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Abstract 

Hate speech on social media has unfortunately become a common occurrence in 

the Kenyan online community largely due to advances in mobile computing and the 

internet. Incidents of hate speech on social media have the potential of quickly 

disseminating amidst online users and escalating into acts of violence and hate crimes 

due to incitement, as was the case during the 2007-2008 Post Election Violence. With the 

upcoming, highly contested 2017 general elections, the monitoring of hate speech on 

social media platforms is of critical importance to detect hate speech occurrences as soon 

as possible to prevent any further escalations which may result in violence. 

Current efforts by the National Cohesion and Integration Commission to monitor 

hate speech on social media involve the use of web crawlers to collect possible instances 

of hate speech based on specific keywords. Human monitors then have to analyze the 

collected data to determine instances that are actually hate speech. This human analysis 

is not only time consuming and overwhelming but also introduces subjective notions of 

what constitutes hate speech. 

This research proposed the application of machine learning techniques to build a 

text binary classifier to detect hate speech on twitter. Hate speech data was collected and 

labelled to build the corpora. A Support Vector Machine model was trained and validated 

based on the labelled text data using unigram features and term frequency-inverse 

document frequency weighting. The research employed an experimental approach to 

determine which combination of features, weighting schemes and classifiers gives the 

best performance on the collected hate speech data. Bigram features weighted using term 

frequency-inverse document frequency fed into a Support Vector Machine classifier gave 

the best classification performance at an accuracy of 76.22 percent, with an area under 

the curve of 0.76 for a Receiver Operating Characteristic curve. 

Keywords: Hate Speech; Social Media; Machine Learning; Support Vector Machine, 

TF-IDF, Bigram. 
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Chapter 1: Introduction 

 Background 

Globally, there is no consensus on the meaning of the term hate speech. Researchers have 

tried to define hate speech as speech which either promotes acts of violence or creates an 

environment of prejudice that may eventually result in actual violent acts against a group of people 

(Sambuli, Morara, & Mahihu, 2013). Speech in this sense includes any kind of expression 

including pictures and videos (Sambuli et al., 2013). Hateful comments against an individual solely 

do not qualify as hate speech, this is because hateful comments can only be considered as hate 

speech if they target the individual as part of a group (Sambuli et al., 2013). Cohen-Almagor 

(2011), defines hate speech as hateful comments towards a person or group of people based on 

inherent attributes such as gender, ethnicity, color among others. The definition of hate speech in 

Kenya, emphasizes on the use of hateful words with an intention to bring about ethnic hatred, 

where ethnic hatred is defined as hatred against a group of people based on their color, race, 

nationality or ethnic origins (National Council for Law Reporting, 2008). 

There exists a strong relationship between hate speech and actual hate crime (Waseem & 

Hovy, 2016). Widely propagated hate speech can easily result into incitement and consequent 

escalation into actual acts of violence against a group of people. This was clearly witnessed in the 

2007-2008 Post Election Violence (PEV) in Kenya. The 2007-2008 PEV is partly blamed on 

widespread hate speech based on ethnic stereotypes and coded language (National Cohesion and 

Intergration Commission, 2013). Hate speech was widely spread through a number of channels in 

the times preceding and during the PEV conflict. Such kind of speech resulted in the incitement of 

individuals to use violence and the galvanization of groups against one another (Hirsch, 2009). 

This strong connection between hate speech and actual hate crime illustrates the importance of 

monitoring hate speech to avoid widespread incitement and potential incidents of hate crime. 

Recent advances in mobile computing and the internet have resulted in an increase in use 

of social media to communicate, express opinions, interact with other, and to find and share 

information (Cohen-Almagor, 2011). While social media provides an important avenue for 

communication to take place easily and efficiently, it also acts as a means of spreading hate speech 

online. Inherent characteristics of the Internet largely contribute to the misuse of social media to 

transmit and propagate hate speech. Such characteristics include: affordability, ease of access, 
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instantaneous access from multiple points, and anonymity, amongst others (Cohen-Almagor, 

2011). 

In the digital era of smartphones and social media, hate messages are prevalent in the 

Kenyan online community as individuals spread hate messages hiding behind their screens (Daily 

Nation, 2017). After the 2007-2008 PEV, the Government of Kenya enacted the National Cohesion 

and Integration Act to promote national cohesion and integration. The Act consequently instituted 

the National Cohesion and Integration Commission (NCIC) to oversee and monitor content in 

media such as radio, television, mobile phones and television in a bid to govern hate speech 

(National Council for Law Reporting, 2008).  

 Problem Statement 

Monitoring hate content in traditional mainstream media such as radio and television, is 

much easier than monitoring online hate speech content such as social media and microblogging 

sites. This is largely due to the fact that social media consists of a large amount of user generated 

content that would need to be monitored. 

Current efforts by the NCIC to monitor hate speech on social media involve the use of web 

crawlers to collect text from social media platforms and human monitors to analyze the collected 

text. The NCIC’s research department provides keywords of most frequently occurring terms in 

hate speech text, most of which are based on common stereotypes and coded language. Web 

crawlers search social media platforms collecting text matching the keywords.  Once collected, 

human monitors have to go through all collected text to identify which ones are hate speech and 

which ones are not (Munya, 2017). This human processing of collected text is inadequate as the 

amount of content on social media is huge, significantly limiting how much a human monitor can 

review.  

This work proposed the development of a model that applies machine learning techniques 

to automatically classify tweets as hate speech or not. This automatic classification will 

significantly improve the process of detecting hate speech on social media by reducing the amount 

of time and human effort required. 
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 Research Objectives 

i. To investigate the existing techniques used in hate speech detection in social media, 

ii. To review the current machine learning techniques applied in hate speech detection, 

iii. To develop a model for hate speech detection on twitter, 

iv. To validate the model on twitter posts. 

 Research Questions 

i. What are the existing techniques used in hate speech detection in social media? 

ii. What are the current machine learning techniques applied in hate speech detection? 

iii. How will the model be designed? 

iv. How will the model be validated? 

 Justification  

Hate messages disseminated online are increasingly common, largely attributed to issues 

of anonymity, itinerancy, permanency and cross-jurisdiction of online content (United Nations 

Educational, Scientific and Cultural Organization, 2015). Notably, social media usage during the 

PEV was not only to promote peace and justice but also as a channel for spreading of biased 

information, tribal prejudices and hate speech (Makinen & Kuira, 2008).  

With the upcoming highly contested 2017 general elections, the current political climate in 

Kenya can easily bear comparison to that which preceded the 2007-2008 PEV (Institute For 

Security Studies, 2017). It is therefore of critical importance to monitor and identify instances of 

hate speech, as soon as possible to prevent their spread and possible unfolding into acts of violence 

or hate crimes. 

Text classification is an important technique for the handling and organization of text data 

with a wide range of applications in information retrieval. Currently, NCIC human monitors have 

to sift through numerous online content to identify hate speech in social media. This human 

analysis is overwhelming, time consuming and introduces personal interpretation of what is 

considered as hate speech. Text classification would enable categorization of the huge amounts of 

online data into hate speech or non-hate speech text, significantly reducing the amount of data that 

human monitors have to review, making the process of hate speech detection faster. 
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 Scope and Limitations 

 This study limited its analysis to detecting hate speech on the social media platform 

Twitter and only considered tweets expressed in English and Swahili. The use of sheng’, 

vernacular languages, memes, audios and videos within tweets were not considered.  
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Chapter 2: Literature Review 

 Introduction 

This chapter reviews relevant literature to further comprehend the concept and investigate 

the research problem. The nature of hate speech in Kenya and current processes to monitor hate 

speech on social media is reviewed. Significant and relevant publications and research are further 

reviewed to understand the application of machine learning techniques in text classification. A 

conceptual framework is then presented at the completion of the literature review. 

 Hate Speech in Kenya 

Kenya has a history of hate speech, especially in politics. In 1992, multi-party politics 

coupled with hate speech resulted in ethnic clashes. Similarly, in the 2007 referendum, political 

leaders spread hate speech to incite and promote violence (Nyambane, 2012). The culmination of 

hate speech in Kenya, came during the 2007-2008 PEV after the disputed general elections which 

led to a number of serious human rights violations (Nyambane, 2012). Reports after, found that 

the PEV was largely promoted by ordinary Kenyans and partly by leaders. This was done through 

the use of incitements and calls to violence throughout the campaign period and as the conflict 

unfolded. Media, short messaging services, the internet and mobile phones were used as 

transmitters of hate speech to incite acts of violence (Nyambane, 2012).  

The National Cohesion and Integration Commission (NCIC) was instituted as a consequent 

of the 2007-2008 PEV to oversee and monitor content in media such as radio, television, mobile 

phones and television in a bid to govern hate speech (National Council for Law Reporting, 2008). 

According to the NCIC, a statement does not amount to hate speech unless it: causes hatred, makes 

a group or community look inferior, makes a community or group be viewed with contempt, 

degrades a group or community, or dehumanizes a group or community (National Cohesion and 

Integration Commission, 2011). To be quantified as hate speech, the statement should contain: 

threatening, abusive or insulting messages, sometimes using coded language. These messages 

must be directed towards a targeted group and intended to stir hatred based on the group’s identity 

including: ethnicity, race, color or any other national origin (National Cohesion and Integration 

Commission, 2011).  
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 Hate Speech Detection in Kenya 

While investigating and monitoring hate speech, investigators must take into consideration 

five key aspects: context, ripple effect, fear, possible retaliation and violence (National Cohesion 

and Integration Commission, 2011). A statement can be considered hate speech in one context but 

not in another. Additionally, the same statement might have different levels of impact depending 

on the context, for example ethnic statements may have a higher impact in political environments 

than social settings. The second aspect, ripple effect, and third effect, fear mean that the statement 

should cause some discomfort and fear amongst members of the group being targeted, respectively. 

The fourth aspect, possible retaliation means that the statement should provoke counterattacks and 

finally the statement promotes acts of violence or hate crimes (National Cohesion and Intergration 

Commission, 2013). 

Hate speech in Kenyan online forums has unfortunately become a common occurrence 

with the growth of the internet, social media and mobile computing in the recent past. Social media 

has created a new space for the dissemination of hate speech. Since 200/, the NCIC, Kenyan civil 

society as well as police authorities have put measures to monitor hate speech on traditional 

mainstream media but hate speech on social media remains to hardly monitored (Sambuli et al., 

2013). However, more recently NCIC have put effort into monitoring hate speech on social media 

through the use of web crawlers. 

 Coded Language and Stereotypes in Hate Speech 

Kenya is a multicultural country with over forty two ethnic tribes, each with its own unique 

way of communicating. Almost all ethnic communities in Kenya have some kind of stereotypes 

about them, these stereotypes may be positive or negative (National Cohesion and Intergration 

Commission, 2013). Most negative statements depict feelings of contempt and general hate 

towards targeted communities resulting in heightened friction and animosity among various ethnic 

communities. The negative statements are often expressed in coded language well known to the 

members of the community who use it and may or may not be known to the targeted ethnic 

communities (National Cohesion and Intergration Commission, 2013).  

Generally, negative stereotypes about a target community embody the following scenarios: 

association of the community with a practice considered to be bad by other communities, disdain 

of the target community because of traits considered to be immoral or childish, expression of 
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mistrust about the target community and finally expression of inherent hate towards the target 

community (National Cohesion and Intergration Commission, 2013). Examples of negative 

stereotypes used in Kenya include: attributing members of the Kikuyu community with the term 

thieves, use of the word uncircumcised to refer to members of the Luo community and the 

association of communities with animals as depicted in Figure 2.1 (National Cohesion and 

Intergration Commission, 2013). 

 

Figure 2.1: Hate speech: Association of ethnic communities with animals (National 

Cohesion and Intergration Commission, 2013). 

Majority of incidents of hate speech in Kenya are based on the emphasis of negative 

stereotypes of different ethnic communities. Coded language is used to cause hatred and animosity 

towards certain ethnic communities for selfish gain, especially in the political environment (Siele, 

2013). In the 2007 electioneering period in Kenya, the use of coded language and stereotypes was 

wide spread and partly contributed to increasing tensions which led to the PEV violence between 

different ethnic communities (National Cohesion and Intergration Commission, 2013).  
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 Machine Learning Approach to Detecting Hate Speech 

2.5.1 The Text Classification Problem 

Given a training set D of labelled documents (d, c) where (d, c) ϵ X × C, the text 

classification problem is to learn a classification function γ that maps unseen documents to classes 

as in Equation (2.1) (Manning , Raghavan, & Schutze, 2009). 

 

 γ: X → C (2.1)  

Where X is the document space; and C is a fixed set of classes C= {c1, c2, …, cj}. 

The training set D of documents provided is labelled with respective classes, as such the 

learning is said to be supervised learning. The learning algorithm learns a classification function 

from the training set that maps documents to classes. The classification function is then able to 

map unseen documents to their respective classes as in Equation (2.1). 

2.5.2 Text Preprocessing 

Text classification problems should be able to handle unstructured or semi-structured data 

sets. As such, preprocessing unstructured data is a very important role in the text classification 

problem. Some preprocessing activities include: replacing special characters and punctuation 

marks, normalizing case, removing duplicate characters, removing stop words and stemming 

(Vijayarani, Ilamathi, & Nithya, 2015).  

Stop words are common words which are a portion of natural language that do not add 

meaning to text documents but make the text appear heavier. Since they do not add meaning, stop 

words can be easily removed without affecting the analysis process. Their removal reduces the 

number of features to be considered and as such can improve the performance of a classifier. The 

most common stop words include: articles, prepositions and pronouns (Vijayarani et al., 2015). 

Words in natural language may have a multiple variations in their suffixes, increasing the 

number of features to be considered in analysis. So as to accurately match words, save processing 

time and memory space it may be important to reduce a word to its root by remove the different 

suffixes. This process is known as stemming, where the root or stem of a word is identified and all 

variations of the word reduced to their stem. The assumption made is that words with the same 

base have the same meaning despite their morphological forms and as such can be reduced to the 
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same base. In stemming it is important to keep words that have different meaning separate 

(Vijayarani et al., 2015). 

Term Frequency- Inverse Document Frequency (TF-IDF) is a combination of two 

numerical statistics: Term Frequency (TF) and Inverse Document Frequency (IDF) that shows the 

importance of a term in a document collection. If the frequency of occurrence of a term in a 

document increases, the value of the term also increases. However if the frequency of occurrence 

of a term in various documents in the corpus increases, then the value of the term decreases. Tf-

idf is often used as a weighting factor in many information retrieval and text classification 

problems (Vijayarani et al., 2015). 

2.5.3 Feature Selection in Text Classification 

The feature space for text classification problems consists of all the unique terms that occur 

in a document. The number of features can therefore be quite big for a corpus that is average sized. 

This high dimensionality of the feature space is an inherent characteristics of text classification 

problems and poses a significant problem to many machine learning algorithms (Yang & Pedersen, 

1997). The high dimensional feature space may result in poor accuracy results and over fitting. It 

is therefore important to reduce the feature space to improve performance of the learning 

algorithms, reduce over fitting and improve the time needed to train a model. Feature selection can 

be defined as the process of selecting a subset of the terms occurring in a corpus and using only 

this subset as features in text classification (Manning et al., 2009). This section discusses three 

feature selection methods: chi-square, mutual information and frequency based feature selection. 

2.5.3.1 Chi-square Feature Selection 

In statistics, the χ2 test is applied to test the independence of two events (Manning et al., 

2009). In feature selection for text classification, the two events are the occurrence of a term and 

occurrence of a class. The terms are then ranked according to Equation (2.2) below (Manning et 

al., 2009): 

 

 

 

 

(2.2) 
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Where: 

 et expresses whether the document contains term t or not 

 ec expresses whether the document belongs to class c or not 

 N represents the observed frequency in document D  

 E represents the expected frequency 

χ2 is a measure of how much the expected counts E and observed counts N deviate from 

each other. A higher value of χ2 indicates that the hypothesis of independence is incorrect 

(Manning et al., 2009). In text classification,  χ2  measure can be used to rank features with respect 

to their usefulness, and choosing the k terms with the highest χ2 value. 

2.5.3.2 Mutual Information 

This feature selection approach computes A (t, c) as the expected mutual information of 

term t and class c (Manning et al., 2009). Mutual Information (MI) measures how much 

information the presence or absence of a term contributes to making the correct classification 

decision on c as depicted in Equation (2.3) below (Manning , Raghavan, & Schutze, 2009): 

 

 

(2.3) 

 

Where: 

U is a random variable that takes values et=1 (the document contains term t) and 

et=0 (the document does not contain t) 

C is a random variable that takes values ec=1 (the document is in class c) and ec=0 

(the document is not in class c). 

2.5.3.3 Frequency-based Feature Selection 

This approach is to choose the terms that occur most frequently in a class. Frequency can 

be defined as document or collection frequency. Collection frequency refers to the number of 

tokens of a term t that occur in documents in class c whereas document frequency is the number 
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of documents in the class c that contain term t. The major shortcoming of this approach is that it 

some frequent terms may not add any information to the class but still be selected (Manning et al., 

2009).  

 Document Representation 

Text data cannot be processed by machine learning algorithms as it is. It is therefore 

necessary to convert the text into a format that a machine learning algorithm can process. Two 

common approaches can be used: Bag of Words (BOW) and Vector Space Model (VSM). The 

BOW approach represents documents as a collection of words without any order but keeping their 

multiplicity. All unique words contained in the corpus make up the dictionary. Each document is 

then represented a vector of word frequencies. The assumptions made by this model are that: the 

order of words does not matter and words are independent of each other. Additionally, this model 

does not allow for weighting of terms in specific documents (Mazzonello, Gaglio, Augello, & 

Pilato, 2013). 

The vector space model (VSM) is a generalization of the BOW model that represents 

documents in a corpus using a multi-dimensional document-term matrix. A term may consists of 

more than one word and each unique term represents a dimension in the matrix. Vector elements 

are weights of the term contained in the specific document (Mazzonello et al., 2013).  

 Feature Weighting 

Various weighting schemes could be then used for a document-term matrix. The simplest 

weighting scheme being a simple Boolean 1 if the term appears in the document or 0 if it does not. 

It could also be based on the frequency of the term in the corpus or term frequency (number of 

times the term appears in the specific document). If C is the set of all classes, then TF (t, c) can be 

defined as the frequency of term t in class c, calculated as in Equation 2.4. ) (Mazzonello et al., 

2013). 

 

 

 

(2.4) 

Inverse Document Frequency (IDF) weighting assigns more weight to terms that are not 

very common in the entire corpus. IDF (t) as the percentage of documents in class c in which term 

t appears, calculated as in Equation 2.5 (Mazzonello et al., 2013). 
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(2.5) 

 

A common approach to weighting in text classification problems is Term Frequency-

Inverse Document Frequency (TF-IDF). TF-IDF is a combination of Term Frequency (TF) and 

Inverse Document Frequency (IDF). TF-IDF can then be calculated as the product of Equations 

(2.4) and (2.5) (Mazzonello et al., 2013). Using tf-idf, the highest weight occurs when a term 

occurs often within a few documents, lower when it occurs a less number of times in a document 

or occurs in many documents and lowest when it occurs in all documents (Manning et al., 2009).  

Another type of weighting is sentiment weighting, which refers to weighting terms based 

on their level of positivity or negativity. SentiWordNet is a lexical resource based on WordNet (a 

large lexical database of English synonyms). SentiWordNet associates each set of synonyms in 

WordNet with a numerical value, illustrating the set’s objectivity, positivity and negativity 

(Baccianella, Esuli, & Sebastiani, 2010). This numerical values can be used to weigh terms in the 

text classification problem. 

 Machine Learning Algorithms 

In a machine supervised learning approach, a classifier is built automatically by learning 

the properties of categories from a set of pre-classified training documents. When using machine 

learning techniques four main issues need to be considered: categories that will be used to classify 

the instances, training data, features that will be used to represent each instance and the algorithm 

to be used for categorization (Feldman & Sanger, 2007). This section describes the various 

possible algorithms that can be used in text classification. 

2.8.1 Naïve Bayes 

Naïve Bayes is a simple classification method based on the Bayes rule. Given a document 

d and a set of predefined classes {…ci,…}, the Naïve Bayes classifier first computes the posterior 

probability that the document belongs to each particular class ci P(ci|d), and then assigns the 

document to the class with the highest probability value. The posterior probability is computed by 

applying the Bayes rule as in Equation (3.4) (Bai, Nie, & Paradis, 2004). 
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(2.6) 

The denominator in Equation (3.4) is independent from classes, so it can be ignored for the 

purpose of class ranking. Therefore Equation (3.4) can be approximated as in Equation (2.7) below 

(Bai, Nie, & Paradis, 2004). 

 

 

 

(2.7) 

Naïve Bayes makes a conditional independence assumption, that words are independent 

given a class, that is, for a document d=d1,…,dn, the P(d|ci) can be calculated as in Equation (2.8) 

(Bai, Nie, & Paradis, 2004). 

 

 

 

(2.8) 

Equation (2.8) can then be expressed as in Equation (2.9) below: 

 

 

 

(2.9) 

 

P(ci) in Equation (2.9) can be estimated by the percentage of the training examples 

belonging to class ci as in Equation (2.10): 

 P(c	) = N	
N  

(2.10) 

where N is the total number of training documents and Ni is the number of training documents in 

class ci. 

P(dj|ci) is usually determined as in Equation (3.4)below: 

 Pd��c	� = 1 + countd�, c	�
|V| + N	

 
(2.11) 

Where count (dj, ci) is the number of times that word dj occurs within the training 

documents of class ci, and |V| is the total number of vocabulary. This estimation uses the Laplace 
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(add one) smoothing to solve the zero-probability problem (Bai, Nie, & Paradis, 2004). The zero-

probability problem occurs when unseen terms in the document are encountered due to the scarcity 

in training data (Kilimci & Ganiz, 2015).  

The large size of vocabulary inherent in text classification problems makes Naïve Bayes 

suitable for the text classification problem. Additionally, Naïve Bayes works well with both textual 

and numerical data and is also easy to implement and compute (Swamy, Hanumanthappa, & 

Jyothi, 2014). However, it performs poorly when features are correlated like short texts or news 

headlines classifications. Additionally, the conditional independence assumption is poorly violated 

in real world data (Rana, Khalid, & Akbar, 2014). 

2.8.2 Support Vector Machines 

Support Vector Machines (SVMs) are based on the structural risk minimization principle 

from computational learning theory, whose basic idea is to find a hypothesis h for which we can 

guarantee the lowest true error (Joachims, 1998). SVMs find the hypothesis h which minimizes 

the bound on the true error. SVMs not only have a solid theoretical foundation but also perform 

classification more accurately that most other algorithms, especially in applications involving high 

dimensional data (Joachims, 1998).  

In geometrical terms, a binary SVM classifier can be seen as a hyper plane in the feature 

space separating the points that represent the negative instances. The classifying hyper plane is 

chosen during training as the unique hyper plane that separates the known positive instances from 

the known negative instances with the maximal margin. Notably, SVM hyper planes are fully 

determined by a relatively small subset of the training instances called support vectors illustrated 

as in Figure 2.2 (Manning et al., 2009). 
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Figure 2.2: Support Vector Machine (Manning et al., 2009) 

In his book, Liu (2007) describes SVM as a linear learning system that builds binary 

classifiers. Let the set of training examples D be {(x�, y�), (x�, y�), … , (x!, y!)  } where x	 =
(x	�, x	�, … , x	$) is a r-dimensional input vector in a real-valued space, yi is its class label(output 

value) and y	 ∈ {1, −1}, 1 denotes the positive class and -1 denotes the negative class. To build a 

classifier, SVMs find a hyperplane of the form in Equation (2.12). The hyper plane is called the 

decision boundary. 

 

 f(x) = (w. x) + b (2.12) 

So that an input vector xi is assigned to the positive class if f(x	 ≥ 0), and to the negative class 

otherwise as expressed in Equation (2.13). 

 
y

i
= - 1 if (w. x	) + b ≥ 0

−1 if (w. x	) + b < 0 
(2.13) 

The text classification problem is greatly characterized with high dimensional spaces and 

few irrelevant features due to the large number of terms contained in text documents. SVMs are 

highly applicable to text classification problems because of a number of reasons. Firstly, their 

learning ability is independent of the dimensionality of the feature space. SVMs use over fitting 

protection, which does not necessarily depend on the number of features and therefore have the 
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potential to handle large feature sets inherent in text classification problems. Secondly, SVMs have 

the ability to work with few irrelevant features. This makes them suitable for text classification 

since there are few irrelevant features that can be removed without loss of information. Thirdly, 

for each document the corresponding document vector contains only few entries which are not 

zero. Finally, most text categorization problems are linearly separable (Joachims, 1998). 

2.8.3 Statistical n-gram Language Modeling  

Language modeling has been applied successfully in information retrieval, topic detection 

and tracking and more recently has become mainstream in text classification (Bai, Nie, & Paradis, 

2004) (Pei & Wu, 2014). Largely because it has a solid theoretical foundation in statistics. The 

goal of language modelling is to predict the probability of natural word sequences. Given a word 

sequence w1, w2, …, wt, the probability of any word sequence can be calculated as in Equation 

(2.14) (Peng, 2003). 

 

 

 

 

(2.14) 

An n-gram model approximates this probability by assuming that the only words relevant 

to predicting P(wi|w1,…, wi-1) are the previous n-1 words, i.e. it assumes the Markov n-gram 

independence assumption, depicted as in Equation (2.15) (Peng, 2003). 

 

 

 

(2.15) 

A straight forward maximum likelihood estimate of n-gram probabilities from a corpus is 

given by the observed frequency as in Equation (2.16), where #(.) is the number of occurrences of 

a specified gram in the training corpus (Peng, 2003). 

 

 

 

(2.16) 
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An n-gram language model can therefore be applied to text classification in a similar 

manner to a Naïve Bayes model. A document d is categorized under a category c according to 

Equation (3.4) (Peng, 2003). 

 

 

(2.17) 

N-gram classifiers are actually a straight forward generalization of Naïve Bayes, a unigram 

classifier with Laplace smoothing corresponds exactly to the traditional Naïve Bayes classifier. 

However, n-gram language models, for larger n, possess many advantages over Naïve Bayes, 

including modeling longer context and exploiting superior smoothing techniques in the presence 

of sparse data. In Naïve Bayes, the conditional independence assumption holds, the language 

modeling approach however enhances this by considering a Markov dependence between adjacent 

attributes (words) (Peng, 2003). 

 Related Work 

Recently, there have been many studies applied to social media data to understand various 

aspects of human behavior, the physical environment and social phenomena including hate speech 

detection. This section reviews and discusses various related works. 

2.9.1 Umati Project to Monitor Hate Speech on Social Media 

Umati is a hate speech monitoring project that analyses incidents multilingual hate speech 

in the Kenyan online space such as blogs, forums, online newspapers, Facebook and Twitter (iHub 

Research, 2013). The first phase of Umati involves the use of human monitors to collect and 

analyze hate speech from the various online platforms. The human monitors scour the platforms 

for incidents of hate speech. Once a human monitor encounters a statement that is considered to 

be hate speech, they enter it into an online form, whilst providing additional information about the 

statement in the form. Finally the statement is sorted into one of three categories: offensive speech, 

moderately dangerous speech and extremely dangerous speech (iHub Research, 2013). This hate 

speech detection process is illustrated in Figure 2.4 (iHub Research, 2013).  
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Figure 2.3: Umati Process Algorithm (iHub Research, 2013) 

The current human processing of hate speech text by Umati phase I is time consuming, 

involves a lot of effort and human input. A more automated way of detecting hate speech in text 

would be preferable. The next phase, Umati II will involve the application of machine learning 

and natural language processing techniques to automatically identify instances of hate speech. This 

phase is however on going and not much has been achieved from it.  

2.9.2 Rule Based Approach to Detecting Hate Speech 

Regular expressions are an algebraic notation for specifying search strings (Daniel & 

James, 2000). Regular expressions can be used in classification rule builders to match a wide 

variety of patterns and consequent use of the matches to set classification labels. In his work, 

Maloba (2013) proposes the use of regular expressions to detect hate speech in multi lingual 

(English, Swahili and Sheng’) text. In the work he notes that hate speech in Kenya is mostly 

dependent on ethnic grouping and uses this as the basis for formulating rules based on well-known 

ethnic stereotypes to match and identify hate speech. 

To build the corpora, a number of correspondents were asked to come up with statements 

that they deem hateful and not hateful towards their own community or other communities in any 
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of the three languages under consideration. Each statement received in one language was translated 

to its equivalent in the other two languages. From the collected corpora, individual words and 

sentences that make the submitted statements hateful were identified and grouped according to the 

ethnic community being targeted. The author then builds regular expressions from the group to 

identify instances of hate speech (Maloba, 2013).  

2.9.3 Machine Learning Approaches  

In their paper, (Ogada et al., 2015), use language modeling to improve performance of a 

naïve Bayes classifier in detecting hate speech. The work notes that the naïve Bayes model makes 

strong assumptions that the words in a document are independent, and further notes that this 

assumption is clearly violated in natural language text. The authors try to address this problem and 

show that it can be solved by modeling text data differently using N-grams. The paper analyses 

the efficiency of n-grams as features with various machine learning algorithms and shows that 

bigrams have much better performance for naïve Bayes text classification. K-Nearest Neighbor 

(KNN) has the same accuracy for unigram, bigrams and trigrams while SVM has the highest 

accuracy value for bigram and trigram. The results are as depicted in Figure 2.4 below (Ogada et 

al., 2015): 

 

Figure 2.4: Accuracy Values for Test Data (Ogada et al., 2015) 

In their paper Gebre et al., (2013), use TF-IDF weighting with linear classifiers to improve 

the task of identifying the native language of a writer based on the writer’s foreign language 

production. The native language identification problem is modeled as a classification problem 

where machine learning classifiers are used to assign labels of the native language to texts. They 

obtain the best classification accuracy when TF-IDF weighting is used with unigram and bigram 

terms (Gebre et al., 2013). 

 Conceptual Framework 

Based on the literature reviewed and the various gaps identified, this work proposes the 

following conceptual framework to detect hate speech from twitter. Hate speech relevant data will 
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be collected from twitter and used to create the corpus necessary for learning. The tweets will be 

annotated as hate speech or non-hate speech and then go through a number of steps in the 

preprocessing phase including: removal of punctuation marks, removal of stop words and 

conversion to lower case. The tweets will be represented in a document-term matrix, using unigram 

terms with TF-IDF feature weighting found to work well in classification problems.  

For its suitability in text classification problems, SVM algorithm will then be applied to 

learn a model for detecting hate speech, from the training set. The model’s performance will be 

evaluated based on the metrics: accuracy, precision, recall and the F-Score. Once the model has 

reached an acceptable level of performance, it can be used to detect new instances of hate speech 

in other tweets. A user will specify keywords to be used to retrieve unobserved tweets from the 

Twitter Search Application Programming Interface (API). The tweets will be preprocessed in a 

similar manner to that used in training and input into the SVM model created to be classified as 

either hate speech or non-hate speech. The classification results will then be displayed to the user. 

Figure 2.5 below depicts this conceptual framework of the proposed prototype.  

  

 

Figure 2.5: Conceptual Framework 
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Chapter 3: Research Methodology 

 Introduction 

Research can be defined as the process of systematically solving problems (Bhatnagar & 

Singh , 2013).  This section describes the various methods and procedures that were adopted in 

carrying out the research. This research was guided by the objectives that the author proposed to 

meet at the end of the research. It was greatly informed by the nature of hate speech in Kenya and 

research approaches that had been used in similar work reviewed in chapter 2. The research 

employed an applied approach to design, implement and test SVMs. Primary data in the form of 

historical twitter posts identified as hate speech were used to train the model and facilitate the 

research. Experiments were designed to validate the model and determine the best configuration 

of feature types, feature weighting schemes and machine learning algorithm to be used to detect 

hate speech on twitter. 

 Research Design 

A research design is a blueprint describing how a research study is to be completed: 

operationalizing variables so they can be measured, selecting a sample of interest to study, 

collecting data to be used as a basis for testing hypotheses, and analyzing the results (Thyer, 1993). 

This research took an experimental design approach, which involved the identification of research 

objectives, building of the SVM model as a proof of concept and validation of the model using a 

number of experiments to ensure the best performance (Creswell, 2003). 

3.2.1 Target Population and Sampling 

A population is defined as the total number of units in a study environment from which a 

sample may be selected (Bryman, 2012). Twitter posts associated with hate speech in Kenya were 

chosen as the population of this research. Purposive sampling was applied in the research, where 

the sample was determined based on the judgement of the researcher with prior knowledge of 

characteristics of tweets that constitutes hate speech.  

3.2.2 Data Collection 

Interviews were used to gain additional insight on the techniques currently used by NCIC 

to detect hate speech on social media, to determine the user requirements of a system to detect hate 

speech on twitter, and to provide further guidelines on the type of keywords to be used in the 

mining of twitter. The guide used for the interviews is attached in Appendix B. 
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The NCIC provided keywords used to mine twitter for instances of hate speech. These 

keywords are terms frequently found in text that is determined to be hate speech. A sample of the 

keywords is as depicted in Table 3.1.  

Table 3.1: Keywords to Search Twitter for Hate Speech Related Tweets 

wabaara malizia wao kikuyu thief 

kukuyu ncic kenya nyani kikuyu 

tunavu National cohesion and intergration 

should see this 

madoadoa 

wahame Okuyu kalenjin 

tutawamaliza Jaluo wakamba ni wajinga 

2tutawamaliza no raila no peace Wakikuyu ni wajinga 

katakata wajaka ni wajinga kill duale 

kill kikuyu   

 

3.2.3 Mining Twitter 

To build the corpora, hate speech related tweets were collected from Twitter. Twitter 

allows developers to access tweets using two APIs: the Representational State Transfer (REST) 

API and the Streaming API. Both APIs require the use of Open Authentication (OAuth) to allow 

applications to get access to them and issue responses in JavaScript Object Notation (JSON) 

format. The REST API enables developers to read and write Twitter data. An important component 

of the REST API is the Search API which enables developers to query against indices of recent 

tweets up to 7 days old. The Streaming API allows developers to process tweets in real time, 

continuously delivering responses in JSON format over long lived HTTP connections (Twitter, 

2017). 

While extremely helpful, the two API have limitations in that they cannot be used to access 

tweets more than seven days old. To build a comprehensive corpora it was necessary to collect 

tweets much older than seven days. A number of online tools exist that aggregate historical tweets 

and provide access to them such as Gnip API (Gnip, 2017). Most of these tools are made available 

to developers at a cost. This work made use of Jefferson Henrique’s open source code made 

available through GitHub to retrieve the required data from twitter. The open source code mimics 

the working of the search feature on twitter through a browser to retrieve the older tweets 

(Jefferson, 2017). It allows the collection of old tweets using various parameters as depicted in 

Table 3.2 (Jefferson, 2017).  
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Table 3.2: Jefferson's Search Parameters 

Using Jefferson’s open source code, tweets were collected from twitter based on keywords 

provided by the NCIC for commonly found terms in instances of hate speech. The terms used to 

collect tweets included: okuyu, tunavu, nyani kikuyu, tutawamaliza, madoadoa, kill luo, kill duale, 

kill kikuyu, Kalenjin, kukuyu and kikuyu thief. A total number of 14055 tweets were collected 

based on the preceding keyword search parameters and persisted in a csv file. 

3.2.4 Corpus Construction 

Once collected the tweets had to be labelled as hate speech or not hate speech. The class 

label 1 was used for tweets found to be hate speech and -1 for tweets found to be not hate speech. 

The research used guidelines provided by the NCIC in the labelling process to determine what 

tweets are hate speech and which ones are not. These guidelines are described in Section 2.2 of 

this document. To further guide the labelling process, the NCIC also provided the researcher with 

sample hate speech text as depicted in Table 3.3.  

Table 3.3: Sample Hate Speech Data 

we w’ll deal with the kikuyus pependicularly, already we hv sent a warning to them to vacate 

nyanza region 

This time cord must win elections wapende wasipende kama sio hivyo kikuyu warudi kwao 

These round again we should not see these happening in ur land pro. Seno have never 

participated in the mmu demonstration the NCIC should not try to intimidate him by all means 

we will support him up to ur cows and goats leave about our leaders and may God be with 

because he is innocen. Some people who thought we are incited by him to demand ur lectures 

to come to classes then ur lost and for sure no stone will be left unturned these round na 

tumechoka saa na watu wengine wataona. 

I hate kikuyus cz all r devils hiding in sheep wool 

Yes, Lamu Governor has sued us on hate speech. 

I have received a call to appear before National Cohesion and Integration 

Commission(NCIC), on allegation of hate speech. 

Parameter Description 

Query search A query text to be matched 

Username Username of a specific twitter account 

Bound dates since The lower bound date 

until The upper bound date 

Maxtweets The maximum number of tweets to retrieve 
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I strongly believe that this is a ploy to #silence me, because of my firm stand on issues that 

matter and are of importance to the people of Bahari Ward and Lamu at large 

Duale should be taken to the streets of Kisumu and be forced to abuse Raila Odinga ten times 

infront of the crowd. 

If he survives of which I doubt, he will come back and testify to his fello sychopants like 

kipchumba murkomen and Moses Kuria and they will change and there will be some reforms 

in the government.. 

These people should not take kenyans for a ride. We know very well these Somali people 

have no leadership qualities and what Duale want is this country to stumble like his country 

Somalia so that we can be equal. 

Once an alshabaab is always an alshabaab and once an ISIS is always a bomber. Duale and 

Kuria should stop hypocrisy 

It is time CORD asks  the 4 dead fools from Siaya and Kisumu to wake up and go home. If 

the cops are acting up lets end the morgue drama too 

I blame the UON KIKUYU students for refusing to join in demo to remove Babu Owino. 

Kikuyus are never progressive, no wonder all your men are thieves and women are prostitutes. 

JIGGERS 

Wajaluo wote wahame  

 

From the 14055 collected tweets, a total of 1904 tweets were labelled, of which 785 tweets 

were labelled as 1(hate speech relevant) and the rest 1119 labelled as -1(not hate speech relevant) 

as illustrated in Table 3.4. 

Table 3.4: Corpus Description 

Hate Speech 

Tweets 

Non- Hate 

Tweets 

Total 

1119 785 1904 

3.2.5 Data Preprocessing 

The text data collected was in an unstructured format that was not suitable for machine 

learning. Preprocessing of the data was done as depicted in Figure 3.1. The stop words removed 

from the tweets included commonly occurring terms such as hashtags, mentions and URL links. 
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 Model Training 

The collected text was represented in a document-term matrix with tf-idf feature weighting 

to enable the application of SVM machine learning algorithm. The collected texts were split into 

training sets and testing sets, to be used to train and validate the model respectively. Seventy 

percent of the labelled data was used for training and the remaining thirty percent used to evaluate 

the model. 

 System Development Methodology 

The prototype was developed following the Rapid Application Development (RAD) 

system development methodology which emphasizes on creation of applications in a short amount 

of time, sometimes with compromises in usability, features and execution speeds (Naz & Khan, 

2015). Developed by James Martin, RAD accelerates the cycle of development of an application, 

resulting in the building of quality products faster and consequently saving valuable resources. 

3.4.1 Overview of RAD Structure 

The RAD phases and tasks involved in each stage can be depicted diagrammatically as in 

Figure 3.2 below (Orawit, 2006). 

 

 
Remove punctuation marks 

Normalize case 

Remove stop words 

Unstructured text data 

Preprocessed data 

Figure 3.1: Preprocessing data 
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Figure 3.2: Overview of RAD (Orawit, 2006) 

3.4.2 Phases of RAD 

The James Martin approach to RAD divides the process into four distinct phases as 

depicted in Figure 3.3 (Orawit, 2006).  

 

Figure 3.3: Phases of RAD (Orawit, 2006). 

3.4.2.1 Requirements Planning Phase 

In this phase, requirements of the hate speech detection prototype were obtained through 

the use of interviews with an aim of establishing a general understanding of: existing systems and 
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processes, challenges encountered while monitoring hate speech online and the possible eventual 

use of the system (Orawit, 2006). 

3.4.2.2 Design Phase 

In this phase, the structure and architecture of the prototype was designed. Unified 

Modelling Language (UML) diagrams were designed to depict various components and aspects of 

the system including use case diagrams, context diagrams, data flow diagrams and sequence 

diagrams. 

3.4.2.3 Construction Phase 

After completion of the detailed design of the proposed system, the prototype was 

implemented using python as a development language. Python’s scikit-learn library was used to 

give an implementation of the various machine learning algorithms. The pandas library was used 

to provide easy to use data structures that ease the data analysis and manipulation process. After 

implementation, testing was done to validate the model proposed by the researcher. A number of 

experiments were conducted to determine the best configuration of feature types, feature weights 

and machine learning algorithm to be used. 

3.4.2.4 Transition Phase 

After construction and validation of the model the prototype was deployed for prediction 

to monitor other unobserved instances of hate speech on twitter.  

3.4.3 Justification for choosing RAD 

RAD was chosen as the system development methodology as it enables fast development 

of high quality systems at a relatively low cost. In addition to this RAD is suitable for development 

of the system because the project is small scale and scope is highly focused and well defined. 

 Research Quality 

The performance of text classifiers was evaluated experimentally since the text 

classification problem is not well defined (Feldman & Sanger, 2007). A testing set that contained 

labelled examples of hate speech and non-hate speech text that had not been observed by the model 

during training were used to evaluate the model.  The test set was fed into the model for prediction 

and predicted results compared to the actual target results. From this comparison four categories 

are identified: True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives 
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(FN). True positives refers to instances of hate speech text that were correctly identified as hate 

speech whereas true negatives are instances of non-hate speech text correctly predicted as non-

hate speech. False positives are the instances of non-hate speech text incorrectly classified as hate 

speech whereas False Negatives are instances of hate speech text incorrectly determined to be non-

hate speech (Feldman & Sanger, 2007). These four categories can be illustrated in a confusion 

matrix as in Table 3.4. 

Table 3.5: Confusion Matrix 

 Actual Class 

Hate Speech Non-Hate 

Speech 

Predicted 

Class 

Hate 

Speech 

TP FP 

Non-Hate 

Speech 

FN TN 

3.5.1 Evaluation Metrics 

The four categories: true positive, false positive, false negative and true negative form the 

basis of the metrics that were used to evaluate the classification model including accuracy, 

precision, recall and F-Score (Feldman & Sanger, 2007). 

Accuracy measures the percentage of inputs in the test set that the model correctly labelled 

either as hate speech or non-hate speech. It is calculated as in Equation (3.1) (Feldman & Sanger, 

2007). 

 Accuracy = True Positives + True Negatives
N  

(3.1) 

where N is the size of the test set. 

Precision is the ratio of correctly classified documents to the total number of documents 

classified under a particular category. Precision is a measure of false positives calculated as in 

Equation (3.2) (Feldman & Sanger, 2007).  

 Precision = True Positives
True Positives + False Positives 

(3.2) 
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Recall is defined as the number of correctly classified documents among all documents 

belonging to that category. Recall is a measure of false negatives calculated as in Equation (3.3) 

(Feldman & Sanger, 2007). 

 Recall = True Positives
True Positives + False Negatives 

(3.3) 

 

F-Score is a harmonized mean of precision and recall calculated as in Equation (3.4) 

(Feldman & Sanger, 2007). 

 F − Score = 2 ∗ Precison ∗ Recall
Precision + Recall 

(3.4) 

 

3.5.2 Visualization of the Model 

Tables and graphical representations were used to illustrate the model performance. The 

tables were used to display and give comparison of accuracy, precision, recall and F- score value 

in different experiments. A Receiver Operating Characteristic (ROC) curve was drawn to visualize 

the performance of the classifier. An ROC plots the true positive rate against the false positive rate 

as the output threshold is varied over the range of all possible values. The true positive rate depicts 

the sensitivity of the classifier whereas the false positive rate shows the sensitivity of a binary 

classifier (Hainard et al., 2011). The Area Under the Curve (AUC) of an ROC curve measures 

performance of a classifier, in terms of the ability of a model to correctly discriminate between 

classes. A higher AUC value, shows a good ability to classify hate speech and non-hate speech 

text. The AUC value is maximal at 1.00 where the classifier doesn’t make any error and minimal 

at 0.5 where the model is considered useless and arbitrarily classifies hate speech text, in this case 

the ROC curve is aligned diagonally (Hainard et al., 2011). 

 Model Validation 

To validate the researcher’s approach, a number of experiments were used to determine if 

the best combination of feature types, feature weighting and machine learning algorithms was used 

to train the model for hate speech identification. The machine learning algorithms considered in 

the experiments were SVM, Naïve Bayes and k-Nearest Neighbor. Basic count and tf-idf were 
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considered for feature weighting and n-grams used as feature types, specifically unigrams, bigrams 

and trigrams.  

3.6.1 Experiment 1: Use of Different Machine Learning Algorithms 

The aim of this experiment was to compare the performance of the linear SVM model 

proposed by the researcher with two other machine learning algorithms (Naïve Bayes and k-

Nearest Neighbor) using the same tf-idf feature weighting on the same training and testing sets. 

3.6.2 Experiment 2: Use of Different Feature Types and Weighting Schemes 

The aim of this experiment was to determine the effect of using different combination of 

feature types with different weighting schemes on the SVM model. The three features types used 

included: unigrams, bigrams and trigrams, whereas the feature weighting schemes considered were 

basic count and tf-idf. This experiment was repeated for both Naïve Bayes and kNN to determine 

which combination produces the best results, as experiment 3 and 4 respectively. 
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Chapter 4: System Design and Architecture 

 Introduction 

This chapter describes the overall architecture and detailed design of the proposed prototype by 

incorporating various requirements. UML diagrams were used to: describe the overall architecture 

of the system; give detailed descriptions of the various components of the system and illustrate 

interaction between the users and various components of the system. To achieve this, various 

design diagrams were developed including: a depiction of the system architecture, use case 

diagram followed up with comprehensive use case descriptions, sequence diagrams, context 

diagrams and data flow diagrams. 

 Requirement Analysis 

This research aimed at developing a model for monitoring hate speech on twitter. Based 

on this objective, this section outlines the various requirements to be provided for by the proposed 

solution. 

4.2.1 Functional Requirements 

i. The application should allow a user to enter keywords to be used as search 

parameters in the retrieval of tweets from the Search API. 

ii. The application should retrieve tweets from Twitter using the Twitter Search API 

matching the keywords specified by the user. 

iii. The application should preprocess the retrieved tweets to clean them and store them 

in a csv file. 

iv. The application should perform feature weighting and represent the tweet in a 

document term matrix suitable for machine learning. The feature weighting should 

be done in a similar manner to the one used in training the model. 

v. The application should classify the tweet as hate speech or not hate speech using 

the support vector machine model already trained. 

vi. The application should display to the user the tweets labelled as hate speech. 
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4.2.2 Non-Functional Requirements 

4.2.3 Usability  

The intended users of the proposed solution are the Information and Communication 

Technology (ICT) staff at NCIC. It is intended that the interaction between these users and the 

model shall be simple to allow them collect data from twitter easily and view prediction results. 

4.2.4 Scalability 

If there is an increase in the amount of twitter posts matching user keywords searched, the 

proposed solution should be able to handle the extra load, collecting the tweets and predicting their 

labels without breaking down.  

4.2.5 Persistent Storage 

The system should provide permanent storage for tweets identified as hate speech. Such 

tweets may be used as required as evidence in prosecuting hate speech and as such must be 

retrievable as and when needed. 

 System Architecture 

The system architecture shows the general layout of the twitter hate speech monitoring 

prototype and the components it is made up of as illustrated in Figure 4.1. The hate speech 

detection process begins with the user entering a keyword to be used to retrieve matching tweets. 

The tweets collector module receives the keyword and collects tweets matching the keyword from 

the Twitter Search API and stores them in a database. The tweets collected are then preprocessed 

to clean the tweets. The cleaned tweets are then transformed to a document-term matrix suitable 

for machine learning using the feature transformer module. The transformation used is the same 

one as the one used in training the classifier. The document-term matrix is then input into the SVM 

classifier module and the tweet classified as hate speech or not. Labelled tweets are then presented 

back to the user and the same persisted in storage. 
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Figure 4.1: System Architecture 

 Use Case Diagram 

Use case diagrams are used to illustrate interaction between actors and the system. Figure 

4.2 illustrates these interactions between the various actors and the proposed hate speech detection 

prototype. The diagram also depicts the functionality that the proposed system should have.  



34 

 

 

Figure 4.2: Use Case Diagram 

4.4.1 Detailed Use Case Descriptions 

This section provides comprehensive descriptions for the use cases in Figure 4.2 in a two-

column fully dressed format. 

Use case: Search Tweets, Retrieve Tweets 

Primary Actors 

User 

Twitter Search API 

Preconditions 

Search Tweets use case completed successfully 

User has access to internet on platform being used 

Post conditions 

System fetches tweets from Twitter Search API matching the keywords provided 

Main Success Scenarios 

Actor Intention System Responsibility 

1. User enters the keywords to be used  

 2. Pass keywords entered as parameter to 

be used to retrieve tweets 

Twitter Search API 

SVM 

Model 

System for Hate Speech Detection on Twitter 
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 3. Fetch tweets from Twitter Search API 

using the parameters entered 

 4. Save tweets collected 

5. View tweets collected  

Extensions 

At any time the system fails to retrieve tweets: 

         Confirm that there is internet access 

         Restart the system 

 

Use case: Preprocess Tweets, Transform Features, Classify Tweets 

Primary Actors 

System 

User 

Preconditions 

Tweets were retrieved and stored successfully 

Post conditions 

Tweet accurately classified as hate speech or not 

Main Success Scenarios 

Actor Intention System Responsibility 

1. User initiates classification  

 2. Preprocesses the tweets to clean them 

as per the SVM model 

 3. Transforms tweets to document-term 

matrix format as per the SVM model 

 4. Classify tweets as hate speech or not 

using SVM model 

 

Use case: Receive Feedback 

Primary Actors 

User 

Preconditions 

Successful classification of the tweets by the system 

Post conditions 

User views tweets labelled as hate speech 

Main Success Scenarios 

Actor Intention System Responsibility 

1. User requests results of classification  

 2. Return the output of classification 

 3. Display time taken  

4. Exit the system  
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 Sequence Diagram 

The sequence diagram depicted in Figure 4.3 shows the sequence of interactions between 

the user and the proposed system as well as interactions between the various internal components 

of the system. The user enters keywords to be used as search parameters for twitter through the 

web platform. Once the keywords are obtained, they are passed on to the Twitter Search API which 

returns JSON results that are saved into a csv file. The user can then initiate classification of the 

retrieved tweets. In so doing, the web platform passes the message cleantweet() to the preprocessor 

which preprocesses the tweets and returns clean tweets. The getfeatures() message is passed to an 

instance of the FeatureExtractor which consequently returns a document term matrix. The 

document term matrix is then passed to an instance of classifier using the classifytweet () message 

and a classification of hate speech or non-hate speech returned. The cleantweet (), getfeatures () 

and classifytweet () messages are repeated for all retrieved tweets. The user can finally request for 

classification results for all the tweets retrieved. 

 

Figure 4.3: Sequence Diagram 

 Context Diagram 

The context diagram as depicted in Figure 4.4 illustrates the boundary of the prototype, its 

environment and the entities that interact with it.  It also shows the various inputs and outputs from 

the prototype to the entities. The main entities interacting with the proposed prototype are a user 

3: viewresults() 

3.1: viewresults() 
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and the Twitter Search API. The user gives a download request that contains keywords to be 

matched by the Twitter Search API. The model passes the requests to the Twitter Search API 

which requires verification of the application to use the API. The model provides confirmation of 

API details to finalize the connection. The Search API retrieves tweets matching the download 

request and returns them to the model, which in turn returns the retrieved tweets to the user. The 

user issues a prediction request to the hate speech detection model which classifies the tweets and 

returns the labels of the tweets back to the user.  

 

Figure 4.4: Context Diagram 

 

  Level 0 Data Flow Diagram 

The level 0 Data Flow Diagram (DFD) depicted in Figure 4.5 gives a more detailed view 

of the prototype by illustrating the various processes contained in the module, data stores and 

entities. Arrows depict the flow of data among various components of the DFD. Process 1 called 

Collect Tweets receives a download request from the user and passes the request to the Twitter 

Search API entity. The API upon successful validation of API credentials returns retrieved tweets 

matching the download request. Process 1 stores the retrieved tweets in data store D1 called 

retrieved tweets. Process 2 (Clean Tweets) receives a prediction request from a user, reads tweets 

from data store D1 and cleans them. The cleaned tweets are then stored in data store D2 known as 

clean tweets. Process 3 known as Extract Features reads clean tweets from data store D2 (clean 

tweets), extracts and weighs the tweet producing a document term matrix that is suitable for 

machine learning. The document term matrix is fed into process 4: Classify Tweets which labels 
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the tweets as hate speech or not hate speech and writes the labelled tweets to data store D3 called 

labelled tweets. Process 5 (Give Feedback) receives a feedback request from the user, reads the 

labelled tweets from data store D3 and outputs the labelled tweets to the user. 

 

Figure 4.5: Level 0 DFD 
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Chapter 5: System Implementation and Testing 

 Introduction 

This chapter describes how the prototype was implemented, tested and validated. It begins 

by describing the process of building a hate speech corpus for machine learning. The preprocessing 

process is then discussed after which the model can be trained. The model is then tested against 

the test set and obtains an accuracy of  

To further validate the researcher’s approach experiments described in Chapter 3 were 

implemented to determine the best configuration of feature types, feature weighting and machine 

learning algorithm for detecting hate speech on twitter. The best performance is achieved when 

SVM model is used with bigrams features weighted using tf-idf. The final section of this chapter 

describes the use of the model in predicting other unobserved tweets. 

 Building the Corpus 

As detailed in section 0, tweets were collected using Jefferson Henrique’s open source tool 

using keywords provided by NCIC. Figure 5.1 illustrates the collection of tweets using Jefferson 

Henrique’s tool. 

 

Figure 5.1: Collecting Historical Tweets from Twitter 
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 Preprocessing 

The data collected for training was in an unstructured format unsuitable for application of 

machine learning techniques. As such it was imperative to preprocess the data before passing it to 

the training model. Some of the raw unstructured data collected is as depicted in Figure 5.2 below. 

 

Figure 5.2: Sample Tweets Collected 

Tweets often contain a number of different types of information including usernames, date, 

retweets, favorites, text, geo, mentions, hashtags, id and permalink. The research was only 

interested in the text part of the tweet to build the corpora. The collected tweets were therefore 

processed to separate the various parts as illustrated in Figure 5.3 so as to easily extract the text 

part of the tweet that is relevant to this study. 

 

Figure 5.3: Collected Tweets with Separated Columns 

On analysis of the text contained in the collected tweets a number of twitter specific terms 

existed that were not informative in the context of the research. Such observed terms included 

retweets (RT), mentions (@username), hashtags (#), and URL links and non-utf8 characters in the 

tweets. These occurrences were unnecessary for building the corpora and were therefore removed 

using regular expressions as depicted in the code snippet in Figure 5.4.  
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Figure 5.4: Regex Removal of Common Twitter Terms 

Further preprocessing was done to remove punctuation and lower case the tweets. A sample 

of the clean tweets is as depicted in Figure 5.5. The tweets were then labelled as 1 for hate speech 

tweet and -1 for non-hate speech tweets to facilitate supervised machine learning as depicted in 

Figure 5.6. 

 

Figure 5.5: Sample cleaned tweets 
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Figure 5.6: Sample Labelled Tweets 

 Training the model 

Once the tweets were preprocessed and evaluated, training of the model could proceed. To 

train the model, the csv file containing preprocessed and labelled tweets is read into a pandas Data 

Frame. A Data Frame is a two-dimensional labeled pandas data structure made up of columns of 

potentially different types (Pandas, 2017).  The corpus was then randomly split into two sets using 

the train_test_split method of the scikit-learn library; 70 percent of the corpus was used to train 

the model whereas the remaining 30 percent was used to test its performance. Before the training 

data could be passed to the SVM classifier for training, it had to be converted into a document 

term matrix suitable for learning. A count vectorizer was used to convert the text into a matrix of 

token counts. Since no dictionary had been defined beforehand and no feature selection method 

was used, the number of features used was equal to the vocabulary size found by analyzing the 

data. Tf-idf weighting was then applied to the matrix to transform the counts into tf-idf weights. 

An SVM classifier could then be applied to the document term matrix.  

This work made use of an implementation of SVMs provided by Python’s scikit-learn 

machine learning library. Scikit-learn’s CountVectorizer module was used to transform the 

training data into a matrix of token counts and the TfIdfTransformer used to transform the counts 

using tf-idf weighting. The vectorization and transformation steps can be combined into a single 

scikit-learn pipeline. Scikit-learn’s pipeline was therefore used to chain the three processes of 

vectorization, transforming and specifying the classifier into one pipeline. Figure 5.7 shows the 

SVM implementation with count vectorizer and tf-idf weighting, the function receives the training 

data X with the labels y, learns and returns an SVM model. 
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Figure 5.7: SVM Implementation 

 Testing the Model 

The test set (30 percent of the labelled data) was used to validate the model. The test set 

was passed to the learnt model to be predicted and the results of the predicted compared with the 

actual labels on the test data. Consequently, a confusion matrix was output to describe the 

performance of the implemented model. The confusion matrix is depicted in Table 5.1. 

Table 5.1: Confusion Matrix for Implemented Model 

 Actual -1 Actual 1 

Predicted -1 258 83 

Predicted 1 56 175 

The values for True positive, true negative, false positive and false negative were 

determined from the confusion matrix as illustrated in Table 5.2. 

Table 5.2: Values from the confusion matrix 

True Positive 175 

False Positive 56 

True Negative 258 

False Negative 83 

The metrics: accuracy, recall, precision and f-score can then be calculated from the values 

in Table 5.2 and summarized as in Table 5.3. Accuracy is determined to be 75.69 percent calculated 

as in Equation (3.2). 

Table 5.3: Performance of the SVM model 

 Precision Recall F-Score Support 

-1 0.82 0.76 0.79 341 

1 0.68 0.76 0.72 231 

Total/ 

Average 

0.76 0.76 0.76 572 
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Additionally, an ROC curve was drawn to visualize the performance of the classifier as 

illustrated in Figure 5.7. 

 

Figure 5.8: ROC curve for the SVM model 

 

 Using the Model in Prediction 

Using the model to predict other tweets involves the user entering keywords which are used 

to retrieve tweets from the Twitter Search API and passing the tweets to the built model for 

prediction. To avoid retraining the model every time it was required for prediction, the model had 

to be persisted, this involved dumping the model in a pickle file done using the joblib module in 

sklearn using the code illustrated in Figure 5.9. The model then needs to be loaded when required 

to predict retrieved tweets from the Twitter Search API. 

 

Figure 5.9: Persisting the learnt model 

To retrieve tweets the Twitter Search API was used. An application was created on twitter 

to obtain the necessary keys for OAuth as depicted in Figure 5.9. Upon successful registration, the 

user is issued with the following keys to be used in authentication:  access key, access secret key, 
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consumer key and consumer secret key. The prediction module can use the keys to request access 

to the search API to facilitate the collection of tweets.  

 

Figure 5.10: Application Registration on Twitter 

5.6.1 Collecting Tweets 

A user interacts with the application by entering the keywords to be used to retrieve tweets 

from Twitter using the Search API. Once the user enters the keywords they are passed to the collect 

tweets module in Appendix C.  The module retrieves tweets from the Search API in JSON format 

and saves them in a text file. Figure 5.11 illustrates the user interface for the web platform to 

receive keywords from the user. 
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Figure 5.11: User Interface to obtain keywords from the user 

 

5.6.2 Preprocessing Tweets 

The collected tweets have to go through a number of preprocessing steps similar to the 

ones done when training the module. The text file containing the read files is read, the text part of 

tweets extracted and cleaned to remove hashtags, mentions, URL links and non utf8 characters. 

The cleaned tweets are then stored in a csv file ready for prediction. 

5.6.3 Predicting Labels for Tweets 

In this phase, cleaned tweets are read from the csv file and passed to the persisted trained 

model that needs to be loaded from a pickle file. The model labels the tweets as hate speech or not 

and returns the results to the user. Figure 5.12 shows a sample of predicted tweets by the system. 
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Figure 5.12: Sample results returned from prediction 

 Implementation of Experiments 

The experiments described in section 3.6 were implemented to validate the researcher’s 

approach in detecting hate speech from twitter. The same scikit-learn library was used to 

implement the four scenarios: including the use of Naïve Bayes and kNN as the machine learning 

algorithms and use of different combination of feature types and feature weighting schemes. The 

code for the implementation of the experiments is in Appendix B and the results of the experiments 

are discussed in Chapter 6.  
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Chapter 6: Discussions 

 Introduction 

This chapter discusses the results of the research in light of the objectives set out at the 

beginning. The objectives of this research were to develop a hate speech monitoring prototype to 

detect hate speech from twitter and validate it. An SVM model was created using unigram features 

and tf-idf weighting, and its performance tested against the test set. A number of experiments were 

additionally implemented to validate the researcher’s approach in detecting hate speech from 

twitter. The experiments show that the best performance is achieved when bigram features are 

used with tf-idf weighting.  

 Experiment Results 

6.2.1 Using Different Classifiers 

The aim of this experiment was to compare the performance of the linear SVM model 

implemented with two other machine learning algorithms (Naïve Bayes and k-Nearest Neighbor) 

using the same tf-idf feature weighting where a term is considered to be a word (unigram). The 

results of the experiment are summarized in Table 6.1 and visualized using ROC curves as depicted 

in Figure 6.1. 

Table 6.1: Performance Comparison of Different Classifiers 

Classifier Accuracy Precision Recall F-Score 

Linear SVM 0.7569 0.76 0.76 0.76 

Multinomial Naïve 

Bayes 

0.7342 0.73 0.73 0.73 

KNN 0.7010 0.70 0.70 0.70 

 

The results in Table 6.1 show that the linear SVM model performs better than both the 

Multinomial Naïve Bayes and kNN across all the metrics (accuracy, precision, recall and f-score). 

Similarly, ROC curves in Figure 6.1 show that the linear SVM outperforms both kNN and Naïve 

Bayes with an AUC of 0.76. 
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Figure 6.1: ROC Comparison of Different Classifiers 

6.2.2 Experiment 2: SVM performance using various feature types 

The aim of this experiment was to determine the effect of using different feature types and 

weighting schemes on the SVM model. The three features types considered included: unigrams, 

bigrams and trigrams, whereas the feature weighting schemes considered were basic count and tf-

idf. The results of the experiment show that the SVM model performs best on the hate speech data 

when bigram features are considered with tf-idf weighting as depicted in Table 6.2. The results 

also show that better results are obtained when tf-idf weighting is used for each of the three features 

(unigram, bigram and trigram) 

Table 6.2: SVM Performance Using Different Features and Weighting Schemes 

Feature Weighting Accuracy Precision Recall F-Score 

Unigram counts 0.7412 0.74 0.74 0.74 

Tf-idf 0.7569 0.76 0.76 0.76 

Bigram counts 0.7534 0.75 0.75 0.75 

Tf-idf 0.7622 0.77 0.76 0.76 

Trigram counts 0.75 0.75 0.75 0.75 

Tf-idf 0.7587 0.77 0.76 0.76 

 

6.2.3 Experiment 3: Naïve Bayes with Different Feature Types 

This experiment was similar to experiment 2 and was set up to determine the performance 

of a Naïve Bayes classifier on the hate speech data given different feature types and weighting 

schemes. The text documents were represented using unigram, bigram and trigram features and 
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count and tf-idf used for feature weighting. The results in Table 6.3 show that the best performance 

of the Naïve Bayes classifier is obtained when bigram counts are used.   

Table 6.3: Naive Bayes Performance Using Different Features and Weighting Schemes 

Feature Weighting Accuracy Precision Recall F-Score 

Unigram counts 0.7290 0.74 0.73 0.73 

Tf-idf 0.7342 0.73 0.73 0.73 

Bigram counts 0.7517 0.76 0.75 0.75 

Tf-idf 0.7202 0.72 0.72 0.71 

Trigram counts 0.75 0.75 0.75 0.75 

Tf-idf 0.7167 0.72 0.72 0.70 

 

6.2.4 Experiment 4: KNN with Different Feature Types 

Having established that tf-idf weighting improves the performance of the SVM model on the hate 

speech data, this experiment was set up to determine whether the same effect is had on a kNN 

classifier. The text documents were represented using unigram, bigram and trigram features and 

count and tf-idf used for feature weighting. kNN performs best when bigram features are used with 

tf-idf, closely followed by the use of unigram features with tf-idf as depicted in Table 6.4. 

Table 6.4: kNN Performance Using Different Features and Weighting Schemes 

Feature Weighting Accuracy Precision Recall F-Score 

Unigram Counts 0.6608 0.65 0.66 0.65 

 Tf-idf 0.7010 0.70 0.70 0.70 

Bigram counts 0.6726 0.64 0.63 0.55 

 Tf-idf 0.7027 0.70 0.70 0.70 

trigram counts 0.6136 0.64 0.61 0.51 

 Tf-idf 0.6958 0.70 0.70 0.70 

 

 Discussions 

The results described in the preceding sections show that the best approach in creating a 

model for hate speech detection on twitter from the data collected is the use of an SVM machine 

learning algorithm with bigram features weighted using tf-idf. This approach yields the best 

accuracy of 0.7622 in the classification task. Tf-idf weighting is found to improve accuracy across 

all 3 feature types (unigram, bigram, trigram) for SVM. This is clearly illustrated using Figure 6.2. 
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Figure 6.2: Accuracy values for different features for SVM 

Naïve Bayes performs best when bigram features are used with count as illustrated in 

Figure 6.3. Tf-idf weighting in this case does not improve the performance of the NB classifier on 

the hate speech data. 

 

Figure 6.3: Accuracy values NB using different features 

kNN classifier accuracy is optimized on the hate speech data collected when bigram 

features are weighted using tf-idf, similar to the SVM model. kNN accuracy levels with different 

feature weighting schemes is depicted in Figure 6.4. 
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Figure 6.4: kNN accuracy comparison using different features 

The results of the study show that the SVM model outperforms the NB and kNN model in 

detecting hate speech from twitter. Additionally, bigrams can be used to improve the performance 

of SVMs in detecting hate speech in tweets consistent with Ogada et al., (2015) who show that 

ngrams can be used to improve the perfomance of naïve bayes, SVMs and kNN. For the data 

collected a combination of bigrams with tf-idf weighting on an SVM machine learning algorithm 

have the best performance with an accuracy of 76.22. As such this combination was persisted and 

used in predicting other unobserved tweets collected by the user. 
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Chapter 7: Conclusions and Recommendations 

 Conclusion 

This research intended to develop a tool to detect hate speech on twitter using machine 

learning techniques. To enable successful execution of the research it was necessary to understand 

what hate speech is and its occurrence and manifestation on social media platforms. To achieve 

this relevant literature was reviewed and experts interviewed to determine the challenges 

encountered in the current processes of detecting hate speech on social media. Further literature 

was reviewed to understand the application of various machine learning techniques in text 

classification and hate speech detection. 

The main objective of this research was to develop a hate speech monitoring tool for twitter 

to automatically detect instances of hate speech based on an SVM machine learning algorithm. 

Hate speech data was collected, preprocessed and labelled using guidelines provided by the NCIC, 

and further split into training and test sets. The training set was used to train an SVM model suing 

unigram features with tf-idf weighting. The testing set was used to test the model which achieved 

an accuracy of 75.69 percent.  

To validate the approach taken by the researcher, four experiments were conducted to 

determine the best combination of feature types, feature weighting schemes and machine learning 

algorithms (SVM, NB, kNN are considered) to be used to detect hate speech on twitter. The results 

of the experiment show that the best performance is achieved when an SVM model is used with 

bigram features weighted using tf-idf, with an accuracy of 76.22 percent. This model was then 

persisted and deployed in the prediction of unobserved live tweets obtained from twitter using the 

search API.  

 Recommendations 

This work showed that the SVM model can be used to automatically detect hate speech on 

twitter instead of the human analysis of tweets currently employed by NCIC officers; significantly 

improving the amount of time taken to identify hate speech tweets and reducing the number of 

tweets that human monitors have to go through. 

The research notes that better prediction results would have been obtained if a large data 

set had been used. A total number of 14055 tweets were collected but only1904 tweets were used 
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due to the expensive nature of the labelling process. From the 1904 labelled tweets 1332 (70 

percent) tweets used to train the model and the remaining 572 used to test and validate the model. 

The final training data was not large, the researcher therefore recommends that the size of the 

training data to be increased by collecting and labelling more tweets to improve the performance 

of the classifier.  

 Future Work 

Twitter limits the characters that can be used in tweets to 140. In a bid to convey messages 

within the 140 character limit, users on twitter have to be innovative in the words they use, which 

results in a number of abbreviations, and informal twitter specific terms. This nature of the 

language used on twitter makes the classification process difficult. Future research can focus on 

preprocessing and cleaning tweets to formulate complete statements before classification can be 

performed.   

Hate speech in Kenya can be expressed on twitter in more than one language. This study 

limited its scope to only hate speech expressed in English and Swahili. For a more comprehensive 

detection tool, it is necessary to build on the corpus by including tweets expressed in other different 

languages. Additionally, tweets often contain images and videos which may also contain 

expressions of hate speech. Future research could focus on such kind of content. 

In future research, sentiment weighting can be applied to the tweets to determine levels of 

negativity and positivity which can be used to detect hate speech. There already exists English 

lexical resources for sentiment weighting but none for Swahili. Future work could involve the 

building of such a lexical resource for Swahili to facilitate sentiment weighting.  
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APPENDIX A: Originality Report 
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APPENDIX B: Interview Guide 

The following interview guide was used to in a personal interview with a staff members of the 

NCIC to find out the challenges faced in monitoring hate speech on social media. 

1. Do you currently monitor hate speech on social media? 

a. If yes, how do you monitor hate speech on social media? 

b. If no, why do you not monitor hate speech on social media? Are there plans to start 

monitoring? 

2. How do you monitor hate speech on social media?  

3. How do you collect hate speech data from social media? Which search parameters are 

used? 

4. Which social media sites do you monitor? 

5. How often do you monitor the social media sites for hate speech? 

6. How do you analyze collected data from social media? 

7. What do you define as hate speech? 

8. How do you deal with the multilingual nature of tweets? 

9. Do you have any systems in place to help with monitoring hate speech on social media? If 

yes, which systems? 

10. Which are the most frequent terms found in hate speech text? 

11. What challenges do you face in monitoring hate speech on social media? 

12. Which stakeholders are interested in the monitoring of hate speech on social media? 

13. Which other organizations (governmental/non-governmental) do you collaborate with in 

the detection of hate speech on social media? 
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APPENDIX C: Python Programs 

Training and Validating Module 

This module contains the code for reading a csv file containing labelled data, preprocessing 

the text to clean it, splitting of the data into training and test sets. Converting the text into a 

document term matrix with tf-idf weighting and finally feeding the matrix into an SVM classifier. 

The learned model is then evaluated against the training set and finally persisted into a pickle file. 

 

from sklearn.feature_extraction.text import TfidfTransformer 

from sklearn.feature_extraction.text import CountVectorizer 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.pipeline import Pipeline 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import ShuffleSplit 

from sklearn.model_selection import learning_curve 

from sklearn.model_selection import cross_val_predict 

from sklearn.feature_selection import mutual_info_classif 

from sklearn.metrics import roc_curve, auc 

from sklearn.metrics import classification_report 

from sklearn.svm import SVC 

from sklearn import metrics 

from sklearn.externals import joblib   

 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

import random 

import string 

    

     

def readcsv(): 

    df=pd.read_csv("new.csv",)#read labelled tweets 

    df2=df.reindex(np.random.permutation(df.index)) 

    X=df2.text 

    y=df2.label 

    return X, y 

     

def drawrocSVM(y_test,y_pred): 

    fpr,tpr,threshold=roc_curve(y_test,y_pred) 

    print("Drawing") 

    roc_auc=auc(fpr,tpr) 

    plt.title('Receiver Operating Characteristic') 
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    plt.plot(fpr,tpr,'b',label='SVM AUC = %0.2f'% 

roc_auc,color='b') 

    plt.legend(loc='lower right') 

    plt.plot([0,1],[0,1],'r--') 

    plt.xlim([-0.1,1.2]) 

    plt.ylim([-0.1,1.2]) 

    plt.ylabel('True Positive Rate') 

    plt.xlabel('False Positive Rate') 

    plt.show() 

         

 

def savemodel(clf): 

    joblib.dump(clf,'model.pkl') #persisting the model 

            

 

def createSVM(X,y): 

    

svm_clf=Pipeline([('vect',CountVectorizer(max_df=0.7)),('tfidf',

TfidfTransformer()),('svm',SVC(kernel="linear",C=1))]) 

    svm_clf=svm_clf.fit(X,y) 

    return svm_clf 

     

def createNB(X,y): 

    

nb_clf=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransf

ormer()),('nb',MultinomialNB())]) 

    nb_clf=nb_clf.fit(X,y) 

    return nb_clf 

     

     

def evaluatemodel(y_pred,y_test): 

    print( metrics.confusion_matrix(y_test,y_pred)) 

    accuracy=metrics.accuracy_score(y_test,y_pred) 

    print(accuracy) 

    report=classification_report(y_test,y_pred) 

    print(report)     

     

def main(): 

    X,y=readcsv() 

    

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

)#split data into training and testing sets 

     

    svm_clf=createSVM(X_train,y_train) 

    y_pred=svm_clf.predict(X_test) 

     

    print("SVM evaluation") 
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    evaluatemodel(y_pred,y_test) 

    drawrocSVM(y_test,y_pred) 

 

    savemodel(svm_clf) 

     

         

if __name__=="__main__": 

    main() 

Experiments Module 

This module contains the code of the various experiments carried out in this research as 

discussed in Chapter 6. 

# -*- coding: utf-8 -*- 

""" 

Created on Mon Apr  3 17:30:01 2017 

 

@author: Kaari 

""" 

from sklearn.feature_extraction.text import TfidfVectorizer 

from sklearn.feature_extraction.text import TfidfTransformer 

from sklearn.feature_extraction.text import CountVectorizer 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn.naive_bayes import MultinomialNB 

from sklearn.pipeline import Pipeline 

from sklearn.model_selection import cross_val_score 

from sklearn.model_selection import train_test_split 

from sklearn.model_selection import ShuffleSplit 

from sklearn.model_selection import learning_curve 

from sklearn.model_selection import cross_val_predict 

from sklearn.feature_selection import mutual_info_classif 

from sklearn.metrics import roc_curve, auc 

from sklearn.metrics import classification_report 

from sklearn.svm import SVC 

from sklearn import metrics 

 

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

import random 

import string 

 

def readcsv(): 

    df=pd.read_csv("new.csv",)#read labelled tweets 

    #df2=df.reindex(np.random.permutation(df.index)) 
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    X=df.text 

    y=df.label 

    return X, y 

     

def createSVM(X,y): 

    

svm_clf=Pipeline([('vect',CountVectorizer(max_df=0.7)),('tfidf',

TfidfTransformer()),('svm',SVC(kernel="linear",C=1))]) 

    svm_clf=svm_clf.fit(X,y) 

    return svm_clf 

     

def createNB(X,y): 

    

nb_clf=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransf

ormer()),('nb',MultinomialNB())]) 

    nb_clf=nb_clf.fit(X,y) 

    return nb_clf 

     

def drawrocSVM(y_test,y_pred): 

    fpr,tpr,threshold=roc_curve(y_test,y_pred) 

    print("Drawing") 

    roc_auc=auc(fpr,tpr) 

    plt.title('Receiver Operating Characteristic') 

    plt.plot(fpr,tpr,'b',label='SVM AUC = %0.2f'% 

roc_auc,color='b') 

    plt.legend(loc='lower right') 

    plt.plot([0,1],[0,1],'r--') 

    plt.xlim([-0.1,1.2]) 

    plt.ylim([-0.1,1.2]) 

    plt.ylabel('True Positive Rate') 

    plt.xlabel('False Positive Rate') 

    plt.show() 

     

def drawrocNB(y_test,y_pred): 

    fpr,tpr,threshold=roc_curve(y_test,y_pred) 

    print("Drawing") 

    roc_auc=auc(fpr,tpr) 

    plt.title('Receiver Operating Characteristic') 

    plt.plot(fpr,tpr,'b',label='NB AUC = %0.2f'% 

roc_auc,color='r') 

    plt.legend(loc='lower right') 

    plt.plot([0,1],[0,1],'r--') 

    plt.xlim([-0.1,1.2]) 

    plt.ylim([-0.1,1.2]) 

    plt.ylabel('True Positive Rate') 

    plt.xlabel('False Positive Rate') 

    plt.show()  
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def drawrocKNN(y_test,y_pred): 

    fpr,tpr,threshold=roc_curve(y_test,y_pred) 

    print("Drawing") 

    roc_auc=auc(fpr,tpr) 

    plt.title('Receiver Operating Characteristic') 

    plt.plot(fpr,tpr,'b',label='KNN AUC = %0.2f'% 

roc_auc,color='g') 

    plt.legend(loc='lower right') 

    plt.plot([0,1],[0,1],'r--') 

    plt.xlim([-0.1,1.2]) 

    plt.ylim([-0.1,1.2]) 

    plt.ylabel('True Positive Rate') 

    plt.xlabel('False Positive Rate') 

    plt.show()  

 

def experiment1(X,y): 

    """Different Classifiers""" 

    

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

,random_state=0) 

    #SVM classifier 

    

svm=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransform

er()),('svm',SVC(kernel="linear",C=1))]) 

    svm=svm.fit(X_train,y_train) 

    ypred=svm.predict(X_test) 

    print("SVM metrics") 

    print(metrics.accuracy_score(y_test,ypred)) 

    print(metrics.classification_report(y_test,ypred)) 

    drawrocSVM(y_test,ypred) 

    #NB classifier 

    

nb=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('tfidf

',TfidfTransformer()),('nb',MultinomialNB())]) 

    nb=nb.fit(X_train,y_train) 

    yprednb=nb.predict(X_test) 

    print("NB Metrics") 

    print(metrics.accuracy_score(y_test,yprednb)) 

    print(metrics.classification_report(y_test,yprednb)) 

    drawrocNB(y_test,yprednb) 

    #KNN classifier 

    

knn=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransform

er()),('knn',KNeighborsClassifier())]) 

    knn=knn.fit(X_train,y_train) 

    ypredknn=knn.predict(X_test) 
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    print("KNN evaluation") 

    print(metrics.accuracy_score(y_test,ypredknn)) 

    print(metrics.classification_report(y_test,ypredknn)) 

    drawrocKNN(y_test,ypredknn) 

def experiment2(X,y): 

    """Different features with SVM""" 

    

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

) 

     

    svm=createSVM(X_train,y_train) 

    y_pred=(svm.predict(X_test)) 

    print("Original Accuracy: Unigram with tf-idf") 

    print(metrics.confusion_matrix(y_test,y_pred)) 

    print(metrics.accuracy_score(y_test,y_pred)) 

    print(metrics.classification_report(y_test,y_pred)) 

    stop=["haha","lol","lmao"] 

    

svm2=Pipeline([('vect',CountVectorizer(stop_words=stop)),('svm',

SVC(kernel="linear",C=1))]) 

    svm2=svm2.fit(X_train,y_train) 

    ypred2=svm2.predict(X_test) 

    print("Just unigram counts Accuracy") 

    print(metrics.accuracy_score(y_test,ypred2)) 

    print(metrics.classification_report(y_test,ypred2)) 

    

svm3=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('svm

',SVC(kernel="linear",C=1))]) 

    svm3=svm3.fit(X_train,y_train) 

    ypred3=svm3.predict(X_test) 

    print("just bigram counts Accuracy") 

    print(metrics.accuracy_score(y_test,ypred3)) 

    print(metrics.classification_report(y_test,ypred3)) 

    

svm4=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('svm

',SVC(kernel="linear",C=1))]) 

    svm4=svm4.fit(X_train,y_train) 

    ypred4=svm4.predict(X_test) 

    print("Trigram counts Accuracy") 

    print(metrics.accuracy_score(y_test,ypred4)) 

    print(metrics.classification_report(y_test,ypred4)) 

    

svm5=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('tfi

df',TfidfTransformer()),('svm',SVC(kernel="linear",C=1))]) 

    svm5=svm5.fit(X_train,y_train) 

    ypred5=svm5.predict(X_test) 

    print("bigram with tfidf Accuracy") 
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    #print(metrics.confusion_matrix(y_test,ypred5)) 

    print(metrics.accuracy_score(y_test,ypred5)) 

    print(metrics.classification_report(y_test,ypred5)) 

    

svm6=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('tfi

df',TfidfTransformer()),('svm',SVC(kernel="linear",C=1))]) 

    svm6=svm6.fit(X_train,y_train) 

    ypred6=svm6.predict(X_test) 

    print("trigram with tfidf Accuracy") 

    #print(metrics.confusion_matrix(y_test,ypred6)) 

    print(metrics.accuracy_score(y_test,ypred6))    

    print(metrics.classification_report(y_test,ypred6)) 

     

     

def experiment3(X,y): 

    """Different Feature set with Naive Bayes""" 

    

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

) 

 

    nb=createNB(X_train,y_train) 

    y_pred=nb.predict(X_test) 

    print("Original Accuracy") 

    print(metrics.classification_report(y_test,y_pred)) 

    print(metrics.accuracy_score(y_test,y_pred)) 

    

nb2=Pipeline([('vect',CountVectorizer()),('nb',MultinomialNB())]

) 

    nb2=nb2.fit(X_train,y_train) 

    ypred2=nb2.predict(X_test) 

    print("Just counts Accuracy") 

    print(metrics.classification_report(y_test,ypred2)) 

    print(metrics.accuracy_score(y_test,ypred2)) 

    

nb3=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('nb',

MultinomialNB())]) 

    nb3=nb3.fit(X_train,y_train) 

    ypred3=nb3.predict(X_test) 

    print("bigram counts Accuracy") 

    print(metrics.accuracy_score(y_test,ypred3)) 

    print(metrics.classification_report(y_test,ypred3)) 

    

nb4=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('nb',

MultinomialNB())]) 

    nb4=nb4.fit(X_train,y_train) 

    ypred4=nb4.predict(X_test) 

    print("Trigram counts Accuracy") 
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    print(metrics.accuracy_score(y_test,ypred4)) 

    print(metrics.classification_report(y_test,ypred4)) 

    

nb5=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('tfid

f',TfidfTransformer()),('nb',MultinomialNB())]) 

    nb5=nb5.fit(X_train,y_train) 

    ypred5=nb5.predict(X_test) 

    #drawrocSVM(y_test,ypred5) 

    print("bigram with tfidf Accuracy") 

    print(metrics.accuracy_score(y_test,ypred5)) 

    print(metrics.classification_report(y_test,ypred5)) 

    

nb6=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('tfid

f',TfidfTransformer()),('nb',MultinomialNB())]) 

    nb6=nb6.fit(X_train,y_train) 

    ypred6=nb6.predict(X_test) 

    #drawrocSVM(y_test,ypred5) 

    print("trigram with tfidf Accuracy") 

    print(metrics.classification_report(y_test,ypred6)) 

    print(metrics.accuracy_score(y_test,ypred6)) 

 

   

 

     

def experiment4(X,y): 

    """Different feature sets with KNN""" 

    

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

) 

     

    

knn=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransform

er()),('knn',KNeighborsClassifier())]) 

    knn=knn.fit(X_train,y_train) 

    ypredknn=knn.predict(X_test) 

    print("Original Accuracy: Unigram tfidf") 

    print(metrics.accuracy_score(y_test,ypredknn)) 

    print(metrics.classification_report(y_test,ypredknn)) 

     

    

knn=Pipeline([('vect',CountVectorizer()),('knn',KNeighborsClassi

fier())]) 

    knn=knn.fit(X_train,y_train) 

    ypredknn=knn.predict(X_test) 

    print("Unigram counts") 

    print(metrics.accuracy_score(y_test,ypredknn)) 

    print(metrics.classification_report(y_test,ypredknn)) 
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knn=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('knn'

,KNeighborsClassifier())]) 

    knn=knn.fit(X_train,y_train) 

    ypredknn=knn.predict(X_test) 

    print("Bigram counts") 

    print(metrics.accuracy_score(y_test,ypredknn)) 

    print(metrics.classification_report(y_test,ypredknn)) 

     

    

knn=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('tfid

f',TfidfTransformer()),('knn',KNeighborsClassifier())]) 

    knn=knn.fit(X_train,y_train) 

    ypredknn=knn.predict(X_test) 

    print("Bigram tfidf") 

    print(metrics.accuracy_score(y_test,ypredknn)) 

    print(metrics.classification_report(y_test,ypredknn)) 

     

    

knn=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('knn'

,KNeighborsClassifier())]) 

    knn=knn.fit(X_train,y_train) 

    ypredknn=knn.predict(X_test) 

    print("trigram counts") 

    print(metrics.accuracy_score(y_test,ypredknn)) 

    print(metrics.classification_report(y_test,ypredknn)) 

     

    

knn=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('tfid

f',TfidfTransformer()),('knn',KNeighborsClassifier())]) 

    knn=knn.fit(X_train,y_train) 

    ypredknn=knn.predict(X_test) 

    print("Trigram tfidf") 

    print(metrics.accuracy_score(y_test,ypredknn)) 

    print(metrics.classification_report(y_test,ypredknn)) 

     

 

 

def main(): 

    print("Hello Main method") 

    X,y=readcsv() 

    print("Experiment One") 

    experiment1(X,y)#call Different Experiments 

  

     

if __name__=="__main__": 
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    main()     

Collect Tweets Module 

This module collects tweets from the Twitter Search API matching keywords provided by 

the user. 

# -*- coding: utf-8 -*- 

""" 

Created on Wed Apr  5 15:44:29 2017 

 

@author: Kaari 

""" 

 

import tweepy 

import csv 

 

consumer_key="eCx6UFJlVXBzkgxliR3m7anK3" 

consumer_secret="fAAjkFnNNyUkNxnt0yj1owMLoIoEdKmHm4KHYjKf8BTq17v

acR" 

access_token="222455698-

b2sFM3Oavip4CUuR8oR9C6NuXIugelk3i0aSbMA5" 

access_secret="U7mtX8StbQZz5HIS0aPSXAyk8cIIBKP7vWwZnxfRvdOep" 

 

auth = tweepy.OAuthHandler(consumer_key, consumer_secret) 

auth.set_access_token(access_token, access_secret) 

api = tweepy.API(auth) 

 

# Open/Create a file to append data 

csvFile = open('tweets.csv', 'w') 

#Use csv Writer 

csvWriter = csv.writer(csvFile) 

 

def getkeywords(): 

    f=open("mycriteria.dat",'r') 

    keywords=[] 

    text=f.readline() 

    text=text.split(';') 

    for t in text: 

        keywords.append(t) 

         

    return keywords; 

         

         

keywords=getkeywords() 

#print(keywords)      
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csvWriter.writerow(["text"]) 

print("here now") 

 

for tweet in tweepy.Cursor(api.search,q=keywords).items(): 

    print (tweet.text) 

     

    csvWriter.writerow([tweet.text.encode('utf-8')]) 

         

 

Prediction Module 

Once tweets are received from the twitter search API using the collect tweets module, they 

are cleaned, preprocessed and predicted using the persisted model created at training.  

# -*- coding: utf-8 -*- 

""" 

Created on Mon Apr 3 15:26:04 2017 

 

@author: Kaari 

""" 

import json 

import pandas as pd 

import string 

from sklearn.externals import joblib   

 

 

def readjson(): 

    tweets_data=[] 

    file=open("tweets.txt",'r') 

    for line in file: 

        try: 

            t=json.loads(line) 

            tweets_data.append(t['text']) 

        except: 

            #print("error") 

            continue 

     

    print(len(tweets_data)) 

    #print(tweets_data) 

    df=pd.DataFrame() 

    df['text']=tweets_data 

    print(df) 

    df.to_csv("readtweets.csv",encoding="utf8") 

    #df['text']=map(lambda tweet:tweet['text'],tweets_data) 

    #print(df.text) 
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def clean_tweets(): 

    #reading csv file into panda dataframe 

    df=pd.read_csv("readtweets.csv", error_bad_lines=False) 

    print("CSV file read") 

    print("Removing RTs") 

    df.text=df.text.str.replace("RT","",False) 

    df.text=df.text.str.lower()#change tweets to lowercase 

    print("Removing usernames from tweets") 

    df.text=df.text.str.replace("@\w*\s?","")#remove usernames 

from tweets 

    print("Removing urls") 

    df.text=df.text.str.replace("https?:\/\/.*[\r\n]*","") 

#remove url links froms tweets  

    #removing hashtags 

    print("Removing hashtags") 

    df.text=df.text.str.replace("#\w*","")#removing hashtags 

    #removing punctuations 

    print("Removing punctuations") 

    

df.text=df.text.str.translate(str.maketrans("","",string.punctua

tion)) 

    #remove non utf8 characters 

    df.text=df.text.str.replace("[^\x00-\x7F]+","") 

     

    print("Writing clean CSV") 

    df.to_csv("clean_tweets.csv",encoding="utf8")     

     

def predict(): 

    df=pd.read_csv("clean_tweets.csv") 

    df=df.dropna(how='any') 

    df=df.drop_duplicates() 

    model=joblib.load("model.pkl") 

    df['label']=model.predict(df.text) 

    print(df.label) 

    df.to_csv("predicted.csv",encoding="utf8") 

    #print(model.predict(df.text)) 

    print("read") 

 

def main(): 

    readjson() 

    clean_tweets() 

    predict() 

 

 

if __name__=="__main__": 

    main() 


