et al., 1997; 

Valette et al., 1997) but differ from Malenchus (Qing et al., 2017) by the presence of radial 

striae at the basal zone.  

The spermatozoon in female spermatheca consists of amoeboid bipolar cells subdivided 

into a pseudopod and a main cell body (Fig. 6A, B). The main cell body consists of a centrally 

located nucleus, many spherical mitochondria and membranous organelles (MO) (Fig. 6C). 

The nucleus is round, lacks a nuclear envelope and has highly condensed nuclear chromatin. 

MO has an irregular shape and has finger-like invaginations of the outer membrane. The 

pseudopod is devoid of organelles and consists of fibrous elements. This assembly is similar 

to with other known Sphaerularioidea (Contortylenchus genitalicola, Deladenus sp.) (Yushin 

et al., 2006, 2007) and Anguinidae (Ditylenchus arachis and D. dipsaci) (Slos et al., 2015) but 

different from Hoplolaimina sensu Siddiqi (2000) (Yushin et al., 2011), which lack MO. Such 

observations also concur with our phylogeny that the new species is more closely related to 

Sphaerularioidea than  Tylenchoidea.
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Figure 6. Ultrastructure of female mycophagous Abursanema quadrilineatum n. sp. (A) 

matured sperm cells. (B) spermatheca. (C) membranous organelles. (D, E) cross view of 

somatic muscles. (F) cross view of middle body. (G) longitudinal view of intestine. (H) chain 

of oocytes in posterior part of ovary. (I, J) longitudinal view of cuticle. Cuticular layers: (1) 

epicuticle. (2) cortical zone. (3) median zone. (4) basal zone. Abbreviations: 

MO=membranous organelles; Ps=pseudopod; N=nucleus; Mc=mitochondria; Ms=muscles; 

Mv= microvilli; It=intestine. Scale bars: A = 0.5μm; B, H = 2μm; C, D = 0.1μm; E, G, J = 

1μm; F = 4μm; I = 0.3μm. 
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Intestinal crystals 

The needle-shaped crystals were recovered from the intestine of mycophagous males or 

females (Figs. 1J, 5D). In a few specimens, they were also found to be present in the 

spermatheca (Fig. 4F). Similar crystals were also located in the intestine of females of 

Praecocilenchus rhaphidophorus Poinar 1969 (Aphelenchoidea) parasitizing the palm 

weevil’s haemocoel and in the male genital tract from the free-living stage of Rhabditis 

pseudoteres (Rhabditidae) (Schulte, 1989). Remarkably, although belonging to diverged 

lineages, these nematodes share similar insect parasitic/associated life stage, indicating that 

these crystals may play an important role in nematode-insect interaction.  

Poinar (1969) assumed that these crystals are probably formed during development 

within the digestive system and may represent waste products stored in a non-toxic state, but 

this was not further analysed. Urea and proteins are the two most important crystal-forming 

products that are involved in the animals’ digestive metabolism. However, both were 

excluded as the crystals are insoluble in water at room temperature (ca. 20℃) and they do not 

stain blue in a Bradford protein assay. Another candidate chemical is calcium oxalate. This 

can form needle-shaped crystals, which are widely presented in plant and fungi tissue and 

versatile agents in calcium regulation, plant protection, detoxification (e.g., removal of heavy 

metals or oxalic acid) and ion balance (Franceschi and Nakata, 2005; Gadd et al., 2014; 

Whitney and Arnott, 1987). However, the idea of calcium oxalate acting as the main 

component was also excluded, since the crystal can be dissolved in a 5 % solution of sodium 

hypochlorite. A further attempt at using TEM for crystal ultrastructure analysis was made, but 

unfortunately the crystals could not be recovered after TEM fixation. 

Rao and Reddy (1980) use the absence of crystals as one of the taxonomic characters to 

differentiate species in the genus Praecocilenchus. However, our observations indicate that 

crystals were not always present in mature mycophagous adults, meaning that this character is 

more likely to be related to metabolic products in a certain life stage rather than being a stable 

morphological character, and therefore should not be used to differentiate species. 
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ribsomal RNA Secondary structure 

The secondary structure model for Abursanema quadrilineatum n. sp. and 

Sphaerularioidea fit the universal model of the D2 and D3 fragments of 28 rRNA for 

eukaryotic organisms (Wuyts et al., 2001) and other reported models in nematodes (Bae et al., 

2010; Douda et al., 2013; Subbotin et al., 2007). For the new species, a total of 372bp for D2 

and 168bp for D3 domain were folded into five helices (Fig. 7A, B) and are named as 

C1-C1/e4 and D2-D6 respectively following Wuyts et al. (2001). The helices base pair 

compositions of D2/D3 domains are as follows: Watson-Crick pairs = 100/43 (68.5/79.6%), 

wobble guanine-uracil pairs = 43/11 (29.4/20.4%) and other non-canonical pairs = 3/0 

(2.1/0%). The A. iranicum has a similar length in both D2 and D3 domains but with 

substitution, insertions and deletions appearing both in loops and helices. Conversely, 

sequence lengths vary greatly in Sphaerularioidea from 371bp (Deladenus sp., JX104317) to 

580bp (Skarbilovinema laumondi, JX291136) and from 163bp (Contortylenchus sp., 

DQ328731) to 236bp (Wachekitylenchus bovieni, DQ328732) in the D2 and D3 domains 

respectively. Further variability mapping suggests these unusually long fragments resulting 

from insertions, mostly in multi-branch loops or internal loops (Fig 7C, D), in contrast to 

helices with relatively conserved lengths.  
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Figure 7. Predicted secondary structures and variability maps of the D2 (A, C) and D3 (B, D) 

domain of 28S rRNA in Abursanema quadrilineatum n. sp. (A, B) and Sphaerularioidea (C, 

D). Abursanema iranicum (KF885742) is compared with the new species and means insertion 

(plus) and indels (asterisk) are mapped next to the corresponding postion. Watson-Crick base 

pairs are indicated by dashes, wobble guanin-uracil pairs are represented by a solid dot, all 
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other non-canonical interactions by a hollow circle. In the variability maps of 

Sphaerularioidea (C, D), compatible base pairs are coloured in order to show sequence 

conservation of the base pairs, where the hue shows the number of different base pairs types 

presented in each site  and saturation of colour decreases with the number of incompatible 

base pairs (eg. If G-C, A-U and A-G present in one site, then type of pairs counts as three and 

incompatible pairs count as one).  

Phylogenetic relationship 

The phylogenetic outcome inferred by 28S and 18S rRNA suggests that all studied 

families in Sphaerularioidea are polyphyletic, except for Sphaerulariidae. Both genes are 

congruent in placing Abursanema quadrilineatum n. sp. (Figs. 8, 9) as sister to A. iranicum 

but differ in support value: strongly supported in 28S rRNA (BI= 100, BS=99) while only 

weakly supported by 18S rRNA (BI = 75, and not supported by BS).  

The phylogenetic relationships among the early diverging (= with supposedly ancestral 

characters) taxa Tylenchidae, Anguinidae and Sphaerularioidea is subject to discussion. 

Anguinidae are considered by some to be placed inside Sphaerularioidea (De Ley and Blaxter, 

2002; Ryss, 1993; Siddiqi, 1986), while others situate them close to the Tylenchidae (Brzeski, 

1998; Maggenti et al., 1987; Siddiqi, 2000). Our phylogeny results can not reject nor support 

the above assumptions, but do show evidence that insect-parasitic Sphaerularioidea and 

fungal-feeding or plant-parasitic Anguinidae are separate evolutionary lineages 

(Nothotylenchus acris is a single  exception, but since no further information is available on 

that sequence, its identity cannot be confirmed). Thus, feeding habits and life cycle may be 

phylogenetically informative, information that is especially valuable for these 

morphologically similar and taxonomically vague groups.  

Siddiqi (2000) considered the family Paurodontidae as familia dubia and pointed out that 

it could be a junior synonym of Sphaerulariidae due to the similarity in morphology 

(stem-like/tubular extension in pharynx which penetrating into intestine), and this opinion has 

been shared by several authors (Andrássy, 2007; Esmaeili et al., 2016; Handoo et al., 2010). 
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Our result confirms the closely-related nature of most Paurodontidae and Sphaerularioidea, 

but the exact phylogenetic relationships remain unclear. Based on the few currently available 

data, Paurodontidae is polyphyletic, as is the combination of Paurodontidae and 

Sphaerulariidae (Sphaerulariidae sensu Andrássy, 2007), in keeping with most other 

Sphaerularioidea families. Such a problematic taxonomical status is to be expected, as these 

families are characterised by both low observational resolution in LM and polymorphic 

morphology in different life stages. Therefore further efforts in detailed morphology, 

including the parasitic stage, as well as host information is needed to clarify this, and new 

species should only be described when sufficient and informative data have been accrued.  
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Figure 8. Bayesian 50% majority rule consensus tree interfered on 28S rRNA. The new 

species is indicated in bold. Branch support is indicated in following order: PP value in BI 

analysis/BS value from ML analysis. The family level taxonomy follows Siddiqi (2000). 
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Figure 9. Bayesian 50% majority rule consensus tree interfered on 18 S rRNA. The new 

species is indicated in bold. Branch support is indicated in following order: PP value in BI 

analysis/BS value from ML analysis. The family level taxonomy follows Siddiqi (2000). 
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Introduction 

Three-dimensional (3D) modeling has shown an increasing number of applications in 

different fields as it eases the understanding and enhances the representation of complex 3D 

structures and objects (Murakawa et al., 2006). Within biological sciences, several tools and 

techniques have been used to build 3D representations of organisms, e.g. serial images 

acquired from transmission electron microscopy (TEM), confocal laser scanning microscopy 

(CSLM), scanning electron microscopy (SEM), digital single-lens reflex camera (DSLR), 

µ-CT or light microscopy (LM) reconstructions (Hall, 1995; Bumbarger et al., 2006; Beutel et 

al., 2008; Ragsdale et al., 2008; Bumbarger et al., 2009; Ragsdale et al., 2009, 2011; 

Apolonio Silva De Oliveira et al., 2012; Wipfler et al., 2012; Handschuh et al., 2013; Nguyen 

et al., 2014). However, these techniques require multiple focal planes images, different 

objective angles, or rotation of the specimen. Furthermore, these techniques are not only 

time-consuming but often difficult for nematodes given their minute size and high 

transparency.  

Here we propose a relatively simple time-saving method using Autodesk® Maya®, a 

widely used software in animation and industrial design (Derakhshani, 2012). With this 

method a 3D model can be created based only on the combination of LM and SEM images, 

LM serves as a reference for the modeling and the position of internal structures and SEM 

images are incorporated as a reference for general body shape and surface details. The 

presented method uses the default tools of the program and this program is three years freely 

available for students and educators 

(http://www.autodesk.com/education/free-software/maya).  
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Fig. 1. Schematic representation of the process to create a 3D model of nematodes' structures 

using Autodesk® Maya®. Scanning electron microscopy (SEM) images (A) provide the base 

for the surface structure and the construction of the body shape; Light microscopy (LM) 

images (E) provide information to construct and design the inner structures; A border line (B, 

E1) is used as a guide to create a 3D object after revolving (C, D); Polygons (E2) can be 

added and modified to resemble inner and outer structures to obtain a better representation; 

The final object (F) can be edited as needed. 

Result and discussion 

In the first step of this method, a SEM image is imported as reference for the exterior 

[View>Image Plane>Select reference image] (Fig.1 A), then a line is drawn along the body 

contour [Creat>CV Curve Tool] (Fig. 1B). A 3D image is created by rotating the created 

outline around a central axis [Surface>Revolve, output as polygons] (Fig. 1 C, D). This image 

is modified using the "Attribute editor", by adjusting the "V" and "U" values to increase or 
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decrease the number of lines in the same axis (Fig.1 D, F), allowing a more detailed 

reconstruction. After shaping the basic design, a more realistic view is achieved by adding 

details provided by additional SEM images using the appropriate program tools (e.g. 

Move/Scale/Rotate). Internal structures are reconstructed based on imported LM images that 

work as reference (Fig.1 E). Structures are created following the outline (Fig.1 E1) or by 

importing and modifying default polygons that resemble the structures, via the program tools 

(Fig.1 E2). For an optimal combination of both reconstructions, the structures and the 3D 

representation of the body need to be set to the same scale. As an example, a representative 

mononchid head is presented in Fig. 2 (A-E), such image file can be rotated and observed in 

the program from any angle.  

From the final 3D reconstruction, an anaglyph image (a stereoscopic 3D effect) can be 

easily created by combining two separate views of the same object in a slightly-tilted position 

(Fig. 2F). Hereby, the red color channel is suppressed in one of the views and the green and 

blue channels in the other. When both images are merged only the cyan and red channels are 

visible to the eye and a stereoscopic 3D effect is achieved with 3D red-cyan glasses. Such 

composition can be made in on-line websites or in an image edition program within few 

minutes. The prepared 3D model can be also exported as a “.stl” file (File > Export All or 

File > Export Selection) in Autodesk® Maya® and printed in a 3D printer (Fig. 2, G-K). The 

executable 3D printing file, the video during printing, additional high resolution 3D images 

and the anaglyph file of the mononchids' head are available at: 

http://nematodes.myspecies.info  

Although there is an inherent learning curve regardless of the modeling program 

(Murakawa et al., 2006), the presented method allows the reconstructing of a 3D model 

within few days. Several other freeware options are available, e.g. Blender 

(https://www.blender.org). There are many discussions on advantages and disadvantages, but 

in general both programs are similar, users can learn one within a short time if they have 

experience of another one. Therefore choice depends on user’s personal preference.   

Evidently, the accuracy of the final reconstruction is not comparable to 3D reconstruction 

http://nematodes.myspecies.info/�
https://www.blender.org/�
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of serial TEM sections or electron tomography techniques. This technique is not meant to 

provide a completely realistic image, but rather to present anatomical aspects in a more 

comprehensible way. In a scientific context, this method has already been shown to be 

valuable in other taxa (Klaus et al., 2003; Nguyen et al., 2014) and it can be incorporated as a 

complement to pictures and drawings of (new) nematode descriptions and to illustrate 

complex 3D structures. The wide spectrum of applications in nematological teaching includes 

3D representations, with or without 3D glasses, and 3D printed models in the classroom.  
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Fig.2. 3D models of typical mononchid head region. A-E: 3D images rendering from models 

built by Autodesk® Maya® software. A, B: en face view showing six inner and outer labial 

sensilla, and four cephalic sensilla; C: Lateral view; D: Cross view of head shows buccal 

cavity; E: Different views of anterior pharynx; F: Anaglyph image of head (need red/blue 

glasses to see the image in 3D); G-K: 3D prints of the models built by Autodesk® Maya® 

software (Printer: Makerbot® Replicator® 2, Model: 13cm high by 6 cm wide); G, H: en face 
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view; I: Lateral view; J: Cross view of head showing position of anterior pharynx; K: 

Different views of anterior pharynx. Legend for color bars: CS: Cephalic sensilla; OS: Outer 

labial sensilla; IS: Inner labial sensilla; BC: Buccal cavity; TD: Teeth and denticles; AP: 

Amphidial aperture; PR: Pharynx.   
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Diversity and ecology of Tylenchidae 

Family Tylenchidae is an important group in Tylenchomorpha. Currently, this family 

comprises a total of 44 genera and 411 nominal species. The most cosmopolitan genus is 

Filenchus and this genus has been reported from all continents except Antarctica, while 17 

genera are monotypic and endemic to very limited locations. Species numbers in each of 

genera vary greatly: Aglenchus 8 spp., Antarctenchus 1 sp., Atylenchus 1 sp., Coslenchus 38 

spp., Pleurotylenchus 2 spp., Atetylenchus 4 spp., Basiria 43 spp., Boleodorus 30 spp., 

Neopsilenchus 9 spp., Neothada 6 spp., Psilenchus 21 spp., Ridgellus 1 sp., Thada 1 sp., 

Chilenchus 1 sp., Ecphyadophora 8 spp., Ecphyadophoroides 2 spp., Epicharinema 1 sp., 

Lelenchus 4 spp., Mitranema 2 spp., Tenunemellus 6 spp., Tremonema 1 sp., Ultratenella 1 sp., 

Allotylenchus 1 sp., Cervoannulatus 1 sp., Cucullitylenchus 1 sp., Discotylenchus 7 spp., 

Fraglenchus 1 sp., Gracilancea 1 sp., Irantylenchus 1 sp., Malenchus 38 spp., Miculenchus 4 

spp., Polenchus 3 spp., Sakia, 7 spp., Silenchus 1 sp., Tanzanius 1 sp., Tylenchus 28 spp., 

Filenchus: 96 spp. Arboritynchus 1 sp., Campbellenchus 2 sp., Cephalenchus 20 spp., 

Eutylenchus 6 spp., Tylodorus 2 spp., Labrys 1 sp., Discopersicus 1 sp. (based on valid 

species listed in Geraert (2008) and other recent described species in Bert et al., (2010), 

Mundo-Ocampo et al., (2015), Yaghoubi et al., (2015), Alvani et al., (2016), Soleymanzadeh 

et al., (2016), Qing et al., (2016), Yaghoubi et al., (2016), Mehrabian et al.(2017), Mehrabian 

et al., (2017), and Qing et al. (Chapter VI). 

Although the family Tylenchidae is a very common group and represented in various 

habitats, the actual diversity of this group is far from settled. Despite very few taxonomist 

worldwide are working on this group, two new genera have been reported (Chapter V, 

Yaghoubi et al., 2016) in only the last two years. Furthermore, although the genus Malenchus 

is already one of the most specious genus in Tylenchidae and only limited samples were 

examined during this study, yet two new species (Chapter II, VI) and three putative new 

species were discovered (unpublished data). It is very likely that only a fraction of the species 

of Tylenchidae is known: (1) most were described from the rhizosphere of economically 

important crops while natural ecosystems (e.g. forest, meadow and swamp) harbour a 
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significantly higher diversity of Tylenchidae compared to agro-ecosystem (Chapter IV); (2) 

nearly all Tylenchidae species are described from soil habitats, while both morphological and 

metagenomics  studies (Porazinska et al., 2010; Qing et al., 2015) found a high diversity of 

Tylenchidae in litter and/or canopy (e.g. 80% of the species in the temperate rainforest resided 

in the soil, whereas only 20% in the tropics); (3) metagenomics studies suggested that tropic 

nematode diversity is significantly higher compared to the much better sampled temperate 

environments (Porazinska et al., 2010; Porazinska et al., 2012); and (4) the family 

Tylenchidae comprises cryptic species (e.g. M. pachycephalus, M. acarayensis, Chapter III) 

and therefore some of the nominal species are actually species complexes.  

Several approaches have been developed to estimate species diversity: e.g. based on 

body size frequency distributions (May, 1988), host-specificity and spatial ratios (Erwin, 

1982), time-species accumulation curves (Bebber et al., 2007), patterns of higher taxonomic 

classification (Mora et al., 2011; Bartels et al., 2016), and based on metagenomic data (Ni et 

al., 2013). However, these methods either require massive data collection and subsequent 

analyses (which is beyond the main scope of this thesis), or are based on assumptions that 

doesn’t hold for Tylenchidae. Although a founded estimation is not possible from the data 

obtained in this study, we attempt to provide a rough estimation of Tylenchidae species 

number based on the ratios-between-taxa method follow Hawksworth (1991). Based on the 

samples examined during this study (from the tropical region, temperate Europe, and 

temperate and subtropical Asia), we observed that from a given sample Tylenchidae species 

are 1-5 times more diverse compared to  obligate plant-parasitic Tylenchomorpha (PPT). 

Since infraorder Tylenchomorpha contains 2240 (Andrássy, 1992) or 2828 species (Siddiqi, 

2000) while ca. 400 and 300 species are from the family Tylenchidae and superfamily 

Sphaerularioidea (insect parasitic and/or mycophagous nematodes) respectively, PPT 

comprise 1500-2100 species. Given the economic importance for crops and the higher plants, 

PPT are relatively well studied. Assuming that PPT species have mostly been described and 

giving that, based on our observations, Tylenchidae are equal to five times more diverse 

compared to PPT, around 2000-10,000 Tylenchidae species can be estimated . However, this 

estimation is very conservative, given the fact that several new PPT can be expected from 
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under-investigated natural habitats and the presence of cryptic species in PPT 

(Palomares-Rius et al., 2014).  

 The diversity of Tylenchidae is best known in arable land of Europe, while the diversity 

in  natural ecosystems in tropical and subtropical largely remains to be discovered. We 

expect, although this is not more than a wild guess, that 70% of the undiscovered species are 

from “neglected” regions, 20% from well studied regions and 10% are cryptic species.  

With the growing application of metagenomics and integrative taxonomy approaches, 

putative new species will be discovered at an increasing speed. However, giving the lack of 

specialists/taxonomist and the minor economic impact of Tylenchidae, most of these species 

will have to wait for their formal description. Therefore, most likely not more than 2-3 species 

can be expected to be described each year and the majority of Tylenchidae species will remain 

completely undescribed for a long time period. 

Feeding habitats in Tylenchidae is one of the most important discussion points amongst 

nematologists (Bongers & Bongers, 1998). They do not cause economic losses to crops and, 

although without experimental support, they were treated as root hair feeders (Bongers & 

Bongers, 1998) or algal, moss feeders (Siddiqi, 2000) due to weakly developed stylet. Some 

Filenchus species can be cultured on fungi (Okada, 2002), but this is not the case for other 

species/genera (e.g. Malenchus). Therefore, feeding behavior may be highly diversified in 

Tylenchidae and more researches are needed to clarify this. 

Taxonomy and phylogeny in Tylenchidae, overview of the genera 

Tylenchinae 

Filenchus 

Filenchus is clearly a polyphyletic genus, as shown by several molecular evidences (Bert 

et al., 2008; Holterman et al., 2008; Atighi et al., 2013; Pereira et al., 2017; Qing et al., 2017) 

and supported by the fact that Filenchus is more characterised by the absence of characters 

than the presence of clear apomorphic characters.  
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Current molecular phylogeny suggests that all four-incisures species forms a 

well-supported clade (Qing et al., 2017). Since the type species (F.vulgaris) is nested inside 

this clade, it makes the most sense that in case of a review this clade retains the genus name. 

The two-incisures species are more complex as they form several clades and probably they 

need to be split into several genera. Future studies should pay more attention to detailed 

morphology, for example the newly described two-incisures genus Labrys (Chapter V) is 

morphologically clearly different from Filenchus, but based on superficial observations this 

genus could be misidentified as Filenchus. Those Filenchus with multiple sub-ridges are more 

close to Malenchus and should consequently be transferred to this genus. Also, several 

species are reported with three incisures, these species may have three genuine incisures or 

observations may be the result of four incisures but with two inner incisures very closed to 

each other. In such case, the former may present a separate clade and the later may similar to 

four-incisures clade. 

Tylenchus 

Tylenchus is also a polyphyletic genus. The conventionally used tail shape and stylet 

cone/shaft proportion do not define a natural clade. Those large sized (above 700 µm) 

Tylenchus (T. davainei) are related to some of Filenchus (F. aquilonius and F. andrassyi) with 

similar large size (such size is rare in Filenchus). Similarly, small sized Tylenchus spp. (T. 

arcuatus), are placed in a Filenchus clade, indicating size may be relatively important. 

Malenchus 

This genus represents a divergent linage from other genera in Tylenchinae (Fig. 1) and 

should be removed from Tylenchinae. This genus is very likely related to some of the 

Ecphyadophorinae, supported by a shared pouch-like amphidial fovea. However, molecular 

phylogeny provides different or even contradictory conclusions and the actual placement 

remains unknown (Chapter III). 

Miculenchus  

This genus should also be removed from Tylenchinae giving its divergent position. 
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Although phylogeny suggested a sibling relationship with Malenchus, Lelenchus and 

Tenunemellus. However, tree reconstruction errors are possible because of long branch 

attraction (Chapter VI).  

Tanzanius 

This genus is unique in Tylenchomorpha in the shape and structure of the stylet and 

pharynx. The pharynx and the short tail of Tanzanius are divergent from other Tylenchinae or 

Tylenchidae, and probably related to Paratylenchidae as suggested by Andrássy (2007). 

However, molecular data for this genus are currently unavailable and therefore a taxonomic 

assignment is not yet possible. 

 

Figure 1 Summary of phylogenetic position of the Tylenchidae in Tylenchomorpha 

inferred from 28S rRNA (A) and 18S rRNA (B). Node with low support values (BS<80, 
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PP<98) are collapsed (Qing et al., 2017). 

Boleodorinae 

This subfamily is relatively well-defined by its unique slit-like amphidial aperture and 

also each of the genera has an obvious genus-specific trait. However, Psilenchus and 

Atetylenchus have a didelphic reproductive system and are separate from other Tylenchidae 

based on a molecular phylogeny (Holterman et al., 2006; Bert et al., 2008). Therefore, they 

should be removed from the family Tylenchidae. This is in agreement with Bert et al. (2008) 

that the presence of a didelphic or monodelphic reproductive system is relatively important in 

tylenchid phylogeny. 

Ecphyadophorinae 

Species belonging to Ecphyadophorinae are among the most remarkable of all 

Tylenchidae. So far little is known about this subfamily, but several morphological traits 

(contrasting head, amphidial aperture, vulva and bursa shape) and molecular data (Lelenchus 

and Ecphyadophora are separated in 18S rRNA phylogeny) suggest that Ecphyadophorinae is 

a heterogeneous group. Currently, no specific trait has been found for this subfamily except 

the extremely slender body (Siddiqi, 2000; Geraert, 2008).  

Ecphyadophora 

This genus is probably related to Tremonema and Mitranema based on its similar 

pore-like amphidial aperture and lobed bursa. It is different from other Ecphyadophorinae by 

a pore-like amphidial aperture and the absence of a pouch-like amphidial aperture. 

Molecularly, Ecphyadophorais grouped with Filenchus misellus, F. chilensis and Labrys 

chinensis. However, Ecphyadophora is the type genus for the subfamily and thus the 

validation of Ecphyadophorinae should be reconsidered. Yet, due to a lack of molecular data a 

taxonomical act reflecting this position is not appropriate at this time. 

Ecphyadophoroides, Lelenchus and Tenunemellus 
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These genera may be closed related based on a similar long slit-like amphidial aperture and 

distinct amphidial fovea, and this is supported by molecular phylogeny. These genera may 

also closely related to Chilenchus and Malenchus, see Fig. 2.  

Epicharinema 

This genus has an unknown position. Epicharinema has dorso-ventrally fattened cephalic 

region (probably because of pouch-like amphidial aperture) and long slit-like amphidial 

aperture, which resemble to Ecphyadophoroides, Lelenchus and Tenunemellus. However, the 

pronounced median bulb with a valve in the pharynx and well-developed stylet suggest it may 

represent a different lineage. Currently, no molecular data are available for this genus and 

therefore no taxonomical act was taken in this thesis. 

Ultratenella 

Ultratenella This genus was assigned to Ecphyadophorinae, only because of its 

exceedingly thin body. However, it is probably related to with Ecphyadophora based on its 

similar vulva region and amphidial aperture (described as invisible for Ultratenella but 

probably pore-like).  
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Figure 2 Hypothesis of cladogram based on informative morphology traits in 

combination with a molecular phylogeny of Qing et al. (2017). The tree shows possible 

phylogenetic relationship of genus Malenchus and other related genera based on morphology 

characters. Ottolenchus is treated as a valid genus (vs synonym of Filenchus [Raski & Geraert, 

1986; Brzeski, 1997; Geraert, 2008]) as two and four incisures Filenchus nested in divergent 

lineages. Character states are arranged as A/B. Character 1. filiform tail. 2. monodelphic 

female. 3. Conspicuous pouch shape amphideal fovea/indistinct amphideal fovea. 4. vagina 

wall thin/vagina wall well developed. 5. bursa rectangular/bursa simple with convex margins. 

6. lateral region one ridge forming two incisures/ lateral region with four incisures. 7. cuticle 

coarsely annulated/cuticle relatively smooth. 8. cuticle with longitudinal lines/cuticle without 

longitudinal lines. 9. Heavily sclerotized stylet with cone half of total length/weakly 

sclerotized stylet with cone less than half. 10. large, round amphideal aperture confined to 

labial plate/slit-like aperture extending 3-4 annuli beyond labial plate (Qing et al., 2017) 

Tylodorinae 

Currently relatively few information is available for the Tylodorinae. The only available 

molecular data suggest that Cephalenchus and Eutylenchusare related, but in a divergent 

phylogenetic position in respect to other Tylenchidae (Pereira et al., 2017). The genus 

Campbellenchus is probably also related to Cephalenchus and Eutylenchus because of the 

similar stylet, but molecular data are needed to confirm this view. Tylodorus and 

Arboritynchushave extreme long stylets and a different pharynx (procorpus bulbous vs 

elongated in most Tylenchidae) and these two genera may also represent divergent clades.  

Problems and perspective in the molecular phylogeny of Tylenchidae 

Problems in molecular phylogeny 

DNA Extraction and PCR 

Tylenchidae are small and morphological traits are difficult to observe. Given most of 
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Tylenchidae species are not culturable under laboratory conditions and soil samples often 

contain different similar species of the same genus, accurate sample extraction in combination 

with a successful PCR can be challenging. In some cases, a single soil sample contains even 

more than five very similar species from same genus (e.g. Filenchus) and this makes 

identification challenging. A proper identification and photo/video vouchering is important 

prior to DNA extraction. Moreover, during DNA extraction the single specimen needs to be 

cut and transfer to PCR tube, a process that needs handling with caution to avoid losing the 

specimen. In addition, the small quantities of DNA templates obtained from single specimen 

only allow limited PCR attempts and thus the risk of running without templates is high if the 

binding of the universal primer fails.  

28S and 18S rRNA  

In this study we have used 28S and 18S rRNA genes, which are the two most common 

regions in nematode phylogenetic studies. However, both regions have some limitations to 

analyse the phylogeny of Tylenchidae. The 28S rRNA has a high substitution rate that 

introduces multiple substitutions at the same sites and in some taxa (e.g. Malenchus, 

Lelenchus and Miculenchus) this is likely to cause long-branch attraction (Felsenstein, 1978) 

and thus obscure the phylogenetic relationships among sequences (Arbogast et al., 2002). 

Hence, the reliability of 28S rRNA phylogenies for Tylenchidae is limited, even with the use 

of likelihood methods, which are less sensitive to long-branch attraction (Felsenstein, 1981). 

However, despite these severe limitations, the 28S rRNA gene has widely been used in 

phylogeny of Tylenchomorpha (Subbotin et al., 2005; Subbotin et al., 2006; Subbotin et al., 

2007; Subbotin et al., 2008; Subbotin et al., 2011), and for Tylenchidae three of the last five 

studies have been based on 28S rRNA alone (Atighi et al., 2013; Panahandeh et al., 2015a; 

Panahandeh et al., 2015b; Qing et al., 2015; Yaghoubi et al., 2015). However, based on our 

results, the obtained tree topologies should be interpreted with caution, and it is recommended 

that future phylogenetic studies of Tylenchidae do not solely rely on the 28S rRNA gene. 

On the other hand, 18S rRNA data have an appropriate substitution rate, but considerable 

length variation of the reference sequences in GenBank result in a scarcity of homologous 
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sites in an alignment (coverage limitations). Moreover, 18S rRNA has inadequate informative 

sites to resolve early diverging Tylenchomorpha (=tylenchs with supposedly ancestral 

characters, including Tylenchidae, Anguinidae and Sphaerularioidea), even based on full 

length sequences, the resolution among early diverging group is low (Bert et al., 2008, 2010; 

Holterman et al., 2008; van Megenet al., 2009) and these resolution problems are not likely to 

be resolved by adding more taxa (Chapter III). 

Polymorphism is an additional problem to reconstruct the Tylenchidae phylogeny. The 

rRNA is supposed to evolve in a concerted manner, such that the different repeats are not 

independent from one another but instead are homogenized by different mechanisms (e.g. 

gene conversion, unequal crossing over) collectively termed concerted evolution (Dover, 

1982). As a result, rDNA polymorphism within a species is expected to be very low or absent. 

For nematodes, polymorphisms of 18S, 28S rRNA and ITS have been found in 

Halicephalobus gingivalis (Yoshiga, 2014), Rotylenchulus reniformis (Nyaku et al., 2013; Van 

Den Berget al., 2016,) and two genera of Tylenchidae: Cephalenchus(Pereira & Baldwin, 

2016) and Malenchus (Chapter IX). However, these high intragenomic variations may exist in 

more taxa of Tylenchidae and their impact to phylogeny still need to be evaluated. 

In addition, discordances have been found between 18S and 28S rRNA (e.g. 

monophyly/polyphyly of Malenchus and placement of Lelenchus), and also considerable 

variations of support values (PP/BS), even for the same gene, have been observed in this study. 

This increased the difficulties to interpret Tylenchidae phylogeny. 

Taxa density 

The sampled taxa used for phylogenetic studies are also limited. Among 44 genera in 

Tylenchidae, 22 genera do not have any sequence representative. Furthermore, the genera 

with associated sequences are either only represented by single sequence or by few very short 

fragments (less than 800 bp or 500 bp in 18S and 28S rRNA, respectively). The lack of taxa 

has subsequently hampered our understanding of Tylenchidae phylogeny, especially for those 

divergent genera with many unique characters (e.g. in subfamily Ecphyadophorinae, 

Tanzanius). 
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Perspectives for Tylenchidae phylogeny 

Gene selection 

The gene selection is important in future phylogenetic studies of the family Tylenchidae.18S 

and 28S do not provide adequate phylogenetic signals but are certainly still important, as they 

represent the majority of the Tylenchidae references sequences in GenBank. The multi-genes 

based phylogenic approaches have been used for many other taxa and show many advantages 

and several candidate genes are potentially valuable: e.g. Hsp90, EF1a alpha, ATPase, ATPsyn, 

MAT, IF, CAT, Tropo, ALD, GAPDH, PFK, Mio and H3 (Shultz & Regier, 2000; Anderson et 

al., 2004; Yurchenko et al., 2006; Kim et al., 2008; Paps et al., 2009). Evidently, 

whole-genome phylogeny has a great power to resolve long standing phylogenetic problems 

(Jarvis et al., 2014) and with the ever-increasing development of NGS techniques, this 

method will be more affordable and doable in the near future. 

Primer design 

PCR amplification failure of universal primers (e.g. D2A/D3B, G18S4/18P) was relatively 

common problem in this study and this shows that the primer binding regions are relatively 

divergent in Tylenchidae.. As few reference sequences are available for Tylenchidae, the 

design of an universal primer for this family is difficult. Currently, the best option is to use the 

different available primer pairs and find out the most efficient combinations. However, 

primers with too short target regions (800 bp in 18S or 500 bp 28S rRNA) should be avoided 

as they may cause substantially problems in alignment and tree reconstruction (e.g. limited 

sequences coverage when comparing with reference sequence in database).  

Alignment and Tree reconstruction 

Phylogenetic trees should be reconstructed with caution, especially for Tylenchidae. The use 

of the most appropriate alignment method appears to be important, especially when sequences 

are divergent. Also the use of secondary structures can result in different phylogenetic results 

which usually have better quality and are more trusted. In tree reconstruction, it’s necessary to 

use at least two methods (in favor of BI and ML) and interpret the results based on both  
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support values, as these topologies and support values may differ or even not agree with each 

other (Chapter VI). 

New techniques in morphology and taxonomy 

Current problem and limitations 

Nematodes are usually vermiform and share a number of plesiomorphic similarities that mask 

phylogenetic relations. However, on a detailed level they are actually exceedingly diverse in 

morphology, but light microscopy often fails to provide the appropriate resolution (De Ley, 

2000). The family Tylenchidae is a typical example of a taxon that combines small body size 

and the lack of clearly homologous characters. Hence, taxonomy of Tylenchidae solely based 

on LM is problematic, although SEM and TEM are relatively widely used for nematodes but 

both have signification limitations (e.g. time consuming, laborious sample preparation).  

Data acquisition and processing 

Several techniques have been developed to extract detailed morphology in zoology (Hall, 

1995; Bumbarger et al., 2006; Beutel et al., 2008; Bumbarger et al., 2009; Wipfler et al., 2012; 

Handschuh et al., 2013; Nguyen et al., 2014), but not all of them are suitable of nematodes 

(e.g.µ-CT, X-ray), given their minute size and high transparency. In the field of nematology, 

very limited attempts have been made to introduce alternative techniques. De Ley and Bert 

(2002) introduced a video capture system to replace images based on only a single image 

focal plane. Jay Burr and Baldwin (2016) have used confocal microscopy to label the cell 

boundaries with fluorescent antibodies to analyses stoma structures.3D reconstruction based 

on serial images based on TEM and LM was used to reconstruct internal structure or head 

structures (Ragsdale et al., 2008, 2009, 2011,Apolonio Silva De Oliveira et al., 2012). 

However, these methods are either very time consuming or limited in resolution. Nowadays, 

with the developing of image acquisition equipment’s and processing techniques, increasing 

number of methods can be used in nematode morphology analysis. For example, focus 

stacking (a digital image processing technique which combines multiple images taken at 
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different focus which provide an image with a greater depth of field) was used in this study to 

improve image quality at high magnifications (unpublished data) using Helicon and Adobe 

Photoshop; High-dynamic-range imaging (HDR) that can represent a greater range of 

luminance levels was used to improve LM morphology visualization, in both dark and bright 

parts of a LM image (unpublished data); Image J is useful for counting and morphometric 

measurements; NeuronJ plugin (Popko et al., 2009) can facilitate the tracing and 

quantification of elongated image structures (e.g. pharynx, gonad etc.), and Voloom may be 

potentially useful to reconstruct 3D images based on histological images.  

Visualisation of morphological data 

The morphology variations in nematodes are small compared with larger animals such as 

vertebrates and hard to present in a straightforward way. However, a proper visualization of 

morphology is important for both research and education. Below are some examples that can 

be used in nematology: 

Line drawing 

Drawing is the most traditional and most basic technique for taxonomists. The ink line 

drawing has many advantages especially to present detailed fine structures in high quality. 

However, drawing is time consuming and difficult to edit afterwards. Computer assisted 

drawing programs, such as Adobe Illustrator are getting recently more popularly, but the 

standard simple lines usually fail to provide a realistic picture. In this study, a new method 

was developed based on a combination of Adobe Illustrator, Adobe Photoshop and ink line 

drawing. The ink line drawings were scanned and used as brush library in Adobe Illustrator to 

provide gradually varying dots and lines for more complex details while the digital drawing 

pad together with Adobe Illustrator was used for simple lines (e.g. body cuticle) or repetitive 

structures (e.g. annulations). Both parts were combined and modified in Adobe Photoshop to 

achieve the final image. The combination of these methods has been used, to the best of our 

knowledge, for the first time in Nematology and appeared to be very successful 

3D modeling 
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In the field of nematology, 3D modeling has an increasing number of applications in 

different fields as it eases the understanding by enhancing the representation of complex 3D 

structures and objects. In this study we introduced in the field of nematology 

observation/imagination based 3D modeling known from the cartoon and animation business 

(Chapter IX). This technique improves the illustration of some of complex structures of 

Tylenchidae (e.g. lip region and amphidial fovea of Malenchus and Cephalenchus, Chapter II). 

This technique is especially valuable in comparative studies that need to represent a series of 

structures that can be hardly differentiated based on only 2D line drawings. 

3D printing 

3D printing technology has been around since the 1980s, it has only recently gained real 

momentum as a technique as the technology matures and awareness grows. This study 

explored the possibility of 3D printing in Nematology. The parameters and materials are 

optimized to fit the requirements of nematology research and printed plastic models have 

been used for lectures and practical in the framework of International MSc in Agro and 

Environmental Nematology (Ghent University). Although the accuracy of our models is not 

comparable to 3D reconstruction based on serial TEM sections or electron tomography 

techniques, the models are useful and time-efficient complements’ to pictures and drawings of 

species descriptions to illustrate complex 3D structures. Moreover, this fast pipeline to build 

models and resulting printing is useful for education, as a broad category of structures (e.g. 

stylet, muscles in cephalic region of tylenchs, neural systems, and sensory etc.) can be 

modeled and printed for an acceptable cost (Chapter V).  

Future taxonomical applications can also be extended to virtual reality approaches that allow 

observation and dissection without damaging precious specimens, which represents a 

promising direction for both taxonomy and education. 

Conclusion 

In conclusion, although the backbone of the Tylenchidae phylogeny cannot be fully 

resolved based on current approaches, we were able to demonstrate that some frequently-used 

morphological characteristics fail to delimitate the genera within the family Tylenchidae, 

while other morphological traits have been proven to be congruent with molecular 
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phylogenies.  

A taxonomy study based on morphological data only from LM, and phylogenetic study 

that solely relies on 28S or 18S rRNA should be avoid. It has been demonstrated that the use 

of some other, either existing or new technologies (e.g. SEM, TEM for other structures, 

multiple genes phylogeny, phylogenomics) are needed to extract more informative molecular 

data and/or morphological characters. Nevertheless, even with the newest techniques, 

nematode taxonomists still need to test and revise the congruence of morphology-based 

systematics and molecular phylogenetics. For the time being, in order to obtain a 

comprehensive understanding of Tylenchidae, the understanding of the major phylogenetic 

patterns and clades must be the key priority, rather than focusing on a compilation of a 

never-ending catalogue of single taxonomic units. 
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Table S1. Morphometric data for all recovered Tylenchidae species in this study. All measurements are in μm and in the form: mean±s.d.(range). 

Character 
Basiria duplexa Boleodorus thylactus Cephalenchus cephalodiscus Cephalenchus leptus Cephalenchus leptus 

5f# 7 f# 3 f# 6 f# 4 f# 

a 38.9±2.8 (35.4-41.5) 24.1±3.1 (20.9-27.1) 37.1±0.4(36.8-37.4) 39.9±2.3 (37.8-42.4) 33.5±1.5 (32.4-34.5) 

c 4.9±0.17 (4.7-5.1) 6.9±0.26 (6.6-6.7) 2.7±0.06 (2.6-2.7) 3.0±0.11 (2.9-3.2) 2.9±0.08 (2.9-3.0) 

c' 12.7±0.63 (12.1-13.4) 6.4±0.6 (5.9-7.1) 20.7±0.22 (20.5-20.8) 21.1±1.03 (2.9-3.2) 23.0±1.3 (22.1-23.8) 

V 65.1±0.37 (64.7-65.5) 64.0±0.26 (63.7-64.2) 53.7±0.133 (53.6-53.8) 55.4±0.52 (2.9-3.2) 53.7±0.11 (22.1-23.8) 

V' 82.3±1.1 (81.1-83.4) 74.9±0.67 (74.4-75.7) 86.0±1.4 (85.0-87.0) 83.0±2.18 (2.9-3.2) 81.7±0.96 (80.9-82.3) 

T/VA 1.4±0.13(1.1-1.6) 0.68±0.05 (0.64-0.73) 4.3±0.60 (3.9-4.8) 3.0±0.51 (2.9-3.2) 2.8±0.27 (2.7-3.0) 

MB 41±2.2(37.3-45) 50±0.4 (50.2-49.4) 44.4±3.2 (42.1-46.7) 44.2±3.0 (2.9-3.2) 41.7±0.44 (41.4-42.1) 

L 667±44 (637-741) 469±7.0 (464-477) 618±6.4 (614-623) 675±9.5 (2.9-3.2) 675±7.78 (670-681) 

Stylet 9.8±0.7(8.1-11.1) 11±0.4 (11-12) 21±0.49 (21-22) 18±0.76 (2.9-3.2) 18±0.42 (17-18) 

Pharynx 102±9.3(89-126) 85.9±4.4 (81-90) 112±14 (102-122) 86±2.6 (2.9-3.2) 104±9.9 (97-111) 

E pore 68.4±4.9(62.1-74.2) 73±4.0 (71-78) 71±2.8 (69-73) 69±4.3 (2.9-3.2) 66±6.4 (62-71) 

nerve ring 58±3.2(52-66) 60±1.7 (62-59) 61±1.4 (60-62) 63±3.5 (2.9-3.2) 61±3.2 (58-63) 

Body Width 17±3.1 (14.1-21.2) 20±2.5 (17-22) 17±0.35 (16-17) 17±1.0 (2.9-3.2) 20±1.1 (19-21) 

Vulva to anterior end/Spicule 434±34(401-451) 300±4.9 (297-306) 332±4.2 (329-335) 374±6.6 (2.9-3.2) 362±4.9 (359-366) 

PUS/Gubernaculum 12±4.3(7.2-14) 9.1±2.8 (5.9-11) 14±0.78 (14-15) 11±1.1 (2.9-3.2) 16±1.2 (15-17) 

Anus/Cloacal width 10±0.5(9.1-12) 11±1.2 (9.5-12 11±0.49 (11-12) 11±0.51 (2.9-3.2) 10±0.71 (9.6-11) 

Tail 130±23(111-171) 68±1.9 (67-70) 232±7.8 (227-238) 224±9.9 (2.9-3.2) 231±3.5 (229-234) 
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Table S1. (continued) 

Character 
Coslenchus costatus Coslenchus oligogyrus Filenchus afghanicus 

Filenchus 

balcarceanus 
Filenchus cylindricus 

4 f# 6 f# 7 f# 4 f# 8 f# 2 m# 

a 25.4±2.9 (22.7-29.3) 26.9±0.74(26.3-27.7) 30.6±1.3 (29.3-32.3) 32.5±1.1 (31.4-34.0) 40.4±2.4 (38.1-42) 39.6±2.3 (37.9-41.2) 

c 5.1±0.30 (4.7-5.4) 5.4±0.34(5.1-5.8) 4.7±0.15 (4.5-4.9) 3.9±0.25 (3.7-4.2) 5.3±0.1 (5.2-5.4) 4.6±0.19 (4.5-4.7) 

c' 8.7±0.95 (7.9-10.1) 8.2±1.3(6.7-9.1) 10.4±1.2 (9.3-12.1) 13.0±1.7 (10.9-14.7) 10.6±0.42 (10.3-11.0) 
12.2±0.47 

(11.9-12.5) 

V 65.6±1.1 (64.4-66.7) 67.4±2.6(64.5-69.7) 62.9±2.3 (61.2-66.3) 58.7±1.6 (57.2-60.9) 62.1±0.86 (61.5-63.1) - 

V' 81.7±2.1 (80.2-84.8) 82.8±2.9(79.5-84.6) 80.0±2.2 (78.4-0.83.3) 78.7±1.8 (76.6-80.2) 76.6±1.4 (75.5-78.1) - 

T/VA 1.4±0.28 (1.2-1.8) 1.3±0.23(1.1-1.6) 1.4±0.12 (1.3-1.5) 1.6±0.2 (1.3-1.9) 1.0±0.08 (0.92-1.1) - 

MB 48.5±1.3 (47.7-50.4) 48±4.6(42.4-50.5) 44.8±1.8 (42-46) 44±1.1 (43.2-45.7) 43.1±1.44 (41.5-44.4) 43±0.08 (42.9-43.1) 

L 465±21 (436-481) 492±37(462-533) 542±37 (498-588) 392±26 (358-421) 913±76 (861-1001) 869±5.7 (865-873) 

Stylet 12±0.62 (11-13 11±0.32(11-12.0) 9.0±0.42 (8.6-9.6) 9.5±0.12 (9.3-9.6) 13±0.30 (12.5-13.1) 12±0 (12.3-12.3) 

Pharynx 85±4.2 (79-89) 97±4.0(92-99) 91±6.8 (83-99) 79±7.2 (71-88) 138±4.6 (133-142) 139±3.5 (137-142) 

E pore 63±2.3 (61-67) 78±2.0(76-80) 60±2.2 (57-62) 56±4.3 (51-61) 110±2.0 (108-112) 113±1.4 (112-114) 

nerve ring 58±1.6 (56-60) 74±3.6(71-78) 54±2.9 (50-57) 50±4.2 (46-56) 93±5.0 (88-98) 93.5±6.4 (89-98) 

Body Width 18±2.0 (16-21) 18±0.95(17-19) 18±1.3 (17-20) 12±0.96 (11-13.0) 23±2.4 (20-25) 22±1.4 (21-23) 

Vulva to anterior 

end/Spicule 
305±13 (289-319) 331±11(322-344) 341±16 (330-365) 230±9.9 (218-241) 567±46 (530-618) 21±0.49 (21-22) 

PUS/Gubernaculu

m 
4.3±0.70 (3.6-5.2) 0±0(0-0) 8.9±0.98 (8.1-10.3) 6.8±0.81 (5.8-7.7) 14±0.25 (13-14) 5.7±1.5 (4.6-6.8) 

Anus/Cloacal 

width 
10±0.44 (10-11) 11±0.72(11-12) 11±0.80 (10.0-12) 7.7±0.26 (7.4-7.9) 16±0.85 (15.4-17.1) 15±0.07 (15.4-15.5) 

Tail 92±9.0 (81-102) 92±10(80-100) 116±10 (102-125) 100±12 (86-111) 172±15 (159-189) 188±6.4 (184-193) 
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Table S1. (continued) 

Character 
Filenchus discrepans Filenchus hamuliger Filenchus magnus Filenchus misellus Filenchus misellus 

7 f# 4 f# 5 f# 8 f# 8 f# 

a 34.3±1.9(32.9-34.4) 35.1±2.3 (32.1-37.4) 34.8±3.0 (31.8-37.7) 38±3.4 (34.7-42.7) 34.4±1.5(33.4-36.1) 

c 3.4±0.08(3.4-3.5) 4.8±0.17 (4.6-5.0) 3.3±0.15 (3.2-3.4) 7.3±1.2 (6.4-9.0) 4.4±0.39 (4.0-4.8) 

c' 15.9±2.5(14.1-17.6) 16.3±1.3 (15.3-18.2) 16.9±1.3 (15.4-18.0) 7.1±0.45 (6.5-7.5) 11.8±0.91 (10.9-12.7) 

V 58.5±0.23(58.3-58.7) 64.4±1.5 (62.8-66.4) 49.0±2.9 (45.9-51.7) 70.6±1.26 (68.8-71.7) 60.6±2.4 (57.9-62.2) 

V' 82.6±1.1(81.8-83.3) 81.4±2.0 (78.6-83.5) 70.0±2.9 (67.05-72.8) 82.0±1.64 (79.9-83.6) 78.4±1.7 (76.9-80.3) 

T/VA 2.4±0.21(2.2-2.5) 1.4±0.18 (1.2-1.5) 1.4±0.06 (1.4-1.5) 0.91±0.19 (0.62-1.0) 1.4±0.16 (1.2-1.5) 

MB 46.5±1.9(45-48) 41.4±1.4 (39.4-42.6) 44.6±1.2 (43.9-46.0 66.2±5.4 (59.1-72.3) 46.8±0.89 (46.0-47.8) 

L 396±6.4(392-401) 574±14 (556-589) 369±11 (356-377) 384±29 (346-408) 381±17 (368-400) 

Stylet 6.8±0.05(6.7-6.8) 8.5±0.45 (8.1-9.1) 6.9±0.25 (6.7-7.2) 6.5±0.33 (6.2-7.0) 7.0±0.21 (6.8-7.2) 

Pharynx 79±1.02(78-80) 103±6.4 (96-110) 83±3.7 (79.7-87) 63±2.6 (60-66) 62.0±3.6 (58-65) 

E pore 55±4.0(52-58) 84±8.1 (76-93) 59±3.8 (56-63) 60±4.0 (55-65) 47±1.4 (45-48) 

nerve ring 48±2.3(46-50) 74±6.6 (67-81) 54±2.8 (51-56) 50±2.6 (48-53) 39±3.3 (37-43) 

Body Width 11±0.46(11-12.0) 16.4±1.14 (15.3-18) 11±0.67 (9.9-11) 10±0.68 (9.5-11) 11±0.75 (10-12.0) 

Vulva to anterior end/Spicule 232±2.8(230-234) 370±15 (349-384) 181±11 (173-193) 271±25 (238-291) 231±15 (217-247) 

PUS/Gubernaculum 9.5±0.03(9.4-9.5) 6.0±0.65 (5.1-6.6) 6±1.7 (4.3-7.8) 4.6±1.2 (3.5-6.3) 6.5±0.55 (6.0-7.1) 

Anus/Cloacal width 7.4±1.2(6.5-8.2) 7.4±0.25 (7.1-7.7) 6.6±0.25 (6.3-6.8) 7.5±1.5 (5.6-8.9) 7.3±0.28 (7.0-7.6) 

Tail 115±0.71(115-116) 120±7.0 (112-129) 111±7.4 (105-119) 53±8.2 (42-60) 86.3±5.8 (83-93) 
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Table S1. (continued) 

Character 
Filenchus sheri Filenchus tenuis Filenchus vulgaris Filenchus vulgaris 

10 f# 2 f# 5 f# 5 f# 1 m# 4 f# 

a 34.1±2.7 (31.0-37.2) 38.7±2.1 (37.2-40.1) 27.6±0.88 (26.5-27.9) 30.6±5.5(25.5-36.4) 30.1 29.8±0.92(28.8-30.6) 

c 3.9±0.43 (3.3-4.2) 4.7±0.19 (4.5-4.8) 5.7±0.18 (5.5-5.9) 4.6±0.23(4.4-4.8) 4.2 4.4±0.08 (4.3-4.5) 

c' 14.4±0.93 (13.6-15.7) 12.1±1.8 (10.8-13.4) 7.4±0.40 (7.0-7.8) 11.8±0.09 (11.7-11.9) 9.9 12.4±0.32 (12.1-12.8) 

V 60.0±2.4 (58.4-63.2) - 65.8±1.69 (63.1-67.3) 60.8±0.84 (59.9-61.6) - 60.4±0.68 (59.7-61.1) 

V' 79.4±0.86 (78.6-80.6) - 79.9±1.6 (77.2-81.5) 77.6±1.4 (76.1-78.9) - 78.2±0.65 (77.5-78.6) 

T/VA 1.70±0.30 (1.4-2.1) - 1.1±0.06 (0.98-1.1) 1.2±0.15 (1.1-1.4) 0.31 1.3±0.04 (1.3-1.4) 

MB 47±3.1 (43.9-51.1) 48.3±1.3 (47.4-49.2 46.1±1.7 (44-48) 46.5±2.0 (45.1-48.7) 48.9 50±1.5 (49.4-52.3) 

L 447±34 (397-470) 440±7.8 (435-446) 359±12 (349-378) 640±18 (630-661) 512 559±21 (535-577) 

Stylet 8.3±1.7 (7.3-10.9) 7.7±0.3 (7.5-7.9) 7.5±0.11 (7.4-7.7) 10±0.51 (9.7-10.6) 10 11±0.38 (10-11.0) 

Pharynx 87±11 (72-98) 94±1.5 (93-95) 75±3.8 (70-77) 98±6.2 (91-103) 94 80±4.9 (76-86) 

E pore 64±7.0 (53-69) 71±1.1 (70-72) 53±2.2 (50-55) 75±3.0 (72-78) 66 68±2.8 (65-71) 

nerve ring 56±2.6 (52-59) 63±2.7 (61-65) 46±1.7 (44-49) 62±3.2 (59-65) 57 61±2.5 (58-63) 

Body Width 13±0.62 (12-13.0) 11±0.42 (11.1-11.7) 13±0.50 (12.7-13.8) 21±3.7 (17-24) 17 19±1.1 (18-20) 

Vulva to anterior end/Spicule 264±30 (220-283) 14±0.14 (13.9-14.1) 236±6.3 (231-247) 389±6.6 (383-396) 16 338±11 (327-349) 

PUS/Gubernaculum 8.3±0.64 (7.6-9.1) 4.0±0.23 (3.8-4.1) 8.77±0.70 (7.6-9.5) 11±1.4 (9.6-12) 4.4 8.8±0.95 (7.9-9.8) 

Anus/Cloacal width 8.0±0.54 (7.5-8.7) 7.9±1.0 (7.2-8.6) 8.6±0.19 (8.3-8.7) 12±0.61 (11-12) 12 10±0.5 (9.8-11) 

Tail 114±5.8 (109-120) 94±2.1 (93-96) 63±4.1 (59-68) 139±6.8 (131-144) 122 127±7.2 (119-133) 
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Table S1. (continued) 

Character 
Lelenchus leptosoma Malenchus acarayensis Miculenchus salvus Neopislenchus longicaudatus Neopsilenchus magnidens 

4 f# 4 f# 5 f# 5 f# 5 f# 

a 30.4±1.0 (29.2-31.1) 21.4±0.68 (20.8-22.2) 23.8±0.18 (23.6-24.0) 30.6±1.7 (28.7-31.8) 31.1±1.7 (29.2-32.4) 

c 3.7±0.05 (3.6-3.7) 4.5±0.24 (4.2-4.7) 5.7±0.40 (5.2-5.9) 4.9±0.19 (4.7-5.0) 6.2±0.58 (5.8-6.8) 

c' 15.9±0.45 (15.4-16.3) 9.3±0.70 (8.5-9.9) 8.0±0.41 (7.5-8.3) 12.0±1.3 (10.5-12.9) 8.6±0.59 (7.9-9.1) 

V 55.9±1.1 (54.9-57.0) 61.7±0.31 (61.4-62.0) 63.2±1.3 (62.1-64.6) 59.7±4.8 (54.2-63.0) 66±1.46 (64.5-67.4) 

V' 76.9±1.9 (75.2-78.9) 79.4±1.6 (78.2-81.3) 76.7±1.1 (75.6-77.8) 75.1±6.5 (67.7-80.1) 78.9±2.3 (77.4-81.5) 

T/VA 1.6±0.16 (1.5-1.8) 1.4±0.22 (1.2-1.7) 0.92±0.09 (0.83-1.0) 1.08±0.29 (0.77-1.4) 0.93±0.19 (0.76-1.1) 

MB 43.5±2.4 (42.0-46.3) 47.7±0.64 (47.0-48.2) 46.5±2.8 (43.8-49.4) 54.9±3.4 (51.2-57.8) 49.7±1.4 (48.6-51.2) 

L 617±29 (585-642) 377±8.2 (368-384) 351±19 (331-369) 614±17 (596-631) 635±8.7 (625-642) 

Stylet 8.5±0.23 (8.4-8.8) 8.8±0.35 (8.4-9.1) 8.7±0.40 (8.3-9.1) 11±0.51 (10-11.0) 13±0.67 (12-13) 

Pharynx 118±3.7 (114-121) 86±3.1 (83-89) 89±6.0 (83-95) 84±3.2 (82-88) 76±5.1 (70-80) 

E pore 87±4.2 (83-91) 67±2.8 (64-70) 73±5.0 (68-78) 75±1.7 (74-77) 59±3.2 (57-63) 

nerve ring 78±4.5 (74-83) 56±2.7 (53-58) 59±2.1 (57-61) 60±3.0 (57-63) 55±2.3 (54-58) 

Body Width 20±1.5 (19-22) 18±0.88 (17-18) 14.8±0.91 (14-16) 20±1.6 (19-22) 20±1.4 (19-22) 

Vulva to anterior end/Spicule 345±20 (326-366) 233±6.2 (226-238) 222±7.5 (214-229) 366±23 (342-387) 419±12 (411-433) 

PUS/Gubernaculum 12±0.83 (11.4-13) 11±1.2 (9.3-12) 7.3±0.50 (6.8-7.8) 10±1.0 (9.2-11) 12±1.0 (11-13) 

Anus/Cloacal width 11±0.31 (10-11) 9.0±0.66 (8.3-9.6) 7.7±0.65 (7.3-8.5) 10±1.4 (9.2-12) 12±0.56 (11-13) 

Tail 168±9.5 (159-178) 84±6.2 (79-91) 61.9±7.6 (56-70) 125±6.0 (119-131) 103±11 (91-111) 
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