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Summary 

Fibre reinforced polymer (FRP) composites have already been used by mankind 

from as early on as 2000 BC as a structural material under  the form of s tra w 

reinforced clay bricks . Technology has come a long way since then and 

nowadays, composite materials are used for many high-end applications such as 

wind turbines, airplanes, construction materials, bic yc les  a nd br idge dec ks . 

These relatively new materials typically consist of layers of c ontinuous fi bres 

with high stiffness and high strength embedded in a polymer matrix. The 

combination of the reinforcing fibres and the polymer matrix results in materials 

with outstanding mechanical properties at low weight. Therefore, they are 

mainly used in structural applications in which weight is a critical factor, such a s 

the aerospace sector. Most composite structures are formed by stacking 

unidirectional or woven plies of reinforcing fibres under different angles in order 

to tune the properties in the in-plane directions. This is referred to as a 

composite laminate. Although the laminated structure of many FRP ma ter ials 

allows one to engineer the properties in various directions, it also results i n the 

biggest downside associated with these materials: failure by delamination. The 

reinforcing plies are prone to debond and separate due to a mismatch in elasti c 

properties between adjacent reinforcing plies, a relatively weak resin rich 

interlayer between the reinforcing plies and the fact that there i s  no through -

thickness reinforcement. Delamination results  in a loss of stiffness and strength 

of the composite part and is one of the major failure modes encountered in 

composites during use. Hence, increasing the resistance to delamination would 

result in better materials, allowing engineers to design new and optimized 

composite applications.  

This PhD investigates the novel interlaminar toughening tec hnique ba sed on 

interleaving electrospun nanofibrous veils. These veils can be thought of a s  a  

new class of materials consisting of very thin polymeric fibres with typical 

diameters below 500 nm. This is substantially lower than the di a meter  of the 

classical reinforcing fibres that have diameters between 5 and 25 µm. I t i s  thi s  

small diameter that gives nanofibrous veils interesting characteristics suc h a s a  

large surface area, a high porosity and improved mechanical properties 

compared to the bulk polymer. They are formed as self-supporting veils or  c a n 

be directly electrospun on the reinforcing fibre pl ies. This makes it exceptionally 
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easy to integrate them into composite laminates in comparison to many 

traditional toughening techniques  by interleaving them between reinforcing 

plies. Although the expected benefits are numerous, the research into these 

nanofibre interleaved composite materials is still very l imited. 

The primary goal of this PhD is to develop highly toughened nanofibre enhanced 

composite laminates while at the same time, getting a thorough understanding 

of the micromechanisms and generic parameters of this novel toughening 

method. This has been done by a broad mechanical investigati on c onc erned 

with not only fundamental loading cases, but also a real-life loading case such as 

impact. The interleaved composites can be thought to have three di fferent 

levels at which the nanofibres affect the properties. These levels coincide wi th 

the hierarchical nature of the laminate itself: (i) the nanotoughened epoxy resin, 

(i i) the nanotoughened interlayer and (i i i) the nanotoughened laminate. The 

effect of the nanofibres was analysed on each level separately. This mul tilevel 

analysis led to a significant advancement of the understanding of these 

materials in a more structured and general sense, a step that is crucial to be able 

to design better damage resistant composite structures. Nanofibre inter leaved 

composites with excellent delamination resistance were designed, while 

obtaining a lot more fundamental knowledge about the prerequisites for 

effective nanofibre toughening. The improvements were in-line with and often 

even better than those obtained with traditional toughening methods. 

At the nanotoughened epoxy level, the effect of electrospun nanofibres on the 

fracture toughness of the epoxy resin was analysed. Using SENB experiments on 

relatively thick nanotoughened epoxy specimens, we found that there a re two 

distinct mechanisms causing an increased fracture toughness compared to nea t 

epoxy resin. The first one is the yielding of nanofibres in the fracture processing 

zone in front of the crack tip (intrinsic toughening) which caused an increase i n 

the initiation fracture toughness of about 20 – 30 % for PCL nanofibre 

toughened epoxy. However, the main increase in fracture toughness was due to 

the extrinsic toughening mechanism of nanofibre bridging. If the crack 

propagates, nanofibres will bridge the newly formed crack surfaces and take up 

energy by straining, yielding and eventually (tensile) fracture. At the same ti me, 

they provide closing tractions on the crack which relieves the stress at the cra ck 

tip. Both effects will  cause an increase in the fracture toughness. Us ing i n-situ 
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microscopy, the development of the nanofibre bridging zones  wa s visualised. 

These experiments provided many new insights into the way nanofibres result in 

an improved fracture toughness. 

At the level of a nanotoughened interlayer, other factors such as the 

delamination path will come into play. Microscopic a nalysis of del aminated 

specimens showed that the delamination did not progress s olely through the 

nanotoughened interlayer. Thus, nanofibre bridging zones did not just devel op 

over the whole delamination plane. Rather, the delamination was deflected 

towards the reinforcing ply boundary where it progressed by “classical” 

interfacial failure of the reinforcing fibres. However, r egul ar c rossings of the 

nanotoughened interlayer by the delamination path occurred, and it was mainly 

at these interlaminar crossings that nanofibre bridging zones developed. SEM 

analysis of the fracture surface of delaminated spec imens s howed th e s a me 

fracture morphology of the nanofibre bridging zones with protruding, plastically 

deformed nanofibres visible as in the nanotoughened epoxy. It was found tha t 

the delamination mode affects the development of nanofibre br idging zones . 

Not only did a Mode I loading mode typically result in less interlaminar 

crossings, it also exerted peeling forces to the nanofibres, making their adhesion 

with the epoxy very important. Indeed, nanofibres with a low a dhesion to the 

epoxy matrix did not improve the Mode I  delamination resistance. Mode II 

loadings on the other hand typically resulted in a higher amount of interlaminar 

crossings while exerting straining forces to the nanofibres. This resulted i n very 

effective load transfer to the nanofibres which readily i n crea sed the Mode I I  

delamination resistance. 

The interaction between the delamination path and the nanotoughened 

interlayers – which determines the amount of nanofibre bridging zones  – wa s  

found to be dependent on parameters related to the nanofibres themselves, the 

veil  morphology, the interleaving technique, the reinforcing fabric architec ture 

and even the way in which the delamination experiment is performed. These 

effects are very important not only to design optimally toughened l aminates, 

but also to comprehend the results reported in l iterature. Indeed, while one 

type of nanofibrous veil  might result in good improvements for one type of 

composite laminates, it does not necessarily result in the same i mprovements  

for other types of laminates. Generally, in order to increase the fracture 
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toughness on the interlaminar level, the interaction between the delami na tion 

path and the nanotoughened interlayer characteristics are of crucial importance 

and should both be considered in order to design damage resistant c omposite 

materials. 

Although the nanotoughened epoxy and nanotoughened interlayer level 

provided the essential insights into the toughening micromechanisms a cting i n 

an interleaved composite, the crack and delamination growth were always 

carefully initiated and controlled. Furthermore, the del a mination s pecimens 

typically had a unidirectional layup, which is not often encountered in 

applications. To provide a l ink between the fundamental insights and the 

mechanical response that can be expected in real -l ife situations, fully 

interleaved composite laminates were analysed. Using multidirectional 

laminates interleaved with nanofibres, the general mechanical properti es  a nd 

open hole tensile strength were analysed. While the (in-plane) tensile, shear and 

flexural stiffness and strength were retained, the open hole strength of PCL 

nanofibre interleaved laminates even increased about 8% compared to the 

virgin material. 

The low velocity impact resistance of fully interleaved laminates increased 

considerably compared to the virgin material. The (projected) damage 

decreased up to 50 – 60 %, especially at higher impact energies where the virgin 

material showed much delamination. PCL nanofibre interleaved laminates 

performed better than PA6.9 nanofibre interleaved ones. This was attributed to 

the strain rate sensitivity of PA6.9 and its low adhesion strength with the epoxy 

matrix. The interleaved laminates also showed less permanent indentation for  

the same impact energy than the virgin material. As more energy was absorbed 

in the interleaved laminates by the nanofibres, less damage to reinforcing fibres  

and matrix resin was produced. Analysis of the fracture s urface of i mpa cted 

specimens showed the development of nanofibre bridging zones , providing the 

link between the three levels. The PCL nanofibre bridging zones were more 

effective as much more plastic deformation and no peeling was observed 

compared to the PA6.9 bridging zones. The residual compressive strength of the 

impacted specimens was not influenced much by the presence of the 

nanotoughened interlayers. This was attributed to the rel a ti vel y hi gh i mpact 
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energies that were used and the shape of the delaminations in the cross -ply 

specimens.  
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Samenvatting 

Al sinds 2000 voor Christus gebruikt de mens vezelversterkte 

composietmaterialen. Destijds onder de vorm van stro-versterkte kleistenen om 

huizen te bouwen. Ondertussen is de technologie enorm geëvolueerd en vi ndt 

men composietmaterialen terug in vele hoogperformante toepa ssingen zoals 

windturbines, vliegtuigen, schepen, fietsen en brugdekken. Deze relatief nieuwe 

materialen bestaan meestal uit lagen van continue vezels met een hoge stijfheid 

en hoge sterkte, ingebed in een kunststofmatrix. De combinatie van 

versterkende vezels in een kunststofmatrix resulteert in materialen met 

uitstekende mechanische eigenschappen en een zeer laag gewicht. Dit maakt ze 

uitermate interessant voor structurele toepassingen waarbij het gewi c ht een 

kritische rol speelt, zoals in de luchtvaartsector. De lagen, die bestaan uit 

unidirectionele vezels of een geweven structuur, worden gestapeld onder 

verschillende hoeken om zo een dikkere structuur te vormen, waarbij de 

eigenschappen in het vlak kunnen worden afgestemd naargelang de toepassing. 

Deze gestapelde structuur wordt ook wel een (composiet)laminaat genoemd. De 

gelamineerde structuur maakt het mogelijk om de eigenschappen i n het vl a k 

nauwkeurig af te stemmen, maar zorgt tegelijk voor één van de grootste 

gebreken van deze materialen: materiaalfalen door delaminatie. De 

versterkende lagen zijn geneigd los te komen van elkaar door een mi s matc h in 

elastische eigenschappen tussen verschillend georiënteerde lagen, de 

aanwezigheid van een relatief zwakke harsrijke zone tussen de versterkingslagen 

en de afwezigheid van een versterking in de dikterichting.  

Delaminaties resulteren in een verlies van stijfheid en sterkte van het 

composietmateriaal en zijn één van de belangrijkste oorzaken van 

materiaalfalen tijdens gebruik. Dit betekent dat de verhoging van de 

delaminatieweerstand zou resulteren in betere composietmaterialen, waarmee 

ingenieurs niet alleen geoptimaliseerde, maar ook nieuwe toepassingen kunnen 

ontwerpen. 

In dit doctoraat wordt een nieuwe interlaminaire vertaaiingstechniek 

onderzocht om de delaminatieweerstand te verhogen. Deze techniek is 

gebaseerd op de incorporatie van elektrogesponnen nanovezel membranen i n 

de composietlaminaten. Een nanovezelmembraan kan worden besc houwd a ls 
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een nieuw soort materiaalklasse bestaande uit zeer dunne polymeervezel s met 

diameters kleiner dan 500 nm. Dit is aanzienlijk kleiner dan de diameter  va n de 

klassieke versterkingsvezels die tussen de 5 en 25 µm ligt. Dankzi j deze kl ei ne 

diameter vertonen de nanovezelmembranen zeer interessante eigenschappen, 

waaronder een groot specifiek oppervlak, een hoge porositeit en verbeterde 

mechanische eigenschappen in vergelijking met het bulkpolymeer. Ti j dens het 

elektrospinnen worden nanovezels afgezet als zelfondersteunende membranen 

of kan men ze onmiddelli jk afzetten op de versterkingsvezellagen. Door  de 

membranen tussen de versterkende lagen te leggen, of door gebruik te ma ken 

van versterkingslagen met opgesponnen nanovezels, zijn ze bijzonder makkelijk 

te integreren in composietlaminaten. Dit biedt een enorm voordeel in 

vergelijking met vele andere vertaaiingstechnieken. Desondanks is het 

onderzoek naar deze nieuwe nanovezelverbeterde composietmaterialen nog 

steeds zeer beperkt. 

Het doel van dit doctoraat was tweeledig. Niet alleen wilden we 

nanovezelvertaaide composietlaminaten ontwikkelen, ook wilden we een 

grondig inzicht krijgen in de micromechanismen en generieke pa rameters  die 

gerelateerd zijn aan deze nieuwe vertaaiingstechniek. Een breed mec ha ni sch 

onderzoek op verschillende materiaalniveaus lag daarom aan de ba s is va n dit 

doctoraat. De nanovezelverbeterde composieten kunnen immers worden 

onderverdeeld in drie verschillende niveaus , waarin de nanovezels de 

eigenschappen beïnvloeden. Deze niveaus vallen samen met de hi ëra rc hische 

aard van het laminaat: (i) het nanovezelvertaaide epoxyhars, (i i) d e 

nanovezelvertaaide tussenlaag en (i ii) het nanovezelvertaaide laminaat. Op el k 

van deze niveaus werd het vertaaiingseffect van de nanovezels afzonderlijk 

geanalyseerd. Het is deze analyse op drie niveaus die leidde tot een meer 

generiek inzicht in deze materialen: een cruciale stap om betere 

schadebestendige toepassingen te kunnen ontwerpen. 

Op het laagste niveau, dat van het nanovezelvertaaide epoxy, werd het effec t 

van de nanovezels op de breuktaaiheid van het epoxyhars geanalyseerd. Door  

gebruik te maken van SENB experimenten op relatief dikke nanovezelverta aide 

epoxy proefstukken, werden twee mechanismen ontdekt die voor een 

verhoogde breuktaaiheid zorgen. Het eerste mechanisme is de plastische 

vervorming van nanovezels in de spanningszone die optreedt aan de s c heurti p 
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(intrinsieke vertaaiing). Hierdoor stijgt de energie die nodig is voor 

scheurinitiatie in het epoxy. Het PCL nanovezelvertaaide epoxy had bijvoorbeeld 

een 20% tot 30% hogere breuktaaiheid. De belangrijkste stijging van de 

breuktaaiheid was echter het gevolg van de vorming van nanovezelbruggen 

tussen scheuroppervlakken (extrinsieke vertaaiing). Wanneer een scheur i n het 

nanovezelvertaaide epoxy ontstaat en groeit, zullen nanovezels de nieuw 

gevormde breukoppervlakken overbruggen. Tijdens di t proces zullen de 

nanovezels uitgerokken worden en uiteindelijk zelfs breken, waardoor er enorm 

veel energie wordt geabsorbeerd. Tegelijkertijd zorgen de nanovezelbruggen 

ook voor een sluitende actie tussen de scheuroppervlakken, waardoor de 

spanningsintensiteit aan de scheurtip daalt. Beide effecten veroorzaken een 

verhoging van de waargenomen breuktaaiheid van het nanovezelvertaaide 

epoxy. In-situ microscopie maakte het mogelijk om de ontwikkeling van 

nanovezelbruggen te visualiseren tijdens de scheurexperimenten. Deze 

experimenten leverden vele nieuwe inzichten op in de werking van het 

vertaaiingsmechanisme in nanovezelvertaaid epoxy. 

Op het niveau van de nanovezelvertaaide tussenlaag spelen andere factoren een 

rol, waaronder het delaminatiepad. Het nanovezelvertaaide epoxyhars bevi ndt 

zich nu namelijk tussen vezellagen. Uit microscopische analyse van 

gedelamineerde proefstukken bleek dat de delaminatie niet doorheen de 

volledige vertaaide tussenlaag ontstond. Dit betekent dat er zich geen 

nanovezelbruggen zullen vormen over het ganse oppervlak van de delaminatie. 

In plaats daarvan wijkt de delaminatie grotendeels uit naar het grensvlak van de 

versterkingslagen. De tussenlaag wordt echter nog regelmatig doorkruist door 

de delaminatie. Deze doorkruisingen zorgen voor de ontwikkeling van 

nanovezelbruggen, en bijgevolg voor een verhoging van de 

delaminatieweerstand. Uit SEM-analyse van de gedelamineerde proefstukken 

bleek dat de doorkruisingen dezelfde morfologie hadden als het gebroken 

nanovezelvertaaide epoxyhars. Er waren restanten van nanovezelbruggen te 

zien waarin uitstekende en plastisch vervormde nanovezels zichtbaar waren. 

Ook de belastingsmode bleek een invloed te hebben op de ontwikkeling van 

nanovezelbruggen tijdens delaminatie. Een Mode I -belasting (opening) l eidde 

meestal tot minder doorkruisingen van de vertaaide tussenlaag. Da arbovenop 

zorgde de Mode I-belasting voor “afpel”-krachten op de nanovezels. Bijgevolg i s 
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een goede hechting tussen de nanovezels en het epoxy cruciaal om de 

delaminatieweerstand te verbeteren. Bij een Mode II -belasting (afschuiving) 

daarentegen, waren meer doorkruisingen van de tussenlaag zichtbaar . Hi erbij 

werden de nanovezels uitgerokken in plaats van afgepeld. Dit resulteerde in een 

zeer effectieve belastingsoverdracht door de nanovezels, waardoor de Mode I I -

delaminatieweerstand aanzienlijk verhoogde. Bijkomend bleek dat de interactie 

tussen het delaminatiepad en de vertaaide tussenlaag afhankelijk wa s va n het 

nanovezeltype, de morfologie van het nanovezelmembraan, de manier wa arop 

de nanovezels geïntegreerd worden, de architectuur van de vezelversterking en 

zelfs van de manier waarop een delaminatie-experiment wordt uitgevoerd. Het 

is zeer belangrijk om inzicht te krijgen in deze parameters, niet alleen om 

optimaal vertaaide laminaten te bekomen, maar ook om de in de literatuur 

beschreven resultaten beter te begrijpen. Deze parameters verklaren wa arom 

één type nanovezelmembraan kan leiden tot een goede delaminatieweers tand 

voor één bepaald type composietlamina at, maar niet noodzakelijk leidt tot 

dezelfde verbeteringen voor een ander soort laminaat. Over het algemeen ka n 

men stellen dat, om de delaminatieweerstand te verbeteren op het 

interlaminaire niveau, de interactie tussen het delaminatiepad en de 

nanovezelvertaaide tussenlaag van cruciaal belang is en in a cht moet worden 

genomen om schadebestendige composietmaterialen te kunnen ontwerpen. 

Hoewel de bovengenoemde twee niveaus essentiële inzichten gaven in de 

micromechanismen van vertaaiing door middel van nanovezels, werden de 

scheur- en delaminatiegroei altijd zorgvuldig geïnitieerd en gecontroleerd. 

Bovendien hadden de delaminatieproefstukken meestal een unidirectionele 

stapeling; een stapeling die niet vaak in applicaties voorkomt. Om een verba nd 

te kunnen leggen tussen de fundamentele inzichten en de mechanische respons 

die in werkelijke situaties kan worden verwacht, werden multidirectionele 

composietlaminaten geanalyseerd die nanovezelmembranen hadden in elke 

tussenlaag. Terwijl  de delaminatieweerstand verhoogde, bleven ook de 

algemene mechanische eigenschappen zoals de trek-, schuif- en buigstijfheid en 

trek-, schuif-, en buigsterkte behouden. Een positief resultaat, aangezien 

traditionele vertaaiingstechnieken doorgaans een negatief effect hebben op de 

algemene mechanische eigenschappen. De sterkte van de proefstukken wa arin 

een gat werd geboord (modelsysteem voor structuren met bv. een klinknagel of 

een beschadiging) nam zelfs toe in vergelijking met het referentiemateriaal 
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wanneer er PCL nanovezelmembranen aanwezig waren in de tussenlagen. Ook 

de impactweerstand verhoogde aanzienlijk. Het geprojecteerde 

schadeoppervlak nam af met 40% tot 50%. Dit effect was voornamelijk zichtbaar 

bij hoge impactenergieën waarbij het referentiemateriaal zeer veel delaminatie 

vertoonde. De permanente indeuking van nanovezelvertaaide l aminaten wa s 

daarenboven beperkter, wat duidt op een betere impactweerstand. Aa ngezien 

de nanovezels energie absorbeerden, bleef de schade aan de versterkingsvezel s 

en het matrixhars beperkt. Analyse van het breukoppervlak toonde opnieuw de 

ontwikkeling van nanovezelbruggen aan, wat de nauwe relatie tus sen de dr i e 

niveaus bevestigde.   
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GENERAL INTRODUCTION 

Fibre reinforced polymer composites are finding  their way into  

many h igh-end applications. A irp lanes, wind turbines, sh ips, and 

formula 1  vehicles  are just a  few examples in  which composites 

p lay a  major ro le. However, due to  their laminated structure, 

they are prone to  fa ilure by delamination. Improving the 

delamination resistance is thus one of the major research topics 

in  the field . In  th is PhD, the use of electrospun nanofibres is 

investigated to  create delamination resistant composite 

materia ls. This chapter will  g ive a  concise introduction into  the 

topic of fibre reinforced composites, delamination fa ilure and 

toughening techniques , fo llowed by the objectives of the 

research an d an outline of the work .   
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1.1 FIBRE REINFORCED COMPOSITE MATERIALS 

According to the most general definition, a “composite” material is a  ma ter ial 

which contains at least two physically distinctive constituents and has properties 

which cannot be achieved with either component alone1. They c a n be na tural 

materials such as wood, which consists out of cellulosic fibres in a lignin ma trix  

making it flexible but strong allowing trees to withstand windy weather2, or 

man-made materials with specific engineered properties such as reinforced 

concrete. Due to its generality, this definition of course covers a wide variety of 

materials which are used for all  kinds of applications and purposes. 

Nevertheless, the term composite is often used to refer to one specific subclass 

of composite materials, i .e. the fibre reinforced polymer (FRP) composite 

materials. As the name suggests, these materials consist out of fibres embedded 

in a polymer matrix (Figure 1). 

 

Figure 1 – I l lustration of a fibre reinforced polymer composite. 

The fibres, which are usually high modulus/high strength fibres such a s c arbon 

fibre (CF) or glass fibre (GF), have a reinforcing effect on the pol ymer  ma tr i x, 
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thus, improving its mechanical properties. On the other hand, the polymer 

matrix is a necessity to keep the fibres in their position and transferring an 

external load to them. It defines the shape of the composite and will protect the 

fibres from the environment. The fibre/matrix combination results in a relatively 

l ight material with excellent mechanical properties. This makes them interesting 

for high-end applications in which the combination of a  l ow wei ght a nd hi gh 

mechanical properties are important such as in the aerospace industry for 

example3. Over the past decades, these materials have gained interest from a ll  

kinds of sectors and are perhaps one of the most important subclasses of 

composite materials. As the research performed in this PhD work is s olely on 

FRP composites, the term composite will be used to refer to a  FRP c ompos ite 

material throughout the text. 

Fibre reinforced composites have already been used by mankind for many 

centuries. One of the earliest examples is the use of grass and straw to reinforce 

natural clay for better building materials by the Mesopotamians. Thi s building 

composite material can still be found today (Figure 2a). Other historic examples 

include the use of plaster soaked linen for death masks by the Egyptians or 

composite bows which contained silk fibres and natural pine resin by the 

Mongols. The real surge of FRP composites however dates back to the beginning 

of the 20th century with the inventi on of synthetic polymer resins (Bakelite, 

polyester, epoxy, …) and the introduction of the first glass fibres by Owens 

Corning. These events – which were well timed in retrospect – led to the 

possibil ity of obtaining high-end lightweight materials with mechanical 

properties which were previously unattainable. Their production was 

accelerated by World War II in which glass fibre reinforced c omposites  were 

used in radar domes due to their transparency for radio signals a nd the fi r st 

boat hulls and cars, such as the 1953 Corvette C1 (Figure 2b), found rapid 

commercialisation after the war effort. During the next decades, the processing 

methods improved, new reinforcing fibres such as carbon fibre were produced 

and better types of matrix polymer became available resulting in more 

composite applications . Nowadays, composite materials are used for wind 

turbines, airplanes such as the Airbus A380 (Figure 2c), construction ma ter ials, 

motorbikes, canoes, trucks, fishing rods, snowboards, bicycles, bridge decks and 

many other applications. They are even finding ground in designer goods where 

the aesthetically pleasing look of carbon fibre is a sign of excellence and luxury. 
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It is clear that there is a bright future ahead for these materials as they will  

become one of our main engineering materials. 

 

Figure 2 – Straw/clay composite bricks found behind the plaster of a  house in 
Nicosia, Cyprus (a), the first ever produced 1953 Corvette C1 (b) and the Airbus A380 

which has about 50% of i ts s tructural parts made from composites (c). 

The fibres make up the principal load-bearing component in a composite 

material2. The choice of fibre type, volume fraction, length and or ientati on of 

the fibres inside the matrix determines the efficiency of the reinforcement. Low-

end composites are typically made by mixing in short (staple) fibres with a 

polymer and processing it through traditional thermoplas tics processing4. 

However, to produce high-end composites, long continuous fibres are much 

better suited as they will  result in better mechanical performance. Just l ike 

common clothing, the fibres typically come as a textile product in which 

thousands of them are arranged in mats, e.g. fabrics, non-wovens, braids or 

unidirectional tapes. This improves there handling considerably as i t would be 

very time consuming if every fibre in a composite needs to placed one at a time. 
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Traditionally, most composites are built up by layering several plies of the 

reinforcing fibres on top of each other and filling the free space with a polymer  

matrix resulting in a laminated structure referred to as a composite l aminate2 . 

The fibre orientation and fabric architecture of the reinforcing plies a s wel l a s 

the manner in which they are stacked can have a profound effect on the in -

plane as well as out-of-plane mechanical properties5. Most composite laminates 

are formed by stacking unidirectional plies under different a ngles i n order  to 

tune the properties in the in-plane directions (Figure 3). Similarly, woven fabrics 

are also used, especially for less critical parts as they typically perform less tha n 

an equivalent unidirectional ply-based composite due to fibre waviness c oming 

from the woven architecture6,7. 

 

Figure 3 – Stacking of (unidirectional) reinforcing plies showing the laminated 

s tructure of composite laminates. 

A wide range of thermoplastic and thermosetting polymers can be used as a 

matrix material. Thermoset matrices however form the main material for 

structural composites today8. Typical matrix materials are polyester, vinylester  

and epoxy resin. The ester-based matrices were historically important a s they 

were one of the early available synthetic matrix resins, but are now mainly used 

for low-end and mid-range products. Epoxy resin is the mater i al of c hoice for  

high-end applications such as the aerospace or wind energy s ec tor due to i ts  

good temperature stability, chemical resistance, mec hanical properties  a nd 

adaptability to manufacturing methods 9. Nevertheless, one big disadvantage of 
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many epoxy resins is their brittleness which can cause early failure of the 

composite part10,11. 

The combination of reinforcing fibres with a matrix naturally results in an 

interface between the fibres and the matrix (Figure 4). Generally, one can thi nk 

of the interface as being responsible for load transfer to the reinforcing fi bres. 

Therefore, its performance will have a profound effect on the overall composite 

properties12. If there is no bonding between the reinforcing fibres and the 

matrix, the resulting composite will  have a low stiffness and strength as the 

reinforcing fibres will not be able to take up any stresses. On the other  ha nd, 

perfect bonding can lower the damage tolerance as there is no stress relief 

possible, resulting in a brittle composite2. As such there is often an optimal 

interface performance window which will result in the best overall performance 

of the composite13. 

 

Figure 4 – I l lustration of the interface between the reinforcing fibres and the matrix. 
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1.2 DELAMINATION FAILURE IN COMPOSITE LAMINATES 

Although the laminated structure of many FRP materials allows one to engineer  

the properties in various directions, it also results in the biggest downside 

associated with these materials: failure by delamination14. The reinforcing pl ies 

will  debond and separate, resulting in a  loss of stiffness and strength of the 

composite part. Delamination is one of the major failure modes encountered i n  

composites during service and substantial research has been devoted to 

decrease the risk of delamination14,15. 

Delamination is a failure mechanism which is typical for laminated c omposite 

structures as opposed to other engineering materials. There are several fa c tors 

related to FRP materials which cause the relatively poor delamination 

resistance. Due to their laminated structure, a resin rich inter layer i s formed 

between adjacent reinforcing plies (Figure 5). This interlayer is a  wea k spot a s 

there are no reinforcement fibres present. Furthermore, the reinforcing fibres  

are placed in the plane of the laminate, increasing its in-plane properti es, but 

providing no reinforcement in the through-thickness direction of the composite. 

Hence, the through-thickness properties are dependent on the matrix resin 

which has a relatively low stiffness and strength compared to the rei nforc ing 

fibres and is usually quite brittle. Furthermore, by stacking the reinforcing pl ies 

under different (in-plane) orientations, the mismatch in el astic  properties of 

adjacent plies causes strong interlaminar stresses at free edges.  

The development of delaminations can be easily understood by c onsidering a  

block of post-it notes (Figure 6). When you push the block from both sides , the 

notes buckle out relative to each other to accompany for the deformation.  This 

causes an opening delamination (Mode I) between some of the notes. If you 

push the block forward at its surface, the sliding force causes the block to 

deform in a step-like geometry due to shearing delaminations (Mode II). I n the 

case of a composite laminate, the opening and shearing moti on i s prevented 

due to the rigid matrix resin which “glues” the layers together. This results in the 

development of stresses between the layers, i .e. interlaminar stresses. I f  thes e 

stresses overcome the local matrix or interface strength, the layers will debond 

and separate, and the failure can be classified as a  delamination. 
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Figure 5 – Optica l micrograph of a  delaminated composite specimen showing the 
res in rich layer between reinforcing plies (a) and delamination between reinforcing 

pl ies (b). 

 

 

Figure 6 – Development of opening (Mode I) and shearing (Mode II) delaminations in 

a  block of post-it notes. 

Delaminations are usually located to damage prone areas where the 

interlaminar stresses are more severe than in the bulk of the part. These severe 

interlaminar stresses are caused by out-of-plane external loads, geometry 
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effects or local stress concentrations15,16 (Figure 6). Out-of-plane external l oads 

are often found at joints where two composite parts are connected such as 

those found in aircraft wings. Geometric effects such as tapered structures c a n 

cause a stress redistribution in the tapered section resulting in local shear  a nd 

through-thickness stresses although the external load is in-plane. Loc al s tress 

concentrations occur when there are discontinuities or abrupt changes in 

material properties. These occur for example at free edges, ply drops or  pr ior 

cracks. In practice, all of these mechanisms often arise together  a nd i nterac t 

with one other. Since the damage prone region is often known during the design 

phase prior to production, there would be serious benefits if there is a  method 

to locally toughen the interlayer at those regions making the pa rt more 

delamination resistant. 

 

Figure 7 – Structura l designs which promote delamination failure.16 

Besides the above mentioned mechanisms triggering delamination failure, there 

is one specific case of external loading which – due to its importance in real -l ife 

– is treated here separately: impact. In general, the impact resistance of FRP 

composite laminates is fairly low17,18. This is often stated to be one of the ma j or  

drawbacks of using these materials. During impact loading, which is a through -

thickness loading, delamination is a critical and major failure event (Figure 8 ). I t 
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is generated by two major mechanisms: (i) interlaminar shear owing to the 

impact contact force and (ii) transverse intralaminar tensile cracks developing in 

the bottom layers of the composite due to bending15. Although the impact 

damage is typically interlaminar shear dominated, both mec ha nisms  play a  

major role in thin laminates where bending is more severe. However, it is often 

not the impact event itself which will  cause sudden failure of the composite 

part, but the reduced load-bearing capability of the impacted c omposite1 9 , 2 0 . 

Indeed, even relatively small impact events such as tool drops (when technicians 

are working on a wing), hail or tossed up debris such as pebbles c a n c a use a n 

important degradation of the mechanical properties of the structure21. 

Furthermore, this kind of damage is often not visible to the na ked eye a s  i t i s  

internal and composites are often black, opaque or painted. Si nce thi s mi ght 

lead to a sudden and unexpected failure of the composite, improving the impact 

resistance of composites is  thus a very important research topic in the 

community. 

 

Figure 8 – I l lustration of impact damage showing delamination failure and matrix 
cracks  based on optical micrograph of an impact GFRP cross-ply specimen (through-

thickness view). 

It is clear that delamination resistance is of utmost importance in many 

composite applications. There is a need to develop methods of delaying a nd/or 

preventing this type of damage. It is thus of no surprise that improving this 

delamination resistance is a large field of study and many methods exist toda y. 

Nevertheless, much improvement can stil l  be made as current toughening 

methods have serious disadvantages which limit their effectiveness and 
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prevents their use in applications. The next section deals with the current state -

of-the-art toughening techniques for composite laminates, followed by a section 

on the toughening technique researched and developed in this PhD. 

1.3 CURRENT TOUGHENING TECHNIQUES 

Several methods have been developed to improve the (interlaminar) fra cture 

toughness of composites and prevent delamination failure. These methods  c a n 

be more or less classified based on the scale at which they provide an increased 

toughness: 

 Matrix resin toughening; 

 Addition of toughening particles; 

 Through-thickness reinforcement. 

1.3.1 Matrix resin toughening 

In the case of epoxy resins, matrix toughening is us ually a chieved by a dding 

another component which is more “flexible” than the epoxy cross-linked 

network. There are various options for the secondary component, ranging from 

longer branched or hyper-branched resin additives22–24, to mi x i ng i n reac tive 

rubbers or thermoplastics25–27. In all cases, the added c omponent wi ll  ha ve a  

plasticizing effect on the finally obtained matrix.  

The longer or hyperbranched additives will be integrated in the pri mary epoxy 

network with local  plasticized regions resulting in an improved fracture 

toughness of the bulk resin (Figure 9a). The current state-of-the-art commercial 

composite resin systems are already well -developed in terms of fracture 

toughness. For example, Momentive’s EPIKOTE RIMR135 resin formulation 

designed for infusion applications reaches a fracture toughness of 1500 J/m² 

which is an order of magnitude higher than their basic EPIKOTE 828 DGEBA 

based epoxy system28. Other resin producers provide s imilar hi gh toughness 

resins. 

Reactive rubbers and thermoplastics are dissolved into the l i quid unrea cted 

epoxy formulation. Upon curing of the epoxy resin, the increase i n molec ular 
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weight of the cross-linked network causes a phase separation proces s to ta ke 

place29. This results in a complex multiphase microstructure where, dependent 

on the exact formulation and curing conditions, epoxy rich regions and 

toughening polymer rich regions co-exist. The increase in fracture toughnes s is 

typically dependent on which polymers are added, the amount in which they are 

added and on the obtained microstructure after phase separation26. Studies 

have shown that an epoxy rich matrix fi lled with small rubber particles results in 

an optimal improvement, while for thermoplastics a co-continuous phase 

morphology is often desirable26,30 (Figure 9b). 

 

Figure 9 – Hyperbranched epoxy monomer (image adapted from Ref.31) (a) and 

typica l phase separation morphologies obtained in rubber/thermoplastic toughening 
(b). 

Several researchers have proven that adding reactive rubbers can increase the 

fracture toughness of the bulk resin tremendously. Willner and McGarry32 

already reported in 1968 that carboxyl terminated copolymers of butadiene and 

acrylonitrile (CTBN) enabled a ten-fold increase in fr acture toughness. Si nc e 

then, many other researchers have used similar l iquid rubber systems and 

reported good results. However, this technique also results  in disadvantages 

which cannot be disregarded. Typically, the addition of a rubber phase 

decreases the mechanical properties such as stiffness and strength and results in 
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a lower temperature resistance due to a lower gl ass transition temperature33–36 . 

In addition, mixing in the liquid rubbers increases the viscosity of the resin3 7. As  

such, the technique is unsuitable for many composite production methods  

where a low viscosity resin is required in order to wet out the reinforcing fibres , 

such as infusion processing. 

The use of a thermoplastic toughening phase allowed an i nc rease i n frac ture 

toughness without a drastic reduction in stiffness and strength. A lot of research 

has been performed on many different thermoplastics, e.g. poly-

ethersulphone38–41, polycaprolactone42 polyetherimide43,44, poly-(phenylene 

oxide)45, … . Although good improvements of fracture toughness are reported, 

the problems related to an increased resin viscosity remain26. Furthermore, the 

phase separation process is not easily controllable as it tends to depend on the 

used curing conditions which can vary depending on the application and di ffers 

when the phase separation takes place in a confined region such as in between 

the reinforcing fibres in a laminate.  

Figure 10 illustrates the main toughening micromechanisms which act in rubber 

and thermoplastic toughened epoxy. Extrinsic mechanisms, i.e. mechanisms that 

work behind the crack tip, incl ude particle bridging and particle debonding. 

Bridging particles create a closing traction between both crack surfaces resulting 

in a decrease of the stress intensity at the crack tip. Furthermore, the pa r ti cles 

will  keep bridging the crack if the adhesion with the matrix is good, until  they 

are completely torn apart, absorbing a lot of energy through plastic 

deformation. If the adhesion is insufficient, the particles tend to debond, 

initiating crack path deflection resulting in a higher crack surface area a nd thus 

higher energy. Intrinsic toughening mechanisms, i.e. mechanisms tha t work in 

front of the crack tip, include particle yielding, shear ba nding, c rack pinning, 

crazing and plastic void growth. A more thorough description a nd a nalysis of 

these toughening micromechanisms can be found in Refs. 30,35,45,46.  

Matrix resin toughening has proven to be a viable method to increase the resin’s 

fracture toughness. It is done by either developing new epoxy formula tions or  

mixing in rubber/thermoplastic. The research in this field has already resulted in 

commercialised products, for example high toughness infusion resins or 

toughened prepreg materials. Yet, despite the fact that the resin’s fracture 
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toughness is increased, the resulting composite laminates are stil l  prone to 

delamination failure. This proves that there is more to compos ite toughening 

than just using a high toughness resin. Furthermore, the disadvantages related 

to these methods limit further application in industrial processes. 

 

 

Figure 10 – I l lustration of the different toughening mechanisms acting in a  
rubber/thermoplastic toughened epoxy including particle bridging, debonding, crack 

deflection, particle yielding, shear banding, crazing and void growth . 

1.3.2 Addition of rigid nanoparticles 

The development of nanotechnology provided new materials with interesting 

properties such as carbon nanotubes (CNTs), graphene, nanosilica and 

nanoclays, and spiked interest in many sectors. Although inherently different 

from the tough and flexible particles described in Section 1.3.1, these high 

stiffness high strength particles also had potential to increase the fracture 

toughness, stiffness and strength of FRP composites. Over the past decades, this 

field has been extensively studied using a wide array of nanoparticles47–57. There 

are two crucial aspects to achieve improvements in mechanical properties : a  

homogeneous dispersion of the particles in the matrix and good adhesion  

between the particles and the matrix 58–60. The major toughening 

micromechanisms associated to rigid nanoparticles a re c rac k pi nning, c rack 

deflection and particle bridging/pull-out61,62. Although the mechanical properties 
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of some nanoparticles are unprecedented, e.g. CNTs have a (theoretical) E-

modulus and tensile strength of 1 TPa and 10 – 100 GPa63, this is hardly reflected 

in nanoparticle modified FRP composites. Due to their poor  na tural a dhesion 

with the matrix resin and the difficulty to obtain homogeneously dispersed 

particles, the reported improvements in toughness are only modera te i n most 

cases. Even more, agglomeration of the nanoparticles ca n induce stress 

concentrations leading to an overall reduction in properties of the modi fi ed 

composites64. Therefore, surface modifications and specialised production 

techniques such as growing nanotubes directly on carbon fibres are often 

required which immediately hinders the applicability in an i ndustr ial setti ng. 

Handling of these small nanoparticles – which are eas ily a irborne – requi res 

special safety precautions in order to elimi nate health risks. Besides the 

disadvantages related to their nanoscale, adding nanoparticles can also increase 

the resin’s viscosity similar to the rubber/thermoplastic toughened epoxies65. 

1.3.3 Through-thickness reinforcements 

Another method to increase the delamination resistance is to add through-

thickness reinforcements to a laminate such as the us e of 3D woven fa br i cs, 

stitching and Z-pinning (Figure 11a). The added reinforc ement wi ll  provide a  

physical l ink between the plies in the out-of-plane direc tion. Wi th 3D woven  

fabrics, laminates can be built up from thick woven preforms which have 

reinforcing fibres in the in-plane as well as out-of-plane directions66–69. Similarly, 

by stitching the dry reinforcing plies of a laminate with a yarn before resin 

infusion, a through-thickness reinforcement is created70–73. In the Z-pinning 

method, structural pins made for example out of CFRP or titanium are i nserted 

through the thickness of the composite prior to production74–77. Although thes e 

methods achieve significant increases in delamination resistance, they c a use a  

decrease of the in-plane properties of the composite up to 30%78. The through-

thickness reinforcements typically cause fibre misalignment, formation of res in 

pockets and fibre damage due to hammering in pins or stitching ( Figure 11b). 

The decrease in in-plane properties often outweighs the increase in 

delamination resistance and the use of these methods has not found much 

practical application in high-end composites today. 
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Figure 11 – Concept of 3D woven, stitching and Z-pin toughening (a). Distorted fibre 

orientation and resin rich zones typical for through-thickness reinforcements (b). 
Images are adapted from Ref.78 
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1.4 ELECTROSPUN NANOFIBRES AS A NOVEL TOUGHENING 

TECHNIQUE 

From the discussion in the previous section, it is clear tha t a  new tougheni ng 

method is needed which can circumvent the disadvantages related to ex i s ting 

techniques. Ideally, this method has following aspects: 

 High improvements in delamination resistance; 

 No decrease in in-plane properties such as stiffness and strength; 

 Simple integration in current composite production routes; 

 Easy to handle without health risks; 

 Economically viable on large scale; 

 Easily dispersed in damage prone regions (interlayers). 

This is where electrospun nanofibres come into the picture. Electrospun 

nanofibrous veils can be thought of as a novel class of materials c onsisting of 

very thin polymeric fibres with typical diameters below 500 nm. As a 

comparison, classical reinforcing fibres such as c a rbon or  gl ass fibres  have 

diameters between 5 and 25 µm. The small diameter gives na nofibrous vei ls 

interesting characteristics such as a large surfac e a rea , a  high porosity a nd 

improved mechanical properties compared to the bulk polymer.  

Electrospinning is currently the most efficient technique to produce nanofibrous 

veils from a polymer solution or melt79. Nozzle electrospinning (Figure 12) is the 

most conventional technique in which a polymer solution is pumped through a  

nozzle at a constant flow rate to form a drop at the nozzle tip. A high voltage 

applied at the nozzle creates an electric field between the nozzle tip and the 

collector. When the drop of polymer solution leaves the nozzle and enters  the 

electric field, the particles become similarly charged. A Tayl or  c one i s  formed 

and when the electrostatic repulsion outweighs the surface tension of the 

droplet, a continuous jet of polymer solution is expelled from the cone towa rds 

the collector. Before the jet reaches the collector while the solvent evaporates, 

instabilities occur which stretch the jet into a fibre, resulting i n a  non -woven 

membrane of nanofibres on the collector. The technique offers the possibility of 

electrospinning many types of pol ymers ranging from rubbers 80,81, to 

thermoplastics82–84 and even silica85,86. Furthermore, by changing electrospinning 
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parameters such as the flow rate or polymer concentration a  wi de var iety of 

morphologies can be obtained in a controllable manner87–89. 

 

Figure 12 – Schematic illustration of a  typical nozzle electrospinning setup. 

Nanofibres are deposited in a random manner resulting in a  self-supporting 
nanofibrous veil. 

Electrospun nanofibrous veils have the potential to serve as a toughening 

material while fulfi l l ing the conditions  mentioned in the beginning of this 

section. They are formed as a self-supporting non-woven membrane whic h c a n 

be easily handled similar to regular fabrics. They can also be deposited di rec tly 

on reinforcing fibres by guiding dry fabric through an electrospinning s et-up. 

Hence, the veils can easily be placed in between the primary reinforcing plies  

either as self-supporting membranes or as nanofibre “coated” fa bric s pr ior  to 

composite production and there is no change in the composite ma nufac tur ing 

process required (Figure 13). As they are not mixed in the resin, the viscosity is 

unaffected. The nanoscale diameter of the nanofibres offers relatively thin 

interlayers, while their macroscopic length (continuous fibres) poses no hea lth 

hazards in comparison with other nanomaterials. The electrospinning process 

itself is relatively simple in design and proven to be scalable ma king i t a  c ost-

effective nanofibre production method90,91. They can be made from many 

polymers ranging from rubbers to thermoplastics and thus can readily i mprove 

the delamination resistance in a similar way as rubber/thermoplastic toughened 

epoxies. 
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Figure 13 – Concept of i nterleaving electrospun nanofibrous veils for toughened 

composite laminates. 

Although there are many obvious benefits, the research on composites 

enhanced with (electrospun) thermoplastic nanofibres is sti l l  very l imited. 

Reneker, Kim and Dzenis92–94 produced the pioneering work of interlaminar 

toughened composites using electrospun polybenzimidazole fibres in 1999 a nd 

showed that they could increase the interlaminar fracture toughness of c a rbon 

fibre/epoxy laminates up to 15 – 130%. Since then, published work from other  

research groups has confirmed the toughening potential of electrospun 

nanofibres for composite laminates. At the start of this PhD in 2013, only a 

handful of research groups investigated this type of materials and few literature 

was available95–106. Since then, the number of articles published ea c h yea r on 

this topic has only increased. The emergence of this research topic in published 

literature was thus parallel with our own findings89,107–113. The following 

paragraphs give a concise overview of the published literature regarding 

electrospun nanofibre toughened composites including articles that were 

published during this PhD research. 

Several researchers focused on using electrospun nanofibres which dissolve i n 

the matrix resin such as polycaprolactone (PCL), polyetherketone-cardo (PEK-C), 

polysulfone (PSF) or phenoxy-based nanofibres 96,98,102,103,106. They reported 

improvements in interlaminar toughness due to a phase separation of the 

dissolved nanofibres which resulted in a tough particulate phase at the 

interlayer. Although this is an in interesting technique as no prior 

resin/thermoplastic mixture is necessary, the phase separation proc ess i s sti l l  

difficult to control. Furthermore, as the nanofibrous morphology is lost, 
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potential toughening mechanisms related to a fibre morphology  i nstead of a  

particulate phase will not be present.  

Another approach to produce nanofibre enhanced composite laminates is to use 

thermoplastic nanofibres which retain their nanofibrous structure i n the fi nal 

laminate. This is advantageous as the nanofibres’ physical and mechanical 

properties are unaffected while there is no increase in viscosity of the ma tr i x  

resin due to dissolution of the nanofibres. Furthermore, the interlayer will  

automatically consist out of a co-continuous epoxy and thermoplastic phase 

microstructure. Several polymer types which retain their nanofibrous struc ture 

in the final laminate have already been investigated, e.g. polyacrylonitrile 

(PAN)106, PCL107, P(St-coGMA)103,114, polyimide (PI)115, polyamide 6 (PA6)116–118 

and polyamide 6.6 (PA6.6)97,99,104,119–121. Regular non-woven veils, wi th a  l arger 

diameter of the fibres, have also been investigated to study the i nter l amina r 

toughening effect122–125.  

The Mode I and Mode II interlaminar fracture toughness, 𝐺𝐼 and 𝐺𝐼𝐼 

respectively, are most often studied since they can be used to assess the 

damage resistance of composite laminates 122,123,126. A variety of effects on the 𝐺𝐼 

and 𝐺𝐼𝐼 are reported in l iterature when laminates are interleaved with 

electrospun nanofibrous veils. Zhang et al.106 reported no improvements  in 𝐺𝐼 

upon interleaving of PAN nanofibres as compared to using dissolva ble PCL or  

PEK-C nanofibres. Bilge et al.103 used P(St-coGMA) nanofibres whi ch i mproved 

the delamination toughness. Saghafi et al.119 and Beckermann et al.120 reported 

an increase in 𝐺𝐼 and 𝐺𝐼𝐼 of unidirectional laminates interleaved with PA6.6 

nanofibres. However, these improvements in 𝐺𝐼 only occur during precracking 

or crack initiation, while 𝐺𝐼 was not affected or even decreased at further c rack 

growth. The effect of PA6.6 nanofibres on woven laminates has been studied by 

Hamer et al.99 and Palazzetti et al.104,121. Although Hamer et al. report an 

increase in 𝐺𝐼, only minor improvements and even decreases on both 𝐺𝐼 and 𝐺𝐼𝐼 

are reported by Palazetti et al.99,104,121. De Schoenmaker et al.116 state that 𝐺𝐼 

increases slightly upon addition of PA6 nanofibres in UD laminates. 

Although some excellent work has already been carried out of which the results 

i l lustrate the potential of interleaving laminates with nanofibrous veils, 

improvements only occur under very specific cases such as crack i nitiati on  or  
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some of the findings even seem to contradict each other. This indicates that 

some fundamental aspects of nanofibre toughening have not been ana lysed i n 

these previous works. One important reason for this is that most of the reported 

literature deals with interleaving one specific type of nanofibre in one s pec ific 

laminate structure. This results in a large scatter in data as the underlying 

toughening principles are unclear. 

An in-depth understanding of the fracture and toughening mechanisms is clearly 

needed in order to l ink the presence of nanofibres to the observed increase or  

decrease in interlaminar fracture toughness. These micromechanic al fracture 

mechanisms and the generic parameters to obtain toughened composites ha ve 

not been reported before. Nevertheless, such a generic understanding is crucial 

in order to select the right type of nanofiber and design novel toughened 

composites. 

1.5 MULTISCALE NATURE OF INTERLEAVED COMPOSITE 

LAMINATES 

An interleaved composite can be thought to have three different levels at which 

the nanofibres will affect its properties, see Figure 14. These levels coincide with 

the hierarchical nature of the laminate itself: (i) the nanotoughened epoxy resin, 

(i i) the nanotoughened interlayer and (i i i) the nanotoughened laminate. By 

considering the effect of nanofibres on each level simultaneously, muc h better  

insights can be attained into the micromechanisms of toughening and the crucial 

parameters resulting in highly toughened composite materials. 

The major research results obtained in this PhD work are arranged in Chapter  3  

according to the level to which they belong. At the nanotoughened epoxy level , 

the main focus is the effect of electrospun nanofibres on the fracture toughness 

of the epoxy resin. The goal of this level is to get a fundamental understanding 

of the toughening mechanisms acting in nanotoughened epoxy similarly to what 

has previously been done for rubber/thermoplastic epoxy toughening methods . 

This will allow to have better insights into the effect of the na nofi bres on the 

delamination/damage resistance of nanotoughened composites . I ndeed, the 
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interlaminar fracture toughness of composites with a nanotoughened interlayer  

will  be dependent on the fracture toughness of the nanotoughened epoxy. 

At the level of a nanotoughened interlayer, other factors such as the 

delamination path will come into play and it is therefore a very important l evel 

to analyse. Typically, this is done by determining the interlaminar fracture 

toughness of interleaved laminates using typical delamination tests such a s the 

double cantilever beam or end notched flexure method. The delamination pa th 

and fracture surfaces are subsequently investigated using microscopy to 

determine the toughening micromechanisms and analysing the interaction 

between the delamination path, the reinforcing fibres and the nanotoughened 

interlayer.  

Although Level 1 and Level 2 both provide essential insights into the toughening 

micromechanisms, both are investigated using test methods in which 

crack/delamination growth is carefully initiated and controlled. Therefore, ful ly 

interleaved laminates are considered at Level 3. These laminates are still tes ted 

using coupon specimens, but are more closely related to the lay-up and loading 

conditions which can be expected in real-life applications. By subjec ting thes e 

specimens for example to impact, a natural occurrence of del amina tion a nd 

cracks is allowed to occur. In contrast to the other levels, the initiation and 

growth of delaminations and cracks is not really controlled or  known a  pr iori. 

Therefore, the results of this level will  provide the link between the previous 

levels and the mechanical response that can be expected in real-life situations. 

Performing the analysis of these novel materials at different levels 

simultaneously is one of the major milestones of this PhD work. Suc h a nalysis 

had not been performed in published literature and provided much better 

insights into the behaviour of nanotoughened composites. It led to a significant 

advancement of the understanding of these materials in a more structured and 

general sense. Such a generic understanding is – in our opinion – c rucial to be 

able to select the right type of nanofibre structure for designing novel 

toughened composites. 
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Figure 14 – Multiscale nature of nanofibre interleaved composite laminates. 
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1.6 OBJECTIVES AND OUTLINE 

The previous sections have shown that delamination failure is sti l l  a major 

problem for many composite laminate applications. Although previous 

published research has shown that using electrospun nanofibres c ould be a n 

excellent way of increasing the delamination resistance of composites, there i s  

sti l l a lot of scatter in experimental results. As such, the primary goal of this PhD 

is to develop highly toughened nanofibre enhanced composite laminates  while 

at the same time, getting a thorough understanding of the mi c romec hanisms 

and generic parameters of this novel toughening method. This will be done by a  

broad mechanical investigation concerned with not only fundamental l oading 

cases, but also includes real-life loading cases such as impact. Furthermore, the 

toughening micromechanisms are analysed on three levels simultaneously. 

Attention is paid to the production route of the composites by focussing on 

infusion as well as prepreg-based techniques. The effect of parameters s uc h a s 

the veil  areal density, type of nanofibre, loading mode, reinforcing fabric 

architecture, precracking method, adhesion strength, veil  morphology and 

tensile properties of the electrospun fibres are investigated. 

Chapter 2 explains the experimental methodology followed throughout the 

work. This includes the electrospinning of several nanofibre types on a relatively 

large scale, as necessary for the development of nanofibre enhanced 

composites, as well as a brief description of the main test methods  tha t were 

used. 

Chapter 3 presents the major research results that were obta i ned during this 

PhD work. These are arranged according to the three different levels whi ch are 

present in nanofibre interleaved composites: nanotoughened epoxy, 

nanotoughened interlayer and fully interleaved laminates. Most of the reported 

results are based on own published and draft papers and more deta ils c an be 

found in Paper I - VIII, which are appended in the second part of this book. 

Chapter 3 begins with an analysis of the toughening mechanisms acting in 

nanofibre toughened epoxy (Level 1; Section 3.1). The effect of nanofibre type, 

strain rate and nanofibre orientation on the obtained fracture toughnes s a re 

determined. This is followed by an investigation into the toughening 

mechanisms acting in a nanofibre interleaved interlayer of a composite laminate 
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in Section 3.2 and Section 3.3 (Level 2). The link between nanofibre toughened 

epoxy and the interlayer is made, as well as an analysis of the effect of the 

nanofibre veil  areal density, loading mode, interleaving method, nanofibre 

orientation, adhesion strength, veil morphology and electrospun fibre tens ile 

properties on the obtained delamination resistance. The chapter ends wi th a n 

experimental investigation of fully interleaved laminates in which all  the 

interlayers are toughened with electrospun nanofibrous veils (Level 3). Genera l 

tensile properties as well as the low velocity impact and pos t i mpac t residual 

compressive properties are analysed in Section 3.4. 

Chapter 4 concludes the major research results obtained in this work and gives 

some perspective on the future of these materials. This chapter ends the fi r s t 

part of this PhD book which provides a general description of the work 

performed during the PhD.  

The second part of this PhD book consists of an appendix with a ll  the a r tic les 

that were published – or are in consideration for publishing – dur ing the PhD. 

These full  articles provide more detail than given in the mai n text of thi s  PhD 

book. However, the PhD is written in such a way that reading the full  articles  is 

not a necessity for a reader to comprehend the performed work. 
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2 

 

METHODOLOGY 

A broad experimental investigation was perf ormed to  elucidate 

the toughening mechanisms and princip les of nanofibre 

interleaved fibre reinforced composite laminates. This chapter 

g ives a  brief overview of the materia ls and test methods used in  

th is investigation. First, the production of nanofibres  by 

electrospinning and their integration into  c omposite laminates is 

described. This is  fo llowed by an overview o f the most important 

mechanical  test methods that were employed to  determine the 

effect of the nanofibres on the properties of the composites.   
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2.1 ELECTROSPINNING OF NANOFIBRES 

The general setup of an electrospinning apparatus was treated in Chapter 1. The 

mononozzle setup consists out of an infusion pump (KD Scientific Syringe Pump 

Series 100) which feeds polymer solution using PP/PE syringes through 18 gauge 

stainless steel disposable hollow needles with a blunted tip. The voltage is 

applied on the needle using a high voltage source (Glassman High Voltage Series 

WK125P5). A similar setup is used to produce the nanofibrous veils menti oned 

throughout this PhD. The main difference is that the veils needed for composite 

production are relatively large and thick in comparison with thos e tha t c an be 

produced on a mononozzle electrospinning apparatus. Therefore, a  di fferent 

system is used to scale up the production of the nanofibres. An a r ray of 2  – 8  

nozzles is used to allow a larger throughput of nanofibres. The c ol lec tor i s a  

moving conveyor belt out of aluminium foil (grounded) to continuously produce 

sheets of fixed thickness and size. The array of needles travels back and forth i n 

a l inear motion, while the collector moves perpendicular to the needle 

movement at constant speed. The speed of the collector will  determine the 

amount of nanofibres deposited per square meter. The setup i s  i l lustrated i n 

Figure 15a. In essence, the same electrospinning conditions can be used as on a  

mononozzle setup. However, the multinozzle setup typically requires some fine-

tuning to produce nanofibres in a stable manner in larger quantities. The 

electrospinning conditions given beneath are representative of those used, but 

small modifications to voltage or tip-to-collector distance (TCD) were sometimes 

made during manufacturing to ensure stable electrospinning conditions. Thes e 

changes did not influence the obtained nanofibre morphology which was 

validated using SEM images taken from the nanofibrous veils at different 

positions. Furthermore, the quality of nanofibre formation was regula rly 

checked by shortly placing a glass slide on the collector and observing the 

nanofibres with an optical microscope. Although the magnification is  not 

enough to determine nanofibre diameters in a reliable manner, it a llows for  a  

quick and simple way of in-line quality control as bead formation and nanofibre 

orientation are easily observed. This ensures that the whole nanofibrous vei l  i s 

of good qual ity and that there is no gradient in properties over time. 
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Figure 15 – Schematic illustration of the multinozzle (a) and rotating drum collector 
electrospinning setup (b) which are used to scale up the production of nanofibres.  

For the series of polyamide 6.9 (PA6.9) nanofibrous veils mentioned in 

Section 3.3.5, a rotating drum collector was used. The nanofibres are deposited 

on the grounded rotating drum and the veil  is removed as soon as it has the 

preferred areal density. The setup is shown in Figure 15b. This type of col lec tor 

allows to change the orientation of the nanofibres in the vei l  by c hanging the 

frequency at which the drum rotates. At low frequencies, the nanofibres are still 

deposited in a random non-woven manner on the collector, but at higher 

frequencies the nanofibres are aligned on the drum due to the high rota tional 

velocity at the drum surface127,128. The rotating drum is made of a hollow 

aluminium tube with an outside diameter of 120 mm and a us eable l ength of 

400 – 500 mm. Random nanofibres were produced at a frequency of 2 – 3 Hz 

resulting in a rotational speed of approximately 150 rpm. Oriented nanofibrous 

veils were produced using a frequency of 65 Hz or about 4000 rpm which results 

in a tangential speed at the collector’s surface of approximatel y 41  m/s . The 
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high rotational velocity of the rotating drum collector induces a preferred 

orientation in the nanofibrous veil resulting in aligned nanofibres, see Figure 16. 

 

Figure 16 - I l lustration of orientation induced by the high rotational velocity of a  

rotating drum collector. At low rpm, veils with a random deposition of nanofibres are 
produced (a); while at high rpm, veils with a preferred orientation of the nanofibres 

are obtained (b). 

Several different electrospinning systems, i.e. the set of polymer  s olution a nd 

electrospinning parameters, have been used to produce nanofibres. All  of thes e 

systems were selected based on previous research81–84.  
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Table 1 gives an overview of the different electrospinning systems. A 

representative SEM image for each system is given in Figure 17. All  stated 

nanofibre diameters were measured on dry specimens (before any resin 

infusion) as the average of at least 50 fibres using the image analysis s oftwa re 

package ImageJ. PA6.6 (𝑀𝑊 60 000 g/mol), PA6 (𝑀𝑊 51 000 g/mol) and PCL (𝑀𝑁 

80 000) pellets were purchased from Sigma Aldrich; PA6.9 (𝑀𝑊 58  000  g/mol ) 

and PCL (𝑀𝑊 100 000 g/mol) pellets were purchased from Sc ientific Polymer  

Products. Styrene-butadiene-styrene (SBS) copolymer pellets  (Kraton D1101) 

were kindly provided by Kraton Polymers LLC. Formic acid (98%-100%), a ceti c 

acid (98%) and butyl acetate (99.5%) were purchased from Sigma  Al dr ich for  

electrospinning solvents and used as received. All  electrospinning systems were 

spun using a hollow needle as a nozzle. The internal diameter of the needle wa s  

1.024 mm for system #1, system #2 and system #8 and 0.84 mm for  the other  

systems.  

The areal density of the nanofibrous veils is determined by carefully cutting 

squares of known size, typically 5 x 5 cm², 10 x 10 cm² or 20 x 20 cm², out of the 

veil  and determining their mass. This measurement is performed at several 

instances of the nanofibrous veil  to make sure that the areal density is not 

changing in time which could indicate a faulty nozzle or unstable 

electrospinning. For standalone nanofibrous veils, the specimens were removed 

from the collector after the desired specimen length is reached. In other c ases , 

the nanofibres were directly deposited onto the reinforcing fibre fa brics/mats 

during electrospinning. The areal weight of these coated structures was 

determined by measuring the areal density of the veil  by the a forementi oned 

method directly in front of and just behind the reinforcing fabric specimen. The 

addition of reinforcing fibres onto the collector did not influence the 

electrospinning process significantly.  
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Table 1 – Overview of the electrospinning systems used throughout this PhD work. 

System Flow rate 

per nozzle  

(ml/h) 

TCD 

 

(cm) 

Voltage 

 

(kV) 

Areal 

density 

(g/m²) 

Nanofibre 

diameter 

(nm) 

#1 PA6.9 

20 wt%, 1:1 FA/AA 

1.5 6 20 – 25 11 460 ± 55 

       

#2 PA6.9 (oriented) 

20 wt%, 1:1 FA/AA 

1.5 6 20 – 25 11 465 ± 110 

       

#3 PA6.9 

16 wt%, 1:1 FA/AA 

1 

 

1.5 

6 35 3, 14, 

18 

6, 12 

245 ± 30 

 

200 ± 25 

       

#4 PA6.6 

14 wt%, 7:3 FA/AA 

1 9 35 3, 18 160 ± 20 

       

#5 PA6 

16 wt%, 1:1 FA/AA 

1 

 

 

1.5 

8 35 5, 10, 

14, 15, 

20, 40 

6, 12 

195 ± 35 

 

 

150 ± 20 

       

#6 PCL (𝑴𝑵 80 000) 

14 wt%, 1:1 FA/AA 

2 

 

1.5 

30 35 5, 10, 

14 

15, 20, 

40 

650 ± 150 

 

345 ± 150 

       

#7 PCL (𝑴𝑾 100 000) 

23 wt%, 3:7 FA/AA 

2 23 25 – 30 5, 6, 12 370 ± 200 

       

#8 SBS 

13 wt%, BU  

(MDI-TAD, LiBr) 

1 21 20 – 25 12, 22 2100 ± 400 
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Figure 17 – Representative SEM images of the nanofibres produced using the 
di fferent electrospinning systems. 
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2.2 PRODUCTION OF INTERLEAVED COMPOSITE LAMINATES 

Throughout the PhD, two different kinds of composite laminates were 

produced. Glass fibre composite laminates are produced by va cuum a ssisted 

resin transfer moulding (VARTM) with unidirectional E-glass plies (ei ther UDO 

ES500 manufactured by SGL group, or, Roviglas R17/475 manufactured by 

Syncoglas) and a high toughness epoxy/amine thermoset resin system typi c ally 

used for wind turbine blades (EPIKOTE MGS RIMR135 and EPIKURE MGS 

RIMH137 supplied by Momentive). The in-house developed VARTM setup 

consists of a two-piece flat mould with internal dimensions of 

3 x 300 x 300 mm³. The manufacturer’s recommended curing c ycle i s us ed to 

cure the laminates: curing for 24 hours at 20°C and 65% RH (ambient conditions) 

followed by a post-cure at 80°C for 15 hours. The nominal thickness of the fi na l  

laminates is 3 mm. The overall  glass fibre volume fraction (52 vol%) did not 

change when nanofibrous veils were interleaved as a two-piece moul d with a  

fixed thickness was used to produce the laminates. The nanofibres had no 

measurable influence on the infusion process and the final quality of the 

laminates. The infusion resin impregnated the nanofibrous veils in the 

interlayers. Visual inspection and microscopic images of the interlayers showed 

no dry spots in the final laminates (transparent epoxy resin) indicating that the 

porosity did not increase. Nanofibrous veils were either interleaved as 

standalone layers or by using reinforcing plies with na nofibres deposited on 

them, see Figure 18. For delamination tests l ike the double cantilever beam 

experiment, nanofibres were only placed in the midplane of the laminate, whi le 

for other tests such as the impact experiments, nanofibres were placed at ea ch 

interface of two dissimilar plies, e.g. between a 0°- and 90°-oriented ply. 

Another series of virgin and nanofibre interleaved composite l aminates were 

produced by stacking layers of carbon fibre prepreg plies. The plies were c ut to 

size before stacking. Unidirectional laminates were produced with M10R/T300 

UD prepregs, while woven laminates were produced with MTM49-3/T800 2  x  2  

twill  weave prepregs. For the nanofibre interleaved laminates, the nanofibrous 

veils were first placed on the prepreg surface after which the aluminium foil was 

carefully peeled off. Since the nanofibres do not adhere to the alumi nium foi l, 

the nanofibrous veil can be easily transferred onto the tacky prepreg s urfac e. 

The advantage of this method compared to electrospinning onto the prepreg 
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surface directly, is that there is no interaction between the electrospinning 

solvents and the prepreg material which could affect its properties. The 

laminates were cured in an autoclave according to the resin's prescribed c ur ing 

cycle. There was no measurable difference in thickness between virgin and 

nanofibre interleaved laminates. Transversal cross-section images showed good 

quality of the impregnation with the relatively viscous prepreg epoxy, see Figure 

19. 

 

Figure 18 – Integration of nanofibres in composite laminates resulting in a  hybrid 
composite laminate with nanotoughened interlayers. 

The integration of the electrospun nanofibrous veils results in a nano-

engineered interlayer. The non-woven mat morphology is maintained within the 

interlayer, i .e. the nanofibres do not migrate between the reinforcing fibres due 

to the resin flow. Therefore, the interlayer thickness increases with i nc rea sing 

areal density of the nanofibrous veils, see Figure 20. There is a l inear 

relationship between interlayer thickness and areal density indicating tha t the 

veils – which are compressible due to their porosity – are “ful ly” c ompressed 

due to the pressure exerted during the composite production process. I ndeed, 

the relationship seems relatively independent of the production process: 
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VARTM, autoclave or even fi lament wound composites nanofibre i nter leaved 

composites all have similar interlayer thicknesses. 

 

Figure 19 – Pol ished cross-section images of PA6.6 and PA6.9 nanofibre interleaved 
prepreg-based composites showing good impregnation of the nanofibrous veils 

during autoclaving. 
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Figure 20 – Interlayer thickness in function of the nanofibrous veil’s areal density 
show that the relationship is relatively independent of nanofibre type as well as 

processing method. 

It is worth remarking that the integration of the nanofibrous veils does not really 

alter the production process of the composites. The veils  can be handled 

relatively easily and placed at the required position. The dry veils are a bit more 

damage sensitive than mats/fabrics of reinforcing fibres. Neverthel ess, a s they 

come as a sheet material, they can be integrated using the same methods as are 

currently used in industry, e.g. manual lay-up or automated placement. 

Furthermore, there is no risk of small particles emanating from the vei ls whi ch 

could be hazardous. As the nanofibres are not mixed in the resin itself, they 

pose no problem for the viscosity. However, the wetting of the nanofibrous veils 

might be affected by the resin’s viscosity and the compatibil ity between the 

nanofibre polymer and the epoxy resin. Such problems were not enc ountered 

during this PhD work, but might present themselves when much larger 

components have to be produced or other types of nanofibres are used. Simple 

wetting experiments that consist out of placing sheets of nanofibres on a  l ayer  

of l iquid epoxy, showed that the veils impregnated without the necessity of a n 

external pressure. However, the resin flow was mainly l imited to the through -

thickness direction and the resin did spread out less in the in-plane di rec tion. 

Therefore, it is expected that even on large-scale production, the wetting of the 

veils will not pose a problem if there is sufficient through-thickness resin flow. 

This is usually the case as the same physical mechanism of wetting a l so ha s to 
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happen for the reinforcing fibre mats. Typically, distribution meshes are used i n 

many processes to allow this through-thickness flow129. 

2.3 MAIN TEST METHODS 

2.3.1 Fracture toughness of nanotoughened epoxy resin 

Nanofiber/epoxy nanocomposites were made by an in-house developed VARTM 

setup. This setup consisted out of a two-piece flat steel mould with inner 

dimensions of 300 x 150 x 7 mm³. In order to make the nanocomposites, a 

stacking of thick nanofibrous veils with dimensions of 300 x 150 mm² was us ed. 

The amount of nanofibrous veils was selected to have approximately 17 vol% of 

nanofibers in the final nanocomposite. This is representative for the amount of 

nanofibers present in the interlayer between reinforcing plies of the na nofiber  

interleaved laminates107. Several layers of breather fabric and resin flow meshes 

were added at the bottom and the top of the mould to facil itate through-

thickness flow. Prior to infusion, the epoxy resin (EPIKOTE MGS RI MR135)  and 

hardener (EPIKURE MGS RIMH137) were mixed in a 100:30 mass ra tio us ing a  

mechanical stirrer. The mixture was placed under vacuum for 15 minutes in 

order to remove any trapped air introduced during mixing. After infusion of the 

nanofibrous veils, the mould was cured at 20°C and 65% RH for 24 hours, 

followed by a second curing step at 80°C for 15 hours according to the 

manufacturer’s recommended cure cycle. Virgin epoxy plates (without 

nanofibers) were made by casting the epoxy resin in an empty mould. It is worth 

remarking, that this is the first work in which such thic k nanocomposites a re 

made using electrospun fibres. It allowed to accurately determine the fra c ture 

toughness using standardised testing methods. 

The strain energy release rate, or fracture toughness, of the unmodified and 

modified bulk epoxy was determined using Single Edge Notched Bending (SENB) 

experiments according to ASTM D5045130. The experiment consists of a notched 

rectangular specimen subjected to three point bending, see Figure 21. At a 

certain load, the specimens will crack and the energy required per unit fra cture 

surface is determined from the load-displacement data. Specimens with a 

nominal thickness of 5 mm were sectioned from the epoxy plates with a wa ter -
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cooled precision diamond cutting machine. A sharp natural precrack was 

produced by mill ing a starter notch in the specimens, followed by tapping a 

fresh razor blade in the milled notch with a dynamic precracking drop tower  

apparatus28. The specimens were placed in the three point bending fixture and a 

travelling microscope was used to align the precrack with the loading roller. The 

experiments were performed on an electromechanical Instron 3369 with a l oad 

cell  of 500 N; load and crosshead displacement were recorded. The loading wa s 

displacement controlled at a rate of 10 mm/min. 

 

Figure 21 – I l lustration of the SENB fracture toughness experiments showing the 

specimen in a  three point bending fixture and the loading applied at the crack tip.  

A second method to investigate the nanofibre toughening effect was performed 

by considering thin epoxy specimens (thickness around 100 µm). These 

specimens were made by compression moulding of nanofibrous veils and epoxy 

resin. The major advantage of this method was that it reduced the a mount of 

nanofibres per specimen considerably, while advanced imaging techniques (i n-

situ microscopy and digital image correlation measurements) could be used, see 

Figure 22. The disadvantage is that a correct plane strain SERR cannot be 

determined due to the plane stress state induced by the small thicknes s of the 

specimens. The specimens consisted out of rectangular film spec imens wi th a  

notch at one side tested in uniaxial tension. This is often referred to as the Single 

Edge Notched Tension (SENT) method and is rather similar to the SENB method 

although it is not standardised. Notches were produced by clamping the 
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specimens in a specially designed holder with a machined notch of fixed l ength 

and tapping a fresh razor blade in this notch. The specimens were tested on a TA 

Instruments Q800 Dynamic Mechanical Analyser using a tensile fixture in s train 

control mode. A long working distance USB microscope with polarised light wa s 

placed to visualise crack growth in the specimens. A speckle pattern was applied 

to several specimens using an airbrush with black i nk to mea s ure the s train 

fields around the crack tip using Digital Image Correlation (DIC) measurements. 

 

Figure 22 – SENB specimen design and test setup showing the possibility of in-situ 
microscopy and digital image correlation measurements. 

2.3.2 Delamination resistance of interleaved laminates 

The interlaminar fracture toughness expresses the amount of energy required to 

produce a delamination of unit area in a composite laminate. Although it is a lso 

referred to as the delamination resistance or delamination strain energy release 

rate, the term interlaminar fracture toughness is more often used and wi ll  a lso 

be used throughout this PhD work. The interlaminar fracture toughness wi ll  be 

evaluated for the two most common fracture loading conditions which occur i n 

laminated composites: Mode I delamination (opening/tension mode) and 

Mode II delamination (shearing mode). These tests allow for a thorough study of 
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the crack and toughening behaviour under two controlled loading c onditions. 

Understanding the effect of nanofibres in these fundamental loadings, will allow 

an understanding of the toughening effect in more realistic loading cases such as 

encountered during impact. 

Virgin and nanofibre interleaved unidirectional composite laminates were made  

according to the previously reported procedure. An ETFE-based release fi lm of 

15 µm thickness is placed in the midplane of the stacking in order to serve as a n 

initial delamination for the Double Cantilever Beam (DCB) and End Notched 

Flexure (ENF) experiments. For the nanofibre interleaved laminates, the 

reinforcing fibre plies facing the midplane had nanofibres el ec trospun on the 

sides facing the midplane or the nanofibres were interleaved as a self -

supporting veil at the midplane. The composites were processed by infusion or  

autoclave and then demoulded. Specimens for DCB and ENF experiments  were 

sectioned from the laminates with a water-cooled precision dia mond c utting 

machine. At least three specimens were tested for each configuration. A 

schematic of the specimens and the loading conditions is given in Figure 23.  

 

Figure 23 – I l lustration of the DCB and ENF specimen for determining the Mode I and 
Mode II  interlaminar fracture toughness of composite laminates. 
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The Mode I interlaminar fracture toughness 𝐺𝐼𝑐 was determi ned ac cording to 

the Modified Beam Theory method in ASTM D5528131: 

 𝐺𝐼𝑐 =
3𝑃𝑐 𝛿𝑐

2𝑏(𝑎 + |Δ|)
𝐹 (1) 

where: 𝑃𝑐  is the critical load at which crack advance oc c urs, 𝛿𝑐 i s the c r i tical 

displacement, 𝑏 is the width, a is the delamination length, |Δ| corrects for crack 

front rotations and 𝐹 corrects for large displacement effects. Spec i mens were 

cut to 150 x 20 mm and had a nominal thickness of 3 mm. An initial 

delamination length of 50 mm was used. The load was introduced to the 

specimens by glued piano hinges. A natural Mode I precrack wa s a ttained by 

loading the specimens to crack initiation and unloading them. The DCB 

specimens were opened at 2 mm/min while the crack front propagation was 

followed by a travelling microscope. The experiment was performed on an 

Instron 3369 equipped with a 500 N load cell. 

Three different fracture toughness values are used to describe the Mode I 

delamination behaviour of these laminates. In order to exclude any reinforcing 

fibre bridging (e.g. glass or carbon fibres), 𝐺𝐼𝑐,𝑁𝐿 is determined by the poi nt of 

non-linearity during the precracking cycle where the delamination growth starts 

from the initiation fi lm. The initiation fracture toughness 𝐺𝐼𝑐,𝑖𝑛𝑖 is determined by 

the 5%/max point in the load-displacement curve after precracking as 

recommended by the ASTM standard, while the propagation fracture toughness 

𝐺𝐼𝑐,𝑝𝑟𝑜𝑝 is determined as the mean 𝐺𝐼 value once the 𝑅-curve stabilizes after the 

reinforcing fibre bridging zone has formed. A typical load-displa cement c urve 

and the resulting 𝑅-curve is shown in Figure 24 for a unidirectional DCB 

specimen. It can be seen that there is a relatively large increase in 𝐺𝐼 with 

increasing delamination growth which is due to reinforcing fibres  br idging the 

DCB specimen halves. This fibre bridging, which mainly affects 𝐺𝐼𝑐,𝑝𝑟𝑜𝑝 is 

considered to be an artefact of the DCB experiment on UD laminates 131. Henc e, 

𝐺𝐼𝑐,𝑝𝑟𝑜𝑝  is of lesser importance as most delaminations in realistic laminates form 

between plies of dissimilar orientation or between woven plies where fibre 

bridging is minimal or occurs differently. Nevertheless, it is taken into account as 

its value does provide extra information about the toughening mec hanisms in 

the nanofibre interleaved composites. 
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Figure 24 – Typica l load-displacement curve obtained in a  DCB-experiment (a) and 

the resulting 𝑹-curve (b). The different 𝑮𝑰𝒄-values used to discuss the Mode I 
interlaminar fracture toughness are indicated in red. 

The Mode II interlaminar fracture toughness 𝐺𝐼𝐼𝑐 was determined using ENF 

specimens according to the Compliance Based Beam Method (CBBM) including 

Bending Rotations132: 

 𝐺𝐼𝐼𝑐 =
9𝑃𝑐

2𝑎𝑒𝑞
2

2𝐸𝑓𝑏2(2ℎ)3
[1 − 𝜒] (2) 

where: 𝑃𝑐  is the critical load at which delamination advance oc c urs, 𝑎𝑒𝑞 i s an 

equivalent delamination length calculated from the actua l c ompliance of the 

specimen, 𝑏 is the width, 𝐸𝑓 is the flexural modulus, 2ℎ is the thickness and 

[1 − 𝜒] corrects for bending rotations. Specimens were cut to 130 x 20 mm a nd 

a span length (2𝐿) of 100 mm was used. In order to establish stable crack growth 

in the specimens133, the ratio of initial delamination length on the half-span 

length was selected to be higher than 0.7, i .e. 𝑎0/𝐿 > 0.7: the initial 

delamination 𝑎0 was 37.5 mm unless otherwise stated. Loading of the 

specimens was displacement controlled and the crosshead movement wa s  s et 

to 1 mm/min. The experiment was performed on an Instron 3369 equipped with 

a 2 kN load cell. 

Although the ASTM standardization institute recently published a standardised 

test method for determining the Mode II interlaminar fracture toughness by ENF 

specimens134, their method is not only more time consuming due to a neces s ity 

for compliance calibrating each specimen, it negl ec ts a ny s ub -c ritic al c rac k 
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growth by assuming that the initial delamination length has not changed when 

𝑃 = 𝑃𝑚𝑎𝑥. Throughout the experimental campaign of this PhD, it was found that 

the effect of sub-critical crack growth cannot be neglected for tough resin 

systems such as the used infusion resin or for specimens containing electrospun 

nanofibres due to added plasticity at the crack tip (Section 3.2.2). The CBBM 

data reduction method has several advantages over the one propos ed i n the 

ASTM standard: (1) an 𝑅-curve is obtained without the need to visually measure 

the delamination length during the experiment by plotting (2) as a  function of 

𝑎𝑒𝑞, (2) the flexural stiffness is calculated for each specimen separately using the 

initial compliance133 and (3) it takes sub-critical crack growth into account a s a n 

equivalent delamination length is obtained at each point during the test. Indeed, 

the Mode II delamination front is difficult to define and an equivalent 

delamination length calculated from the compliance of the s pec i men is often 

more representative for the actual delamination length135. This equivalent 

delamination length is thus calculated during the ENF experiment using the 

compliance 𝐶𝑖 at each recorded load-displacement point, i .e.  

𝑎𝑒𝑞,𝑖 = 𝑓(𝐶𝑖 = 𝛿𝑖/𝑃𝑖 ). It represents the delamination length required to have an 

imaginary ENF specimen with a perfect delamination front tha t ha s the s a me 

compliance as the actual specimen.  

Two Mode II interlaminar fracture toughness values will be used throughout this 

PhD to describe the Mode II delamination behaviour of the composite 

laminates, see Figure 25. The most conservative value, 𝐺𝐼𝐼𝑐,𝑁𝐿 is obtained at the 

point where the load-displacement curve starts to deviate from l i nea rity ( 𝑃𝑐 =

𝑃𝑁𝐿 , where NL stands for non-linearity). At this point, tensile mi c rocracks a re 

initiated in front of the delamination tip due to the shear loading conditions, but 

no macroscopic delamination growth occurs. Yet, the microcracks will i nc rea se 

the compliance of the specimen and the equivalent delamination length 

increases, resulting in delamination growth (Δ𝑎𝑒𝑞 > 0). The value of 𝐺𝐼𝐼𝑐,𝑁𝐿 thus  

corresponds to the energy required for the initiation of these microcracks and is 

the first point on the 𝑅-curve (Δ𝑎𝑒𝑞 = 0). The second fracture toughness va lue 

that will  be used, 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖, corresponds to the point at which macroscopic 

delamination advance occurs. In comparison to DCB experiments, the 

macroscopic delamination advance in ENF experiments often propagates  up to 

the center loading point immediately (about 12.5 mm for the specimens under 

consideration). This results in a maximum load 𝑃𝑚𝑎𝑥 followed by a steep 
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decrease in load in the load-displacement curve, after which the exper i ment i s  

stopped. The Mode II initiation interlaminar fracture toughnes s 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 i s thus  

defined as the 𝐺𝐼𝐼 value at the maximum load during the experiment (𝑃𝑐 =

𝑃𝑚𝑎𝑥). This is the most commonly used Mode II interlaminar fracture toughness 

parameter and is also recommended by the ASTM D7905 standard, as it is 

related to the point at which macroscopic delamination growth oc curs.  Note 

that there can be some equivalent delamination growth before 𝑃𝑚𝑎𝑥 is reached, 

especially in the case of tough laminates. Since these delamination lengths a re 

not critical and do not result in sudden macroscopic delamination advance, thi s 

region is referred to as sub-critical crack growth. Hence, 𝐺𝐼𝐼𝑐,𝑁𝐿 represents  the 

energy required to initiate sub-critical crack growth, while 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 represents the 

transition from sub-critical crack growth to macroscopic delamination advance.  

Section 3.2.2 goes into more detail  about the micromechanisms of damage 

encountered during Mode II delamination. 

 

Figure 25 – Typica l load-displacement curve obtained from an ENF experiment (a) 

and the resulting 𝑹-curve (b). The different 𝑮𝑰𝑰𝒄-values used to discuss the Mode II 
interlaminar fracture toughness are indicated in red. 

All experiments were performed at 20 ± 2°C and 65 ± 4% RH. At least three 

specimens were tested for each configuration. A Jeol Quanta 200F Field 

Emission Gun SEM, a Phenom ProX SEM and an Olympus BX51 optical 

microscope with an Olympus UC30 camera were used to examine the fra c ture 

surface of the specimens. 
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2.3.3 Impact resistance of interleaved laminates 

Low velocity impact tests were conducted according to ASTM D7136136. The 

specimens were cut from the produced composite laminates at a nominal size of 

100 x 150 mm2 by using a water-cooled diamond cutter. The test was exec uted 

on an in-house developed impact test machine. The test machine i s equipped 

with a Gen. 5I oscilloscope to record acceleration, load and displacement data of 

the impactor. Two Photron SA4 high-speed cameras were used to obs erve the 

upper and lower face of the specimens during impact. A third AP-XRS high-speed 

camera was used to measure displacement, velocity and acceleration of the 

impactor by the use of a specific l ine pattern stuck on the impactor . The three 

cameras were synchronized by triggering them at the moment a force of 200  N 

was detected by the oscilloscope. Images were recorded at 10 000 – 15 000 fps. 

The impact test machine comprised a drop tower with an impactor. The 

impactor had a weight of 8.17 kg with a hemispherical nose diameter of 16  mm 

as recommended by the ASTM standard. It was guided through two smooth 

guide columns and impact occurred on the centre of the specimen. The 

specimen was firmly fastened by four clamps at the corners of the s pec imen. 

The initial height of the impactor could be varied in order to obtain various 

impact energies. Six different heights were set: 20, 40, 60, 80, 100 and 120  c m. 

They correspond to impact energies of 14, 28, 41, 54, 67, 79 J respectivel y. The 

impact energy was calculated as the kinetic energy of the impactor using its 

velocity measured at the moment a force of 200 N was detected by the 

oscilloscope. To start an experiment, the impactor was set to the desired height. 

Subsequently, the impactor was released by an electro-magnet, fell freel y a nd 

struck the specimen. An anti-rebound device was used to avoid a second strike. 

The setup is i llustrated in Figure 26. 

Cross-ply [0°/90°]2S specimens with a nominal thickness of 3 mm were used. 

Electrospun nanofibrous veils were interleaved on each 0°/90° -inter fa ce. For  

each type of composite and for each impact energy, the drop weight impact test 

was repeated at least three times. The damage area after impact was measured 

optically due to the translucence of the laminates. The impacted specimens 

were tested for their residual compressive strength, i .e. the compres sion after  

impact (CAI) strength, according to ASTM D7137137. An anti-buckling device wa s  

used to prevent buckling of the specimens during compression. The CAI 

experiments were performed by A. Cohades of the Laboratory for Processing of 
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Advanced Composites (EPFL, Switzerland) due to his experience with the test 

method. 

 

Figure 26 – Image of the drop tower impact setup used. 
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3 

 

MAJOR RESEARCH RESULTS 

This chapter is dedicated to  the major research results that were 

obtained during  the PhD work. The chapter is d ivided according 

to  the three d ifferent levels which are present in  nanofibre 

interleaved composites: nanotoughened epoxy, nanotoughened 

interlayer and fu lly  interleaved laminate.  Most of the reported 

results are based on own  published papers, which can be found  

in  fu ll  in  the Appendix . In  each (sub)section, a  reference is g iven 

to  the associated paper(s).  
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3.1 TOUGHENING MECHANISMS IN NANOTOUGHENED EPOXY 

To understand the toughened response of nanofibre interleaved composite 

laminates, one must first understand the fundamental mechanisms through 

which nanofibres affect the fracture toughness of the surrounding epoxy res in. 

This is done by analysing fracture experiments on nanofibre toughened epoxy 

resin. Single Edge Notch Bending (SENB) specimens are used to determi ne the 

intrinsic and extrinsic toughening mechanisms related to nanofibres in 

Section 3.1.1 (Paper I). A further analysis of the fracture behaviour using Single 

Edge Notch Tension (SENT) specimens in Section 3.1.2 concludes the major 

research results on nanotoughened epoxy. The results reflect the major insights 

obtained on Level 1 of the multiscale analysis. 

3.1.1 Intrinsic and extrinsic toughening mechanisms 

PCL (system #6) and PA6 (system #5) nanofibres were selected as model systems 

as both have a high toughness compared to the epoxy matrix 28, but different 

mechanical properties (Figure 27a). The PA6 nanofibres show a relatively high E-

modulus (960 ± 30 MPa) and tensile strength (101 ± 9 MPa). Thei r  res ponse i s 

fairly elastic with relatively low strain at failure compared to the PCL nanofibres 

which have a lower E-modulus (391 ± 54 MPa) as wel l as tensile strength (79  ± 

3 MPa). The electrospinning process often results in a superior mechanical 

response of electrospun nanofibres compared to the bulk mater ial due to the 

molecular alignment of polymer chains138,139, e.g. bulk PCL polymer has an even 

lower E-modulus (195 ± 10 MPa) as well as tensile strength (11 .3 ± 0 .3  MPa ) 

compared to the PCL nanofibres and deforms by extensive yielding. The tens i le 

properties of the embedded PCL nanofibres are expected to be in between the 

bulk and the electrospun properties due to the curing cycle of the epoxy res i n. 

Indeed, the resin is first cured at room temperature followed by a second curing 

step at an elevated temperature of 80°C. The second curing stage results in 

(partial) melting and resolidifying of the PCL nanofibres (melting point a pp rox. 

60°C) in a confined region with the same size as the initial nanofibre. 

The SENB experiments show that while the matrix resin exhibits brittl e fa ilure, 

i .e. sudden and complete failure at the point of crack initiation, both PCL a nd 

PA6 nanotoughened epoxy fail  by extensive plastic failure (Figure 27b). This 

results in an increased fracture toughness of the nanotoughened epoxy 
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compared to the bulk epoxy resin. Additionally, the crack propagation energy 

increases tremendously, as can be noted from the rising 𝑅-curve obta ined for  

nanotoughened specimens (Figure 27c). Basically, more and more energy is 

required to extend the crack in nanotoughened epoxy, while the brittle 

unmodified epoxy immediately fails when the critical load is reached. 

The larger amount of energy required to initiate cracks in the na notoughened 

epoxy indicates that the nanofibres result in intrinsic toughening, i .e. toughening 

mechanisms acting in the fracture processing zone in front of the crack tip 

(Figure 28). These toughening mechanisms are most l ikely related to yielding of 

the nanofibres since the effect is most pronounced in the PCL na notoughened 

specimens where about 30% more energy was required for crack initiation. Note 

that the yield strength of bulk PCL is much less than that of the epoxy i ts el f a s 

opposed to PA6 nanofibres. The increase in propagation fracture toughness c an 

be related to the extrinsic toughening mechanism of nanofibre bridging (Figure 

28): upon crack extension, nanofibres will  bridge the newly formed crack 

surfaces and take up energy by straining, yielding and fracture. Hence, the 

fracture toughness of the nanotoughened epoxy increases with increa sing crack 

growth as the zone of bridging nanofibres becomes larger. 
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Figure 27 – Stress-strain curves of the PCL and PA6 nanofibres illustrating the 

di fference in tensile properties. The bulk properties of PCL are also shown as  the 
embedded PCL nanofibres (partially) melt during the post-curing of the epoxy (a). 

Load-displacement curves of SENB specimens show that, while the epoxy resin 
exhibits brittle fracture, PCL and PA6 nanotoughened epoxy fails by extensive plastic 

fracture (b). The nanotoughened epoxy has a  higher fracture toughness than the 
unmodified bulk epoxy resin. Furthermore, its fracture toughness increases 

substantially with increasing crack growth (c). 
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Figure 28 – Crack ini tiation and propagation toughening mechanisms in a nanofibre 
toughened epoxy. During crack initiation, nanofibres will yield in the fracture 

processing zone, while the nanofibres will bridge the crack surfaces during crack 

propagation. 

The proposed mechanism of nanofibre bridging was confirmed by SEM ana lysis 

on the fracture surface of broken SENB specimens. The three main mechanisms  

acting in nanofibre bridging zones observed from the SEM images are 

schematically illustrated in Figure 29, i .e. straining of the na nofibre wi thout 

debonding, straining of the nanofibre with partial debonding and full  

debonding/peeling of the nanofibres. The SEM images showed a highly irregular 

crack surface and plastically deformed nanofibres protruding from the epoxy a s  

opposed to the flat mirror-like fracture surface of neat epoxy specimens (Figure 

30). In order for the bridging nanofibres to increase the fracture toughness, it i s 

important they take up more energy by bridging than the energy that woul d be 

required to fracture neat epoxy resin in that area. Furthermore, the 

nanofibre/matrix adhesion is of crucial importance for a good load tra nsfer  to 

the nanofibres. Although the high surface area to volume ra tio of na nofibres  

allows for sufficient adhesion strength under shear forces, the adhesion strength 

rapidly declines when the nanofibres are subjected to peel i ng forces (normal 

forces)140. SEM images of the SENB fracture surface indicate that the PCL/epoxy 

adhesion is good, whereas it seems rather low for PA6 nanofibres. The good 

interfacial adhesion of PCL nanofibres can be explained by the oc c urrence of 

partial diffusion of PCL into the epoxy resin (see Section 3.3.7 for more deta ils). 

The adhesion of PA6 nanofibres and the epoxy resin will  however be mainly 
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governed by fairly weak Van der Waals forces. Peeling of nanofibres is s een on 

SEM images of broken PA6 nanotoughened epoxy specimens. These nanofibres 

are not l ikely to take up much energy as they do not deform but rather peel 

from the matrix, and therefore they have no significant contribution to the 

fracture toughness of the nanotoughened epoxy. As such, the difference in 

nanofibre/epoxy adhesion for PA6 and PCL, combined with the higher a mount 

of yielding and the overall  higher work of rupture of the PCL nanofibres, can 

explain why the PCL nanocomposites showed the best improvements in fracture 

toughness. 

 

Figure 29 – Interaction of a bridging nanofibre with the crack front (a) resulting in 

s tra ining of the nanofibre without debonding (b), straining of the nanofibre with 
partial debonding from the epoxy (c), or complete debonding of the nan ofibre 

(peeling) (d). 
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Figure 30 – SEM images of the fracture surface of PCL and PA6 nanotoughened 
epoxy. The PCL nanofibres are s trained without debonding from the epoxy indicating 

good adhesion. In contrast, the adhesion between epoxy and PA6 nanofibres was 
poor as indicated by the smooth surface of the PA6 nanofibres and imprints left in 

the epoxy. Protruding nanofibres are indicated by red arrows. 

3.1.2 Analysis of fracture behaviour using SENT specimens 

Although SENB specimens allow accurate determination of the (pl a ne s train) 

fracture toughness of the epoxy resin, they are difficult to produc e due to the 

amount of nanofibres required for such thick specimens. As such, SENT fi lm 

specimens, which had a thickness around 100 µm, provide a simpler method for  

analysing the fracture mechanisms due to their ease of manufacture. 

Furthermore, the crack plane was lying completely in the focal zone of the 

microscope which allows for in-situ microscopy mea surements  dur ing c rack 

formation and propagation. This resulted in a better understanding of the 

development of the fracture processing zone and the nanofibre bridging zone.  
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Figure 31 shows the development of the fracture processing zone in front of the 

crack tip and the stable crack propagation zone before abrupt failure of a vi rgin 

epoxy and a PCL (system #6) nanotoughened epoxy specimen. Two clear 

differences can be observed: (i) the fracture processing zone in nanotoughened 

specimens shows stress whitening, and, (i i) the length of stable crack 

propagation is much larger in the nanotoughened specimen. The stress 

whitening phenomenon is most l ikely due to yielding and (micro)debonding of 

the nanofibres near the stress concentration at the crack tip. Both effec ts  wi ll  

change the refractive index locally, resulting in a cloudy, whitened appearance in 

the translucent epoxy. The fracture processing zone is also less defined tha n i n 

the virgin specimen and it gradually fades away further from the stress 

concentration. The same mechanism of yielding and debonding – both c a us ing 

macroscopic plasticity at the crack tip – was also associated to the i nc rease i n 

initiation fracture toughness measured using SENB specimens in Secti on 3 .1 .1 . 

During stable crack propagation, a nanofibre bridging zone develops. These 

bridging nanofibres cause closing tractions on both crack halves which reliefs the 

stresses at the crack tip. Furthermore, the nanofibres keep on bridging the crack 

surfaces until they break by tensile failure adding to the energy absorption, a nd 

thus toughness, of the nanotoughened epoxy. This mechanism of nanofibre 

bridging formation causing closing tractions was verified using in -situ 

microscopy combined with DIC (Figure 32). The pos sibility of vi sualising the 

nanofibre bridging zone during testing allows quantitative measurements of the 

bridging zone such as its length. Since it is this bridging effect that will cause the 

largest increases in fracture toughness, direct visualisation of the bridging zone 

allows for a better understanding of how it develops in different nanotoughened 

epoxy specimens. 
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Figure 31 – Development of the fracture processing zone (FPZ) and stable crack 
propagation in vi rgin and PCL nanotoughened epoxy specimens. Nanotoughened 

specimens have a different FPZ with stress whitening and show a  larger amount of 

s table crack growth. 

 

 

Figure 32 – In-s itu microscopy on a nanotoughened SENT specimen showing the 

development of a nanofibre bridging zone behind the cra ck tip, while closing 
tractions can be visualised using DIC. 
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Similar to the SENB specimens, the plastic work necessary to break a SENT 

specimen relates to the toughening potential of the nanofibres  (Figure 27b). 

Integration of the load-displacement curve of an SENT specimen up to the poi nt 

of crack initiation yields the elastic energy take-up, while integrati on from the 

crack initiation point ti ll the point of break yields the pl astic  energy ta ke -up. 

Figure 33 shows the plastic energy take-up for virgin epoxy and PA6.9 

(system #1) and PCL nanotoughened epoxy for a test performed at different 

strain rates. PCL nanofibres show the highest increases in plastic energy take-up 

resulting in almost twice the energy required to break a PCL nanotoughened 

epoxy compared to virgin epoxy. Indeed, the elastic energy take-up was s imilar 

for both materials. At the lowest strain rate, PA6.9 nanofibres perform s lightly 

less than PCL nanofibres, but the increase is still considerable. However , thi s 

changes at higher strain rates: while PCL nanofibres result in a significant 

toughness increase relatively independent of the deformation speed, the 

increase in plastic energy take-up of PA6.9 nanofibres quickly dec reases. Thi s 

indicates that there is a strain-rate dependent behaviour causing a  duc tile-to-

brittle transition in the PA6.9 nanofibres which decreases their toughening 

potential. Such effects become important when the nanofibres will experienc e 

dynamic loadings such as those encountered during impact damage. It is 

interesting to note that the virgin epoxy resin also becomes more br i ttle wi th 

increasing deformation speed. 

 

Figure 33 – Plastic energy take-up during fracture of vi rgin, PA6.9 toughened and PCL 
toughened epoxy at different s train rates. 
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The SEM analysis in Section 3.1.1 indicated a better adhesion between PCL a nd 

epoxy than between PA6 and epoxy as was evidenced by imprints left by peeled 

PA6 nanofibres. Although these imprints do provide indirect evidence of the lack 

of interfacial strength, a direct measurement of the interfacial quality between 

nanofibres and matrix resin is preferable. The SENT fi lm specimen design allows 

for a relatively simple determination of the interfa cial quality us ing a ligned 

nanofibrous veils. Similar to test methods for regular fibre reinforced 

composites on [0°]n and [90°]n laminates141, a loading direction perpendicular to 

the nanofibre direction stresses the interface much more than loading parallel 

to the nanofibre direction. SENT specimens with nanofibres aligned parallel a nd 

perpendicular to the loading direction are thus a good measure for the 

interfacial strength (Figure 34). PCL nanofibres show only a slight decrease when 

loaded perpendicular to the nanofibre direction due to a good interfacial 

strength. The small reduction in energy take-up is mainly due to much less 

nanofibre bridging occurring by an orientation of the nanofibres not promoti ng 

bridging. PA6.9 nanofibres on the other hand show a drastic decrease in plastic  

energy take-up as the crack easily propagates along the nanofibre/epoxy 

interface without much resistance due to the lack of interfacial strength. As 

such, this method provides the means for analysing the interfacial s trength i n 

nanofibre toughened epoxy. Due to its generality, this method can also be useful 

for characterising other nanocomposite systems as there is currently no method 

available which allows to test the interface between electrospun nanofibres and 

matrix resin. 
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Figure 34 – The plastic energy take-up decreases drastically in SENT specimens 
tested perpendicular to the nanofibre direction if there is a  lack of interfacial 

s trength between the nanofibres and the epoxy resin. This is clearly i llustrated for 
PA6.9 nanofibres (a), as opposed to the slight decrease in energy take-up measured 

for PCL nanofibres which have good adhesion with epoxy (b). 
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3.2 NANOFIBRE BRIDGING IN INTERLEAVED COMPOSITES 

This section deals with the development of nanofibre bridging zones in 

interleaved composites  at Level  2. As opposed to nanofibre bridging in 

nanotoughened epoxy, the development of nanofibre bridging in interleaved 

composites is dependent on the interaction between the delamination a nd the 

nanotoughened interlayer (Subsection 3.2.1). Furthermore, the effect of loading 

mode on the development of nanofibre bridging is analysed in Subsection 3 .2.2  

as delaminations usually occur under Mode I or Mode II loading. The 

represented data highlights the major results, further detailed in  Paper I, 

Paper II, Paper III, Paper IV and Paper V, which consider the delamination 

resistance of nanofibre interleaved composites using Mode I and Mode II 

delamination experiments. 

3.2.1 Development of nanofibre bridging zones 

Delamination in composites is typically associated to the formati on of a  pl ane 

crack front in the (resin rich) interlayer between reinforcing plies. This is correc t 

from a macroscopic viewpoint. However at the microscopic level of an 

interlayer, the delamination will  progress by fracturing the resin material, 

debonding of the reinforcing fibres (i.e. fracture along the fibre/matrix interface) 

or by a combination of both mechanisms. Simplified, the delamination will  

progress through the weakest zones as less energy is required. If the amount of 

energy required for fracturing the epoxy resin is similar to tha t nec es sary for  

debonding the reinforcing fibres, a combination of both mechanisms is present. 

For the resin systems used in this PhD (EPIKOTE RIMR135, HexPly M10R and 

MTM49-3), microscopy showed that delaminations in virgin composites progress 

almost exclusively at the reinforcing fibre/epoxy interface. The energy requi red 

for such interfacial failure will depend on the adhesion of the reinforcing fi bres 

with the matrix resin and forms the major contribution to the Mode I and 

Mode II interlaminar fracture toughness, 𝐺𝐼𝑐  and 𝐺𝐼𝐼𝑐 respectively, of virgin 

laminates. The delaminations in nanofibre interlea ved c omposites s how the 

same reinforcing fibre/epoxy interfacial failure, but additionally show crossings 

of the interlaminar region through the nanotoughened interlayer  ( Fi gure 35). 

The amount of reinforcing fibre/epoxy interfacial failure remains similar to tha t 

in virgin laminates as the interlaminar crossings are oriented transversely to the 
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macroscopic delamination plane. However, the interlaminar crossings result in a 

crack through the nanotoughened epoxy which causes nanofibre bridging.  

 

Figure 35 – Delaminated nanofibre interleaved DCB and ENF specimens show regular 

interlaminar crossings besides reinforcing fibre/matrix debonding. Nanofibre 
bridging zones will mainly develop in the interlaminar crossings where there is a  lot 

of interaction between the delamination path and the nanotoughened interlayer.  

The occurrence of interlaminar crossings results in a very distinct fracture 

surface topology consisting of classical interfacial  failure (fibre/matrix 

debonding) similar to the virgin laminates and interlaminar fa ilure a t poi nts  

where the crack passes from one side of the interlayer to the other (Figure 36). 

Furthermore, it can be seen that the interlaminar failure mainly propagates 

parallel to the crack growth direction resulting in a “banded” s tructure on the 

fracture surface. The delamination path and fracture surface morphology a re 

often not reported in publications, but do reveal a substantial amount of 

information about the different micromechanisms which affect the 
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delamination resistance of an interleaved composite. In case the delamination is 

completely deflected towards the reinforcing fibre/epoxy interface, no 

nanofibre bridging can occur at all, and the delamination resista nc e wi ll  thus 

hardly be affected. The deflection towards the intralaminar zone can be ca used 

by the nanofibres themselves due to an increased toughness, but c a n a lso be 

dependent on the exact layup of the composite. For example, it i s known that 

delamination between 0°/90°-interfaces typically causes a deflection in the 90°-

oriented ply142. On the other hand, if the delamination goes completely through 

the nanofibre interleaved interlayer, one might expect a very high delamination 

resistance due to excessive nanofibre bridging. This does not necessarily has to 

be the case as it can also indicate that the adhesion between the nanofibres and 

the epoxy is so low that it requires less energy to propagate along the 

nanofibre/epoxy interface. During this PhD work, the best improvements in 

interlaminar fracture toughness were almost always obta ined  for  s pecimens 

which had regular occurrences of interlaminar crossings besides the c l assic al 

interfacial failure. 

 

Figure 36 – Nanofibre interleaved specimens show a  banded morphology due to the 
occurrence of interlaminar crossings besides reinforcing fibre/matrix debonding at 

the ply interface (interfacial failure). The pictures show the fracture surfaces of a  
Mode II  delaminated CFRP interleaved with PA6.9 (#1) nanofibres. 
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3.2.2 Loading mode effects 

Figure 37 il lustrates the delamination mechanisms that are present in a 

composite laminate under Mode I loading conditions. Nanofibre br idging wi ll  

only occur at the interlaminar crossings in interleaved laminates due to an 

interaction between the delamination path and the nanotoughened inter layer . 

Each interlaminar crossing corresponds to a crack through nanotoughened 

epoxy similar to the material studied in Section 3.1. Note that although the 

delamination plane is parallel to the nanofibrous veil, the interlaminar cracks go 

in the through-thickness direction similar to the crack studied with SENB a nd 

SENT specimens. Hence, the increase in Mode I interlaminar fracture toughnes s 

of the nanofibre interleaved specimens, Δ𝐺𝐼 = 𝐺𝐼𝑐,𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑 − 𝐺𝐼𝑐,𝑣𝑖𝑟𝑔𝑖𝑛, can be 

attributed to the total amount of interlaminar crossing fracture surface area and 

the fracture toughness of the nanotoughened epoxy, 𝐺𝐼𝑐,𝑆𝐸𝑁𝐵: 

 Δ𝐺𝐼 ≈ 𝐺𝐼𝑐,𝑆𝐸𝑁𝐵(
𝑛𝑡

sin𝜃
) (3) 

where 𝑛 is the amount of crossings per unit delamination width, 𝑡 is the 

thickness of the interlayer and 𝜃 defines the angle of the interlaminar crossings 

with the delamination plane. Microscopy images of tested DCB specimens nea r 

the initiation point allow for measuring the total amount of interlaminar 

crossing fracture surface area (𝑛, 𝑡 and 𝜃). In combination with the 𝐺𝐼𝑐,𝑆𝐸𝑁𝐵 

values determined in Section 3.1.1, this allows for the calculation of Δ𝐺𝐼 

according to (3). Good agreement with Δ𝐺𝐼 determined from DCB exper iments  

on PCL (system #6) interleaved laminates  was found, thus validating the 

proposed equation (Table 2). The correlation between 𝐺𝐼𝑐,𝑆𝐸𝑁𝐵 and 

𝐺𝐼𝑐,𝑖𝑛𝑡𝑒𝑟𝑙𝑒𝑎𝑣𝑒𝑑 is further confirmed by SEM analysis of the interlaminar crossings 

in DCB laminate specimens which showed extensive nanofibre bri dging wi th a  

similar morphology as the fracture surface of the nanotoughened epoxy 

specimens of Section 3.1.1 (Figure 38). 
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Figure 37 – I l lustration of the delamination path in vi rgin and nanofibre interleaved 
composite laminates under Mode I loading. The vi rgin laminates show almost 
exclusively reinforcing fibre/matrix debonding, while in interleaved laminates, 

interlaminar crossings are observed as well. 

Table 2 – Values of 𝚫𝑮𝑰𝒄 obtained from DCB experiments and from (3) for several 

PCL nanofibre interleaved specimen showing good agreement. 

Specimen Interlayer 

thickness 

(µm) 

Amount of 

crossings per 

specimen 

(-) 

𝚫𝑮𝑰𝒄 

(J/m²) 

   Experiment Eq. (3) 

PCL 44 g/m² specimen #1 178 4 175 145 

PCL 44 g/m² specimen #2 178 6 215 218 

PCL 15 g/m² specimen #1 59.9 17 253 207 

PCL 10 g/m² specimen #2 57.4 14 176 164 
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Figure 38 – SEM images of intralaminar failure and interlaminar crossings. Nanofibre 
bridging zones developed at the interlaminar crossings in interleaved laminates. The 

fracture surface morphology of the bridging zones resembles that of the 

nanotoughened epoxy specimens of Section 3.1. 

The delamination mechanism under Mode II loadings is more complex and 

consists out of tensile microcrack formation in front of the crack tip  in the 

interlaminar region at 45° relative to the macroscopic delamination growth 

direction (development of the fracture processing zone)143,144. As detailed in 

Section 2.3.2, the initiation of these microcracks is represented by 𝐺𝐼𝐼𝑐,𝑁𝐿. After  

the initiation of the microcracks, sub-critical crack growth continues by the 

formation and growth of more microcracks. The coalescence of these 

microcracks results in macroscopic delamination advance at 𝑃𝑚𝑎𝑥, repres ented 

by 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖. The resulting delaminated fracture surface has hackles which are 
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typical for Mode II loadings. Figure 39 illustrates the delamination mec ha nism 

under Mode II loading. 

 

Figure 39 – I l lustration of the Mode II delamination mechanism. Shear stresses at the 
crack tip generate (principal) tensile s tresses which cause microcrack formation in 

front of the crack tip at 45 ° to the shear loading direction. This is followed by sub-
cri tical crack growth. The maximum load is reached when the microcracks start to 

coalesce and macroscopic delamination advance is observed. 

The improvement in Mode II interlaminar fracture toughness Δ𝐺𝐼𝐼 is a 

combination of the development of nanofibre bridging zones  i n i nter laminar  

crossings as well as in the microcracks and hackles which form in the 

interlaminar region (Figure 40). The nanofibres will not only increase the energy 

required for microcrack initiation 𝐺𝐼𝐼𝑐,𝑁𝐿, but also take up more energy dur i ng 

the sub-critical crack growth regime. Indeed, more energy i s required for the 

growth and coalescence of microcracks due to the development of na nofi bre 

bridging zones. At the same time, regular interlaminar crossings a lso improve 
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the delamination resistance similar to their effect under Mode I  l oa ding. Both 

mechanisms of nanofibre bridging development will  improve the energy 

required for macroscopic delamination resistance 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 considerably a nd wi ll  

typically cause longer regimes of sub-critical crack growth. As such it is not 

possible to define a simple relationship between Δ𝐺𝐼𝐼 and 𝐺𝐼𝑐,𝑆𝐸𝑁𝐵 as the 

amount of microcrack surface can hardly be measured. However, since 

microcrack initiation under Mode II loadings is governed by the forma tion of 

tensile microcracks in the interlaminar region, the increase in energy required to 

initiate these microcracks – represented by 𝐺𝐼𝐼𝑐,𝑁𝐿 – is similar to the increa se i n 

initiation fracture toughness of the nanotoughened epoxy itself (Figure 41). This 

proves again that there is a strong link between the nanotoughened epoxy level  

and the nanotoughened interlayer level. It is worth remarking that the a mount 

of interlaminar crossings was generally found to be higher in Mode II 

delaminated specimens compared to Mode I delaminated specimens. There 

occurrence is facil itated by the shear loading conditions which generate 

(principal) tensile stresses in the interlayer. 

 

Figure 40 – I l lustration of the delamination path in vi rgin and nanofibre interleaved 
composite laminates under Mode II loading. Nanofibre bridging zones develop at the 
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interlaminar crossings, but also at microcracks in the nanotoughened interlayer 
(hackles). 

 

Figure 41 – The increase in initiation fracture toughness of nanofibre toughened 
epoxy i s s imilar to the increase in Mode II microcrack initiation energy as the 

microcracks form under tensile stress in the nanotoughened interlayer. 

Besides the difference in crack mechanisms, the (macrosc opic) del amination 

loading mode will also affect the way in which the nanofibres are loaded on the 

microscopic level. The improvement in initiation interlaminar fracture toughness 

for PA6 (system #5) and PCL (system #6) interleaved composites with identic al 

nanofibrous veil areal density, reinforcing ply a rchitecture a nd i nter leaving 

method is shown in Figure 42a. Both PCL and PA6 nanofibres show an 

extraordinary increase in 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 (energy required to initiate macroscopic 

delamination failure). This result is in accordance with the results obta ined i n 

Section 3.1 where both PA6 and PCL nanotoughened epoxy had an increased 

fracture toughness. PCL nanofibres also increased 𝐺𝐼𝑐,𝑖𝑛𝑖 substantially, wherea s 

PA6 nanofibres seemed to have hardly any effect on 𝐺𝐼𝑐,𝑖𝑛𝑖. Based onl y on the 

results obtained on nanotoughened epoxy, one would not expect such a 

different behaviour between Mode I and Mode II loading conditions. However , 

under Mode I loading, crack growth subjects the nanofibres to normal forc es. 

When the nanofibre/matrix adhesion is low, as is the case for polyamide 
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nanofibres (see Section 3.1.2), this causes extensive peeling of the na nofibres  

(Figure 42b). Hence, the adhesion between nanofibre and epoxy resin becomes  

very important under Mode I delamination growth as low inter facial s trength 

results in low energy take-up by the nanofibres. This mechanism results in minor 

to no improvements in 𝐺𝐼𝑐,𝑖𝑛𝑖 for PA6 interleaved laminates. Under Mode II 

loading conditions, adhesion between nanofibre and epoxy resin poses less of a  

problem as the shear adhesion strength of all nanofibres is relatively high due to 

their high surface area to volume ratio140. Furthermore, the formation of tensile 

microcracks at 45° relative to the delamination direction also results in 

stretching of the nanofibres that bridge these cracks (Figure 42b). As  a  res ult, 

high improvements in 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 are obtained for PCL as well as PA6 nanofibre 

toughened composites. 

 

Figure 42 – Mode I and Mode II interlaminar fracture toughness for a  virgin, PA6 

interleaved and PCL interleaved composite laminate (a). Schematic illustration of the 
loading exerted on the laminate and the loading experienced by the nanofibres (b). 
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3.3 PARAMETERS AFFECTING NANOFIBRE BRIDGING IN 

INTERLEAVED COMPOSITES 

The previous section showed that interlaminar crossings are very impo rta nt i n 

order to obtain highly toughened composites as they are the main cause of 

nanofibre bridging on the interlaminar level. Further analysis at Level  2 showed 

that the occurrence of interlaminar crossings was found to be dependent on 

parameters related to the nanofibres themselves, the veil  morphology, the 

interleaving technique, the reinforcing fabric architecture and even the wa y i n 

which the delamination experiment is performed. It is therefore of crucial 

importance that these effects are understood and taken into account when 

discussing the toughening potential of a certain nanofibre system. Indeed, while 

one type of nanofibrous veil might result in good improvements for one type of 

composite laminates, it does not necessarily result in the same i mp rovements  

for other types of laminates. This was especially clear in several publications in 

which the same nanofibre system is used, but completely di fferent res ult s  of 

interlaminar fracture toughness are recorded, see also Section 1.4. Generally, i n 

order to increase the fracture toughness on the interlaminar level, the 

interaction between the delamination path (interlaminar crossings and 

microcrack formation) and the nanotoughened interlayer characteristics 

(fracture toughness, nanofibre properties, adhesion, …) are of crucial 

importance and should be considered in order to design damage resistant 

composite materials. 

This section is divided in several subsections which each trea t one pa rameter  

that affects the nanofibre bridging in an interleaved composite. The results 

highlight the results from several of our published papers. 

3.3.1 Areal density of nanofibrous veils 

One important and simple parameter which can drastically affect the obta ined 

interlaminar fracture toughness is the nanofibrous veil areal density. Thi s wa s 

analysed in Paper I and Paper II. 

The interlaminar thickness increases l inearly with the veil density (Figure 20). On 

the one hand, the interlaminar fracture toughness thus increases with increasing 

veil  density as each interlaminar crossing becomes larger. On the other hand, we 
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found that the amount of interlaminar crossings under Mode I loadings typically 

declines quickly with increasing nanofibrous veil  density, resulting in an 

optimum Δ𝐺𝐼 at intermediate veil densities. For PCL (system #6) nanotoughened 

GFRP composites, an optimum veil density was found to be around 10 g/m² 

(Figure 43). At higher veil  densities, the improvements in 𝐺𝐼𝑐,𝑖𝑛𝑖 started to l evel  

off and even declined at very high veil  densities of > 40 g/m². For polyamide 

nanofibres (PA6, PA6.6 and PA6.9) the trend was less clear as there is hardly a n 

increase in 𝐺𝐼𝑐,𝑖𝑛𝑖 due to extensive peeling of the polyamide nanofibres. 

 

Figure 43 – The increase in 𝑮𝑰𝒄,𝒊𝒏𝒊 levels off and even decreases with increasing areal 

density of the (PCL) nanofibrous veil. The results are obtained on GFRP UD laminates 
with UDO ES500 (left) and Roviglas R17/475 (right) reinforcing plies. 

Under Mode II loadings, the amount of interlaminar crossings is much less 

affected and Δ𝐺𝐼𝐼 increases with increasing nanofibre veil density after which i t 

starts to level off (Figure 44a). However, compared to Mode I loadings, no 

decrease in 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 is found at very high veil densities . The Mode II interlaminar  

fracture toughness is still very high for veil densities of > 40 g/m². However , the 

flexural properties of the composite laminate will probably start to decl ine due 

to the creation of a very thick unreinforced interlayer. The fact that regular 

interlaminar crossings still occur at these higher veil densities i n c ompa rison 

with Mode I delamination is related to the shear loading conditions at the cra c k 

tip under Mode II delamination. This results in a tensile stress component 
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through the interlayer which can promote crack formation through the 

interlayer (Figure 44b). Note that this is similar to the way tensile mi c roc racks 

form in front of the crack tip during Mode II delamination as explained in 

Section 3.2.2. 

 

Figure 44 – The Mode II interlaminar fracture toughness increases with increasing 

areal veil density and s tarts to level of for very high veil densities (a). The generation 
of tensile s tresses through the interlayer due to the Mode II shear loading (b). 

3.3.2 Interleaving method 

There are three different ways in which nanofibrous veils can be integrated i n a  

composite laminate that are relevant for practical applications : (i) using 

reinforcing plies coated on both sides with electrospun nanofibres , ( i i)  us ing 

reinforcing plies only coated on one side, or (i ii) interleaving a s el f-supporting 

nanofibrous veil. The effect of the integration method on the Mode I 

interlaminar fracture toughness was analysed in Paper II. 

When using reinforcing plies coated on both sides with electrospun nanofibres , 

referred to as the Double Layer Coated (DLC) configuration, the interlayer 

between reinforcing plies will contain two nanofibrous layers. In the other cases, 

the Single Layer Coated (SLC) and Self-Supporting Interlayer (SSI) configuration, 

only one nanofibrous layer is present. If the areal density of the na nofibres  i n 

the interlayer is mentioned for the DLC configuration, it is always the total 
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amount, e.g. interleaving 5 g/m² of nanofibres in DLC configuration i s done by 

using two reinforcing plies coated with 2.5 g/m² of nanofibres on ea c h s ide. I t 

was found that these methods of interleaving can affect the improvement in 

Mode I interlaminar fracture toughness due to a change in interlaminar crossing 

occurrence. DCB experiments were performed on GFRP composite laminates 

interleaved with the same amount of PCL (system #6) nanofibres. Two different 

reinforcing ply types were used. Both were unidirectional E-glass fibres, but ha d 

a different architecture. Ply Type A (Roviglas 17/475) consisted of unidirecti onal 

warp yarns held together by a very low amount of (E-glass) weft yarns. Ply 

Type B (UDO ES500) on the other hand consisted out of unidirectional fibre plies 

held together by a polyester scrim at its surface. While Type A plies ha d a  very 

bundled morphology and “rough” surface morphology, Type B plies were muc h 

flatter and represented the ideal case of unidirectional fibre plies better (Figure 

45). 

 

Figure 45 – Although both reinforcing ply types are considered to be unidirectional, 
there i s a distinct difference in surface morphology from bundled for Type A to flat 

for Type B. 

In the case of ply Type A, there was a significant difference between the 

obtained Mode I interlaminar fracture toughness and the way in which the 

nanofibres were interleaved. Figure 46a shows the 𝑅-curve obtained for 

representative DCB specimens containing 5 g/m² of PCL nanofibres. The DLC 

configuration of the nanofibres resulted in very large increases  of 𝐺𝐼 over  the 

whole delamination length. On the contrary, the SLC and SSI configuration 

hardly increased 𝐺𝐼. Microscopic analysis of the delaminated specimens showed 
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that these differences were due to much more interlaminar crossings present i n 

the DLC configuration. Although this may be unexpected as the same amount of 

nanofibres was present in the interlayer, the “lay-up” of the inter l ayer  differs 

depending on the interleaving method. Indeed, when nanofibres are directly 

spun onto the reinforcing fibres, there is much more interac tion between the 

nanofibres and the reinforcing fibres. Furthermore, the nanofibres are deposited 

according to the morphology of the reinforcing ply. As the delamination is often 

deflected towards the reinforcing fibre/matrix interface, toughening this 

interface with nanofibres is beneficial for the delamination res istance. A DLC 

configuration has this toughening effect at both sides of the interlayer , while a  

SLC only has one side of the interlayer toughened (the side on which the 

nanofibres were spun). In the case of an SSI configuration, it is highly unlikel y 

that the self-supporting veil will perfectly deform according to the rei nforcing 

ply morphology at both sides. Therefore, in the case of an SSI or SLC 

configuration, the delamination is more likely to be deflected towards the 

untoughened reinforcing fibre/matrix interface resulting in minimal 

improvements of the delamination resistance (Figure 46b). 

In the case of ply Type B, the interleaving technique affected the improvements  

in Mode I interlaminar fracture toughness much less. A series of composites was 

produced with different amounts of PCL nanofibres in either a DLC or an SSI 

configuration. Microscopic analysis of the delaminated specimens showed 

regular occurrences of interlaminar crossings in both configurations. In contrast 

to ply Type A, ply Type B had a much flatter topology. As such, the i ntera ction 

between the nanofibres and the reinforcing plies was much better in the SSI 

configuration and both interleaving techniques resulted in similar improvements 

of 𝐺𝐼𝑐,𝑖𝑛𝑖 (Figure 47). 
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Figure 46 – A DLC configuration results in the highest improvements in 𝑮𝑰 compared 

to a  SLC or a  SSI configuration of the nanofibres for Type A plies (a). Illustration of 
the interaction between the interleaving technique and the Type A ply morphology 

(b). 

 

Figure 47 – The interleaving technique does not affect the 𝑮𝑰𝒄,𝒊𝒏𝒊 substantially for 

Type B reinforcing plies due to the flat morphology of the reinforcing plies.  
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The results show that it is often better to use a DLC configuration for 

interleaving nanofibrous veils in a composite laminate. Especially if the 

reinforcing plies have a rough topology, which is for example encountered when 

using woven fabrics, directly coating both sides of the rei nforc ing plies  wi th 

nanofibres results in much better improvements of the Mode I interlaminar 

fracture toughness. It should be noted however that this can only be done when 

working with dry fabrics. In the case of prepreg materials where the reinforcing 

fibres are already surrounded by (partially reacted) epoxy resin, electrospinning 

nanofibres directly on the prepreg surface makes less sense. It could even 

initiate a harmful reaction between the electrospinning solvents and the 

uncured prepreg resin. Many prepreg materials are however unidirectional a nd 

have a near perfect arrangement of fibres resulting in a very flat morphology. As 

such, the added value of directly spinning the nanofibres on their surface would 

probably be negligible. 

3.3.3 Position of the initiation film 

In a DCB or ENF experiment, a release fi lm is used to initiate the delamination in 

between the central plies of the laminate. With regard to the materials studied 

in the previous subsection (Section 3.3.2), this means that the initiation fi lm i s 

on top of the nanofibrous veils for SLC configurations, while i t i s s andwic hed 

between two nanofibrous veils for the DLC configuration. In order to assess the 

influence of this difference in position of the initiation fi lm, modified DCB 

specimens were produced in which there was a gap of 1 mm between the 

nanofibrous veil and the tip of the release fi lm, see Figure 48 (Paper II) . Henc e, 

the delamination initiated in front of the nanofibrous veil  a nd the defl ec tion 

towards either side of the nanotoughened interlayer only happened after 1  mm 

of delamination growth. Nevertheless, no difference in Mode I interlaminar 

fracture toughness was found for these modified specimens. The DLC 

configuration stil l  resulted in much better improvements due to more 

occurrences of interlaminar crossings. 
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Figure 48 – Schematic illustration of the position of the initiation film in regular and 
modified DCB specimens. 

The effect of the position of the initiation film was also investigated for prepreg-

based CFRP unidirectional composite laminates interleaved with PA6.9 

(system #3) nanofibrous veils in Paper III. In this case, the veils were interleaved 

using an SSI configuration to prevent any interaction between the prepreg res i n 

and the electrospinning solvents as discussed in Section 3.3.2. In comparison to 

PCL nanofibres, the PA6.9 nanofibres typically have a  l ow a dhes ion wi th the 

epoxy matrix (Section 3.1.2). A microscopic analysis of delaminated DCB 

specimens showed that the Mode I delamination propagated preferably a t the 

nanofibre/epoxy interface due to excessive peeling of the nanofibres . This di d 

not positively influence the Mode I delamination resistance. However, when 

there was a gap of 3 mm between the tip of the initiation fi lm and the 

nanofibrous veil, the obtained 𝐺𝐼 increased considerably. The DCB fracture 

surface changed from one with nanofibre peeling to one with interlaminar 

crossings and intralaminar failure (Figure 49). This effec t i s a ttr ibuted to the 

development of a natural crack front with bridgi ng carbon fibres in the first 

3 mm of delamination growth. This might have resulted in s mall zones where 

the local crack growth was not purely Mode I or where the crack growth 

direction was not parallel with the plane of the interlayer resulti ng i n a  better  

load transfer to the nanofibres (less peeling). Furthermore, when a zone of 

bridging (carbon) fibres develops, these fibres need to tear through the 

nanofibre toughened interlaminar region. Consequently, zones  of pl astically 

deformed PA6.9 nanofibres were visible on the fracture surface and this tearing 

of the nanofibres takes  up energy leading to a higher interlaminar fracture 
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toughness. As compared to the results obtained in Mode I delamination growth, 

no difference in delamination behaviour was observed for Mode II delamination 

growth using modified ENF specimens. 

 

Figure 49 – A gap of 3 mm between the tip of the initiation foil and the nanofibrous 

interleaf resulted in the change of delamination path from one with nanofibre 
peeling to one with regular interlaminar crossings and nanofibre straining. This 

resulted in significant increases in obtained 𝑮𝑰𝒄 for the modified DCB experiment. 

It is clear that a small difference in crack initiation geometry c a n ha ve a  big 

influence on the resulting 𝐺𝐼, especially in the case of polyamide na nofibres 

which have a low adhesion with the matrix. In a third modified geometry, 

nanofibrous strips with a length of 15 mm were placed at 15 mm and at 45  mm 

ahead of the initiation fi lm. Hence, a relatively large zone of carbon fibre 

bridging is allowed to develop before the delamination encounters the 

nanofibres. This resulted in a significant increase in 𝐺𝐼 in the zones where 

nanofibres were present (Figure 50). 
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Figure 50 – A modified DCB setup with strips of nanofibrous veils in front of the 
delamination showed that the 𝑮𝑰 increased due to the presence of PA6.9 nanofibres. 

The polyamide nanofibre interleaved laminates with a modified initiation 

geometry described above showed large increases in Mode I interlaminar 

fracture toughness compared to specimens where the initiation fi lm was placed 

on top of the nanofibrous veils. This mechanism can be of use to toughen 

laminates where the delamination will start from a known region, e.g. a round 

(dril led) holes, free edges or inserts. If the nanofibrous veils are plac ed several 

mill imetres away from these regions in order for a fibre bridge zone to devel op, 

they can act as “delamination-stoppers”. More importantly however, in order to 

interpret the DCB data of nanofibrous interleaved composites it is very 

important that the interleaving of the nanofibres is done carefully and reported 

in detail  since a small gap between initiation fi lm and na nofibres c a n ha ve a  

large effect on the fracture behaviour. This effect may not always be 

representative of the actual behaviour of the material. For the determination of 

the generic Mode I delamination resistance for example, there should be no gap 

between the initiation film and the nanofibrous veil to prevent a ny a r tificial 

increases in interlaminar fracture toughness as it is expected tha t i n rea l -l ife, 

delaminations will initiate from the weakest spot, possible the nanofibre/matrix 

interface, and not from an initiation film. 
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3.3.4 Ply reinforcement architecture 

Section 3.3.2 already showed that the interaction between the ply 

reinforcement architecture and the nanofibre interleaving method c a n a ffect 

the obtained delamination resistance of nanotoughened composite lami nates . 

Those results were however based on composites made from unidirectional 

reinforcing plies. This section deals with the effect of the ply reinforcement 

architecture on the obtained Mode I  and Mode II delamination resistance. More 

precisely, the difference between unidirectional ply based and woven fabric 

based composites was analysed in Paper III. The materials under consideration  

are unidirectional and 2x2 twill  woven prepreg-based CFRP laminates 

interleaved with PA6.9 (system #3) nanofibres (SSI configuration). 

The main difference in Mode I delamination between a UD and a woven 

composite is the occurrence of reinforcing fibre bridging. While woven 

composites typically result in flat 𝑅-curves with some scatter associated to loc al 

differences in toughness due to the woven architecture and resin pockets , UD 

composites show a clear increase in interlaminar fracture toughness with 

increasing delamination growth due to bridging of the reinforcing fibres (Figure 

51). This means that the propagation toughness 𝐺𝐼𝑐,𝑝𝑟𝑜𝑝 is actually a rtificially 

affected by the reinforcing plies as bridging will occur  differentl y i n real -l ife 

multidirectional composite laminates. Therefore, when discussing the 

improvements in Mode I interlaminar fracture toughness in this PhD, the 

initiation value – either 𝐺𝐼𝑐,𝑁𝐿 or 𝐺𝐼𝑐 – is mainly used (see a lso Sec tion  2 .3.2 ). 

Yet, the propagation value reveals information about how nanofibres can affec t 

the occurrence of reinforcing fibre bridging. 
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Figure 51 – Woven specimens result in a  relatively flat 𝑹-curve, while unidirectional 

specimen have an increase in 𝑮𝑰 with increasing delamination length due to the 
development of a reinforcing fibre bridging zone. 

Figure 52 illustrates the initiation and propagation Mode I interlaminar fracture 

toughness of nanofibre interleaved unidirectional and woven composite 

laminates. For the woven composites, it is clear that adding nanofibres results in 

an improvement of the delamination resistance. Furthermore, as compared to 

the virgin material, the propagation fracture toughness is much higher than the 

initiation fracture toughness in the nanofibre interleaved woven laminates. This 

is a result of the formation of a nanofibre bridging zone a t the del a mination 

surface which took up significant amounts of energy by pl a stic fa ilure of the 

nanofibres. On the other hand, the initiation and propagation fracture 

toughness are hardly improved and even decrease in unidirectional l aminates . 

As compared to the virgin material, the difference between the i ni tiati on a nd 

propagation fracture toughness is much less and even negligible in the nanofibre 

interleaved composites indicating that there was no nanofibre br i dging zone 

which took up energy. The bridging of the reinforcing fibres was also prohibited 

by the nanofibres. This resulted in decreases of 𝐺𝐼𝑐,𝑝𝑟𝑜𝑝 compared to the vi rgin 

material. SEM analysis of the fracture surface showed plastically deformed a nd 

teared PA6.9 nanofibres in the woven laminates, but peeled off nanofibres 

without much deformation for the unidirectional laminates due to a lack of 

adhesion with the matrix. This indicates that the load transfer to the nanofibres  

was more efficient in woven laminates . The woven architecture probably 

resulted in small zones where the local crack growth was not purel y Mode I  or  
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where the crack growth direction was not parallel with the plane of the 

interlayer resulting in a better load transfer to the nanofibres. 

 

Figure 52 – PA6.9 nanofibres increase both initiation as well as propagation Mode I 
delamination resistance in woven laminates, but not in unidirectional laminates.  

For Mode II loading conditions, the amount of bridging reinforcing fibres is much 

less due to the propagation mechanism of microcrack formation and 

coalescence in the interlayer. As such the 𝑅-curves are flat and the di fferenc e 

between macroscopic delamination initiation 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 and propagation 𝐺𝐼𝐼𝑐,𝑝𝑟𝑜𝑝 is 

often negligible. Indeed, for the reference UD material , experiments showed 

that 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 = 1580 ± 50 J/m² and 𝐺𝐼𝐼𝑐,𝑝𝑟𝑜𝑝 = 1610 ± 60 J/m². However, the 

energy required for the initiation of microcracks, 𝐺𝐼𝐼𝑐,𝑁𝐿, i s  l ower tha n 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖, 

especially in nanofibre interleaved laminates. This i s c learly vi sible i n the 𝑅-

curves in Figure 53. The difference between both energies, i .e. Δ𝐺𝐼𝐼,𝑆𝐶𝐺 =



86 
 

𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 − 𝐺𝐼𝐼𝑐,𝑁𝐿, is a measure for the amount of energy taken up during sub-

critical crack growth (Figure 53). Indeed, the nanofibres affect both the energy 

required for microcrack initiation 𝐺𝐼𝐼𝑐,𝑁𝐿 as well as the energy required for major 

delamination advance 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖. However, their effect on 𝐺𝐼𝐼𝑐,𝑁𝐿 is relatively small 

as the nanofibre bridging effect is still very low at crack initiation (Section 3.1.1). 

During sub-critical crack growth, more microcracks wi ll  form a nd propagate, 

thus causing more nanofibre bridging. This results in a much higher 

improvement in 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖. Note that the (equivalent) delamination length during 

sub-critical crack growth can be several mill imetres long due to the added 

toughness of the nanotoughened interlayer. This means that 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 s hould be 

regarded as the energy required to initiate major delamination advance and not 

as an energy required to initiate damage. Furthermore, as the adhesion 

between the nanofibres and the matrix poses less of a problem under  Mode I I  

delamination (see also Section 3.2.2), the same trend in improvements is found 

for UD as well as woven composites. Indeed, the nanofibres on the fracture 

surface show a high degree of plastic deformation indicating good load transfer  

to the nanofibres. 
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Figure 53 – The development of nanofibre bridging causes a large increase in energy 
take-up during sub-critical crack growth as visualised by a  rising 𝑹-curve (sub-critical 

crack growth is indicated by a  hollow symbol). The 𝑮𝑰𝑰𝒄,𝒊𝒏𝒊 increases substantially 
compared to virgin specimens in both unidirectional as well as woven composite 

laminates as nanofibre/matrix adhesion poses less of a problem under Mode II 
loading. 
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3.3.5 Nanofibre orientation 

Throughout the previous sections good load transfer to the nanofibres has 

proven to be essential for improving the delamination resistance. Jus t a s wi th 

regular fibre reinforced composite where the fibre orientation determi nes the 

stiffness and strength, the nanofibre orientation can have a profound effec t on 

the development and effectiveness of nanofibre bridging zones in 

nanotoughened composite laminates. This was analysed using ENF experiments 

on PA6.9 (system #1 and system #2) toughened prepreg-based CFRP UD 

laminates in Paper IV. Mode II delamination was selected as it results in 

microcrack formation (hackles) besides interlaminar crossings a nd nanofibre 

bridging can develop at both regions (Section 3.2.2). Furthermore, there i s  no 

nanofibre peeling which could obscure the toughening mec hanisms due to a  

lack of adhesion between the nanofibres and the matrix. The ENF specimen s  in 

this section were slightly different from the other ENF specimens a s they were 

performed according to the ASTM D7905 standard (𝑎0/𝐿 = 0.6; 0.5  mm/mi n). 

The raw data was however processed using the method described in 

Section 2.3.2. 

Three nanofibrous veil  morphologies were used to study the effect of the 

nanofibre orientation distribution on the Mode II interlaminar fracture 

toughness (Figure 54a): (1) a random deposition of nanofibres (RNDM), (2) 

nanofibres oriented parallel to the delamination growth direction (PAR), and (3) 

nanofibres oriented transversely to the delamination growth direction (TRANS).  

There was a clear effect of nanofibrous veil orientation on the  𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 (Fi gure 

54b). The Mode II interlaminar fracture toughness increased by approxima tely 

50% for specimens in which the nanofibres were parallel to the del a mi nati on  

growth direction, by 75% for nanofibres oriented transversely to the 

delamination growth direction and even by 100% when a random deposition of 

nanofibres was used. Since there was a difference in observed 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 between 

PAR and TRANS interleaved specimens, indicating that both orientations 

induced a different toughening of the interleaved laminates, it can be expec ted 

that, in extremum, a RNDM interleaved laminate combines both effects  of PAR 

and TRANS interleaved laminates. Indeed, the random oriented nanofibrous veil 

is composed of both nanofibres more or less parallel and more or less 

transversely oriented to the delamination growth direction. Hence, the 
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toughening effect of both parallel and transversely oriented nanofibres c an be 

associated to the RNDM interleaved laminates. 

The increase in toughness during sub-critical crack growth Δ𝐺𝐼𝐼,𝑆𝐶𝐺 is a measure 

for the effectiveness, or “size”, of the nanofibre bridging zone. A larger 

Δ𝐺𝐼𝐼,𝑆𝐶𝐺  indicates a more effective nanofibre bridging zone which takes up more 

energy. It should be noted however that Δ𝐺𝐼𝐼,𝑆𝐶𝐺 is not purely a measure of 

nanofibre bridging, but is associated to the complex crack growth mec hanism 

under Mode II loading (Section 3.2.2) and it can be non-zero for virgin laminates. 

The 𝑅-curves in Figure 54c show that while 𝐺𝐼𝐼𝑐,𝑁𝐿 remained similar for all  

nanofibre interleaved configurations, 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 was dependent on the na nofi bre 

orientation. Hence, there was a significant effect of nanofi bre or ientation on 

Δ𝐺𝐼𝐼,𝑆𝐶𝐺. The effectiveness of the toughening mechanism characteristic to PAR 

interleaved specimens was less effective compared to the tougheni ng 

mechanism in TRANS interleaved specimens. The RNDM interleaved l aminates  

showed the largest Δ𝐺𝐼𝐼,𝑆𝐶𝐺 values, indicating that the nanofibre bridging zone in 

this configuration was the most effective – or the “largest” – compa red to PAR 

and TRANS configurations (Figure 54d). 

Analysis of the fracture surface of delaminated specimens s howed tha t there 

were differences in the nanofibre bridging zones developed at hackles nea r the 

ply interface failure region and at interlaminar crossings depending on the 

orientation of the nanofibres. For PAR interleaved specimens, severe nanofibre 

bridging and deformed nanofibres were mainly visible at the ply interface 

regions (Figure 56). As the interlaminar crossing failure plane (yz -plane) wa s 

parallel to the nanofibres, the delamination could advance through the 

nanofibre/epoxy interface and only l imited bridging occurred in thes e regi ons  

(Figure 55). At the ply interface region, the microcracks and hackles formed i n 

the interlayer were oriented perpendicular to the nanofibre direction a nd thus 

promoted severe nanofibre bridging. Nevertheless, it only resulted in the 

bridging of nanofibres near the surface of the nanofibrous veil. Hence, the tota l  

amount of bridging nanofibres was relatively low in both regions and the 

induced toughening effect will also be relatively low. 
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Figure 54 – I l lustration of the nanofibre orientation for PAR, TRANS and RNDM 
interleaved specimens (a). The 𝑮𝑰𝑰𝒄,𝒊𝒏𝒊 increases substantially for the nanofibre 

interleaved specimens and there is a clear difference between PAR, TRANS and 
RNDM (b). While 𝑮𝑰𝑰𝒄,𝑵𝑳 remains similar for all nanofibre interleaved specimens, 

𝑮𝑰𝑰𝒄,𝒊𝒏𝒊 (fi rs t datapoint represented as a full ci rcle on the 𝑹-curves) increases more 

for TRANS and RNDM laminates indicating a more effective nanofibre bridging zone 
(sub-critical crack growth is indicated by hollow ci rcles) (c – d). 
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Figure 55 – The fa ilure plane of the interlaminar crossings is parallel to the 

nanofibres and the delamination can progress a long the nanofibre/matrix interface 
resulting in l imited bridging in PAR interleaved specimens. 

 

Figure 56 – View of the fracture surface of a Mode II delaminated PAR interleaved 

specimen at the ply interface (a) and at the interlaminar crossing (b) regions. 
Nanofibre bridging zones mainly develop at the microcracks and hackles near the ply 

interface region (c – d). 
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The opposite effect was found for TRANS interleaved specimens where s evere 

nanofibre bridging zones were mainly visible at interlaminar crossings and not at 

the microcracks and hackles at the ply interface region (Figure 58). Aga i n thi s 

can be attributed due to the advantageous orientation of the nanofibres 

compared to the failure plane of interlaminar crossings (Figure 57), while thei r  

orientation is disadvantageous for bridging microcracks and hackles since thos e 

cracks can occur along the nanofibre/matrix interface without resulting in 

bridging nanofibres. The effectiveness of the nanofibre bridging zones in TRANS 

interleaved specimens is thus much higher than in PAR interleaved specimens as 

each interlaminar crossing resulted in the failure of almost a ll  the na nofibres  

present in the nanotoughened interlayer. This was indeed reflected by the 

higher Δ𝐺𝐼𝐼,𝑆𝐶𝐺. 

 

Figure 57 – The fa ilure plane of the interlaminar crossings is perpendicular to the 
nanofibres and the delamination has to go through the nanofibres resulting in many 

bridging nanofibres in TRANS interleaved specimens. 
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Figure 58 – View of the fracture surface of a Mode II delaminated TRANS interleaved 
specimen at the ply interface (a) and at the interlaminar crossing (b) regions. 

Nanofibre bridging zones mainly develop at the interlaminar crossings and almost all 
nanofibres in the interlayer have been broken (c – d). 

Since both nanofibre bridging zones develop independently of each other in 

different failure regions, their effect in a RNDM interleaved laminate can be 

seen as a superposition of both mechanisms, each resulting i n a n i ncreased 

delamination resistance. Indeed, severe nanofibre bridging was visible a t both 

the ply interface region as well as at interlaminar crossings  for the RNDM 

interleaved laminates (Figure 59). This indicated that each failure mode requires 

a certain orientation distribution of the nanofibres. Nanofibre br i dging zones 

develop during hackle formation when the nanofibres are oriented more or les s 
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parallel to the delamination growth direction. Similarly, they develop at 

interlaminar crossings when the nanofibres are oriented more or less 

perpendicular to the delamination growth direction. Hence, a random 

distribution of nanofibres res ults in the initiation of both toughening 

mechanisms. This resulted in the highest improvements of the Mode II 

interlaminar fracture toughness  for RNDM interleaved laminates of 

approximately 2000 J/m². The PAR and TRANS interleaved specimens resulted in 

an increase in 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 compared to the virgin laminates of approximately 

1000 J/m² and 1500 J/m² respectively. Hence, for RNDM interleaved l aminates 

where both mechanisms of nanofibre bridging are present, the increase in 

𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 can be approximated as the sum of 1000 J/m² and 1500 J/m². Thi s  i s a n 

overestimation of course as only a certain fraction of the randomly distr ibuted 

nanofibres will  develop nanofibre bridging zones related to PAR and TRANS 

mechanisms. 

 

Figure 59 – In RNDM interleaved laminates, nanofibre bridging zones develop in the 

microcracks and hackles near the intralaminar region as well as at the interlaminar 
cross ings. 
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3.3.6 Fatigue loading conditions 

Composite components will often experience repeated loading during their l ife-

time, for example wind turbine blades experience fluctuating loadings 

depending on the wind conditions. These repeated loadings can cause a 

weakening of the material due to the formation of micro-sized damage which i n 

the end can lead to failure of the component at stresses much l ower  tha n the 

static strength of the material. Hence, besides analysing the static delamination 

resistance of nanofibre interleaved composites, it is also important to 

understand and consider delamination under cyclic/fatigue l oading i n thes e 

materials. Indeed, it is known that the delamination behaviour in (toughened) 

composite laminates might differ substantially between static and fatigue 

loadings143,145,146. The focus of this section is on the Mode II delamination 

behaviour as delamination growth during service often occ urs under Mode  I I  

dominated loadings. The Mode II fatigue behaviour of na nofibre i nterlea ved 

laminates was analysed in Paper V. The Central Cut-Ply (CCP) method 1 4 7  wa s  

used to determine the delamination growth rate under c yclic l oading a s this 

method is representative for delamination initiation encountered in s truc tural 

applications, where, for example, delaminations initiate from terminated pl ies, 

near free edges or in tapered sections. GFRP (UDO ES500) composites produced 

by VARTM interleaved with PCL (system #6) and PA6.9 (system #3) na nofibres 

(SSI configuration) were used for this purpose. More details about the CCP 

specimen design and experimental  setup can be found in Paper V. The 

specimens were subjected to cyclic loads of a certain load level, defi ned a s the 

ratio of the maximum applied energy release rate during the cyclic exper iment 

to the statically determined interlaminar fracture toughness of the virgin 

material 𝐺𝐼𝐼𝑚𝑎𝑥/𝐺𝐼𝐼𝑐,𝑣𝑖𝑟𝑔𝑖𝑛, while the delamination length was monitored. Thi s 

allowed the calculation of the delamination growth rate 𝑑𝑎/𝑑𝑁, which is a 

measure for the resistance against delamination under  c yclic  loading. A l ow 

delamination growth rate means that the material will  be able to withstand 

more loading cycles before the delaminations will  reach a certain (critical) 

length. 

The (Mode II) delamination was found to grow linearly with the amount of 

loading cycles independent of the applied load level for the virgin material. 

However, for nanofibre interleaved specimens a distinct transition in 

delamination growth rate was often observed after a few mill imetres of 



96 
 

delamination growth. Initially, the delamination grew relatively slowly for 

several millimetres at a constant rate after which the delamination growth rate 

increased to values similar to those of virgin specimens. This i s s chema ti cally 

represented in Figure 60. Microscopic images of the cross -section of 

delaminated specimens taken near the initiation region showed the same 

delamination behaviour as observed in the static experiments  with regular 

occurrences of interlaminar crossings. At several mi ll imetres a way from the 

initiation region, however, some specimens showed almost complete glass 

fibre/epoxy debonding with none or only very few interlaminar crossings. 

Hence, at these points, the delamination growth rate starts to approach tha t of 

the virgin non-interleaved specimens as the amount of interlaminar c rossings, 

and thus the amount of bridging nanofibres, is minimal. Observation of the 

fracture surface indicated that the distance between two neighbouring 

interlaminar crossings becomes smaller with increasing delamination growth. 

Eventually, both crossings combined at a certain point of delamination growth 

after which the delamination grows  by glass fibre/epoxy debonding without 

crossing the interlayer (Figure 61). The transition from a delamination path with 

interlaminar crossings (Region I delamination growth) to one without (Regi on I I 

delamination growth) was not instantaneous, but spanned a certain amount of 

cycles and a certain amount of delamination growth, as it is associated with the 

disappearance of individual interlaminar crossings. Indeed, analysis of the 

fracture surface showed that these crossings do not all disappea r a t the s a me 

time (same point of delamination growth). 
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Figure 60 – The Mode II delamination growth of nanofibre interleaved specimens 
exhibits three regions during fatigue testing: (i) relatively constant delamination 

growth rate smaller than that of the non-interleaved material (Region I), (ii) rapidly 

increasing delamination growth rate due to suppression of interlaminar crossings 
(transition zone), and (iii) delamination growth rate similar to that of the non-

interleaved material (Region II). 
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Figure 61 – I l lustration of the suppression of an interlaminar crossing resulting in 
complete reinforcing fibre/matrix debonding after a certain distance of delamination 

growth. 

The transition from Region I to Region II delamination growth in nanof ibre 

interleaved specimens seemed to be predominantly present at low load l evels, 

while a constant delamination growth rate was more often observed at high 

load levels (Figure 62). Inspection of the fracture surface of delaminated 

specimens showed that the suppression mechanism is still present at high l oad 

levels, but takes place after a longer length of delamination. As such, the 

transition from Region I to Region II delamination growth was not always visible 

on the delamination growth data as it happened at delamination lengths higher  

than the maximum measurable delamination length in the experiment. 

Particularly at the lower load levels, the driving force for  the s uppression of 
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interlaminar crossings seemed to be high, which results in complete glass 

fibre/epoxy interfacial failure without crossings after several millimetres. As the 

amount of delamination growth per cycle decreases substantially at lower  l oad 

levels, the delamination has more time (i.e. more cycles) to rea lign i tself i n a  

more energetic favourable position outside of the toughened interlayer ( i .e. a t 

the glass fibre/epoxy interface) after only a few millimetres. Fur thermore, the 

plasticity of the epoxy matrix increases at lower strain rates  (Section 3.1.2) 

which adds to the driving force for the suppression of interlaminar crossings a t 

low load levels as the increased plasticity also has a toughening effect. The 

interlaminar crossing suppression was also observed on the fracture surfaces of 

specimens tested under static conditions, but there it took several centimetres 

before all  the interlaminar crossings disappeared. Henc e, the mec ha ni sm of 

interlaminar crossing suppression seems to always be present in nanofibre 

interleaved specimens, but the length at which all  the crossings disappear 

depends on the type of loading (high load level, low load level, static) and on the 

type of nanofibre system (Figure 62). 

 

Figure 62 – At low load levels, nanofibre interleaved specimens show a substantial 

reduction in delamination growth rate compared to vi rgin specimens during Region I  
delamination growth. At higher load levels, a  constant delamination growth rate (but 

a lso lower than that of vi rgin specimens) is more often observed. 

The delamination growth rate as a function of load level for the nanofibre 

interleaved laminates is given in Figure 63. The plotted del amination growth 

rates are those obtained during Region I delamination growth. Both PCL and 
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PA6.9 nanofibre interleaved specimens showed an overall decrease in 𝑑𝑎/𝑑𝑁 as 

compared to the virgin specimens, indicating an improved delamination 

resistance under fatigue loading. Improvements in delamination growth rate up 

to 15 times compared to the virgin material were obtained for individual 

specimens. It is worth noting that the PCL nanofibre interleaved specimens 

performed best over the range of load levels tested. SEM analysis of the fracture 

surface confirmed the existence of nanofibre bridging zones at interlaminar 

crossings and interlaminar microcracks similar to static tes ted specimens. 

 

Figure 63 – The delamination growth rate decreases for laminates interleaved with 
PA6.9 (a) and PCL (b) nanofibrous veils (each point represents an individual 

specimen). Overall improvements up to one order of magnitude are obtained for the 
nanofibre interleaved laminates. The PCL interleaved specimens show the best 

improvements over the whole load severity range considered. 
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3.3.7 Nanofibre/matrix adhesion strength 

It is clear from the results mentioned in Section 3.2.2 for PA6 and PCL 

nanotoughened laminates that the nanofibre/matrix adhesion is important for  

toughness improvements, especially under Mode I loading conditions. Yet, i t i s  

sti l l  a comparison between systems interleaved with chemically and 

mechanically different nanofibres  making it difficult to really quantify the 

adhesion effect. Therefore, the influence of adhesion was analysed in Paper  VI 

using only PCL (system #6) nanofibres interleaved (DLC configurati on)  i n GFRP  

(UDO ES500) composites produced with VARTM. Due to the interaction between 

PCL polymer and the epoxy resin, the adhesion between the nanofibres and the 

matrix can be varied. Earlier studies have already shown that a PCL/epoxy blend 

can result in a single homogeneous amorphous phase wi th a  gl ass transition 

temperature intermediate between those of both single components, i .e. 

𝑇𝑔,𝑃𝐶𝐿 < 𝑇𝑔,𝑏𝑙𝑒𝑛𝑑 < 𝑇𝑔,𝑒𝑝𝑜𝑥𝑦
148,149. Hence, the PCL and epoxy are miscible at the 

molecular level and form a single phase in which there is no macroscopic 

distinction between both components. This mechanism can be exploited to 

create a strong interfacial bond between an epoxy resin and a solid PCL 

polymer. Indeed, as a solid PCL phase is brought into contact with the unc ured 

liquid epoxy resin, the PCL/epoxy miscibility can result i n the forma ti on of a  

blended structure at the interface. This creates molecular diffusion/mixing 

between the PCL and epoxy which, upon curing, can result in better inter fac ial 

strength between both polymers due to molecular interlocking. The forma tion 

of this blend interface will of course depend on the mobi l ity of both PCL a nd 

epoxy molecules, the contact time, the temperature and the affinity between 

both polymers. During curing of the epoxy resin – which is performed at 

temperatures well above Tg,PCL (-60°C) – the mobility of the epoxy resin will  

quickly decline after gelation or vitrification. Hence, the contact ti me i n whi ch 

PCL and epoxy can blend, is l imited by the curing reaction itself. The 

temperature at which the curing occurs thus has a direct influence on the 

available contact time for blending. The temperature also affects the mobility of 

the PCL polymer, especially when the temperature reaches the melting onset. As 

such, the curing cycle that is used will evoke a cure-induced self-fusion or  not. 

The proposed mechanism is illustrated in Figure 64. 
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Figure 64 – Mechanism of cure-induced self-fusion resulting in a  strong bond 

between PCL and epoxy. 

Using double butt-jointed tensile specimens with controlled PCL/epoxy 

interfaces, the effect of curing cycle temperature on the bond strength was 

evaluated. The results of the tensile tests are i llustrated in Figure 65 and showed 

a clear trend in increasing bond strength with increasing cure temperature. For  

cure temperatures between 25°C and 35°C, the failure of the tensile specimens 

was at one of the PCL/epoxy interfaces due to l imited bond strength between 

PCL and epoxy. Nevertheless, the bond strength increased from 2 MPa at a cure 

temperature of 25°C to 6 MPa at a cure temperature of 35°C which is three 

times higher. At cure temperatures equal to or above 40°C, the bond s trength 

became higher than the bulk PCL yield strength. The tensile specimens showed 

yielding of the PCL near one of the interfaces at a stress equal to the bul k PCL 

yield stress and failed by extensive elongation of the bulk PCL phase i nstead of 

the clear interfacial fracture in the specimens cured below 40°C. This shows that 

cure cycles above 40°C resulted in enough molecular mixing between PCL a nd 

epoxy near the interface, resulting in a diffuse boundary whi ch increased the 

bond strength above the bulk PCL strength. 
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Figure 65 – Tens ile strength of the double butt-jointed specimens at different 

i sothermal cure temperatures show an increased bond s trength at higher curing 
temperatures (specimens in which no self-fusing occurred had a bond s trength of 

essentially zero). 

The principle of the cure-induced fusing mechanism was used to produce 

nanotoughened composite laminates with different degrees of PCL 

nanofibre/matrix bond strength by isothermally curing them at a fixed 

temperature of 30°C, 40°C, 50°C or 80°C. Unmodified virgin composite laminates 

were produced in the same manner for comparison. These laminates were then 

tested for their Mode I and Mode II interlaminar fracture toughness (Figure 66). 

Note that for the virgin specimens both the Mode I as well as Mode II 

interlaminar fracture toughness were independent of the cure cycle as its 

delamination resistance was mainly determined by glass fibre/matrix 

debonding. 

Under Mode I loading of the specimens, which promotes debonding of the 

nanofibres, the delamination propagated by interfacial debonding of the 

nanofibres and the delamination resistance was hardly improved at low c uring 

temperatures (30°C and 40°C). However, when the bonding between the 

nanofibres and the epoxy was improved by the self-fusion mechanism, the 

energy take-up of the nanofibres increased, resulting in an improvement of the 

Mode I interlaminar fracture toughness at higher cure tempera tures (> 50°C). 
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Note that the morphology of the nanofibres was lost when the compos ite wa s 

cured at 80°C as this temperature is above the melting point of PCL resulting in a 

blended zone larger than the nanofibres themselves. The highest improvements 

were found for cure cycles of 50°C and above. Analysis of the delaminated 

fracture surfaces with SEM confirmed that the adhesion between the nanofibres 

and epoxy improves with increasing cure temperature while their n anofibrous 

morphology disappears, see Figure 67. At low curing tempera tures (30°C a nd 

40°C), clearly outlined nanofibres are visible on the fracture surface. 

Furthermore, the nanofibres of the Mode I loaded specimens showed a high 

degree of debonding which was visible on the SEM images as i mprints l eft by 

peeled nanofibres. The specimens cured at 50°C showed better bonding, but the 

morphology of the nanofibres became less clear. For the s pec imens c ured a t 

80°C, no clear nanofibres were observed anymore and the interlayer is 

comprised of a single homogeneous phase. 

 

Figure 66 – Mode I and Mode II interlaminar fracture toughness for vi rgin and hybrid 
laminates cured at different temperatures. Increasing the curing temperature results 

in a  better Mode I delamination resistance, but a lower Mode II delamination 
res istance. 
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Figure 67 – For cure cycles of 30°C to 50°C, increased bonding is observed between 
the nanofibres a nd the epoxy matrix, while the nanofibre morphology becomes less 

clear. At 80°C, the interlayer is a  homogeneous phase indicating that the nanofibres 
completely dissolved into the epoxy resin. (SEM images taken from Mode I 

delaminated specimens) 
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Under Mode II loading conditions, one would expect a relatively stable Mode I I  

interlaminar fracture toughness independent of the isothermal curing 

temperature. However, there was a clear decreasing trend visible with 

increasing cure temperature which is opposite to the trend observed under 

Mode I loading. This trend cannot be associated with a difference in inter facia l 

strength, but instead, reveals that the Mode II toughness improvement is 

dependent on the nanofibrous morphology itself. Indeed, with increa sing c ure 

temperature, a more diffuse interface is created and the morphology of the 

nanofibres starts to differ from their initial morphology. At 80°C, the 

nanofibrous morphology is completely lost which resulted in a decrease of the 

Mode II fracture toughness compared to the virgin material . These results 

indicate the importance and duality of both adhesion and morphology a spec ts 

to optimize the nanotoughened composites. From a practical aspec t, the bes t 

overall damage resistance is obtained when a significant increase in both Mode I 

and Mode II delamination resistance occurs at the same time. 

Next, a two-step curing cycle was investigated in order to optimize the 

interfacial bond strength while maintaining the morphology of the na nofibres. 

More specifically, a low temperature (𝑇 < 𝑇𝑚,𝑃𝐶𝐿) curing step fixed the 

nanofibre morphology as the diffusion of PCL will be l i mited while the epoxy 

resin reacts. A second curing step at elevated temperature (𝑇 > 𝑇𝑚,𝑃𝐶𝐿) allowed 

enough diffusion of the PCL into the partially reacted epoxy to have substantial 

self-fusing. Of course, this implies that diffusion of the PCL in the epoxy can s ti l l  

happen. Therefore, it is important that the time and temperature of the first 

curing step is chosen such that the epoxy is viscous/solid enough to maintain the 

nanofibre morphology (as a sort of self-formed mould), whi le s til l  be “open” 

enough to allow sufficient mixing between PCL and epoxy molecules. A two-step 

curing procedure was used with a curing step at 25°C for 24 hours followed by a  

curing step at 80°C for 15 hours. The results show that both Mode I and Mode I I  

interlaminar fracture toughness were significantly increased at the s a me ti me, 

something which was not possible using a single curing step ( Fi gure 68). The 

Mode I interlaminar fracture toughness was even higher than all  the ones 

obtained for single step curing. The Mode II interlaminar fracture toughness was 

similar to those of the laminates isothermally cured at 30°C and 40°C and 

significantly higher than those obtained with a single curing step at 50°C or 80°C. 

Analysis of the fracture surface with SEM showed the duality between the bond 
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strength and morphology of the nanofibres. The specimens showed no real signs 

of bad bonding such as imprints or peeled nanofibres, but rather showed a lot of 

deformation due to a good load transfer at the epoxy/PCL interface. The 

morphology of the nanofibres was in between a complete dissolution (as 

observed during a single curing step at 80°C) and the non-dissolved morphology 

(as observed during a single curing step at low temperature). 

Another interesting approach to obtain good bonding and maintain the 

nanofibre morphology is the use of electrospun core-shell nanofibres. The 

technique of coaxial electrospinning allows the production of core-shell 

structured nanofibres for which there is a wide variety in core and shell polymer 

possible. Apart from the requirement of a coaxial needle, this tec hnique does 

not differ that much from regular electrospinning and is thus  also c apable of 

producing nanofibrous veils for nanotoughened composites. The coaxial 

electrospinning technique was used to produce 70/30 m% PA6/PCL c ore-s hell 

nanofibres. While the morphology of the PA6 core will not be a ffec ted by the  

curing temperature, the PCL shell which surrounds the core will be able to bond 

with the epoxy matrix. It is expected that there was also some i nterdiffusion, 

and thus adhesion, between the PA6 core and PCL shell as both soluti ons were 

spun from the same solvent and came into contact in the c oa xial needl e. The 

specimens were made with a single curing step at 80°C to have a high 

conversion of the epoxy resin and limit the curing time. The Mode I and Mode I I  

interlaminar fracture toughness values of virgin l aminates and nanotoughened 

laminates containing PCL nanofibres, PA6 nanofibres and PA6/PCL c ore-s hell 

nanofibres are shown in Figure 69. All specimens underwent the s a me c ur ing 

conditions and had the same amount of nanofibres inside. Compared to the 

single component nanofibre systems, the core-shell structured nanofibres 

resulted in toughness improvements under both Mode I a nd Mode I I  l oading 

conditions. This indicates that the bonding was improved due to the PCL s hel l, 

while the nanofibre morphology remained due to the PA6 core. Analysis of the 

fracture surface with SEM indeed showed clearly distinguishable nanofibres that 

bridge cracks without much debonding/peeling. 
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Figure 68 – Using a  two-step curing cycle results in good improvements of both 
Mode I and Mode II interlaminar fracture toughness. 
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Figure 69 – Sel f-fusion with PA6/PCL core-shell nanofibres results in a synergetic 

effect between bond s trength and nanofibre morphology. The core/shell nanofibre 
based interleaved laminates have a better delamination resistance under both 

loading conditions than those using single component nanofibres. 
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3.3.8 Precracking effects under Mixed Mode loading 

The delamination resistance of virgin and PCL (system #6) nanofibre interleaved 

GFRP (UDO ES500) laminates was also assessed under Mixed Mode loading 

conditions using Single Leg Bend (SLB) experiments. The SLB test is similar to a n 

ENF test, but the lower delaminated leg of the specimen is removed. This causes 

opening as well as shearing stresses at the crack tip resulting i n delamination 

propagation under a Mixed Mode loading (Figure 70). The specimen design wa s 

the same as used for the ENF test. The Mixed Mode initiation interlaminar 

fracture toughness 𝐺𝐼/𝐼𝐼𝑐 was calculated according to the Compliance Based 

Beam Method150: 

 
𝐺𝐼/𝐼𝐼𝑐,𝑖𝑛𝑖 =

21𝑃𝑐
2𝑎𝑒

2

16𝐸𝑓 𝐵2ℎ3
+

3𝑃𝑐
2

40𝐺13𝐵2ℎ
 

 

(4) 

where 𝑃𝑐  is the load at delamination initiation, 𝑎𝑒 is the effective delamination 

length, 𝐸𝑓 is the flexural modulus, 𝐵 is the specimen width, 2ℎ is the s pec imen 

thickness and 𝐺13 is the shear modulus. The Mixed Mode l oading had a  57% 

Mode I component and 43% Mode II component. 

 

Figure 70 – I l lustration of the SLB specimen to determine the Mixed Mode 

interlaminar fracture toughness. 
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To assure that the delamination initiates from a natural flaw and not from the 

initiation fi lm, delamination specimens (DCB, ENF, SLB, …) are usually precracked 

in the same loading mode as they are tested, i.e. DCB specimens are precracked 

under Mode I, ENF specimens under Mode II and SLB specimens under Mi xed 

Mode conditions. However, when considering realistic damage events  s uch a s 

those that occur during low velocity impact, the way in whi ch del aminati ons 

initiate and grow is much more complex and not as well controlled as in a 

delamination test. For example, delami nations can initiate under Mode II 

conditions and grow further under Mode I or Mixed conditions or the other wa y 

around. Regarding the low velocity impact experiments performed in 

Section 3.4.3, it was interesting to test the nanofibre interleaved specimens 

under Mixed Mode loading, but precracking them in different modes  to 

determine if this influenced the delamination resistance of the nanofibre 

interleaved composite laminates. 

The Mixed Mode interlaminar fracture toughness of virgin and PCL 

nanotoughened composite laminates is shown in Figure 71. The i nter laminar  

fracture toughness of the virgin specimens was  not affected by the precrack 

mode. On the other hand, a Mode II precrack induces a significant tougheni ng 

effect in the nanofibre interleaved specimens. Analysis of the fracture surface of 

the delaminated specimens showed that Mode II precracking resulted in the 

initiation of more interlaminar crossings than the other loading modes (see also 

Section 3.3.1). Upon subsequent Mixed Mode loading, this resulted in more 

nanofibre bridging zones which increased the delamination resistance. I f  thes e 

results are generalised, the best improvements in interlaminar fracture 

toughness – regardless of the delamination mode – can be attained if the 

delamination is initiated under a Mode II loading regime that promotes the 

occurrence of many interlaminar crossings. Such insights can be of importa nc e 

in applications because nanotoughened regions where delaminations i niti ate 

under Mode II conditions will benefit more from nanofibre addition than regions 

where delaminations initiate under Mode I loading conditions. Hence, different 

delamination regions might require different types of nanofibres.  



112 
 

 

 

 

 

Figure 71 – The 𝑮𝑰/𝑰𝑰𝒄,𝒊𝒏𝒊 obtained for vi rgin and PCL nanofibre interleaved 

specimens using different precracking modes shows that a Mode II precrack 
promotes the occurrence of interlaminar crossings resulting in a substantial increase 

in 𝑮𝑰/𝑰𝑰𝒄,𝒊𝒏𝒊 compared to the vi rgin material. 
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3.3.9 Tensile properties of the electrospun fibres 

During nanofibre bridging, nanofibres experience tensile stresses which take up 

(plastic) energy (Section 3.1.1). The tensile properties of the nanofibres will thus 

l ikely have an effect on the effectiveness and even development of na nofibre 

bridging. This effect was analysed in Paper VII using mechanically tunea ble SBS 

(system #8) electrospun fibres which were developed within our research 

group81. These were interleaved (SSI configuration) in GFRP (UDO ES500) 

laminates produced with VARTM. Note that although the SBS fibres have 

diameters of approximately 2 µm and cannot be classified as na nofibres, they 

stil l have a diameter about 1/10th lower than the reinforcing fibres. Using a MDI-

TAD cross-linker post-treatment, it was shown that the mechanical properties of 

individual electrospun SBS fibres can be varied from very s tretc hable to s ti ff 

(Figure 72)81. The cross-linking degree is quantified by the ratio of the number of 

MDI-TAD to the number of double bonds (both expressed in mole). The 

unmodified and low cross -linked SBS fibres had a low E-modulus and high 

elongation at break, around 10 – 30 MPa and 400 – 600% respectively. The 

highly cross-linked specimens on the other hand, had a higher  E-modulus but 

lower elongations at break up to 140 MPa and 100% respectively. The difference 

in tensile properties also caused a distinct difference in energy ta ke-up during 

straining, i .e. the area underneath the stress-strain curve (Figure 73). The energy 

take-up of unmodified and low cross-linked SBS fibres only becomes significant 

when the SBS fibres were elongated up to high strains (> 300%), whereas in the 

low strain region (< 100%) their energy take-up is very l imited. For the SBS fibres 

with relatively high amounts of cross-linking, the tota l  work of rupture (10  –

 15 MPa) was lower, but these fibres did absorb significantly more energy in th e 

low strain region.  
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Figure 72 – Influence of the MDI-TAD cross-linking on the elongation at break (a), the 
E-modulus (b) and the tensile s trength (c) of SBS fibres81. 
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Figure 73 – Representative stress-strain curves for SBS fibres cross-linked with 

di fferent amounts of MDI -TAD (a) and the resulting work in function of strain as 
ca lculated from the area beneath the stress-strain curve (b). 

Fibrous veils of SBS were electrospun, post-treated to change their mec ha nic al 

properties and interleaved (SSI  configuration) in GFRP composite laminates 

produced by VARTM. The laminates were subsequently tested for their  Mode  I  

and Mode II delamination resistance. Microscopic analysis of the del a mi nated 

specimens showed a strong dependency of the fibres’ tensile properties on the 

delamination path behaviour (Figure 74).  

 The low cross-linked SBS fibres (0 – 0.5%) provided little to no 

resistance to crack growth and the delamination progressed 

completely through the SBS fibre modified interlayer. Due to the l ow 

stiffness of these SBS fibres, the interlayer becomes the weakes t z one 

and the delamination path thus stays within the interlayer.  

 For intermediate cross-linked SBS fibres (0.5 – 2%), the del a mi na tion 

path was deflected towards the reinforcing fibre/matrix interface due 

to an increased stiffness of the SBS fibres. Both Mode I and Mode II 

delaminated specimens showed regular occurrences of i nter laminar 

crossings.  

 At high cross-linking (> 2%), the delamination was completely deflected 

towards the reinforcing fibre/matrix interface and almost no 
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interlaminar crossings occurred under Mode I loading, while regul ar 

crossings were still observed for Mode II delaminated specimens.  

These results show that the tensile properties of the electrospun fibres will  

affect the way in which the delaminations propagate in an interleaved 

composite laminate. 

 

Figure 74 – The delamination path is deflected towards the reinforcing fib re/matrix 
interface for higher cross-linked SBS fibre modified interlayers. Under Mode I loading 

a lmost no interlaminar crossings are observed at very high cross-linking, while under 
Mode II  loading regular crossings can still be observed. 

As the low cross-linked SBS fibres resulted in delamination growth through the 

modified interlayer, one would expect the highest increases i n delamina tion 

resistance for these laminates as the amount of nanofibre bridging will be muc h 

higher. Yet, the Mode I and Mode II interlaminar fracture toughness were found 



117 
 

to be better for intermediate and high cross-linked SBS fibres respectively where 

only regular interlaminar crossings occur (Figure 75). Although this might s eem 

contradictory, one should consider the amount of energy take-up by the 

nanofibres. The low cross-linked SBS fibres need to be strained to more than 400 

– 500% before they have the same energy take-up as the higher cross-linked 

fibres. Such high strains are not encountered during the initiation of a 

delamination. Indeed, the displacement between the delaminated halves is 

much lower in the ENF experiment than in the DCB experiment. As such, the low 

cross-linked SBS fibres even decrease 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖, while a small increase i n 𝐺𝐼𝑐,𝑖𝑛𝑖 i s 

recorded. At higher cross-linking, the SBS fibres are able to take up more energy 

for the same strain level and both 𝐺𝐼𝑐,𝑖𝑛𝑖 and 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 increase substantially. This 

effect resulted in the highest improvements in 𝐺𝐼𝐼𝑐,𝑖𝑛𝑖 at the highes t c ross-link 

levels. However, the disappearance of interlaminar crossings at high cross -

linking in the Mode I delaminated specimens resulted in an optimum 𝐺𝐼𝑐,𝑖𝑛𝑖 a t 

intermediate levels of cross-linking around 0.7%. 

 

Figure 75 – The Mode I and Mode II interlaminar fracture toughness depend on the 
tens ile properties of the SBS fibres. An optimum 𝑮𝑰𝒄,𝒊𝒏𝒊 i s found at intermediate 

cross -linking levels, while 𝑮𝑰𝑰𝒄,𝒊𝒏𝒊 increases with increases cross-linking. 
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3.4 PROPERTIES AND DAMAGE RESISTANCE OF FULLY 

INTERLEAVED LAMINATES 

Section 3.2 and Section 3.3 already clearly i l lustrated the potential of 

nanofibrous interleaves to increase the delamination resistance. The test 

methods used in these sections, however, all used a controlled del amina tion 

initiation and propagation. Furthermore, the delamination specimens typic ally 

have a unidirectional layup. To provide a  further l ink between the interlaminar 

level and the mechanical response that can be expected in real-life s ituations, 

multi-directional fully interleaved composite laminates  – Level 3 – are 

considered in this section. These laminates are stil l  tested using coupon 

specimens, but are more closely related to the lay-up and l oading c onditions 

which can be expected in real-life applications. Three different aspec ts of fully 

interleaved cross-ply laminates are highlighted in this section: ( i )  the genera l  

mechanical response (tensile, shear and flexure), (i i) the open-hole tension 

strength, and (i ii) the (post) low-velocity impact properties. Al l  the l a minates  

considered in this section were GFRP cross-ply [0°/90°]2s laminates produced by 

VARTM. The nanofibres were only interleaved between plies of 0° and 90° 

orientation. The effect of the nanofibres on the general mechanical properti es 

and the open hole strength was analysed in Paper II, while the impact properties 

of nanofibre interleaved laminates are analysed in Paper VIII. 

3.4.1 General mechanical properties 

The laminates under consideration were interleaved (DLC configura tion) wi th 

10 g/m² of PCL (system #6) nanofibres. The choice for this nanofibre s ystem i s 

justified as it provided the best increases in delamination resistance under both 

Mode I and Mode II loading conditions. Furthermore, PCL also has low 

mechanical properties and a low glass transition temperature compared to 

polyamide nanofibres. As such, if the PCL nanofibrous interleaves would a ffect 

the mechanical properties other than delamination resistance nega ti vel y (e.g. 

stiffness), this is expected to be worse for PCL nanofibres than for  polyamide 

nanofibres. 

The tensile properties were determined according to ASTM D3039151 using 

[0°/90]2s specimens with nominal dimensions of 250 x 30 x 3 mm³ (0°-direction is 

the loading direction). A clip-on extensometer was used to measure the 
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longitudinal strain. The test was displacement-controlled using a  deformation 

rate of 2 mm/min. At least three specimens were tested for each configurati on. 

The (in-plane) shear response was measured according to ASTM D3518 1 5 2  on 

[+45°/-45°]2s tensile specimens of 250 x 30 x 3 mm³ instrumented with two 

perpendicular strain gauges to determine the shear. The test was performed 

similar to the tensile tests on [0°/90°]2s specimens. The flexural properties were 

determined according to ASTM D7264153 using [0°/90°]2s specimens (0°-direction 

is the length direction). A support span-to-thickness ratio of 32:1 was used a nd 

the nominal width of the specimens was 13 mm. The fl exural properties were 

determined from the load-crosshead displacement curve. Note that these 

specimens were made using the UDO ES500 reinforcement, while the tensile 

specimens were made using the Roviglas R17/R430 reinforcement. 

The mechanical response under each loading is given in Ta ble 3 . Thes e s how 

that the presence of the nanotoughened interlayers does not really affect – be it 

positively or negatively – the general mechanical properties of the i nter l eaved 

laminates. The tensile and flexural modulus are maintained, but a slight 

decrease in the in-plane shear modulus can however be observed. This is mos t 

l ikely due to the in-plane shear loading which mainly stresses  the res in r ich 

interlayers and to lesser extent the complete laminate. From the results of 

Section 3.1.1, it is known that the PCL nanofibres result in a lower  s tiffness of 

the nanotoughened epoxy, and it can thus be expected that this is refl ected i n 

the in-plane shear modulus. The tens ile, shear and flexural strength are all  

maintained. 

The glass transition temperature of the nanofibre interleaved composite 

laminate was determined according to ASTM D7028154 on [0°/90°]2s and [±45°]2 s  

specimens using a single cantilever bending fixture. The experiments were 

performed on a Q800 DTMA analyser from TA Instruments. A displacement 

amplitude of 20 µm was imposed with a frequency of 1 Hz while the 

temperature was ramped up to 150°C with a heating rate of 2.5°C/mi n. The 𝑇𝑔 

of the virgin and nanofibre interleaved specimens – determined from the step in 

the storage modulus – was 82 ± 2°C and 80 ± 2°C respectively. Due to the 

presence of the PCL nanofibres (𝑇𝑔 = − 60°C) only in the interlayers, the 𝑇𝑔 of 

the bulk composite laminate is maintained. This shows that even polymers wi th 
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a much lower 𝑇𝑔 than the epoxy resin itself can be used for toughening 

purposes. 

Table 3 – Overview of the tensile, shear and flexural properties for a  virgin and PCL 

nanofibre interleaved laminate. 

Property Virgin Nanofibre 

interleaved 

Tensile modulus (GPa) 25 ± 1 24 ±1 

Tensile strength (MPa) 574 ± 50 596 ± 50 

 

Shear modulus (GPa) 4.4 ± 0.2 3.9 ± 0.2 

Shear strength (MPa) 62 ± 2 59 ± 2 

 

Flexural modulus (GPa) 29 ± 2 30 ± 1 

Flexural strength (MPa) 311 ± 35 346 ± 10 

 

3.4.2 Open hole tensile strength 

The open hole tensile test is used to determine the stress required to brea k a  

composite specimen with a centrally located hole. The hole results in stress 

concentrations inside the material and a reduced net cross-section whi ch both 

lower the tensile strength compared to pristine material. This tes t method i s  

commonly used in the aerospace industry to evaluate the strength in a notc hed 

component, for example when fasteners are used. As such it can be a  l i miting 

design parameter for many composite structures. Open hole tensile tes ts  were 

performed on [0°/90°]2s specimens (Roviglas R17/475) with a size of 

300 x 36 x 3 mm³ according to ASTM D5766155. The specimens had a central hole 

of 8 ± 0.1 mm in diameter. The nanofibre interleaved laminates contained 

10 g/m² of PCL (#6) nanofibres in a DLC configuration. 

The open hole strength increased from 360 ± 7 MPa for the vi rgin ma ter ial to 

387 ± 19 MPa for the nanofibre interleaved laminates. As  opposed  to tens ile 

failure in the pristine [0°/90°]2s material, the failure mode in the open hole 

specimens was heavily delamination dominant. Figure 76 shows i mages  of a n 

open hole tensile specimen during failure. The stress concentrations l ocated 

near the hole caused delamination initiation between the 0°/90° plies. With 



121 
 

increasing tensile load, the delaminations propagated further towards the sides  

of the specimen. This reduced the effective cross-section of the laminate whi ch 

is able to take up the tensile stress, resulting in faster delamination growth up 

til l  failure of the specimen. When nanofibres are interleaved, the resistance 

against delamination initiation and propagation is increased. This allowed more 

stress take-up by the 0°-plies in the nanofibre toughened specimen l aminates  

before the delamination reached a critical length and the s pec imen a bruptl y 

failed. Failed open hole tensile specimens are shown in Fi gure 77 . Na nofibre 

interleaved specimens showed significantly less delamination which resulted i n 

the improvement of the open hole tensile strength. This is a clear i llustration of 

the link between the nanotoughened interlayer and its effect on the mechanical 

behaviour of a fully interleaved laminate. Failure modes in which delaminations 

occur, such as encountered at stress concentrators, are improved by the 

presence of the nanotoughened interlayers due to an increased dela mination 

resistance. 

 

Figure 76 – Damage sequence during failure of an open hole tensile specimen (a – e). 

The s tress concentrations initiate delaminations between 0°/90° plies which 
propagate and result in abrupt failure of the specimen. 
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Figure 77 – Nanofibre interleaved open hole tensile specimen show significantly less 

delamination damage due to an increase in the delamination resistance. 
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3.4.3 Low velocity impact resistance 

Low velocity impact (LVI) experiments were performed on virgin and nanofibre 

interleaved cross-ply laminates (UDO ES500). PA6.9 (system #3) and PCL 

(system #7) nanofibrous veils of 6 g/m² and 12 g/m² were inves ti gated. More 

experimental details can be found in Chapter 2. 

An example of the load exerted by the specimen on the impactor during the 

impact event is shown in Figure 78. The curve is character ised by four  (ti me) 

regions which relate to the mechanical response of the compos ite s pec imen. 

Time 𝑡1 and 𝑡5 correspond to the beginning, i .e. impactor c ontac ts s pec imen, 

and the end of an impact event, i .e. impactor rebounds from the specimen. 

Region 𝑡1 − 𝑡2 represents elastic bending of the specimen. At this point, no 

major damage occurs although initiation of sub-critical matrix cracks and 

delaminations can already occur136. Region 𝑡2 − 𝑡3 is characterised by a  s mall 

load drop at 𝑡2 and a change in slope of the load-time curve i ndicati ng a  fi rst 

decrease of the stiffness of the specimen due to (more pronounced) matrix 

cracking and delamination onset156. At 𝑡3, the velocity of the i mpa c tor i s zero 

and its kinetic energy has been transferred completely to the specimen. A 

certain fraction of the energy will be transferred back to the impa c tor (el astic  

energy) causing the impactor to be accelerated upwards, while the other 

fraction is absorbed in the specimen (dissipated energy). Region 𝑡3 − 𝑡4 shows a  

drop in the load due to major damage propagation in the spec imen. The f i na l 

stage, 𝑡4 − 𝑡5, corresponds to the residual stiffness and strength of the 

specimen causing the impactor to be rebounded from the specimen. Fi gure 79  

shows the impact event as recorded by high speed cameras during the different 

regions. 
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Figure 78 – Load versus time recorded during an impact event shows four regions: 
elastic bending (𝒕𝟏 − 𝒕𝟐), (minor) damage initiation (𝒕𝟐 − 𝒕𝟑), major damage (𝒕𝟑 −

𝒕𝟒) and elastic recovery (𝒕𝟒 − 𝒕𝟓). 
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Figure 79 – Images obtained from high-speed camera during an impact event giving a  

bottom and top view of the specimen at times 𝒕𝟏, 𝒕𝟐, 𝒕𝟒 and 𝒕𝟓. 
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Representative load-time curves for virgin and nanofibre interleaved specimens 

at low, intermediate and high impact energies are given in Figure 80. The results 

show that the 𝑡1 − 𝑡2 and 𝑡2 − 𝑡3 regions did not differ much for  the vi rgin or  

nanofibre interleaved material. This indicates that the addition of the 

nanofibrous interleaves did not affect the elastic behaviour of the laminates i n 

agreement with results of Section 3.4.1. The maximum load 𝑃𝑚𝑎𝑥 enc ountered 

at 𝑡3 increased for the nanofibre interleaved laminates compared to the vi rgi n 

material at higher impact energies. This means that the nanofibre i nter lea ved 

laminates can withstand more load before the sub-critical cracks reach the limit 

where major damage will occur. Such an effect was also enc ountered during 

Mode II delamination of nanofibre interleaved specimens where the energy for  

sub-critical crack growth increased due to nanofibre bridging (Section 3.3.4 a nd 

Section 3.3.5). The major difference between virgin and nanofibre i nter leaved 

specimens was however encountered in the 𝑡3 − 𝑡4  region for impact energi es 

of 41 J and higher. At this stage, major delamination a nd inter laminar c rack 

formation between plies took place. The resistance against these damage 

mechanisms is readily improved by the nanotoughened interlayers. The effec t 

was most visible for the PCL interleaved specimens for which the load-time 

curve still remained predominantly elastic at impact energies of 67 J. Si nc e the 

damage was more limited in the nanofibre interleaved specimens, their residual 

stiffness and strength is higher compared to the virgin specimens and the 

impactor was rebounded faster as for example visible i n the 𝑡4 − 𝑡5 regi on of 

the specimens subjected to 67 J. 
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Figure 80 – Load-time curves for vi rgin, PA6.9 (12 g/m²) interleaved and PCL 
(12 g/m²) interleaved specimens at impact energies of 14 J, 41 J and 67 J. 𝑷𝒎𝒂𝒙 

increases with increasing impact energy while the impact events become shorter and 
more damage occurs in the 𝒕𝟐 − 𝒕𝟒 region. Nanofibre interleaved specimens showed 
less signs of damage development in this region. Curves of PA6.9 and PCL are shifted 

5 ms  and 10 ms  for clarity. 
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The (projected) damage area after impact was determined by measuring the 

delaminated area on impacted specimens which was clearly visible due to 

translucency of the specimens. A series of C-scans on impacted specimens 

showed that the agreement between the damage area measured by both 

methods was good. This is i llustrated in Figure 81 for three specimens subjected 

to an impact energy of 67 J. Nanofibre interleaved specimens had a reduction in 

(projected) damage area and the smallest damage area was obtained with PCL 

nanofibrous veils. The shape of the damage area was rhombus-like for all tested 

impact energies. It showed a larger damage growth in the 0°-direction compared 

to the 90°-direction, most l ikely caused by the rectangular shaped specimen 

fixture136 used in the LVI experiments  and the cross-ply layup. Hence, the 

reduction in damage area is mainly attributed due to a  reduc ti on i n dama ge 

length in the 0°-direction. 

 

Figure 81 – Optica l measured damage area corresponded with the C-scan results. 

Nanofibre interleaved specimens showed a  smaller damage area (mainly by a  
reduction in damage length). PCL nanofibres resulted in the best improvements.  

The (projected) damage area in function of the impact energy is given in Fi gure 

82. The toughening effect of the nanofibres was relatively small a t l ow i mpac t 

energies, especially for PA6.9 interleaved specimens, but increased significantly 

at impact energies higher than 40 J. Overall, specimens i nterlea ved with PCL 

nanofibres again showed the highest reductions in damage area. The da ma ge 

area reduced up to 60% for PCL nanofibre interleaved specimens. The veil  
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density of the nanofibres did not influence the results and similar improvements 

are obtained at densities of 6 g/m² and 12 g/m². 

 

Figure 82 – Projected damage area versus impact energy for PA6.9 (a) and PCL (b) 

interleaved composite laminates. The damage area decreases compared to the vi rgin 
material, especially at impact energies higher than 50 J. PCL nanofibre interleaved 

specimens showed the best improvements. The veil density had no e ffect for both 
nanofibre types. 

The depth of the permanent indentation after impact was measured using a 

micrometre and is i llustrated in Figure 83. A change in dama ge mec hanism i s 

clearly visible by a sudden increase of the indentation depth above impact 

energies of 50 J. The virgin specimens showed very large dent formation at 

these impact energies caused by severe splitting of the plies and almost full  

penetration of the impactor in the specimen. The dent formation in the 

nanofibre interleaved specimens was less severe, resulting in a relatively smooth 

surface of the specimens after impact. This indicates that a significant portion of 

the impact energy was absorbed by the nanofibres resulti ng i n a  dec rease i n 

projected damage area as well as dent damage. Contrary to the da ma ge a rea  

however, the difference between PCL and PA6.9 nanofibres is relatively small. 
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Figure 83 – Dent depth versus impact energy for PA6.9 (a) and PCL (b) interleaved 
composite laminates. Macroscopic dent formation occurs at energies higher than 

50 J. The nanofibre interleaved specimens showed much lower dent depths due to 
better damage resistance. The veil density had no effect for both nanofibre types.  

A microscopic investigation of the damage mechanisms was performed by 

analysing cross-sectional images taken at the impact point along the transversal 

direction, i.e. along the 90° direction (Figure 84). As expected, the damage 

region increased as the impact energy increased. At 14 J, few intralaminar cracks 

and delaminations were present, resembling the typical pine tree pattern. 

Intralaminar tensile cracks can be seen in the lowest reinforcing pl y due to the 

bending of the specimens during impact. At an intermediate impa ct energy of 

41 J, more intralaminar cracks are observed while the delaminations were 

longer. The lower plies also started to show signs of glass fibre fa ilure. At thi s  

point, the indentation was still l imited and thus the material beneath the impact 

point is sti l l  able to take up the load induced by the impact event. At higher 

energies of 67 J however, the specimens were severely damaged. Many c rac ks 

and delaminations are observed at further distances away from the impact 

point. Pulled-out glass fibres were also visible. In the virgin specimens, the 

material beneath the impact point showed failure throughout the thi c kness of 

the specimen. On the contrary, the nanofibre toughened specimens, espec ially 

PCL interleaved specimens, showed much less cracks and smaller delaminations. 

Furthermore, they maintained the structural integrity of the material 

underneath the impact point much better. 
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Figure 84 – Cross -section view of impacted specimens. The amount of interlaminar 
cracks  and delaminations was found to be lower in the nanofibre interleaved 

laminates. At impact energies of 67 J, severe dent formation is visible for the vi rgin 
specimens due to complete ply fa ilure underneath the impact, while much less 

damage and smaller dents are observed for the nanofibre interleaved specimens. 
(External light sources were used to produce a high contrast between the 

cracks/delaminations and the 0°-oriented plies.) 
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Similar to results obtained by delamination testing, the nanofibre i nterlea ved 

impacted specimens showed regular occurrences of i nter laminar  c rossings, 

while the majority of the delamination is found at the reinforcing ply inter fac e. 

(Figure 85a). Furthermore, interlaminar cracks through the nanotoughened 

interlayers were also observed in regions without delaminations ( Fi gure 85b). 

Sections of the delaminated area were analysed with SEM. These ima ges 

confirmed that nanofibre bridging zones also developed during i mpact events  

(Figure 86). Both PA6.9 and PCL nanofibres showed signs of plastic deformati on 

indicating good load/energy take-up which resulted in the improved impact 

resistance. However, a certain fraction of PA6.9 nanofibres was also peeled from 

the matrix resin. Hence, the fracture surface showed signs of both Mode I 

(peeling) and Mode II (straining) conditions. Such Mixed Mode beha viour i s to 

be expected for relatively thin composite laminates as (tensile) fa ilure of the 

bottom plies allows an opening mode deformation between delaminated pl ies. 

Indeed, the delaminations in Figure 84 were “open” indicating (partial)  Mode  I  

conditions. The results obtained through delamination tes ts  – whi c h s howed 

poor performance of polyamide nanofibres due to low adhesion with the matrix 

compared to PCL nanofibres under Mode I delamination growth (Section 3.2 and 

Section 3.3) – thus agree well with the low velocity impact results . PCL 

interleaved laminates perform better due to an increased delamination 

resistance under both Mode I and Mode II loading. Furthermore, the strain ra te 

dependence of the PA6.9 nanofibres (see Section 3.1.2) might also have reduced 

their toughening potential during impact, which is typically a  high s train -rate 

event. 

 

Figure 85 – Interlaminar crossing of the nanotoughened interlayer by a  delamination 
which jumps from the 0°-interface to the 90°-interface (a). Interlaminar cracks 

formed between plies with different orientation due to shear s tresses (b).  
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Figure 86 – SEM analysis of the fracture surface showed nanofibre bridging zones. 

The PCL nanofibres were severely deformed without signs of a weak interface thus 
indicating good load transfer and energy take-up by the nanofibres. The PA6.9 
nanofibres also showed plastic deformation (s training), but many peeled of f 

nanofibres were also visible due to the low interfacial strength. 
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3.4.4 Post-impact residual compressive strength 

The impacted specimens of Section 3.4.3 were tested for their residual 

compressive strength according to ASTM D7137137, often referred to as the 

Compression After Impact (CAI) strength. The CAI strength is a very i mportant 

parameter since it is a measure for the anticipated damage tolerance of a 

composite material. Indeed, many structural applications wi ll  fac e a n i mpac t 

event at some point during their use (hail  stones, pebbles, tool drops). This 

induces damage in the material which lowers  the mechanical properties. 

Especially the compressive strength reduces greatly and may lower up to 60% of 

that of the undamaged material160. Delaminations will cause the internal plies to 

behave as sub-laminates with a much lower thickness than that of the complete 

laminate. Under compression, these sub-laminates will buckle out at lower loads 

causing the material to fail at a lower compressive stress. The failure mechanism 

is typically triggered by the initiation of delaminations due to buc kl ing of s ub-

laminates. In turn, this  will  cause the sub-laminates to grow and buckle out 

more easily resulting in abrupt compressive failure of the specimens. Therefore, 

nanofibre toughened interlayers could increase the CAI strength by i nc reasing 

the load before delamination initiation. Furthermore, the delami na ted a rea i s 

also smaller in these specimens which also increases the CAI strength. The 

failure mechanism is schematically represented in Figure 87. 

 

Figure 87 – Schematic illustration of compression after impact testing: compressive 
loading of an impacted specimen causing sub-laminate buckling and failure of the 

specimen at lower stresses than the pristine material. 
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The results of the CAI experiments are given in Figure 88. The individual 

measurements are plotted for the nanofibre interleaved laminates as it was not 

always possible to obtain multiple valid measurements. As the specimens were 

relatively thin, they tended to fail  in an invalid manner in which the failure wa s  

initiated near the edges of the fixture and not by compression through the 

impact zone. For the same reason, no valid measurements were obtained at the 

lowest energy level for the virgin material. On average, the nanotoughened 

interlayers did not improve the CAI strength although the damage area was 

considerably smaller. However, the damage area was mainly reduced in l ength 

and not in width for the interleaved specimens. This means tha t the effec ti ve 

cross-section that experiences the compressive load is more or less similar  for  

virgin and nanofibre interleaved specimens. The stiffness i n the c ompression 

direction will  thus hardly be affected by the difference in damage length. 

Furthermore, the impact energies considered were quite high and induced 

major damage. As such, the material under the impact point degra ded to tha t 

extent that it l ikely acted as a local fail ure initiation point before the 

delaminated sub-laminates could buckle out. Indeed, glass fibre failure a lrea dy 

occurred at impact energies of 40 J. Therefore, it is unlikely that at energies 

higher than 40 J, the failure event is governed by delamination and the 

toughened interlayers will not affect the CAI strength.  

Impact and post-impact studies often focus on the Barely Visible Impact Damage 

(BVID) energy range, which is defined as those energies that cause a permanent 

indentation smaller than 0.3 mm161. For the specimens under consideration, the 

BVID range had an upper impact energy limit of approximately 50 J (Figure 83). 

In this range, the average CAI strength of the nanofibre interleaved s pecimens 

was stil l  comparable to that of the virgin material. Yet several specimens 

showed a CAI strength which could be considered to be relatively high based on 

the trend visible in Figure 88. Especially some of the specimens interleaved with 

PCL nanofibres and subjected to an impact of 14 J had a high CAI  s trength. At 

this energy level, damage was still l imited to – relatively small – ma tr i x c racks 

and delamination. For the three specimens interleaved with 6  g/m² PCL 

nanofibres, the bottom surfaces before and after CAI testing are shown in Figure 

89. The lowest CAI strength was recorded for specimen #1 which showed the 

largest delaminated area after CAI testing, while the highest CAI  s trength wa s 

recorded for specimen #3 which had the smallest delamination area. A poss ible 
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explanation for this behaviour is that the onset of delamination induced by sub -

laminate buckling in specimen #3 had more interlaminar c rossings. Henc e, i t 

could take up more load before the damage reached a critical size a nd a brupt 

compressive failure occurred. Similarly, the PA6.9 interleaved specimens 

subjected to an impact energy of 14 J also showed relatively l arge s c atter  on 

their CAI strength.  

 

Figure 88 – CAI s trength for PA6.9 (a) and PCL (b) interleaved composite laminates. 
Individual measurements are plotted for the nanofibre interleaved specimens, while 

the average and standard deviation is plotted for the vi rgin material (including a 
l inear fit). The CAI s trength decreases with increasing impact energy. On average, the 

nanofibres do not differ significantly from the vi rgin material. 

The results of Section 3.4.3 and Section 3.4.4 show that the nanofibres ha ve a  

lot of potential to improve the impact resistance and the residual compressive 

strength. However, the use of relatively thin GFRP cross-ply specimens resulted 

in a damage mechanism in which major delamination failure onl y oc curred a t 

higher impact energies. Therefore, the highest improvements in impact 

resistance were also obtained at higher impact energies above the BVID ra nge. 

This caused severe reinforcing fibre failure underneath the impact point. 

Furthermore, the delamination area was mainly reduced due to a  dec rea se i n 

the delamination length, but not the delamination width. Whereas the CAI 

experiment is usually very sensitive to the delaminated area, the fa c t tha t the 

delamination width remained similar and severe fibre/ply damage already 

occurred limited the dependence of the CAI strength on the delaminated a rea. 
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This resulted in comparable CAI values for the virgin and nanofibre inter lea ved 

material. In order to better analyse the potential of nanofibrous interleaves  for 

impact toughening, future studies should consider impact energies near the 

BVID region and possibly use thicker quasi-isotropic laminates as recommended 

by ASTM D7136. This will result in a more delamination dominant failure mode 

during impact. This will  also be more relevant for applications as the main 

concern in industry is to improve the BVID resistance. 

 

Figure 89 – Images of the specimens interleaved with 6 g/m² of PCL nanofibres 

subjected to an impact energy of 14 J before and after CAI testing. When a lower CAI 
s trength was recorded, a larger delaminated area can be seen on the failed 

specimens. 
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This PhD shows that electrospun nanofibrous veils are a viable option to des i gn 

advanced composite materials with a very high delamination and damage 

resistance. As opposed to many traditional toughening techniques, the 

electrospun nanofibres are easily integrated into a  composite laminate either by 

directly electrospinning onto the reinforcing ply surface or by interleaving s elf -

supporting veils in between the reinforcing plies. Furthermore, the high porosity 

and relative small thickness of these veils allows easy wetting of the epoxy resi n 

and regular composite production processes, l ike autoclaving and infusion, c a n 

be used without any modifications. Combine these advantages with the fact that 

the delamination resistance can be increased up to two or three ti mes  tha t of  

the virgin material without significant mass increase, and it should be clear that 

electrospun nanofibrous veils have the potential to improve the performance of 

many composite structures and applications. 

The electrospinning process is relatively simple, scalable, a nd c a n be us ed to 

produce nanofibers from a whole set of polymers. The macroscopic length a nd 

sub-micron diameter of nanofibres removes many of the health risks often 

associated to nanomaterials in an industrial setting such as par ticl es tha t a re 

easily airborne and inhaled. Currently, there are already industrial produc ers 

who can deliver electrospun nanofibrous veils or electrospinning systems on the 

scale necessary for composite applications such as Revolution Fibres, Bioinicia, 

ElectrospinTech and Elmarco. It is expected that many more producers will  

follow as the demand of nanofibrous veils in other sectors such as in filtration or 

medicine is also growing. 

Thus it seems that it is not a question of if, but when these materials find thei r  

way into structural composite applications. Yet, before tha t c a n ha ppen, the 

exact toughening mechanisms need to be understood. At the beginning of thi s  

PhD this was perhaps the major shortcoming in the state-of-the-art l iterature. 

Although, within the few publications available, there were results showing 

improved delamination resistance, there were just as many publications whi ch 

obtained opposite results without giving an apparent reason for these 

discrepancies. Clearly, a deeper understanding of the behav i our of na nofibre 

interleaved composites was necessary. Therefore, in this PhD, we per formed a  

multiscale analysis of the toughening micromechanisms that are present in 

these materials. Such an analysis had not been performed before and provided  
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much better insights into the behaviour of nanotoughened composites. It led to 

a significant advancement of the understanding of these ma ter ials i n a  more 

structured and general sense. 

The interleaved composites can be thought to have three different levels  at 

which the nanofibres affect the properties. These coincide with the hierarchic al 

nature of the laminate itself: (i) the nanotoughened epoxy resin, (i i) the 

nanotoughened interlayer and (i ii) the nanotoughened laminate. 

At the nanotoughened epoxy level  (Section 3.1), the effect of electrospun 

nanofibres on the fracture toughness of the epoxy resin was analysed. The main 

goal of this level was to get a fundamental understanding of the toughening 

mechanisms acting in nanotoughened epoxy similarly to wha t ha s been d one 

previously for rubber/thermopl astic toughened epoxies. Using SENB 

experiments on relatively thick nanotoughened epoxy specimens, we found that 

there are two distinct mechanisms causing an increased fracture toughness 

compared to neat epoxy resin. The first one is the yielding of nanofibres i n the 

fracture processing zone in front of the crack tip (intrinsic toughening) whic h 

caused an increase in the initiation fracture toughness of a bout 20 – 30  % for  

PCL nanofibre toughened epoxy. However, the main increase in fracture 

toughness was due to the extrinsic toughening mechanism of nanofibre 

bridging. If the crack propagates, nanofibres will bridge the newly formed c ra ck 

surfaces and take up energy by straining, yielding and eventually (tensile) 

fracture. At the same time, they provide closing tractions on the c ra ck whic h 

relieves the stress at the crack tip. Both effects will  cause an increase in the 

fracture toughness. Furthermore, the nanofibre bridging zone increases i n s ize 

during crack growth, thus causing an even higher fracture toughness of the 

nanotoughened epoxy during crack growth. Using modified specimens, we 

found that the adhesion between the nanofibre and the matrix is very important 

to have good load transfer to the nanofibres and thus effecti ve nanofibre 

bridging. While the adhesion with polyamide nanofibres was quite low resulting 

in peeling of the nanofibres, PCL nanofibres did result in a good i nter fac e. For  

the PCL nanotoughened epoxy, fracture toughness values up to 4000 J/m² were 

recorded, values far higher than the 1500 J/m² of the neat epoxy resin. The 

insights gained on this level were quintessential for understanding the 
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behaviour of toughened composite laminates, especially since no such 

experiments or insights had been reported before. 

At the level of the nanotoughened interlayer (Section 3.2), other factors such a s 

the delamination path will come into play. Microscopic analysis of delaminated 

specimens showed that the delamination did not progress s olely through the 

nanotoughened interlayer. Thus, nanofibre bridging zones did not just devel op 

over the whole delamination plane. Rather the delamination was deflected 

towards the reinforcing ply boundary where it progressed by “classical” 

interfacial failure of the reinforcing fibres. Regular crossings of the 

nanotoughened interlayer by the delamination path however oc curred a nd i t 

was mainly at these interlaminar crossings that nanofibre bridging zones 

developed. SEM analysis of the fracture surface of delaminated specimens 

showed the same fracture morphology of the nanofibre bridging zones with 

protruding, plastically deformed nanofibres visible. An equa ti on wa s der ived 

which related the improvement in Mode I delamination resistance to the results 

obtained from the SENB experiments on the nanotoughened epoxy. Good 

agreement with the experimental data was obtained, proving a strong link 

between both levels. Similarly, there was also a link between the improvements  

of the Mode II delamination resistance and the fracture toughness of the epo xy 

resin. It was found that the delamination mode affects the development of 

nanofibre bridging zones. Not only did a Mode I loading mode typically result i n 

less interlaminar crossings, it also exerted peeling forces to the nanofibres, 

making their adhesion with the epoxy become very important. Indeed, while PCL 

nanofibres readily improved 𝐺𝐼, PA nanofibres hardly had a positive effec t due 

their lack of adhesion causing extensive peeling. Mode II loadings on the other  

hand typically resulted in a higher amount of interlaminar crossings while 

exerting straining forces to the nanofibres. As such, both PA and PCL nanofibres 

were able to increase the Mode II delamination resistance to almost twi ce the 

value of the virgin material.  

The interaction between the delamination path and the nanotoughened 

interlayers – which determines the amount of nanofibre bridging zones  – wa s  

found to be dependent on parameters related to the nanofibres themselves, the 

veil  morphology, the interleaving technique, the reinforcing fabric architec ture 

and even the way in which the delamination experiment is performed. Especially 
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under Mode I loading conditions, the amount of interlaminar crossings 

depended for example on the areal density of the veils (higher densities resulted 

in less crossings) and the interleaving method (directly electrospinning on the 

reinforcing plies provided the most crossings). The a na lysis of del a minati on 

experiments with different parameters was performed in Section 3.3. While one 

type of nanofibrous veil  might result in good improvements for one type of 

composite laminates, it does not necessarily result in the same i mprovements  

for other types of laminates. Generally, in order to increase the fracture 

toughness on the interlaminar level, the interaction between the delami na tion 

path and the nanotoughened interlayer characteristics are of crucial importance 

and should all be considered in order to design damage res ista nt c omposite 

materials. 

Although Section 3.1 – Section 3.3 provided the essential insights into the 

toughening micromechanisms acting in nanotoughened epoxy and 

nanotoughened interlayers, the crack and delamination growth were a l ways 

carefully initiated and controlled. Furthermore, the del a mination s pecimens 

typically had a unidirectional layup, something which is often not enc ountered 

in applications. To provide a l ink between the fundamental insights and the 

mechanical response that can be expected in real -l ife situations, fully 

interleaved cross-ply composite laminates were analysed in Section 3 .4 . While 

the (in-plane) tensile, shear and flexural stiffness and strength were reta i ned, 

the open-hole strength of interleaved laminates even increased about 8% 

compared to the virgin material. Since the failure mechanism of notched 

laminates, such as the open hole tensile specimen, i s typically del amination 

dominant, the nanofibres “delay” the delamination progression due to an 

increase in the interlaminar fracture toughness. This results in notched 

laminates which can bear a higher load before failure. 

The low velocity impact resistance of fully interleaved laminates increased 

considerably compared to the virgin material. The (projected) damage 

decreased substantially up to 50 – 60 %, especially at higher i mpact energi es 

where the virgin material showed much delamination. PCL nanofibre interleaved 

laminates performed better than PA6.9 nanofibre interleaved ones . Thi s wa s 

attributed to the strain rate sensitivity of PA6.9 and its low adhesion s trength 

with the epoxy matrix. The interleaved laminates also showed much less 
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indentation for the same impact energy than the virgin material. As more energy 

was absorbed in the interleaved laminates due to delamination and interlaminar 

cracks through the nanotoughened interlayers, less damage was infl icted to 

reinforcing fibres and matrix resin. Analysis of the fracture surface of i mpac ted 

specimens showed the development of nanofibre bridging zones again providing 

the link between the three levels. The PCL nanofibre bridging zones were more 

effective as much more plastic deformation and no peeling was observed 

compared to the PA6.9 bridging zones. The residual compressive strength of the 

impacted specimens was not influenced much by the presence of the 

nanotoughened interlayers. Although a decrease in damage area was obtained 

during impact testing, the decrease was mainly attributed to a decrease in 

length of the damage zone while the width remained similar. Furthermore, the 

applied impact energies were relatively high and caused reinforcing fibre failure 

near the impact point. This might explain why no substantial improvements  i n 

CAI strength were recorded for the nanofibre interleaved laminates. 

The primary goal of this PhD work was to develop highly toughened na nofibre 

enhanced composite laminates and to gain fundamental insights into the 

toughening mechanisms and generic parameters of these novel materials. Thi s 

was successfully accomplished by analysing the ma ter i al us ing a  mul tilevel 

approach. Nanofibre interleaved composites with excellent delamination 

resistance were designed, while obtaining a lot more fundamental knowledge 

about the prerequisites for effective nanofibre toughening. The improvements 

are in-line and often even better than those for traditional toughening methods. 

Currently, the most cri tical aspect is to develop/optimize a temperature s ta ble 

nanofibre system with good adherence to the epoxy matrix. Indeed, PCL 

nanofibres often outperformed the polyamide equivalents due to better 

adhesion, but cannot be processed or used at temperatures a bove their melting 

point of 60°C limiting their application for higher temperature production 

methods and applications. Yet, the multistep curing procedure a nd c ore -s hell 

structured nanofibres described in Section 3.3 already show that the solution for 

this problem will  be within reach of the current electrospinning community. 

Other possibilities might include the electrospinning of other types of pol ymer  

or the use of surface treatments and sizings. Furthermore, even smaller 

nanofibres can be produced with a higher surface area to volume ratio to 
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increase the bonding with the matrix resin. Another future aspect is the 

construction of a roadmap and/or model which engineers can use to design the 

nanofibre interleaved composites in an optimal way. Depending on the des i red 

improvement in delamination resistance, the roadmap/model wi ll  output for  

example which nanofibre to use, how thick the veils should be, the best 

configuration to integrate them in the composite and so on. La s tly, using the 

insights obtained in this PhD, an experimental campaign focussed on improving 

some real-life composite structures can be initiated. This would bridge the ga p 

between the lab environment and the industrial application. These aspec ts a re 

for sure attainable in a relatively short timeframe. Clearly, there is a bright 

future for these materials in structural composite applications, a future which i s 

hopefully facilitated by this PhD. 
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