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ABSTRACT

A linear, or 1D, camera is a type of camera that sweeps a
linear sensor array over the scene, rather than capturing the
scene using a single impression on a 2D sensor array. They
are often used in satellite imagery, industrial inspection, or
hyperspectral imaging. In satellite imaging calibration is of-
ten done through a collection of ground points for which the
3D locations are known. In other applications, e.g. hyper-
spectral imaging, such known points are not available and an-
notating many different points is onerous. Hence we will use
a checkerboard for calibration. The state-of-the-art method
for linear camera calibration with a checkerboard becomes
unstable when the checkerboards are parallel to the image
plane. Our proposed method1 yields more accurate camera
calibrations without suffering from this shortcoming.

Index Terms— linear camera, camera calibration, hyper-
spectral imaging

1. INTRODUCTION

Linear cameras are one-dimensional imaging devices primar-
ily used in satellite imaging and hyperspectral camera sys-
tems. They sweep a linear sensor array over the scene: at
each time instance, a different slice of the scene is projected
onto the sensor array as shown in fig. 1.
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Fig. 1. The linear camera captures the scene on a linear sensor
array (the X-direction), while moving along the Y-direction
and projecting along the Z-direction. Usually, all of these
directions are perpendicular, as in a conventional camera.

1The source code is publicly available at telin.ugent.be/

˜sdonn/code/lincams.zip.

Fig. 2. The double nature of the camera model becomes ap-
parent when imaging a checkerboard at different heights: note
that the imaged width of the board depends on the distance to
the camera, but the imaged length is invariant.

The camera projection is orthogonal along the movement
direction but perspective along the array direction: classical
camera calibration [1] is not applicable. The main drawback
is that the extent of the camera’s movement should be of the
same magnitude as the extent of the scene.

For satellite imagery, the sweeping movement of the cam-
era is a side-effect of the satellite’s orbit; because of the as-
tronomical scale of the orbit, it is assumed that the movement
is locally linear [2]. On the other hand, a 1D sensor array is
smaller and lighter compared to a 2D sensor grid: important
considerations for anything launched into space.

This type of camera is also used for so-called spatial scan-
ning in hyperspectral imaging. A strip of the scene is pro-
jected onto a slit and subsequently dispersed onto a 2D array:
one axis presenting the linear sensor array and the other dis-
tinguishing between various wavelengths because of Snell’s
law. In this case, linear cameras are used because of the size
(and cost) constraints of building the hyperspectral camera.

In many practical applications, calibrated cameras are
needed: we wish to find correspondences between 3D loca-
tions and 2D observations by the linear camera. For satellite
imagery, calibration is often done using ground reference
points: distinct points with well known 3D locations [2].
When performing sensor fusion with hyperspectral imaging,
we prefer the calibration to be as accurate as possible; manu-
ally annotating a large number of points is onerous and prone
to inaccuracies because of manual measurement errors. For
this reason we use checkerboards to calibrate the camera [3].
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In section 2 we discuss the state-of-the-art for plane-based
linear camera calibration, and highlight some important short-
comings in the existing methods. Section 3 contains an ex-
planation of the proposed method: heavily influenced on the
state-of-the-art but with some key changes to make the algo-
rithm more generally applicable. Section 4 shows the exper-
imental results and their discussion. We present a summary
and some closing remarks in section 5.

2. EXISTING WORK

The seminal work on linear cameras, by Hartley et al. [2],
is focused on satellite applications. They extensively discuss
and explain the used model, and derive relations between sep-
arate linear cameras akin to the essential matrix for stereo set-
ups of classic cameras. However, for calibration of the cam-
eras they rely on known correspondences between 3D ground
reference points and 2D camera observations [2] – an assump-
tion that scales poorly when requiring many observations for
high accuracy.

Luna et al. [4] took this one step further for lower-scale
problems. Using a single line-scan of a known 3D object (two
parallel planes at different heights with crossing lines) they
are able to estimate the camera parameters well.

Contrastingly, several methods have gone the other way
around: using an auxiliary 2D camera to help calibrate the
line-scan camera [5, 6, 7]. All these methods start from the as-
sumption that a linear camera movement is difficult to achieve
in practice: they use a series of single line-scans rather than
2D images. After rigidly coupling a pre-calibrated 2D camera
with the linear camera, Sun et al. use the 2D camera to en-
sure a good distribution of correspondence points during cal-
ibration [6]. Using bundle adjustment refinement [5, 6] and
distortion estimation [6], the linear camera is calibrated.

Drareni et al. [3] have found inspiration in classical cam-
era calibration: using a checkerboard, they are able to eas-
ily generate large numbers of point correspondences with the
known object, improving the accuracy of the calibration as
much as possible. Using a linear set of equations, the cam-
eras are calibrated, and bundle adjustment is used to locally
refine the estimate. However, the method cannot handle some
specific orientations of the planar pattern as it entails dividing
by elements of rotation matrices. By avoiding such divisions,
our proposed method sidesteps the degenerate positions while
at the same time yielding a more accurate calibration in other
situations.

3. PROPOSED METHOD

The outline of the method is based on that of Drareni et al. [3],
with the aforementioned note that we avoid dividing by ele-
ments of rotation matrices. The result is that our proposed
method handles formerly degenerate plane positions, while
yielding more accurate results in other situations.

3.1. The Camera Model

As given in [3], the undistorted projection (u, v) of a point
(X,Y, Z) in the camera coordinate system is given byuv

1

 ∼
fX + u0Z

sY Z
Z

 =

f 0 u0
0 s 0
0 0 1


︸ ︷︷ ︸

K

 XY Z
Z

 , (1)

where K represents the intrinsic camera matrix with focal
length f , optical center u0 and movement speed s. Note the
non-linearity due to the Y Z term, which precludes the use of
classical pin-hole calibration methods.

3.2. The Planar Grid

In the ith image, the nth point
[
an, bn, 0

]T
on the planar

pattern is transformed to the camera space by a rotation Ri

and a translation ti. In favour of legibility, we omit the sub-
scripts image and point indices in matrix elements. The ma-
trix names indicate whether they depend on the image and/or
point index. The expression becomes

XY
Z
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[
Ri|ti

] 
a
b
0
1

 =

ar11 + br12 + t1
ar21 + br22 + t2
ar31 + br32 + t3

 (2)

If we express the projected point
[
u, v, 1

]T
in terms of

the location on the planar pattern
[
a, b, 0

]T
, we encounter

quadratic terms in a and b. To circumvent this, we express[
X,Y Z,Z

]T
in terms of the Veronese mapping of the planar

locations, resulting in the projection equation (3).uv
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3.3. Homography Estimation

The homography Hi ∼ K
[
Pi,1|Pi,2

]
maps the points on the

grid on their images in the camera. It is a camera-dependent
matrix whose 12 non-zero entries (see equation (6)) we esti-
mate as follows. To estimate the homography, we recall that[

u, v, 1
]T ∼ Hi

[
a, b, 1, a2, b2, ab

]T
. (4)



 a b 1 0 0 0 0 0 0 −au −bu −u
0 0 0 a b 1 a2 b2 ab −av −bv −v
−av −bv −v au bu u a2u b2u abu 0 0 0

h = 0 (5)

H =
1

t3

 fr11 + u0r31 fr12 + u0r32 ft1 + u0t3 0 0 0
s(r21t3 + r31t2) s(r22t3 + r32t2) st2t3 sr21r31 sr22r32 s(r21r32 + r22r31)

r31 r32 t3 0 0 0

 (6)

By multiplying the above previous equation with the
cross product skew matrix of

[
u, v, 1

]T
, we end up with the

linear homogeneous system in Hi’s entries from equation
(5). In this system, h = [h11, h12, h13, h21, h22, h23, h24,

h25, h26, h31, h32, h33]
T . In order to get rid of the unknown

scale factor, we propose dividing Hi by h33: a value which
cannot be zero because that would mean that the planar pat-
tern contained the camera location, a physical improbability.
The result is that Hi is of the form (6). This step is not
present in [3], but does make future notations easier and
fixes the unknown scaling factor. At this point, we have es-
timated the homography Hi for each image i, with unknown
image-dependent scale factors 1/ti,3.

3.4. Intrinsic parameter estimation

Next, we express the first two columns of Ri in terms of Hi:[
Ri,1|Ri,2

]
=
ti,3
sf

LiMi, (7)

Li =

s 0 −su0
0 f/ti,3 0
0 0 sf

 ,
Mi =


h11 h12

h33h21 − h31h23
h233

h33h22 − h32h23
h233

h31 h32

 ,
=

 h11 h12
h21 − h31h23 h22 − h32h23

h31 h32

 .
Here, our proposed formulation of Mi differs from the

existing method: Drareni et al. use
[
h24/h31, h25/h32

]
for

the second row of Mi. Yet their approach entails dividing by
entries of the rotation matrix that will be very close to 0 when
the planar pattern is close to parallel to the image plane. This
does crop up in practical situations, and we have to take pains
to avoid this (in our experiments this was always the case).

We introduce the notation

Xi = LT
i Li =

 s2 0 −s2u0
0 f2/t2i,3 0

−s2u0 0 s2(u20 + f2)


=

x1 0 x2
0 xi,4 0
x2 0 x3

 . (8)

This allows us to solve the orthogonality constraint of Ri to
the values x1, x2, x3 and xi,4. Of these, only xi,4 depends
on the scaling factor ti,3 and hence the image index i. The
orthogonality constraint of Ri is rewritten to{

(MT
i XiMi)12 = 0

(MT
i XiMi)11 = (MT

i XiMi)22
(9)

Gathering the orthogonality constraints for each rotation ma-
trix Ri, we end up with a system of 2I equations in 3 + I
parameters. After solving the system up to scale, we have
estimates for u0 and f :

u0 = −x2/x1 and f =

√
x3
x1
− u20. (10)

We now use the diagonal elements of MT
i XiMi, equating

s2f2/t2i,3, to yield a set of equations we solve for t2i,3 and s2.
These equations appear to be nonlinear, but they are actually
linear in 1/t2i,3 and 1/s2. Because ti,3 represents the move-
ment away from the camera, it is necessarily positive. Invert-
ing the sign of S is equivalent to inverting the Y-axis of all
camera coordinate systems. The choice is therefore arbitrary,
and we select it to be positive.

There is one caveat with this method. In the case of a
perfectly flat position of the plane, h31 = h32 = 0, solving (9)
does not yield a unique solution (the null space has dimension
3). However, we now have a shortcut to the estimation of the
scanning speed, as this also implies that r13 = r23 = 0, so
that h221 + h222 = 1. Estimation of u0 and f is done from
the non-degenerate equations in (9), after we continue in the
discussed fashion. In the extreme case one sees that an offset
in u0 is equivalent to one in t1, as is the scaling of f and t3.

3.5. Extrinsic parameter estimation and non-linear opti-
mization

In the original paper, Drareni et al. go on to show how to ex-
tract the scaling factors and movement speed as well as the
extrinsic parameters through another instance of the orthogo-
nality constraint of Ri. We have already estimated the values
of s and ti,3, so now the transformation matrices from (2) are
straightforward to extract from the homography (6).

Similar to classical camera calibration, we perform non-
linear optimization of the initial estimates: bundle adjust-
ment. Although the form of the Jacobian differs from that
of pinhole cameras, the same principle remains valid.
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Fig. 3. Focal length and optical center errors w.r.t. the noise
level in the point measurements.

4. EXPERIMENTS AND RESULTS

We will now evaluate both the proposed method and the orig-
inal method by Drareni et al. on synthetic test data. In the
experimental set-up the Drareni method yields nonsense re-
sults as the planar patterns are all parallel to the image plane:
degenerate orientations for that method.

4.1. Synthetic data

We performed several tests of our proposed algorithm using
synthetic data, with the same settings as [3]. A planar calibra-
tion grid of 10 × 10 corners is captured by a virtual cam-
era with a 1000 × 1000 image resolution, f = 1000 and
u0 = 500. The scanning speed is 50 pixels.

4.1.1. Noise level sensitivity

For 10 planes oriented randomly, additive white Gaussian
noise pollutes the measurement. We perform 1000 indepen-
dent runs for σ from 0.2 to 2.0 and report the average absolute
errors for both the focal length and the optical center, as in [3].
We see in fig. 3 that the error increases linearly with rising
σ. While our results for the Drareni method match those
reported in [3], the proposed method finds better optima.

4.1.2. Sensitivity to the number of planes and their distance

Next, we evaluate the performance of the method with respect
the amount of data available, i.e. the number of images cap-
tured with the camera. As fig. 4 shows, the accuracy increases
drastically up to about 20 planes, after which the marginal
gain levels off. Once again, we see that our proposed method
performs better than the existing approach.

4.2. Experimental set-up

For the real-world evaluation of our proposed method, we cal-
ibrate a hyperspectral Specim camera. This camera is in an
imaging chamber controlled by a robotics system installed at
the VIB Center for Plant Systems Biology in Ghent, Belgium.
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Fig. 4. Focal length and optical center errors w.r.t. the number
of measurements available.

The WIWAM conveyor belt system is only able to raise or
lower objects, or rotate them in the horizontal plane. Hence,
the planar patterns are always parallel to the image plane. As
discussed earlier, when all captured patterns are parallel to
the image plane, there exists an equivalency between the op-
tical center u0 and displacements along the Y -axis, as well as
between the focal distance and a scaling along the Z-axis.

As we need to find out the accurate position of the cam-
era with respect to the robot, we pass the algorithm the
manufacturer-specified parameters: a focal distance of 500
pixels, and the optical center at 160 pixels. Because of this,
we supply the algorithm with the known positions of the
planes: four scans at two different heights, a displacement
of roughly 0.6 times the plane height (200mm). Using this
information, our proposed algorithm estimates the position
distance to be 198.81 mm, an error of less than 1%, using
only a tiny amount of information. This calibration allows
us to accurately relate 3D reconstructions built from other
cameras to the hyperspectral scans.

5. CONCLUSION

In this paper, we provide an improved version of Drareni’s
method for calibrating linear cameras [3]. We show how
to reformulate the intrinsic parameter estimation so that the
method becomes robust to formerly degenerate plane posi-
tions. It is shown that the proposed methods performs better
than the existing approach in general situations, and how it
can be used to calibrate a formerly degenerate rig without
issues. The Matlab code is publicly available.
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Juan F Vazquez, “Calibration of line-scan cameras,”
IEEE Transactions on Instrumentation and Measure-
ment, vol. 59, no. 8, pp. 2185–2190, 2010.

[5] Bingwei Hui, Gongjian Wen, Peng Zhang, and Deren Li,
“A novel line scan camera calibration technique with an
auxiliary frame camera,” IEEE Transactions on Instru-
mentation and Measurement, vol. 62, no. 9, pp. 2567–
2575, 2013.

[6] Bo Sun, Jigui Zhu, Linghui Yang, Shourui Yang, and
Zhiyuan Niu, “Calibration of line-scan cameras for pre-
cision measurement,” Applied Optics, vol. 55, no. 25, pp.
6836–6843, 2016.

[7] Dongdong Li, Gongjian Wen, and Shaohua Qiu, “Cross-
ratio–based line scan camera calibration using a planar
pattern,” Optical Engineering, vol. 55, no. 1, pp. 014104–
014104, 2016.


