

Strathmore University

SU+ @ Strathmore
University Library

Electronic Theses and Dissertations

2017

Sentiment analysis for hate speech detection on

social media: TF-IDF weighted N-Grams based

approach

Sharon Kaari Mugambi
Faculty of Information Technology (FIT)
Strathmore University

Follow this and additional works at https://su-plus.strathmore.edu/handle/11071/5657

Recommended Citation

Mugambi, S. K. (2017). Sentiment analysis for hate speech detection on social media: TF-IDF weighted

N-Grams based approach (Thesis). Strathmore University. Retrieved from http://su-

plus.strathmore.edu/handle/11071/5657

This Thesis - Open Access is brought to you for free and open access by DSpace @Strathmore University. It has been accepted for
inclusion in Electronic Theses and Dissertations by an authorized administrator of DSpace @Strathmore University. For more
information, please contact librarian@strathmore.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SU+ Digital Repository

https://core.ac.uk/display/132627754?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:librarian@strathmore.edu

Strathmore University

SU+ @ Strathmore
University Library

Electronic Theses and Dissertations

2017

Sentiment analysis for hate speech detection on

social media: TF-IDF weighted N-Grams based

approach

Sharon Kaari Mugambi
Faculty of Information Technology (FIT)
Strathmore University

Follow this and additional works at https://su-plus.strathmore.edu/handle/11071/5657

Recommended Citation

Mugambi, S. K. (2017). Sentiment analysis for hate speech detection on social media: TF-IDF weighted

N-Grams based approach (Thesis). Strathmore University. Retrieved from http://su-

plus.strathmore.edu/handle/11071/5657

This Thesis - Open Access is brought to you for free and open access by DSpace @Strathmore University. It has been accepted for
inclusion in Electronic Theses and Dissertations by an authorized administrator of DSpace @Strathmore University. For more
information, please contact librarian@strathmore.edu

mailto:librarian@strathmore.edu

Sentiment Analysis for Hate Speech Detection on Social Media: TF-IDF Weighted N-

Grams Based Approach

Mugambi Sharon Kaari

089980

Submitted in Partial Fulfilment of the Requirements for the Degree of Master of

Science in Information Technology at Strathmore University.

Faculty of Information Technology

Strathmore University

Nairobi, Kenya

June, 2017

This thesis is available for Library use on the understanding that it is copyright material and that

no quotation from the thesis may be published without proper acknowledgement.

ii

Declaration

I declare that this work has not been previously submitted and approved for the award of

a degree by this or any other University. To the best of my knowledge and belief, the

thesis contains no material previously published or written by another person except

where due reference is made in the thesis itself.

© No part of this thesis may be reproduced without the permission of the author and

Strathmore University.

…………………………………………

…………………………………………

…………………………………………

Approval

The thesis of Sharon Kaari Mugambi was reviewed and approved by the following:

Dr. Joseph Orero

Senior Lecturer, Faculty of Information Technology

Strathmore University

Dr. Joseph Orero

Dean, Faculty of Information Technology

Strathmore University

Professor Ruth Kiraka

Dean, School of Graduate Studies

Strathmore University

iii

Abstract

Hate speech on social media has unfortunately become a common occurrence in

the Kenyan online community largely due to advances in mobile computing and the

internet. Incidents of hate speech on social media have the potential of quickly

disseminating amidst online users and escalating into acts of violence and hate crimes

due to incitement, as was the case during the 2007-2008 Post Election Violence. With the

upcoming, highly contested 2017 general elections, the monitoring of hate speech on

social media platforms is of critical importance to detect hate speech occurrences as soon

as possible to prevent any further escalations which may result in violence.

Current efforts by the National Cohesion and Integration Commission to monitor

hate speech on social media involve the use of web crawlers to collect possible instances

of hate speech based on specific keywords. Human monitors then have to analyze the

collected data to determine instances that are actually hate speech. This human analysis

is not only time consuming and overwhelming but also introduces subjective notions of

what constitutes hate speech.

This research proposed the application of machine learning techniques to build a

text binary classifier to detect hate speech on twitter. Hate speech data was collected and

labelled to build the corpora. A Support Vector Machine model was trained and validated

based on the labelled text data using unigram features and term frequency-inverse

document frequency weighting. The research employed an experimental approach to

determine which combination of features, weighting schemes and classifiers gives the

best performance on the collected hate speech data. Bigram features weighted using term

frequency-inverse document frequency fed into a Support Vector Machine classifier gave

the best classification performance at an accuracy of 76.22 percent, with an area under

the curve of 0.76 for a Receiver Operating Characteristic curve.

Keywords: Hate Speech; Social Media; Machine Learning; Support Vector Machine,

TF-IDF, Bigram.

iv

Table of Contents

Declaration .. ii

Approval ... ii

Abstract .. iii

Acknowledgement ... xiii

Dedication .. xiv

Chapter 1: Introduction ... 1

 Background ... 1

 Problem Statement .. 2

 Research Objectives .. 3

 Research Questions ... 3

 Justification ... 3

 Scope and Limitations ... 4

Chapter 2: Literature Review .. 5

 Introduction ... 5

 Hate Speech in Kenya ... 5

 Hate Speech Detection in Kenya ... 6

 Coded Language and Stereotypes in Hate Speech .. 6

 Machine Learning Approach to Detecting Hate Speech ... 8

2.5.1 The Text Classification Problem .. 8

2.5.2 Text Preprocessing ... 8

2.5.3 Feature Selection in Text Classification ... 9

 Document Representation ... 11

 Feature Weighting ... 11

 Machine Learning Algorithms .. 12

2.8.1 Naïve Bayes .. 12

2.8.2 Support Vector Machines ... 14

2.8.3 Statistical n-gram Language Modeling ... 16

 Related Work... 17

2.9.1 Umati Project to Monitor Hate Speech on Social Media ... 17

v

2.9.2 Rule Based Approach to Detecting Hate Speech ... 18

2.9.3 Machine Learning Approaches ... 19

 Conceptual Framework ... 19

Chapter 3: Research Methodology.. 21

 Introduction ... 21

 Research Design .. 21

3.2.1 Target Population and Sampling .. 21

3.2.2 Data Collection ... 21

3.2.3 Mining Twitter .. 22

3.2.4 Corpus Construction ... 23

3.2.5 Data Preprocessing ... 24

 Model Training .. 25

 System Development Methodology .. 25

3.4.1 Overview of RAD Structure ... 25

3.4.2 Phases of RAD.. 26

3.4.3 Justification for choosing RAD .. 27

 Research Quality ... 27

3.5.1 Evaluation Metrics .. 28

3.5.2 Visualization of the Model ... 29

 Model Validation... 29

3.6.1 Experiment 1: Use of Different Machine Learning Algorithms 30

3.6.2 Experiment 2: Use of Different Feature Types and Weighting Schemes 30

Chapter 4: System Design and Architecture ... 31

 Introduction ... 31

 Requirement Analysis ... 31

4.2.1 Functional Requirements .. 31

4.2.2 Non-Functional Requirements .. 32

4.2.3 Usability.. 32

4.2.4 Scalability ... 32

4.2.5 Persistent Storage ... 32

 System Architecture .. 32

 Use Case Diagram ... 33

vi

4.4.1 Detailed Use Case Descriptions ... 34

 Sequence Diagram... 36

 Context Diagram ... 36

 Level 0 Data Flow Diagram .. 37

Chapter 5: System Implementation and Testing ... 39

 Introduction ... 39

 Building the Corpus .. 39

 Preprocessing .. 40

 Training the model .. 42

 Testing the Model.. 43

 Using the Model in Prediction .. 44

5.6.1 Collecting Tweets ... 45

5.6.2 Preprocessing Tweets ... 46

5.6.3 Predicting Labels for Tweets .. 46

 Implementation of Experiments .. 47

Chapter 6: Discussions .. 48

 Introduction ... 48

 Experiment Results ... 48

6.2.1 Using Different Classifiers ... 48

6.2.2 Experiment 2: SVM performance using various feature types 49

6.2.3 Experiment 3: Naïve Bayes with Different Feature Types... 49

6.2.4 Experiment 4: KNN with Different Feature Types .. 50

 Discussions .. 50

Chapter 7: Conclusions and Recommendations ... 53

 Conclusion ... 53

 Recommendations ... 53

 Future Work .. 54

References ... 55

vii

List of Equations

Equation (2.1) ... 8

Equation (2.2) ... 9

Equation (2.3) ... 10

Equation (2.4) ... 11

Equation (2.5) ... 12

Equation (2.6) ... 13

Equation (2.7) ... 13

Equation (2.8) ... 13

Equation (2.9) ... 13

Equation (2.10) ... 13

Equation (2.11) ... 13

Equation (2.12) ... 15

Equation (2.13) ... 15

Equation (2.14) ... 16

Equation (2.15) ... 16

Equation (2.16) ... 16

Equation (2.17) ... 17

Equation (3.1) ... 28

Equation (3.2) ... 28

Equation (3.3) ... 29

Equation (3.4) ... 29

viii

List of Figures

Figure 2.1: Hate speech: Association of ethnic communities with animals 7

Figure 2.2: Support Vector Machine .. 15

Figure 2.3: Umati Process Algorithm ... 18

Figure 2.4: Accuracy Values for Test Data ... 19

Figure 2.5: Conceptual Framework .. 20

Figure 3.1: Preprocessing data .. 25

Figure 3.2: Overview of RAD ... 26

Figure 3.3: Phases of RAD 26

Figure 4.1: System Architecture ... 33

Figure 4.2: Use Case Diagram .. 34

Figure 4.3: Sequence Diagram .. 36

Figure 4.4: Context Diagram .. 37

Figure 4.5: Level 0 DFD ... 38

Figure 5.1: Collecting Historical Tweets from Twitter .. 39

Figure 5.2: Sample Tweets Collected ... 40

Figure 5.3: Collected Tweets with Separated Columns .. 40

Figure 5.4: Regex Removal of Common Twitter Terms .. 41

Figure 5.5: Sample cleaned tweets.. 41

Figure 5.6: Sample Labelled Tweets .. 42

Figure 5.7: SVM Implementation ... 43

Figure 5.8: ROC curve for the SVM model .. 44

Figure 5.9: Persisting the learnt model ... 44

Figure 5.10: Application Registration on Twitter ... 45

Figure 5.11: User Interface to obtain keywords from the user ... 46

Figure 5.12: Sample results returned from prediction .. 47

Figure 6.1: ROC Comparison of Different Classifiers ... 49

Figure 6.2: Accuracy values for different features for SVM .. 51

Figure 6.3: Accuracy values NB using different features ... 51

Figure 6.4: kNN accuracy comparison using different features 52

ix

List of Tables

Table 3.1: Keywords to Search Twitter for Hate Speech Related Tweets 22

Table 3.2: Jefferson's Search Parameters .. 23

Table 3.3: Sample Hate Speech Data .. 23

Table 3.4: Corpus Description .. 24

Table 3.5: Confusion Matrix ... 28

Table 5.1: Confusion Matrix for Implemented Model .. 43

Table 5.2: Values from the confusion matrix ... 43

Table 5.3: Performance of the SVM model .. 43

Table 6.1: Performance Comparison of Different Classifiers .. 48

Table 6.2: SVM Performance Using Different Features and Weighting Schemes 49

Table 6.3: Naive Bayes Performance Using Different Features and Weighting Schemes 50

Table 6.4: kNN Performance Using Different Features and Weighting Schemes 50

x

List of Abbreviations

API- Application Programming Interface

AUC- Area Under the Curve

BOW- Bag of Words

DFD- Data Flow Diagram

HTTP: HyperText Transfer Protocol

ICT- Information and Communication Technology

IDF- Inverse Document Frequency

IT- Information Technology

JSON-JavaScript Object Notation

kNN- k-Nearest Neighbor

MI- Mutual Information

NB- Naïve Bayes

NCI Act- National Cohesion and Integration Act

NCIC- National Cohesion and Integration Commission

NLP- Natural Language Processing

OAuth- Open Authentication

PEV- Post Election Violence

RAD- Rapid Application Development

REST- Representation State Transfer

ROC- Receiver Operating Characteristic

RT- Retweet

SDLC- Software Development Life Cycle

xi

SVM- Support Vector Machine

TF- Term Frequency

TF-IDF- Term Frequency- Inverse Document Frequency

UML- Unified Modelling Language

URL- Uniform Resource Locator

VSM- Vector Space Model

xii

Definition of Terms

Coded Language- The use of language in a manner intended to conceal the normal meanings of

expressions (National Cohesion and Intergration Commission, 2013)

Pandas- An open source library providing high-performance, easy to use data structures and data

analysis tools for the python programming language (Pandas, 2017)

Scikit-learn- An open source Python library that implements a range of machine learning,

preprocessing, cross-validation and visualization algorithms (Pedregosa et al., 2011)

Stereotype- An entrenched generalized belief amongst a people about the typical behaviors,

attributes, attitudes, abilities and weaknesses of other people such as members of other ethnic

communities (National Cohesion and Intergration Commission, 2013)

Twitter- An online social networking and microblogging service that enables users to send and

read short 140-character messages (Twitter, 2017)

xiii

Acknowledgement

I would like to acknowledge God for His grace, strength and good health as I undertook

this research. My sincere gratitude to the members of the Faculty of Information Technology staff

including: my supervisor, Dr. Joseph Orero for his continued commitment to guide and support

this research from its inception to completion; Dr. Bernard Shibwabo for his readiness and

willingness to advice on the research, his comments greatly improved the manuscript and to all

lecturers who sat on the presentation panels for their inputs which greatly shaped and improved

the work.

Special thanks to Mr. Isaac Munya, from the National Cohesion and Integration

Commission, for providing expertise and insights into hate speech and availing me resources on

hate speech data.

xiv

Dedication

To my dearest mother, Teju Mugambi, father, the late Dickson Mugambi, and two sisters:

Lynet Makena and Nelly Kendi, thank you for your continued support and prayers always.

1

Chapter 1: Introduction

 Background

Globally, there is no consensus on the meaning of the term hate speech. Researchers have

tried to define hate speech as speech which either promotes acts of violence or creates an

environment of prejudice that may eventually result in actual violent acts against a group of people

(Sambuli, Morara, & Mahihu, 2013). Speech in this sense includes any kind of expression

including pictures and videos (Sambuli et al., 2013). Hateful comments against an individual solely

do not qualify as hate speech, this is because hateful comments can only be considered as hate

speech if they target the individual as part of a group (Sambuli et al., 2013). Cohen-Almagor

(2011), defines hate speech as hateful comments towards a person or group of people based on

inherent attributes such as gender, ethnicity, color among others. The definition of hate speech in

Kenya, emphasizes on the use of hateful words with an intention to bring about ethnic hatred,

where ethnic hatred is defined as hatred against a group of people based on their color, race,

nationality or ethnic origins (National Council for Law Reporting, 2008).

There exists a strong relationship between hate speech and actual hate crime (Waseem &

Hovy, 2016). Widely propagated hate speech can easily result into incitement and consequent

escalation into actual acts of violence against a group of people. This was clearly witnessed in the

2007-2008 Post Election Violence (PEV) in Kenya. The 2007-2008 PEV is partly blamed on

widespread hate speech based on ethnic stereotypes and coded language (National Cohesion and

Intergration Commission, 2013). Hate speech was widely spread through a number of channels in

the times preceding and during the PEV conflict. Such kind of speech resulted in the incitement of

individuals to use violence and the galvanization of groups against one another (Hirsch, 2009).

This strong connection between hate speech and actual hate crime illustrates the importance of

monitoring hate speech to avoid widespread incitement and potential incidents of hate crime.

Recent advances in mobile computing and the internet have resulted in an increase in use

of social media to communicate, express opinions, interact with other, and to find and share

information (Cohen-Almagor, 2011). While social media provides an important avenue for

communication to take place easily and efficiently, it also acts as a means of spreading hate speech

online. Inherent characteristics of the Internet largely contribute to the misuse of social media to

transmit and propagate hate speech. Such characteristics include: affordability, ease of access,

2

instantaneous access from multiple points, and anonymity, amongst others (Cohen-Almagor,

2011).

In the digital era of smartphones and social media, hate messages are prevalent in the

Kenyan online community as individuals spread hate messages hiding behind their screens (Daily

Nation, 2017). After the 2007-2008 PEV, the Government of Kenya enacted the National Cohesion

and Integration Act to promote national cohesion and integration. The Act consequently instituted

the National Cohesion and Integration Commission (NCIC) to oversee and monitor content in

media such as radio, television, mobile phones and television in a bid to govern hate speech

(National Council for Law Reporting, 2008).

 Problem Statement

Monitoring hate content in traditional mainstream media such as radio and television, is

much easier than monitoring online hate speech content such as social media and microblogging

sites. This is largely due to the fact that social media consists of a large amount of user generated

content that would need to be monitored.

Current efforts by the NCIC to monitor hate speech on social media involve the use of web

crawlers to collect text from social media platforms and human monitors to analyze the collected

text. The NCIC’s research department provides keywords of most frequently occurring terms in

hate speech text, most of which are based on common stereotypes and coded language. Web

crawlers search social media platforms collecting text matching the keywords. Once collected,

human monitors have to go through all collected text to identify which ones are hate speech and

which ones are not (Munya, 2017). This human processing of collected text is inadequate as the

amount of content on social media is huge, significantly limiting how much a human monitor can

review.

This work proposed the development of a model that applies machine learning techniques

to automatically classify tweets as hate speech or not. This automatic classification will

significantly improve the process of detecting hate speech on social media by reducing the amount

of time and human effort required.

3

 Research Objectives

i. To investigate the existing techniques used in hate speech detection in social media,

ii. To review the current machine learning techniques applied in hate speech detection,

iii. To develop a model for hate speech detection on twitter,

iv. To validate the model on twitter posts.

 Research Questions

i. What are the existing techniques used in hate speech detection in social media?

ii. What are the current machine learning techniques applied in hate speech detection?

iii. How will the model be designed?

iv. How will the model be validated?

 Justification

Hate messages disseminated online are increasingly common, largely attributed to issues

of anonymity, itinerancy, permanency and cross-jurisdiction of online content (United Nations

Educational, Scientific and Cultural Organization, 2015). Notably, social media usage during the

PEV was not only to promote peace and justice but also as a channel for spreading of biased

information, tribal prejudices and hate speech (Makinen & Kuira, 2008).

With the upcoming highly contested 2017 general elections, the current political climate in

Kenya can easily bear comparison to that which preceded the 2007-2008 PEV (Institute For

Security Studies, 2017). It is therefore of critical importance to monitor and identify instances of

hate speech, as soon as possible to prevent their spread and possible unfolding into acts of violence

or hate crimes.

Text classification is an important technique for the handling and organization of text data

with a wide range of applications in information retrieval. Currently, NCIC human monitors have

to sift through numerous online content to identify hate speech in social media. This human

analysis is overwhelming, time consuming and introduces personal interpretation of what is

considered as hate speech. Text classification would enable categorization of the huge amounts of

online data into hate speech or non-hate speech text, significantly reducing the amount of data that

human monitors have to review, making the process of hate speech detection faster.

4

 Scope and Limitations

 This study limited its analysis to detecting hate speech on the social media platform

Twitter and only considered tweets expressed in English and Swahili. The use of sheng’,

vernacular languages, memes, audios and videos within tweets were not considered.

5

Chapter 2: Literature Review

 Introduction

This chapter reviews relevant literature to further comprehend the concept and investigate

the research problem. The nature of hate speech in Kenya and current processes to monitor hate

speech on social media is reviewed. Significant and relevant publications and research are further

reviewed to understand the application of machine learning techniques in text classification. A

conceptual framework is then presented at the completion of the literature review.

 Hate Speech in Kenya

Kenya has a history of hate speech, especially in politics. In 1992, multi-party politics

coupled with hate speech resulted in ethnic clashes. Similarly, in the 2007 referendum, political

leaders spread hate speech to incite and promote violence (Nyambane, 2012). The culmination of

hate speech in Kenya, came during the 2007-2008 PEV after the disputed general elections which

led to a number of serious human rights violations (Nyambane, 2012). Reports after, found that

the PEV was largely promoted by ordinary Kenyans and partly by leaders. This was done through

the use of incitements and calls to violence throughout the campaign period and as the conflict

unfolded. Media, short messaging services, the internet and mobile phones were used as

transmitters of hate speech to incite acts of violence (Nyambane, 2012).

The National Cohesion and Integration Commission (NCIC) was instituted as a consequent

of the 2007-2008 PEV to oversee and monitor content in media such as radio, television, mobile

phones and television in a bid to govern hate speech (National Council for Law Reporting, 2008).

According to the NCIC, a statement does not amount to hate speech unless it: causes hatred, makes

a group or community look inferior, makes a community or group be viewed with contempt,

degrades a group or community, or dehumanizes a group or community (National Cohesion and

Integration Commission, 2011). To be quantified as hate speech, the statement should contain:

threatening, abusive or insulting messages, sometimes using coded language. These messages

must be directed towards a targeted group and intended to stir hatred based on the group’s identity

including: ethnicity, race, color or any other national origin (National Cohesion and Integration

Commission, 2011).

6

 Hate Speech Detection in Kenya

While investigating and monitoring hate speech, investigators must take into consideration

five key aspects: context, ripple effect, fear, possible retaliation and violence (National Cohesion

and Integration Commission, 2011). A statement can be considered hate speech in one context but

not in another. Additionally, the same statement might have different levels of impact depending

on the context, for example ethnic statements may have a higher impact in political environments

than social settings. The second aspect, ripple effect, and third effect, fear mean that the statement

should cause some discomfort and fear amongst members of the group being targeted, respectively.

The fourth aspect, possible retaliation means that the statement should provoke counterattacks and

finally the statement promotes acts of violence or hate crimes (National Cohesion and Intergration

Commission, 2013).

Hate speech in Kenyan online forums has unfortunately become a common occurrence

with the growth of the internet, social media and mobile computing in the recent past. Social media

has created a new space for the dissemination of hate speech. Since 200/, the NCIC, Kenyan civil

society as well as police authorities have put measures to monitor hate speech on traditional

mainstream media but hate speech on social media remains to hardly monitored (Sambuli et al.,

2013). However, more recently NCIC have put effort into monitoring hate speech on social media

through the use of web crawlers.

 Coded Language and Stereotypes in Hate Speech

Kenya is a multicultural country with over forty two ethnic tribes, each with its own unique

way of communicating. Almost all ethnic communities in Kenya have some kind of stereotypes

about them, these stereotypes may be positive or negative (National Cohesion and Intergration

Commission, 2013). Most negative statements depict feelings of contempt and general hate

towards targeted communities resulting in heightened friction and animosity among various ethnic

communities. The negative statements are often expressed in coded language well known to the

members of the community who use it and may or may not be known to the targeted ethnic

communities (National Cohesion and Intergration Commission, 2013).

Generally, negative stereotypes about a target community embody the following scenarios:

association of the community with a practice considered to be bad by other communities, disdain

of the target community because of traits considered to be immoral or childish, expression of

7

mistrust about the target community and finally expression of inherent hate towards the target

community (National Cohesion and Intergration Commission, 2013). Examples of negative

stereotypes used in Kenya include: attributing members of the Kikuyu community with the term

thieves, use of the word uncircumcised to refer to members of the Luo community and the

association of communities with animals as depicted in Figure 2.1 (National Cohesion and

Intergration Commission, 2013).

Figure 2.1: Hate speech: Association of ethnic communities with animals (National

Cohesion and Intergration Commission, 2013).

Majority of incidents of hate speech in Kenya are based on the emphasis of negative

stereotypes of different ethnic communities. Coded language is used to cause hatred and animosity

towards certain ethnic communities for selfish gain, especially in the political environment (Siele,

2013). In the 2007 electioneering period in Kenya, the use of coded language and stereotypes was

wide spread and partly contributed to increasing tensions which led to the PEV violence between

different ethnic communities (National Cohesion and Intergration Commission, 2013).

8

 Machine Learning Approach to Detecting Hate Speech

2.5.1 The Text Classification Problem

Given a training set D of labelled documents (d, c) where (d, c) ϵ X × C, the text

classification problem is to learn a classification function γ that maps unseen documents to classes

as in Equation (2.1) (Manning , Raghavan, & Schutze, 2009).

 γ: X → C (2.1)

Where X is the document space; and C is a fixed set of classes C= {c1, c2, …, cj}.

The training set D of documents provided is labelled with respective classes, as such the

learning is said to be supervised learning. The learning algorithm learns a classification function

from the training set that maps documents to classes. The classification function is then able to

map unseen documents to their respective classes as in Equation (2.1).

2.5.2 Text Preprocessing

Text classification problems should be able to handle unstructured or semi-structured data

sets. As such, preprocessing unstructured data is a very important role in the text classification

problem. Some preprocessing activities include: replacing special characters and punctuation

marks, normalizing case, removing duplicate characters, removing stop words and stemming

(Vijayarani, Ilamathi, & Nithya, 2015).

Stop words are common words which are a portion of natural language that do not add

meaning to text documents but make the text appear heavier. Since they do not add meaning, stop

words can be easily removed without affecting the analysis process. Their removal reduces the

number of features to be considered and as such can improve the performance of a classifier. The

most common stop words include: articles, prepositions and pronouns (Vijayarani et al., 2015).

Words in natural language may have a multiple variations in their suffixes, increasing the

number of features to be considered in analysis. So as to accurately match words, save processing

time and memory space it may be important to reduce a word to its root by remove the different

suffixes. This process is known as stemming, where the root or stem of a word is identified and all

variations of the word reduced to their stem. The assumption made is that words with the same

base have the same meaning despite their morphological forms and as such can be reduced to the

9

same base. In stemming it is important to keep words that have different meaning separate

(Vijayarani et al., 2015).

Term Frequency- Inverse Document Frequency (TF-IDF) is a combination of two

numerical statistics: Term Frequency (TF) and Inverse Document Frequency (IDF) that shows the

importance of a term in a document collection. If the frequency of occurrence of a term in a

document increases, the value of the term also increases. However if the frequency of occurrence

of a term in various documents in the corpus increases, then the value of the term decreases. Tf-

idf is often used as a weighting factor in many information retrieval and text classification

problems (Vijayarani et al., 2015).

2.5.3 Feature Selection in Text Classification

The feature space for text classification problems consists of all the unique terms that occur

in a document. The number of features can therefore be quite big for a corpus that is average sized.

This high dimensionality of the feature space is an inherent characteristics of text classification

problems and poses a significant problem to many machine learning algorithms (Yang & Pedersen,

1997). The high dimensional feature space may result in poor accuracy results and over fitting. It

is therefore important to reduce the feature space to improve performance of the learning

algorithms, reduce over fitting and improve the time needed to train a model. Feature selection can

be defined as the process of selecting a subset of the terms occurring in a corpus and using only

this subset as features in text classification (Manning et al., 2009). This section discusses three

feature selection methods: chi-square, mutual information and frequency based feature selection.

2.5.3.1 Chi-square Feature Selection

In statistics, the χ2 test is applied to test the independence of two events (Manning et al.,

2009). In feature selection for text classification, the two events are the occurrence of a term and

occurrence of a class. The terms are then ranked according to Equation (2.2) below (Manning et

al., 2009):

(2.2)

10

Where:

 et expresses whether the document contains term t or not

 ec expresses whether the document belongs to class c or not

 N represents the observed frequency in document D

 E represents the expected frequency

χ2 is a measure of how much the expected counts E and observed counts N deviate from

each other. A higher value of χ2 indicates that the hypothesis of independence is incorrect

(Manning et al., 2009). In text classification, χ2 measure can be used to rank features with respect

to their usefulness, and choosing the k terms with the highest χ2 value.

2.5.3.2 Mutual Information

This feature selection approach computes A (t, c) as the expected mutual information of

term t and class c (Manning et al., 2009). Mutual Information (MI) measures how much

information the presence or absence of a term contributes to making the correct classification

decision on c as depicted in Equation (2.3) below (Manning , Raghavan, & Schutze, 2009):

(2.3)

Where:

U is a random variable that takes values et=1 (the document contains term t) and

et=0 (the document does not contain t)

C is a random variable that takes values ec=1 (the document is in class c) and ec=0

(the document is not in class c).

2.5.3.3 Frequency-based Feature Selection

This approach is to choose the terms that occur most frequently in a class. Frequency can

be defined as document or collection frequency. Collection frequency refers to the number of

tokens of a term t that occur in documents in class c whereas document frequency is the number

11

of documents in the class c that contain term t. The major shortcoming of this approach is that it

some frequent terms may not add any information to the class but still be selected (Manning et al.,

2009).

 Document Representation

Text data cannot be processed by machine learning algorithms as it is. It is therefore

necessary to convert the text into a format that a machine learning algorithm can process. Two

common approaches can be used: Bag of Words (BOW) and Vector Space Model (VSM). The

BOW approach represents documents as a collection of words without any order but keeping their

multiplicity. All unique words contained in the corpus make up the dictionary. Each document is

then represented a vector of word frequencies. The assumptions made by this model are that: the

order of words does not matter and words are independent of each other. Additionally, this model

does not allow for weighting of terms in specific documents (Mazzonello, Gaglio, Augello, &

Pilato, 2013).

The vector space model (VSM) is a generalization of the BOW model that represents

documents in a corpus using a multi-dimensional document-term matrix. A term may consists of

more than one word and each unique term represents a dimension in the matrix. Vector elements

are weights of the term contained in the specific document (Mazzonello et al., 2013).

 Feature Weighting

Various weighting schemes could be then used for a document-term matrix. The simplest

weighting scheme being a simple Boolean 1 if the term appears in the document or 0 if it does not.

It could also be based on the frequency of the term in the corpus or term frequency (number of

times the term appears in the specific document). If C is the set of all classes, then TF (t, c) can be

defined as the frequency of term t in class c, calculated as in Equation 2.4.) (Mazzonello et al.,

2013).

(2.4)

Inverse Document Frequency (IDF) weighting assigns more weight to terms that are not

very common in the entire corpus. IDF (t) as the percentage of documents in class c in which term

t appears, calculated as in Equation 2.5 (Mazzonello et al., 2013).

12

(2.5)

A common approach to weighting in text classification problems is Term Frequency-

Inverse Document Frequency (TF-IDF). TF-IDF is a combination of Term Frequency (TF) and

Inverse Document Frequency (IDF). TF-IDF can then be calculated as the product of Equations

(2.4) and (2.5) (Mazzonello et al., 2013). Using tf-idf, the highest weight occurs when a term

occurs often within a few documents, lower when it occurs a less number of times in a document

or occurs in many documents and lowest when it occurs in all documents (Manning et al., 2009).

Another type of weighting is sentiment weighting, which refers to weighting terms based

on their level of positivity or negativity. SentiWordNet is a lexical resource based on WordNet (a

large lexical database of English synonyms). SentiWordNet associates each set of synonyms in

WordNet with a numerical value, illustrating the set’s objectivity, positivity and negativity

(Baccianella, Esuli, & Sebastiani, 2010). This numerical values can be used to weigh terms in the

text classification problem.

 Machine Learning Algorithms

In a machine supervised learning approach, a classifier is built automatically by learning

the properties of categories from a set of pre-classified training documents. When using machine

learning techniques four main issues need to be considered: categories that will be used to classify

the instances, training data, features that will be used to represent each instance and the algorithm

to be used for categorization (Feldman & Sanger, 2007). This section describes the various

possible algorithms that can be used in text classification.

2.8.1 Naïve Bayes

Naïve Bayes is a simple classification method based on the Bayes rule. Given a document

d and a set of predefined classes {…ci,…}, the Naïve Bayes classifier first computes the posterior

probability that the document belongs to each particular class ci P(ci|d), and then assigns the

document to the class with the highest probability value. The posterior probability is computed by

applying the Bayes rule as in Equation (3.4) (Bai, Nie, & Paradis, 2004).

13

(2.6)

The denominator in Equation (3.4) is independent from classes, so it can be ignored for the

purpose of class ranking. Therefore Equation (3.4) can be approximated as in Equation (2.7) below

(Bai, Nie, & Paradis, 2004).

(2.7)

Naïve Bayes makes a conditional independence assumption, that words are independent

given a class, that is, for a document d=d1,…,dn, the P(d|ci) can be calculated as in Equation (2.8)

(Bai, Nie, & Paradis, 2004).

(2.8)

Equation (2.8) can then be expressed as in Equation (2.9) below:

(2.9)

P(ci) in Equation (2.9) can be estimated by the percentage of the training examples

belonging to class ci as in Equation (2.10):

 P(c) = N	
N

(2.10)

where N is the total number of training documents and Ni is the number of training documents in

class ci.

P(dj|ci) is usually determined as in Equation (3.4)below:

 Pd��c	� = 1 + countd�, c	�
|V| + N	

(2.11)

Where count (dj, ci) is the number of times that word dj occurs within the training

documents of class ci, and |V| is the total number of vocabulary. This estimation uses the Laplace

14

(add one) smoothing to solve the zero-probability problem (Bai, Nie, & Paradis, 2004). The zero-

probability problem occurs when unseen terms in the document are encountered due to the scarcity

in training data (Kilimci & Ganiz, 2015).

The large size of vocabulary inherent in text classification problems makes Naïve Bayes

suitable for the text classification problem. Additionally, Naïve Bayes works well with both textual

and numerical data and is also easy to implement and compute (Swamy, Hanumanthappa, &

Jyothi, 2014). However, it performs poorly when features are correlated like short texts or news

headlines classifications. Additionally, the conditional independence assumption is poorly violated

in real world data (Rana, Khalid, & Akbar, 2014).

2.8.2 Support Vector Machines

Support Vector Machines (SVMs) are based on the structural risk minimization principle

from computational learning theory, whose basic idea is to find a hypothesis h for which we can

guarantee the lowest true error (Joachims, 1998). SVMs find the hypothesis h which minimizes

the bound on the true error. SVMs not only have a solid theoretical foundation but also perform

classification more accurately that most other algorithms, especially in applications involving high

dimensional data (Joachims, 1998).

In geometrical terms, a binary SVM classifier can be seen as a hyper plane in the feature

space separating the points that represent the negative instances. The classifying hyper plane is

chosen during training as the unique hyper plane that separates the known positive instances from

the known negative instances with the maximal margin. Notably, SVM hyper planes are fully

determined by a relatively small subset of the training instances called support vectors illustrated

as in Figure 2.2 (Manning et al., 2009).

15

Figure 2.2: Support Vector Machine (Manning et al., 2009)

In his book, Liu (2007) describes SVM as a linear learning system that builds binary

classifiers. Let the set of training examples D be {(x�, y�), (x�, y�), … , (x!, y!) } where x	 =
(x	�, x	�, … , x	$) is a r-dimensional input vector in a real-valued space, yi is its class label(output

value) and y	 ∈ {1, −1}, 1 denotes the positive class and -1 denotes the negative class. To build a

classifier, SVMs find a hyperplane of the form in Equation (2.12). The hyper plane is called the

decision boundary.

 f(x) = (w. x) + b (2.12)

So that an input vector xi is assigned to the positive class if f(x	 ≥ 0), and to the negative class

otherwise as expressed in Equation (2.13).

y

i
= - 1 if (w. x) + b ≥ 0

−1 if (w. x) + b < 0
(2.13)

The text classification problem is greatly characterized with high dimensional spaces and

few irrelevant features due to the large number of terms contained in text documents. SVMs are

highly applicable to text classification problems because of a number of reasons. Firstly, their

learning ability is independent of the dimensionality of the feature space. SVMs use over fitting

protection, which does not necessarily depend on the number of features and therefore have the

16

potential to handle large feature sets inherent in text classification problems. Secondly, SVMs have

the ability to work with few irrelevant features. This makes them suitable for text classification

since there are few irrelevant features that can be removed without loss of information. Thirdly,

for each document the corresponding document vector contains only few entries which are not

zero. Finally, most text categorization problems are linearly separable (Joachims, 1998).

2.8.3 Statistical n-gram Language Modeling

Language modeling has been applied successfully in information retrieval, topic detection

and tracking and more recently has become mainstream in text classification (Bai, Nie, & Paradis,

2004) (Pei & Wu, 2014). Largely because it has a solid theoretical foundation in statistics. The

goal of language modelling is to predict the probability of natural word sequences. Given a word

sequence w1, w2, …, wt, the probability of any word sequence can be calculated as in Equation

(2.14) (Peng, 2003).

(2.14)

An n-gram model approximates this probability by assuming that the only words relevant

to predicting P(wi|w1,…, wi-1) are the previous n-1 words, i.e. it assumes the Markov n-gram

independence assumption, depicted as in Equation (2.15) (Peng, 2003).

(2.15)

A straight forward maximum likelihood estimate of n-gram probabilities from a corpus is

given by the observed frequency as in Equation (2.16), where #(.) is the number of occurrences of

a specified gram in the training corpus (Peng, 2003).

(2.16)

17

An n-gram language model can therefore be applied to text classification in a similar

manner to a Naïve Bayes model. A document d is categorized under a category c according to

Equation (3.4) (Peng, 2003).

(2.17)

N-gram classifiers are actually a straight forward generalization of Naïve Bayes, a unigram

classifier with Laplace smoothing corresponds exactly to the traditional Naïve Bayes classifier.

However, n-gram language models, for larger n, possess many advantages over Naïve Bayes,

including modeling longer context and exploiting superior smoothing techniques in the presence

of sparse data. In Naïve Bayes, the conditional independence assumption holds, the language

modeling approach however enhances this by considering a Markov dependence between adjacent

attributes (words) (Peng, 2003).

 Related Work

Recently, there have been many studies applied to social media data to understand various

aspects of human behavior, the physical environment and social phenomena including hate speech

detection. This section reviews and discusses various related works.

2.9.1 Umati Project to Monitor Hate Speech on Social Media

Umati is a hate speech monitoring project that analyses incidents multilingual hate speech

in the Kenyan online space such as blogs, forums, online newspapers, Facebook and Twitter (iHub

Research, 2013). The first phase of Umati involves the use of human monitors to collect and

analyze hate speech from the various online platforms. The human monitors scour the platforms

for incidents of hate speech. Once a human monitor encounters a statement that is considered to

be hate speech, they enter it into an online form, whilst providing additional information about the

statement in the form. Finally the statement is sorted into one of three categories: offensive speech,

moderately dangerous speech and extremely dangerous speech (iHub Research, 2013). This hate

speech detection process is illustrated in Figure 2.4 (iHub Research, 2013).

18

Figure 2.3: Umati Process Algorithm (iHub Research, 2013)

The current human processing of hate speech text by Umati phase I is time consuming,

involves a lot of effort and human input. A more automated way of detecting hate speech in text

would be preferable. The next phase, Umati II will involve the application of machine learning

and natural language processing techniques to automatically identify instances of hate speech. This

phase is however on going and not much has been achieved from it.

2.9.2 Rule Based Approach to Detecting Hate Speech

Regular expressions are an algebraic notation for specifying search strings (Daniel &

James, 2000). Regular expressions can be used in classification rule builders to match a wide

variety of patterns and consequent use of the matches to set classification labels. In his work,

Maloba (2013) proposes the use of regular expressions to detect hate speech in multi lingual

(English, Swahili and Sheng’) text. In the work he notes that hate speech in Kenya is mostly

dependent on ethnic grouping and uses this as the basis for formulating rules based on well-known

ethnic stereotypes to match and identify hate speech.

To build the corpora, a number of correspondents were asked to come up with statements

that they deem hateful and not hateful towards their own community or other communities in any

19

of the three languages under consideration. Each statement received in one language was translated

to its equivalent in the other two languages. From the collected corpora, individual words and

sentences that make the submitted statements hateful were identified and grouped according to the

ethnic community being targeted. The author then builds regular expressions from the group to

identify instances of hate speech (Maloba, 2013).

2.9.3 Machine Learning Approaches

In their paper, (Ogada et al., 2015), use language modeling to improve performance of a

naïve Bayes classifier in detecting hate speech. The work notes that the naïve Bayes model makes

strong assumptions that the words in a document are independent, and further notes that this

assumption is clearly violated in natural language text. The authors try to address this problem and

show that it can be solved by modeling text data differently using N-grams. The paper analyses

the efficiency of n-grams as features with various machine learning algorithms and shows that

bigrams have much better performance for naïve Bayes text classification. K-Nearest Neighbor

(KNN) has the same accuracy for unigram, bigrams and trigrams while SVM has the highest

accuracy value for bigram and trigram. The results are as depicted in Figure 2.4 below (Ogada et

al., 2015):

Figure 2.4: Accuracy Values for Test Data (Ogada et al., 2015)

In their paper Gebre et al., (2013), use TF-IDF weighting with linear classifiers to improve

the task of identifying the native language of a writer based on the writer’s foreign language

production. The native language identification problem is modeled as a classification problem

where machine learning classifiers are used to assign labels of the native language to texts. They

obtain the best classification accuracy when TF-IDF weighting is used with unigram and bigram

terms (Gebre et al., 2013).

 Conceptual Framework

Based on the literature reviewed and the various gaps identified, this work proposes the

following conceptual framework to detect hate speech from twitter. Hate speech relevant data will

20

be collected from twitter and used to create the corpus necessary for learning. The tweets will be

annotated as hate speech or non-hate speech and then go through a number of steps in the

preprocessing phase including: removal of punctuation marks, removal of stop words and

conversion to lower case. The tweets will be represented in a document-term matrix, using unigram

terms with TF-IDF feature weighting found to work well in classification problems.

For its suitability in text classification problems, SVM algorithm will then be applied to

learn a model for detecting hate speech, from the training set. The model’s performance will be

evaluated based on the metrics: accuracy, precision, recall and the F-Score. Once the model has

reached an acceptable level of performance, it can be used to detect new instances of hate speech

in other tweets. A user will specify keywords to be used to retrieve unobserved tweets from the

Twitter Search Application Programming Interface (API). The tweets will be preprocessed in a

similar manner to that used in training and input into the SVM model created to be classified as

either hate speech or non-hate speech. The classification results will then be displayed to the user.

Figure 2.5 below depicts this conceptual framework of the proposed prototype.

Figure 2.5: Conceptual Framework

21

Chapter 3: Research Methodology

 Introduction

Research can be defined as the process of systematically solving problems (Bhatnagar &

Singh , 2013). This section describes the various methods and procedures that were adopted in

carrying out the research. This research was guided by the objectives that the author proposed to

meet at the end of the research. It was greatly informed by the nature of hate speech in Kenya and

research approaches that had been used in similar work reviewed in chapter 2. The research

employed an applied approach to design, implement and test SVMs. Primary data in the form of

historical twitter posts identified as hate speech were used to train the model and facilitate the

research. Experiments were designed to validate the model and determine the best configuration

of feature types, feature weighting schemes and machine learning algorithm to be used to detect

hate speech on twitter.

 Research Design

A research design is a blueprint describing how a research study is to be completed:

operationalizing variables so they can be measured, selecting a sample of interest to study,

collecting data to be used as a basis for testing hypotheses, and analyzing the results (Thyer, 1993).

This research took an experimental design approach, which involved the identification of research

objectives, building of the SVM model as a proof of concept and validation of the model using a

number of experiments to ensure the best performance (Creswell, 2003).

3.2.1 Target Population and Sampling

A population is defined as the total number of units in a study environment from which a

sample may be selected (Bryman, 2012). Twitter posts associated with hate speech in Kenya were

chosen as the population of this research. Purposive sampling was applied in the research, where

the sample was determined based on the judgement of the researcher with prior knowledge of

characteristics of tweets that constitutes hate speech.

3.2.2 Data Collection

Interviews were used to gain additional insight on the techniques currently used by NCIC

to detect hate speech on social media, to determine the user requirements of a system to detect hate

speech on twitter, and to provide further guidelines on the type of keywords to be used in the

mining of twitter. The guide used for the interviews is attached in Appendix B.

22

The NCIC provided keywords used to mine twitter for instances of hate speech. These

keywords are terms frequently found in text that is determined to be hate speech. A sample of the

keywords is as depicted in Table 3.1.

Table 3.1: Keywords to Search Twitter for Hate Speech Related Tweets

wabaara malizia wao kikuyu thief

kukuyu ncic kenya nyani kikuyu

tunavu National cohesion and intergration

should see this

madoadoa

wahame Okuyu kalenjin

tutawamaliza Jaluo wakamba ni wajinga

2tutawamaliza no raila no peace Wakikuyu ni wajinga

katakata wajaka ni wajinga kill duale

kill kikuyu

3.2.3 Mining Twitter

To build the corpora, hate speech related tweets were collected from Twitter. Twitter

allows developers to access tweets using two APIs: the Representational State Transfer (REST)

API and the Streaming API. Both APIs require the use of Open Authentication (OAuth) to allow

applications to get access to them and issue responses in JavaScript Object Notation (JSON)

format. The REST API enables developers to read and write Twitter data. An important component

of the REST API is the Search API which enables developers to query against indices of recent

tweets up to 7 days old. The Streaming API allows developers to process tweets in real time,

continuously delivering responses in JSON format over long lived HTTP connections (Twitter,

2017).

While extremely helpful, the two API have limitations in that they cannot be used to access

tweets more than seven days old. To build a comprehensive corpora it was necessary to collect

tweets much older than seven days. A number of online tools exist that aggregate historical tweets

and provide access to them such as Gnip API (Gnip, 2017). Most of these tools are made available

to developers at a cost. This work made use of Jefferson Henrique’s open source code made

available through GitHub to retrieve the required data from twitter. The open source code mimics

the working of the search feature on twitter through a browser to retrieve the older tweets

(Jefferson, 2017). It allows the collection of old tweets using various parameters as depicted in

Table 3.2 (Jefferson, 2017).

23

Table 3.2: Jefferson's Search Parameters

Using Jefferson’s open source code, tweets were collected from twitter based on keywords

provided by the NCIC for commonly found terms in instances of hate speech. The terms used to

collect tweets included: okuyu, tunavu, nyani kikuyu, tutawamaliza, madoadoa, kill luo, kill duale,

kill kikuyu, Kalenjin, kukuyu and kikuyu thief. A total number of 14055 tweets were collected

based on the preceding keyword search parameters and persisted in a csv file.

3.2.4 Corpus Construction

Once collected the tweets had to be labelled as hate speech or not hate speech. The class

label 1 was used for tweets found to be hate speech and -1 for tweets found to be not hate speech.

The research used guidelines provided by the NCIC in the labelling process to determine what

tweets are hate speech and which ones are not. These guidelines are described in Section 2.2 of

this document. To further guide the labelling process, the NCIC also provided the researcher with

sample hate speech text as depicted in Table 3.3.

Table 3.3: Sample Hate Speech Data

we w’ll deal with the kikuyus pependicularly, already we hv sent a warning to them to vacate

nyanza region

This time cord must win elections wapende wasipende kama sio hivyo kikuyu warudi kwao

These round again we should not see these happening in ur land pro. Seno have never

participated in the mmu demonstration the NCIC should not try to intimidate him by all means

we will support him up to ur cows and goats leave about our leaders and may God be with

because he is innocen. Some people who thought we are incited by him to demand ur lectures

to come to classes then ur lost and for sure no stone will be left unturned these round na

tumechoka saa na watu wengine wataona.

I hate kikuyus cz all r devils hiding in sheep wool

Yes, Lamu Governor has sued us on hate speech.

I have received a call to appear before National Cohesion and Integration

Commission(NCIC), on allegation of hate speech.

Parameter Description

Query search A query text to be matched

Username Username of a specific twitter account

Bound dates since The lower bound date

until The upper bound date

Maxtweets The maximum number of tweets to retrieve

24

I strongly believe that this is a ploy to #silence me, because of my firm stand on issues that

matter and are of importance to the people of Bahari Ward and Lamu at large

Duale should be taken to the streets of Kisumu and be forced to abuse Raila Odinga ten times

infront of the crowd.

If he survives of which I doubt, he will come back and testify to his fello sychopants like

kipchumba murkomen and Moses Kuria and they will change and there will be some reforms

in the government..

These people should not take kenyans for a ride. We know very well these Somali people

have no leadership qualities and what Duale want is this country to stumble like his country

Somalia so that we can be equal.

Once an alshabaab is always an alshabaab and once an ISIS is always a bomber. Duale and

Kuria should stop hypocrisy

It is time CORD asks the 4 dead fools from Siaya and Kisumu to wake up and go home. If

the cops are acting up lets end the morgue drama too

I blame the UON KIKUYU students for refusing to join in demo to remove Babu Owino.

Kikuyus are never progressive, no wonder all your men are thieves and women are prostitutes.

JIGGERS

Wajaluo wote wahame

From the 14055 collected tweets, a total of 1904 tweets were labelled, of which 785 tweets

were labelled as 1(hate speech relevant) and the rest 1119 labelled as -1(not hate speech relevant)

as illustrated in Table 3.4.

Table 3.4: Corpus Description

Hate Speech

Tweets

Non- Hate

Tweets

Total

1119 785 1904

3.2.5 Data Preprocessing

The text data collected was in an unstructured format that was not suitable for machine

learning. Preprocessing of the data was done as depicted in Figure 3.1. The stop words removed

from the tweets included commonly occurring terms such as hashtags, mentions and URL links.

25

 Model Training

The collected text was represented in a document-term matrix with tf-idf feature weighting

to enable the application of SVM machine learning algorithm. The collected texts were split into

training sets and testing sets, to be used to train and validate the model respectively. Seventy

percent of the labelled data was used for training and the remaining thirty percent used to evaluate

the model.

 System Development Methodology

The prototype was developed following the Rapid Application Development (RAD)

system development methodology which emphasizes on creation of applications in a short amount

of time, sometimes with compromises in usability, features and execution speeds (Naz & Khan,

2015). Developed by James Martin, RAD accelerates the cycle of development of an application,

resulting in the building of quality products faster and consequently saving valuable resources.

3.4.1 Overview of RAD Structure

The RAD phases and tasks involved in each stage can be depicted diagrammatically as in

Figure 3.2 below (Orawit, 2006).

Remove punctuation marks

Normalize case

Remove stop words

Unstructured text data

Preprocessed data

Figure 3.1: Preprocessing data

26

Figure 3.2: Overview of RAD (Orawit, 2006)

3.4.2 Phases of RAD

The James Martin approach to RAD divides the process into four distinct phases as

depicted in Figure 3.3 (Orawit, 2006).

Figure 3.3: Phases of RAD (Orawit, 2006).

3.4.2.1 Requirements Planning Phase

In this phase, requirements of the hate speech detection prototype were obtained through

the use of interviews with an aim of establishing a general understanding of: existing systems and

27

processes, challenges encountered while monitoring hate speech online and the possible eventual

use of the system (Orawit, 2006).

3.4.2.2 Design Phase

In this phase, the structure and architecture of the prototype was designed. Unified

Modelling Language (UML) diagrams were designed to depict various components and aspects of

the system including use case diagrams, context diagrams, data flow diagrams and sequence

diagrams.

3.4.2.3 Construction Phase

After completion of the detailed design of the proposed system, the prototype was

implemented using python as a development language. Python’s scikit-learn library was used to

give an implementation of the various machine learning algorithms. The pandas library was used

to provide easy to use data structures that ease the data analysis and manipulation process. After

implementation, testing was done to validate the model proposed by the researcher. A number of

experiments were conducted to determine the best configuration of feature types, feature weights

and machine learning algorithm to be used.

3.4.2.4 Transition Phase

After construction and validation of the model the prototype was deployed for prediction

to monitor other unobserved instances of hate speech on twitter.

3.4.3 Justification for choosing RAD

RAD was chosen as the system development methodology as it enables fast development

of high quality systems at a relatively low cost. In addition to this RAD is suitable for development

of the system because the project is small scale and scope is highly focused and well defined.

 Research Quality

The performance of text classifiers was evaluated experimentally since the text

classification problem is not well defined (Feldman & Sanger, 2007). A testing set that contained

labelled examples of hate speech and non-hate speech text that had not been observed by the model

during training were used to evaluate the model. The test set was fed into the model for prediction

and predicted results compared to the actual target results. From this comparison four categories

are identified: True Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives

28

(FN). True positives refers to instances of hate speech text that were correctly identified as hate

speech whereas true negatives are instances of non-hate speech text correctly predicted as non-

hate speech. False positives are the instances of non-hate speech text incorrectly classified as hate

speech whereas False Negatives are instances of hate speech text incorrectly determined to be non-

hate speech (Feldman & Sanger, 2007). These four categories can be illustrated in a confusion

matrix as in Table 3.4.

Table 3.5: Confusion Matrix

 Actual Class

Hate Speech Non-Hate

Speech

Predicted

Class

Hate

Speech

TP FP

Non-Hate

Speech

FN TN

3.5.1 Evaluation Metrics

The four categories: true positive, false positive, false negative and true negative form the

basis of the metrics that were used to evaluate the classification model including accuracy,

precision, recall and F-Score (Feldman & Sanger, 2007).

Accuracy measures the percentage of inputs in the test set that the model correctly labelled

either as hate speech or non-hate speech. It is calculated as in Equation (3.1) (Feldman & Sanger,

2007).

 Accuracy = True Positives + True Negatives
N

(3.1)

where N is the size of the test set.

Precision is the ratio of correctly classified documents to the total number of documents

classified under a particular category. Precision is a measure of false positives calculated as in

Equation (3.2) (Feldman & Sanger, 2007).

 Precision = True Positives
True Positives + False Positives

(3.2)

29

Recall is defined as the number of correctly classified documents among all documents

belonging to that category. Recall is a measure of false negatives calculated as in Equation (3.3)

(Feldman & Sanger, 2007).

 Recall = True Positives
True Positives + False Negatives

(3.3)

F-Score is a harmonized mean of precision and recall calculated as in Equation (3.4)

(Feldman & Sanger, 2007).

 F − Score = 2 ∗ Precison ∗ Recall
Precision + Recall

(3.4)

3.5.2 Visualization of the Model

Tables and graphical representations were used to illustrate the model performance. The

tables were used to display and give comparison of accuracy, precision, recall and F- score value

in different experiments. A Receiver Operating Characteristic (ROC) curve was drawn to visualize

the performance of the classifier. An ROC plots the true positive rate against the false positive rate

as the output threshold is varied over the range of all possible values. The true positive rate depicts

the sensitivity of the classifier whereas the false positive rate shows the sensitivity of a binary

classifier (Hainard et al., 2011). The Area Under the Curve (AUC) of an ROC curve measures

performance of a classifier, in terms of the ability of a model to correctly discriminate between

classes. A higher AUC value, shows a good ability to classify hate speech and non-hate speech

text. The AUC value is maximal at 1.00 where the classifier doesn’t make any error and minimal

at 0.5 where the model is considered useless and arbitrarily classifies hate speech text, in this case

the ROC curve is aligned diagonally (Hainard et al., 2011).

 Model Validation

To validate the researcher’s approach, a number of experiments were used to determine if

the best combination of feature types, feature weighting and machine learning algorithms was used

to train the model for hate speech identification. The machine learning algorithms considered in

the experiments were SVM, Naïve Bayes and k-Nearest Neighbor. Basic count and tf-idf were

30

considered for feature weighting and n-grams used as feature types, specifically unigrams, bigrams

and trigrams.

3.6.1 Experiment 1: Use of Different Machine Learning Algorithms

The aim of this experiment was to compare the performance of the linear SVM model

proposed by the researcher with two other machine learning algorithms (Naïve Bayes and k-

Nearest Neighbor) using the same tf-idf feature weighting on the same training and testing sets.

3.6.2 Experiment 2: Use of Different Feature Types and Weighting Schemes

The aim of this experiment was to determine the effect of using different combination of

feature types with different weighting schemes on the SVM model. The three features types used

included: unigrams, bigrams and trigrams, whereas the feature weighting schemes considered were

basic count and tf-idf. This experiment was repeated for both Naïve Bayes and kNN to determine

which combination produces the best results, as experiment 3 and 4 respectively.

31

Chapter 4: System Design and Architecture

 Introduction

This chapter describes the overall architecture and detailed design of the proposed prototype by

incorporating various requirements. UML diagrams were used to: describe the overall architecture

of the system; give detailed descriptions of the various components of the system and illustrate

interaction between the users and various components of the system. To achieve this, various

design diagrams were developed including: a depiction of the system architecture, use case

diagram followed up with comprehensive use case descriptions, sequence diagrams, context

diagrams and data flow diagrams.

 Requirement Analysis

This research aimed at developing a model for monitoring hate speech on twitter. Based

on this objective, this section outlines the various requirements to be provided for by the proposed

solution.

4.2.1 Functional Requirements

i. The application should allow a user to enter keywords to be used as search

parameters in the retrieval of tweets from the Search API.

ii. The application should retrieve tweets from Twitter using the Twitter Search API

matching the keywords specified by the user.

iii. The application should preprocess the retrieved tweets to clean them and store them

in a csv file.

iv. The application should perform feature weighting and represent the tweet in a

document term matrix suitable for machine learning. The feature weighting should

be done in a similar manner to the one used in training the model.

v. The application should classify the tweet as hate speech or not hate speech using

the support vector machine model already trained.

vi. The application should display to the user the tweets labelled as hate speech.

32

4.2.2 Non-Functional Requirements

4.2.3 Usability

The intended users of the proposed solution are the Information and Communication

Technology (ICT) staff at NCIC. It is intended that the interaction between these users and the

model shall be simple to allow them collect data from twitter easily and view prediction results.

4.2.4 Scalability

If there is an increase in the amount of twitter posts matching user keywords searched, the

proposed solution should be able to handle the extra load, collecting the tweets and predicting their

labels without breaking down.

4.2.5 Persistent Storage

The system should provide permanent storage for tweets identified as hate speech. Such

tweets may be used as required as evidence in prosecuting hate speech and as such must be

retrievable as and when needed.

 System Architecture

The system architecture shows the general layout of the twitter hate speech monitoring

prototype and the components it is made up of as illustrated in Figure 4.1. The hate speech

detection process begins with the user entering a keyword to be used to retrieve matching tweets.

The tweets collector module receives the keyword and collects tweets matching the keyword from

the Twitter Search API and stores them in a database. The tweets collected are then preprocessed

to clean the tweets. The cleaned tweets are then transformed to a document-term matrix suitable

for machine learning using the feature transformer module. The transformation used is the same

one as the one used in training the classifier. The document-term matrix is then input into the SVM

classifier module and the tweet classified as hate speech or not. Labelled tweets are then presented

back to the user and the same persisted in storage.

33

Figure 4.1: System Architecture

 Use Case Diagram

Use case diagrams are used to illustrate interaction between actors and the system. Figure

4.2 illustrates these interactions between the various actors and the proposed hate speech detection

prototype. The diagram also depicts the functionality that the proposed system should have.

34

Figure 4.2: Use Case Diagram

4.4.1 Detailed Use Case Descriptions

This section provides comprehensive descriptions for the use cases in Figure 4.2 in a two-

column fully dressed format.

Use case: Search Tweets, Retrieve Tweets

Primary Actors

User

Twitter Search API

Preconditions

Search Tweets use case completed successfully

User has access to internet on platform being used

Post conditions

System fetches tweets from Twitter Search API matching the keywords provided

Main Success Scenarios

Actor Intention System Responsibility

1. User enters the keywords to be used

 2. Pass keywords entered as parameter to

be used to retrieve tweets

Twitter Search API

SVM

Model

System for Hate Speech Detection on Twitter

35

 3. Fetch tweets from Twitter Search API

using the parameters entered

 4. Save tweets collected

5. View tweets collected

Extensions

At any time the system fails to retrieve tweets:

 Confirm that there is internet access

 Restart the system

Use case: Preprocess Tweets, Transform Features, Classify Tweets

Primary Actors

System

User

Preconditions

Tweets were retrieved and stored successfully

Post conditions

Tweet accurately classified as hate speech or not

Main Success Scenarios

Actor Intention System Responsibility

1. User initiates classification

 2. Preprocesses the tweets to clean them

as per the SVM model

 3. Transforms tweets to document-term

matrix format as per the SVM model

 4. Classify tweets as hate speech or not

using SVM model

Use case: Receive Feedback

Primary Actors

User

Preconditions

Successful classification of the tweets by the system

Post conditions

User views tweets labelled as hate speech

Main Success Scenarios

Actor Intention System Responsibility

1. User requests results of classification

 2. Return the output of classification

 3. Display time taken

4. Exit the system

36

 Sequence Diagram

The sequence diagram depicted in Figure 4.3 shows the sequence of interactions between

the user and the proposed system as well as interactions between the various internal components

of the system. The user enters keywords to be used as search parameters for twitter through the

web platform. Once the keywords are obtained, they are passed on to the Twitter Search API which

returns JSON results that are saved into a csv file. The user can then initiate classification of the

retrieved tweets. In so doing, the web platform passes the message cleantweet() to the preprocessor

which preprocesses the tweets and returns clean tweets. The getfeatures() message is passed to an

instance of the FeatureExtractor which consequently returns a document term matrix. The

document term matrix is then passed to an instance of classifier using the classifytweet () message

and a classification of hate speech or non-hate speech returned. The cleantweet (), getfeatures ()

and classifytweet () messages are repeated for all retrieved tweets. The user can finally request for

classification results for all the tweets retrieved.

Figure 4.3: Sequence Diagram

 Context Diagram

The context diagram as depicted in Figure 4.4 illustrates the boundary of the prototype, its

environment and the entities that interact with it. It also shows the various inputs and outputs from

the prototype to the entities. The main entities interacting with the proposed prototype are a user

3: viewresults()

3.1: viewresults()

37

and the Twitter Search API. The user gives a download request that contains keywords to be

matched by the Twitter Search API. The model passes the requests to the Twitter Search API

which requires verification of the application to use the API. The model provides confirmation of

API details to finalize the connection. The Search API retrieves tweets matching the download

request and returns them to the model, which in turn returns the retrieved tweets to the user. The

user issues a prediction request to the hate speech detection model which classifies the tweets and

returns the labels of the tweets back to the user.

Figure 4.4: Context Diagram

 Level 0 Data Flow Diagram

The level 0 Data Flow Diagram (DFD) depicted in Figure 4.5 gives a more detailed view

of the prototype by illustrating the various processes contained in the module, data stores and

entities. Arrows depict the flow of data among various components of the DFD. Process 1 called

Collect Tweets receives a download request from the user and passes the request to the Twitter

Search API entity. The API upon successful validation of API credentials returns retrieved tweets

matching the download request. Process 1 stores the retrieved tweets in data store D1 called

retrieved tweets. Process 2 (Clean Tweets) receives a prediction request from a user, reads tweets

from data store D1 and cleans them. The cleaned tweets are then stored in data store D2 known as

clean tweets. Process 3 known as Extract Features reads clean tweets from data store D2 (clean

tweets), extracts and weighs the tweet producing a document term matrix that is suitable for

machine learning. The document term matrix is fed into process 4: Classify Tweets which labels

38

the tweets as hate speech or not hate speech and writes the labelled tweets to data store D3 called

labelled tweets. Process 5 (Give Feedback) receives a feedback request from the user, reads the

labelled tweets from data store D3 and outputs the labelled tweets to the user.

Figure 4.5: Level 0 DFD

39

Chapter 5: System Implementation and Testing

 Introduction

This chapter describes how the prototype was implemented, tested and validated. It begins

by describing the process of building a hate speech corpus for machine learning. The preprocessing

process is then discussed after which the model can be trained. The model is then tested against

the test set and obtains an accuracy of

To further validate the researcher’s approach experiments described in Chapter 3 were

implemented to determine the best configuration of feature types, feature weighting and machine

learning algorithm for detecting hate speech on twitter. The best performance is achieved when

SVM model is used with bigrams features weighted using tf-idf. The final section of this chapter

describes the use of the model in predicting other unobserved tweets.

 Building the Corpus

As detailed in section 0, tweets were collected using Jefferson Henrique’s open source tool

using keywords provided by NCIC. Figure 5.1 illustrates the collection of tweets using Jefferson

Henrique’s tool.

Figure 5.1: Collecting Historical Tweets from Twitter

40

 Preprocessing

The data collected for training was in an unstructured format unsuitable for application of

machine learning techniques. As such it was imperative to preprocess the data before passing it to

the training model. Some of the raw unstructured data collected is as depicted in Figure 5.2 below.

Figure 5.2: Sample Tweets Collected

Tweets often contain a number of different types of information including usernames, date,

retweets, favorites, text, geo, mentions, hashtags, id and permalink. The research was only

interested in the text part of the tweet to build the corpora. The collected tweets were therefore

processed to separate the various parts as illustrated in Figure 5.3 so as to easily extract the text

part of the tweet that is relevant to this study.

Figure 5.3: Collected Tweets with Separated Columns

On analysis of the text contained in the collected tweets a number of twitter specific terms

existed that were not informative in the context of the research. Such observed terms included

retweets (RT), mentions (@username), hashtags (#), and URL links and non-utf8 characters in the

tweets. These occurrences were unnecessary for building the corpora and were therefore removed

using regular expressions as depicted in the code snippet in Figure 5.4.

41

Figure 5.4: Regex Removal of Common Twitter Terms

Further preprocessing was done to remove punctuation and lower case the tweets. A sample

of the clean tweets is as depicted in Figure 5.5. The tweets were then labelled as 1 for hate speech

tweet and -1 for non-hate speech tweets to facilitate supervised machine learning as depicted in

Figure 5.6.

Figure 5.5: Sample cleaned tweets

42

Figure 5.6: Sample Labelled Tweets

 Training the model

Once the tweets were preprocessed and evaluated, training of the model could proceed. To

train the model, the csv file containing preprocessed and labelled tweets is read into a pandas Data

Frame. A Data Frame is a two-dimensional labeled pandas data structure made up of columns of

potentially different types (Pandas, 2017). The corpus was then randomly split into two sets using

the train_test_split method of the scikit-learn library; 70 percent of the corpus was used to train

the model whereas the remaining 30 percent was used to test its performance. Before the training

data could be passed to the SVM classifier for training, it had to be converted into a document

term matrix suitable for learning. A count vectorizer was used to convert the text into a matrix of

token counts. Since no dictionary had been defined beforehand and no feature selection method

was used, the number of features used was equal to the vocabulary size found by analyzing the

data. Tf-idf weighting was then applied to the matrix to transform the counts into tf-idf weights.

An SVM classifier could then be applied to the document term matrix.

This work made use of an implementation of SVMs provided by Python’s scikit-learn

machine learning library. Scikit-learn’s CountVectorizer module was used to transform the

training data into a matrix of token counts and the TfIdfTransformer used to transform the counts

using tf-idf weighting. The vectorization and transformation steps can be combined into a single

scikit-learn pipeline. Scikit-learn’s pipeline was therefore used to chain the three processes of

vectorization, transforming and specifying the classifier into one pipeline. Figure 5.7 shows the

SVM implementation with count vectorizer and tf-idf weighting, the function receives the training

data X with the labels y, learns and returns an SVM model.

43

Figure 5.7: SVM Implementation

 Testing the Model

The test set (30 percent of the labelled data) was used to validate the model. The test set

was passed to the learnt model to be predicted and the results of the predicted compared with the

actual labels on the test data. Consequently, a confusion matrix was output to describe the

performance of the implemented model. The confusion matrix is depicted in Table 5.1.

Table 5.1: Confusion Matrix for Implemented Model

 Actual -1 Actual 1

Predicted -1 258 83

Predicted 1 56 175

The values for True positive, true negative, false positive and false negative were

determined from the confusion matrix as illustrated in Table 5.2.

Table 5.2: Values from the confusion matrix

True Positive 175

False Positive 56

True Negative 258

False Negative 83

The metrics: accuracy, recall, precision and f-score can then be calculated from the values

in Table 5.2 and summarized as in Table 5.3. Accuracy is determined to be 75.69 percent calculated

as in Equation (3.2).

Table 5.3: Performance of the SVM model

 Precision Recall F-Score Support

-1 0.82 0.76 0.79 341

1 0.68 0.76 0.72 231

Total/

Average

0.76 0.76 0.76 572

44

Additionally, an ROC curve was drawn to visualize the performance of the classifier as

illustrated in Figure 5.7.

Figure 5.8: ROC curve for the SVM model

 Using the Model in Prediction

Using the model to predict other tweets involves the user entering keywords which are used

to retrieve tweets from the Twitter Search API and passing the tweets to the built model for

prediction. To avoid retraining the model every time it was required for prediction, the model had

to be persisted, this involved dumping the model in a pickle file done using the joblib module in

sklearn using the code illustrated in Figure 5.9. The model then needs to be loaded when required

to predict retrieved tweets from the Twitter Search API.

Figure 5.9: Persisting the learnt model

To retrieve tweets the Twitter Search API was used. An application was created on twitter

to obtain the necessary keys for OAuth as depicted in Figure 5.9. Upon successful registration, the

user is issued with the following keys to be used in authentication: access key, access secret key,

45

consumer key and consumer secret key. The prediction module can use the keys to request access

to the search API to facilitate the collection of tweets.

Figure 5.10: Application Registration on Twitter

5.6.1 Collecting Tweets

A user interacts with the application by entering the keywords to be used to retrieve tweets

from Twitter using the Search API. Once the user enters the keywords they are passed to the collect

tweets module in Appendix C. The module retrieves tweets from the Search API in JSON format

and saves them in a text file. Figure 5.11 illustrates the user interface for the web platform to

receive keywords from the user.

46

Figure 5.11: User Interface to obtain keywords from the user

5.6.2 Preprocessing Tweets

The collected tweets have to go through a number of preprocessing steps similar to the

ones done when training the module. The text file containing the read files is read, the text part of

tweets extracted and cleaned to remove hashtags, mentions, URL links and non utf8 characters.

The cleaned tweets are then stored in a csv file ready for prediction.

5.6.3 Predicting Labels for Tweets

In this phase, cleaned tweets are read from the csv file and passed to the persisted trained

model that needs to be loaded from a pickle file. The model labels the tweets as hate speech or not

and returns the results to the user. Figure 5.12 shows a sample of predicted tweets by the system.

47

Figure 5.12: Sample results returned from prediction

 Implementation of Experiments

The experiments described in section 3.6 were implemented to validate the researcher’s

approach in detecting hate speech from twitter. The same scikit-learn library was used to

implement the four scenarios: including the use of Naïve Bayes and kNN as the machine learning

algorithms and use of different combination of feature types and feature weighting schemes. The

code for the implementation of the experiments is in Appendix B and the results of the experiments

are discussed in Chapter 6.

48

Chapter 6: Discussions

 Introduction

This chapter discusses the results of the research in light of the objectives set out at the

beginning. The objectives of this research were to develop a hate speech monitoring prototype to

detect hate speech from twitter and validate it. An SVM model was created using unigram features

and tf-idf weighting, and its performance tested against the test set. A number of experiments were

additionally implemented to validate the researcher’s approach in detecting hate speech from

twitter. The experiments show that the best performance is achieved when bigram features are

used with tf-idf weighting.

 Experiment Results

6.2.1 Using Different Classifiers

The aim of this experiment was to compare the performance of the linear SVM model

implemented with two other machine learning algorithms (Naïve Bayes and k-Nearest Neighbor)

using the same tf-idf feature weighting where a term is considered to be a word (unigram). The

results of the experiment are summarized in Table 6.1 and visualized using ROC curves as depicted

in Figure 6.1.

Table 6.1: Performance Comparison of Different Classifiers

Classifier Accuracy Precision Recall F-Score

Linear SVM 0.7569 0.76 0.76 0.76

Multinomial Naïve

Bayes

0.7342 0.73 0.73 0.73

KNN 0.7010 0.70 0.70 0.70

The results in Table 6.1 show that the linear SVM model performs better than both the

Multinomial Naïve Bayes and kNN across all the metrics (accuracy, precision, recall and f-score).

Similarly, ROC curves in Figure 6.1 show that the linear SVM outperforms both kNN and Naïve

Bayes with an AUC of 0.76.

49

Figure 6.1: ROC Comparison of Different Classifiers

6.2.2 Experiment 2: SVM performance using various feature types

The aim of this experiment was to determine the effect of using different feature types and

weighting schemes on the SVM model. The three features types considered included: unigrams,

bigrams and trigrams, whereas the feature weighting schemes considered were basic count and tf-

idf. The results of the experiment show that the SVM model performs best on the hate speech data

when bigram features are considered with tf-idf weighting as depicted in Table 6.2. The results

also show that better results are obtained when tf-idf weighting is used for each of the three features

(unigram, bigram and trigram)

Table 6.2: SVM Performance Using Different Features and Weighting Schemes

Feature Weighting Accuracy Precision Recall F-Score

Unigram counts 0.7412 0.74 0.74 0.74

Tf-idf 0.7569 0.76 0.76 0.76

Bigram counts 0.7534 0.75 0.75 0.75

Tf-idf 0.7622 0.77 0.76 0.76

Trigram counts 0.75 0.75 0.75 0.75

Tf-idf 0.7587 0.77 0.76 0.76

6.2.3 Experiment 3: Naïve Bayes with Different Feature Types

This experiment was similar to experiment 2 and was set up to determine the performance

of a Naïve Bayes classifier on the hate speech data given different feature types and weighting

schemes. The text documents were represented using unigram, bigram and trigram features and

50

count and tf-idf used for feature weighting. The results in Table 6.3 show that the best performance

of the Naïve Bayes classifier is obtained when bigram counts are used.

Table 6.3: Naive Bayes Performance Using Different Features and Weighting Schemes

Feature Weighting Accuracy Precision Recall F-Score

Unigram counts 0.7290 0.74 0.73 0.73

Tf-idf 0.7342 0.73 0.73 0.73

Bigram counts 0.7517 0.76 0.75 0.75

Tf-idf 0.7202 0.72 0.72 0.71

Trigram counts 0.75 0.75 0.75 0.75

Tf-idf 0.7167 0.72 0.72 0.70

6.2.4 Experiment 4: KNN with Different Feature Types

Having established that tf-idf weighting improves the performance of the SVM model on the hate

speech data, this experiment was set up to determine whether the same effect is had on a kNN

classifier. The text documents were represented using unigram, bigram and trigram features and

count and tf-idf used for feature weighting. kNN performs best when bigram features are used with

tf-idf, closely followed by the use of unigram features with tf-idf as depicted in Table 6.4.

Table 6.4: kNN Performance Using Different Features and Weighting Schemes

Feature Weighting Accuracy Precision Recall F-Score

Unigram Counts 0.6608 0.65 0.66 0.65

 Tf-idf 0.7010 0.70 0.70 0.70

Bigram counts 0.6726 0.64 0.63 0.55

 Tf-idf 0.7027 0.70 0.70 0.70

trigram counts 0.6136 0.64 0.61 0.51

 Tf-idf 0.6958 0.70 0.70 0.70

 Discussions

The results described in the preceding sections show that the best approach in creating a

model for hate speech detection on twitter from the data collected is the use of an SVM machine

learning algorithm with bigram features weighted using tf-idf. This approach yields the best

accuracy of 0.7622 in the classification task. Tf-idf weighting is found to improve accuracy across

all 3 feature types (unigram, bigram, trigram) for SVM. This is clearly illustrated using Figure 6.2.

51

Figure 6.2: Accuracy values for different features for SVM

Naïve Bayes performs best when bigram features are used with count as illustrated in

Figure 6.3. Tf-idf weighting in this case does not improve the performance of the NB classifier on

the hate speech data.

Figure 6.3: Accuracy values NB using different features

kNN classifier accuracy is optimized on the hate speech data collected when bigram

features are weighted using tf-idf, similar to the SVM model. kNN accuracy levels with different

feature weighting schemes is depicted in Figure 6.4.

73

73.5

74

74.5

75

75.5

76

76.5

count tf-idf count tf-idf count tf-idf

unigram bigram trigram

Svm

SVM Accuracy with Different Features

69

70

71

72

73

74

75

76

count tf-idf count tf-idf count tf-idf

unigram bigram trigram

NB

NB Accuracy Using Different Features

52

Figure 6.4: kNN accuracy comparison using different features

The results of the study show that the SVM model outperforms the NB and kNN model in

detecting hate speech from twitter. Additionally, bigrams can be used to improve the performance

of SVMs in detecting hate speech in tweets consistent with Ogada et al., (2015) who show that

ngrams can be used to improve the perfomance of naïve bayes, SVMs and kNN. For the data

collected a combination of bigrams with tf-idf weighting on an SVM machine learning algorithm

have the best performance with an accuracy of 76.22. As such this combination was persisted and

used in predicting other unobserved tweets collected by the user.

56

58

60

62

64

66

68

70

72

count tf-idf count tf-idf count tf-idf

unigram bigram trigram

kNN

kNN Accuracy Using Different Features

53

Chapter 7: Conclusions and Recommendations

 Conclusion

This research intended to develop a tool to detect hate speech on twitter using machine

learning techniques. To enable successful execution of the research it was necessary to understand

what hate speech is and its occurrence and manifestation on social media platforms. To achieve

this relevant literature was reviewed and experts interviewed to determine the challenges

encountered in the current processes of detecting hate speech on social media. Further literature

was reviewed to understand the application of various machine learning techniques in text

classification and hate speech detection.

The main objective of this research was to develop a hate speech monitoring tool for twitter

to automatically detect instances of hate speech based on an SVM machine learning algorithm.

Hate speech data was collected, preprocessed and labelled using guidelines provided by the NCIC,

and further split into training and test sets. The training set was used to train an SVM model suing

unigram features with tf-idf weighting. The testing set was used to test the model which achieved

an accuracy of 75.69 percent.

To validate the approach taken by the researcher, four experiments were conducted to

determine the best combination of feature types, feature weighting schemes and machine learning

algorithms (SVM, NB, kNN are considered) to be used to detect hate speech on twitter. The results

of the experiment show that the best performance is achieved when an SVM model is used with

bigram features weighted using tf-idf, with an accuracy of 76.22 percent. This model was then

persisted and deployed in the prediction of unobserved live tweets obtained from twitter using the

search API.

 Recommendations

This work showed that the SVM model can be used to automatically detect hate speech on

twitter instead of the human analysis of tweets currently employed by NCIC officers; significantly

improving the amount of time taken to identify hate speech tweets and reducing the number of

tweets that human monitors have to go through.

The research notes that better prediction results would have been obtained if a large data

set had been used. A total number of 14055 tweets were collected but only1904 tweets were used

54

due to the expensive nature of the labelling process. From the 1904 labelled tweets 1332 (70

percent) tweets used to train the model and the remaining 572 used to test and validate the model.

The final training data was not large, the researcher therefore recommends that the size of the

training data to be increased by collecting and labelling more tweets to improve the performance

of the classifier.

 Future Work

Twitter limits the characters that can be used in tweets to 140. In a bid to convey messages

within the 140 character limit, users on twitter have to be innovative in the words they use, which

results in a number of abbreviations, and informal twitter specific terms. This nature of the

language used on twitter makes the classification process difficult. Future research can focus on

preprocessing and cleaning tweets to formulate complete statements before classification can be

performed.

Hate speech in Kenya can be expressed on twitter in more than one language. This study

limited its scope to only hate speech expressed in English and Swahili. For a more comprehensive

detection tool, it is necessary to build on the corpus by including tweets expressed in other different

languages. Additionally, tweets often contain images and videos which may also contain

expressions of hate speech. Future research could focus on such kind of content.

In future research, sentiment weighting can be applied to the tweets to determine levels of

negativity and positivity which can be used to detect hate speech. There already exists English

lexical resources for sentiment weighting but none for Swahili. Future work could involve the

building of such a lexical resource for Swahili to facilitate sentiment weighting.

55

References

Baccianella, S., Esuli, A., & Sebastiani, F. (2010). SentiWordNet 3.0: An Enhanced Lexical

Resource for Sentiment Analysis and Opinion Mining. International Language Resources

and Evaluation, (pp. 2200-2204).

Bai, J., Nie, J.-Y., & Paradis, F. (2004). Using Language Models for Text Classification. Asia

Information Retrieval Symposium. Montreal.

Bhatnagar, M., & Singh , K. (2013). Research Methodology as SDLC Process in Image Processing.

International Journal of Computer Applications, Vol 77 No 2.

Bird, S., Klein, E., & Loper, E. (2009). Natural Language Processing with Python. Sebastopol:

O'Reilly Media Inc.

Bordens, K., & Abbott, B. (2011). Research Design and Methods: A Process Approach. New

York: McGraw-Hill.

Bryman, A. (2012). Social Research Methods. New York: Oxford University Press.

Cohen-Almagor, R. (2011). Fighting Hate and Bigotry on the Internet. Policy & Internet, Article

6.

Creswell, J. (2003). Research Design: Qualitative, Quantitative and Mixed Methods Approaches.

London: SAGE Publications.

Daily Nation. (2017, January 25). Ordinary Kenyans Spread Hate Speech in Online Groups.

Retrieved from Daily Nation: http://www.nation.co.ke/oped/Opinion/Ordinary-Kenyans-

spread-hate-speech-in-online-groups-/440808-2951054-10wsl1az/index.html

Daniel, J., & James, M. (2000). Speech and Language Processing. New Jersey: Prentice Hall.

Ethnologue. (2017, January 20). Kenya. Retrieved from Ethnologue- Languages of the World:

https://www.ethnologue.com/country/KE

Feldman, R., & Sanger, J. (2007). The Text Mining Handbook: Advanced Approaches in Analyzing

Unstructured Data. New York: Cambridge University Press.

56

Gebre, B., Zampieri, M., Wittenburg, P., & Heskes, T. (2013). Improving Native Language

Identification with TF-IDF weighting. Innovative Use of NLP for Building Educational

Applications (pp. 216-223). Atlanta: Association for Computational Linguistics.

Gnip. (2017, January 5). Gnip Historical. Retrieved from Gnip: https://gnip.com/historical/

Hainard, A., Robin, X., Turck, N., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Muller, M. (2011).

pROC: An Open Source Package for R and S+ to Analyze and Compare ROC Curves.

BMC Bioninformatics, 77.

Hirsch, S. (2009). Putting Hate Speech in Context: Observations on Speech, Power, and Violence

in Kenya. George Mason University.

iHub Research. (2013). Umati Final Report. Nairobi.

Institute For Security Studies. (2017, February 3). Hate speech and ethnic tension ahead of Kenya's

2017 elections. Retrieved from ISSAfrica: https://issafrica.org/amp/iss-today/hate-speech-

and-ethnic-tension-ahead-of-kenyas-2017-elections

Jefferson, H. (2017, January 3). GetOldTweets-python. Retrieved from Github:

https://github.com/Jefferson-Henrique/GetOldTweets-python

Joachims, T. (1998). Text Categorization with Suport Vector Machines: Learning with Many

Relevant Features. ECML '98 Proceedings of the 10th European Conference on Machine

Learning (pp. 137-142). London: Springer-Verlag .

Joachims, T. (1998). Text Categorization with Support Vector Machine: Learning with Many

Relevant Features. Proceedings of the 10th European Conference on Machine Learning

(pp. 137-142). London: Springer-Verlag.

Jumia Kenya. (2016, May 30). Growth of the Smartphone Market in Kenya. Retrieved from Jumia:

https://www.jumia.co.ke/blog/whitepaper-the-growth-of-the-smartphone-market-in-

kenya/

Kilimci, Z. H., & Ganiz, M. C. (2015). Evaluation of classification models for language

processing. Innovations in Intelligent SysTems and Applications (INISTA).

57

Liu, B. (2007). Web Data Mining: Exploring Hyperlinks, Contents and Usage Data. London:

Springer-Verlag .

Makinen, M., & Kuira, M. (2008). Social Media and Post-Election Crisis in Kenya. Scholarly

Commons.

Maloba, W. (2013). Use of Regular Expressions for MultiLingual Detection of Hate Speech in

Kenya. Strathmore University.

Manning , C., Raghavan, P., & Schutze, H. (2009). An Introduction to Information Retrieval.

Cambridge: Cambridge University Press.

Mazzonello, V., Gaglio, S., Augello, A., & Pilato, G. (2013). A Study on Classification Methods

Apllied to Sentiment Analysis. International Conference on Semantic Computing (pp. 426-

431). IEEE.

Munya, I. (2017, February 3). Personal Interview.

National Cohesion and Integration Commission. (2011). Police Training Manual- On the

Enforcement of the Law on Hate Speech. Nairobi: National Cohesion and Integration

Commission.

National Cohesion and Intergration Commission. (2013). The Use of Coded Language and

Stereotypes among Kenyan Ethnic Communities. Nairobi: NCIC.

National Council for Law Reporting. (2008). National Cohesion and Integration Act. Nairobi.

Naz, R., & Khan, M. (2015). Rapid Applications Development Techniques: A Critical Review.

International Journal of Software Engineering and Its Applications, 163-176.

Nobata, C., Tetreault, J., Mehdad, Y., Chang , Y., & Thomas, A. (2016). Abusive Language

Detection in Online User Content. International Conference on World Wide Web, (pp. 145-

153). Montreal.

Nyambane, O. (2012). Prosecuting Hate Speech in Kenya. Nairobi: Academia.edu.

Ogada, K., Mwangi, W., & Cheruiyot, W. (2015). N-gram Based Text Categorization Method for

Improved Data Mining. Journal of Information Engineering and Applications, 5(8), 35-43.

58

Orawit, T. (2006). Rapid Application Development. Chiang Mai University.

Pandas. (2017, March 21). Intro to Data Structures. Retrieved from pandas:

http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe

Pandas. (2017, March 21). Pandas. Retrieved from Pandas: http://pandas.pydata.org/

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . . Duchesnay,

E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning

Researcch, 2825-2830.

Pei, M., & Wu, X. (2014). Text classification based on SMO and fuzzy model. Information

Technology and Artificial Intelligence Conference (pp. 306-310). IEEE.

Peng, F. (2003). Augmenting Naive Bayes Classifiers with Statistical. University of

Massachusetts, Computer Science Department Faculty Publication Series.

Rana, M., Khalid, S., & Akbar, M. (2014). News Classification Based On Their Headlines: A

Review. Multi-Topic Conference(INMIC) (pp. 211-216). IEEE.

Sambuli, N., Morara, F., & Mahihu, C. (2013). Monitoring Online Dangerous Speech in Kenya.

Nairobi: Umati.

Siele, V. (2013). Coded Language as a Source of Ethnic Conflict in Africa: A Case Study of Kenya.

Nairobi: University of Nairobi.

Swamy, N., Hanumanthappa, M., & Jyothi, N. (2014). Indian Language Text Representation and

Categorization using Supervised Learning Algorithm. International Conference on

Intelligent Computing Applications (pp. 406-410). IEEE.

Thyer, B. (1993). Single-systems Research Design. In R. Grinnell, Social Work Research and

Evaluation (pp. 94-117). Illnois: F.E. Peacock.

Twitter. (2017, January 2). Twitter Developer Documentation. Retrieved from Twitter:

https://dev.twitter.com/docs

United Nations Educational, Scientific and Cultural Organization. (2015). Countering online hate

speech. Paris: UNESCO.

59

Vijayarani, S., Ilamathi, J., & Nithya, M. (2015). Preprocessing Techniques for Text Mining- An

Overview. International Journal of Computer Science & Communication Networks, 7-16.

Waseem, Z., & Hovy, D. (2016). Hateful Symbols or Hateful People? Predictive Features for Hate

Speech Detection on Twitter. NAACL-HLT (pp. 88-93). San Diego: Association for

Computational Linguistics.

Yang, Y., & Pedersen, J. (1997). A Comparative Study on Feature Selection in Text

Categorization. International Conference on Machine Learning (pp. 412-420). San

Francisco: Morgan Kaufmann Publishers Inc.

60

APPENDIX A: Originality Report

61

APPENDIX B: Interview Guide

The following interview guide was used to in a personal interview with a staff members of the

NCIC to find out the challenges faced in monitoring hate speech on social media.

1. Do you currently monitor hate speech on social media?

a. If yes, how do you monitor hate speech on social media?

b. If no, why do you not monitor hate speech on social media? Are there plans to start

monitoring?

2. How do you monitor hate speech on social media?

3. How do you collect hate speech data from social media? Which search parameters are

used?

4. Which social media sites do you monitor?

5. How often do you monitor the social media sites for hate speech?

6. How do you analyze collected data from social media?

7. What do you define as hate speech?

8. How do you deal with the multilingual nature of tweets?

9. Do you have any systems in place to help with monitoring hate speech on social media? If

yes, which systems?

10. Which are the most frequent terms found in hate speech text?

11. What challenges do you face in monitoring hate speech on social media?

12. Which stakeholders are interested in the monitoring of hate speech on social media?

13. Which other organizations (governmental/non-governmental) do you collaborate with in

the detection of hate speech on social media?

62

APPENDIX C: Python Programs

Training and Validating Module

This module contains the code for reading a csv file containing labelled data, preprocessing

the text to clean it, splitting of the data into training and test sets. Converting the text into a

document term matrix with tf-idf weighting and finally feeding the matrix into an SVM classifier.

The learned model is then evaluated against the training set and finally persisted into a pickle file.

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import Pipeline

from sklearn.model_selection import train_test_split

from sklearn.model_selection import ShuffleSplit

from sklearn.model_selection import learning_curve

from sklearn.model_selection import cross_val_predict

from sklearn.feature_selection import mutual_info_classif

from sklearn.metrics import roc_curve, auc

from sklearn.metrics import classification_report

from sklearn.svm import SVC

from sklearn import metrics

from sklearn.externals import joblib

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import random

import string

def readcsv():

 df=pd.read_csv("new.csv",)#read labelled tweets

 df2=df.reindex(np.random.permutation(df.index))

 X=df2.text

 y=df2.label

 return X, y

def drawrocSVM(y_test,y_pred):

 fpr,tpr,threshold=roc_curve(y_test,y_pred)

 print("Drawing")

 roc_auc=auc(fpr,tpr)

 plt.title('Receiver Operating Characteristic')

63

 plt.plot(fpr,tpr,'b',label='SVM AUC = %0.2f'%

roc_auc,color='b')

 plt.legend(loc='lower right')

 plt.plot([0,1],[0,1],'r--')

 plt.xlim([-0.1,1.2])

 plt.ylim([-0.1,1.2])

 plt.ylabel('True Positive Rate')

 plt.xlabel('False Positive Rate')

 plt.show()

def savemodel(clf):

 joblib.dump(clf,'model.pkl') #persisting the model

def createSVM(X,y):

svm_clf=Pipeline([('vect',CountVectorizer(max_df=0.7)),('tfidf',

TfidfTransformer()),('svm',SVC(kernel="linear",C=1))])

 svm_clf=svm_clf.fit(X,y)

 return svm_clf

def createNB(X,y):

nb_clf=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransf

ormer()),('nb',MultinomialNB())])

 nb_clf=nb_clf.fit(X,y)

 return nb_clf

def evaluatemodel(y_pred,y_test):

 print(metrics.confusion_matrix(y_test,y_pred))

 accuracy=metrics.accuracy_score(y_test,y_pred)

 print(accuracy)

 report=classification_report(y_test,y_pred)

 print(report)

def main():

 X,y=readcsv()

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

)#split data into training and testing sets

 svm_clf=createSVM(X_train,y_train)

 y_pred=svm_clf.predict(X_test)

 print("SVM evaluation")

64

 evaluatemodel(y_pred,y_test)

 drawrocSVM(y_test,y_pred)

 savemodel(svm_clf)

if __name__=="__main__":

 main()

Experiments Module

This module contains the code of the various experiments carried out in this research as

discussed in Chapter 6.

-*- coding: utf-8 -*-

"""

Created on Mon Apr 3 17:30:01 2017

@author: Kaari

"""

from sklearn.feature_extraction.text import TfidfVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.neighbors import KNeighborsClassifier

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import Pipeline

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import train_test_split

from sklearn.model_selection import ShuffleSplit

from sklearn.model_selection import learning_curve

from sklearn.model_selection import cross_val_predict

from sklearn.feature_selection import mutual_info_classif

from sklearn.metrics import roc_curve, auc

from sklearn.metrics import classification_report

from sklearn.svm import SVC

from sklearn import metrics

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import random

import string

def readcsv():

 df=pd.read_csv("new.csv",)#read labelled tweets

 #df2=df.reindex(np.random.permutation(df.index))

65

 X=df.text

 y=df.label

 return X, y

def createSVM(X,y):

svm_clf=Pipeline([('vect',CountVectorizer(max_df=0.7)),('tfidf',

TfidfTransformer()),('svm',SVC(kernel="linear",C=1))])

 svm_clf=svm_clf.fit(X,y)

 return svm_clf

def createNB(X,y):

nb_clf=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransf

ormer()),('nb',MultinomialNB())])

 nb_clf=nb_clf.fit(X,y)

 return nb_clf

def drawrocSVM(y_test,y_pred):

 fpr,tpr,threshold=roc_curve(y_test,y_pred)

 print("Drawing")

 roc_auc=auc(fpr,tpr)

 plt.title('Receiver Operating Characteristic')

 plt.plot(fpr,tpr,'b',label='SVM AUC = %0.2f'%

roc_auc,color='b')

 plt.legend(loc='lower right')

 plt.plot([0,1],[0,1],'r--')

 plt.xlim([-0.1,1.2])

 plt.ylim([-0.1,1.2])

 plt.ylabel('True Positive Rate')

 plt.xlabel('False Positive Rate')

 plt.show()

def drawrocNB(y_test,y_pred):

 fpr,tpr,threshold=roc_curve(y_test,y_pred)

 print("Drawing")

 roc_auc=auc(fpr,tpr)

 plt.title('Receiver Operating Characteristic')

 plt.plot(fpr,tpr,'b',label='NB AUC = %0.2f'%

roc_auc,color='r')

 plt.legend(loc='lower right')

 plt.plot([0,1],[0,1],'r--')

 plt.xlim([-0.1,1.2])

 plt.ylim([-0.1,1.2])

 plt.ylabel('True Positive Rate')

 plt.xlabel('False Positive Rate')

 plt.show()

66

def drawrocKNN(y_test,y_pred):

 fpr,tpr,threshold=roc_curve(y_test,y_pred)

 print("Drawing")

 roc_auc=auc(fpr,tpr)

 plt.title('Receiver Operating Characteristic')

 plt.plot(fpr,tpr,'b',label='KNN AUC = %0.2f'%

roc_auc,color='g')

 plt.legend(loc='lower right')

 plt.plot([0,1],[0,1],'r--')

 plt.xlim([-0.1,1.2])

 plt.ylim([-0.1,1.2])

 plt.ylabel('True Positive Rate')

 plt.xlabel('False Positive Rate')

 plt.show()

def experiment1(X,y):

 """Different Classifiers"""

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

,random_state=0)

 #SVM classifier

svm=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransform

er()),('svm',SVC(kernel="linear",C=1))])

 svm=svm.fit(X_train,y_train)

 ypred=svm.predict(X_test)

 print("SVM metrics")

 print(metrics.accuracy_score(y_test,ypred))

 print(metrics.classification_report(y_test,ypred))

 drawrocSVM(y_test,ypred)

 #NB classifier

nb=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('tfidf

',TfidfTransformer()),('nb',MultinomialNB())])

 nb=nb.fit(X_train,y_train)

 yprednb=nb.predict(X_test)

 print("NB Metrics")

 print(metrics.accuracy_score(y_test,yprednb))

 print(metrics.classification_report(y_test,yprednb))

 drawrocNB(y_test,yprednb)

 #KNN classifier

knn=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransform

er()),('knn',KNeighborsClassifier())])

 knn=knn.fit(X_train,y_train)

 ypredknn=knn.predict(X_test)

67

 print("KNN evaluation")

 print(metrics.accuracy_score(y_test,ypredknn))

 print(metrics.classification_report(y_test,ypredknn))

 drawrocKNN(y_test,ypredknn)

def experiment2(X,y):

 """Different features with SVM"""

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

)

 svm=createSVM(X_train,y_train)

 y_pred=(svm.predict(X_test))

 print("Original Accuracy: Unigram with tf-idf")

 print(metrics.confusion_matrix(y_test,y_pred))

 print(metrics.accuracy_score(y_test,y_pred))

 print(metrics.classification_report(y_test,y_pred))

 stop=["haha","lol","lmao"]

svm2=Pipeline([('vect',CountVectorizer(stop_words=stop)),('svm',

SVC(kernel="linear",C=1))])

 svm2=svm2.fit(X_train,y_train)

 ypred2=svm2.predict(X_test)

 print("Just unigram counts Accuracy")

 print(metrics.accuracy_score(y_test,ypred2))

 print(metrics.classification_report(y_test,ypred2))

svm3=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('svm

',SVC(kernel="linear",C=1))])

 svm3=svm3.fit(X_train,y_train)

 ypred3=svm3.predict(X_test)

 print("just bigram counts Accuracy")

 print(metrics.accuracy_score(y_test,ypred3))

 print(metrics.classification_report(y_test,ypred3))

svm4=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('svm

',SVC(kernel="linear",C=1))])

 svm4=svm4.fit(X_train,y_train)

 ypred4=svm4.predict(X_test)

 print("Trigram counts Accuracy")

 print(metrics.accuracy_score(y_test,ypred4))

 print(metrics.classification_report(y_test,ypred4))

svm5=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('tfi

df',TfidfTransformer()),('svm',SVC(kernel="linear",C=1))])

 svm5=svm5.fit(X_train,y_train)

 ypred5=svm5.predict(X_test)

 print("bigram with tfidf Accuracy")

68

 #print(metrics.confusion_matrix(y_test,ypred5))

 print(metrics.accuracy_score(y_test,ypred5))

 print(metrics.classification_report(y_test,ypred5))

svm6=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('tfi

df',TfidfTransformer()),('svm',SVC(kernel="linear",C=1))])

 svm6=svm6.fit(X_train,y_train)

 ypred6=svm6.predict(X_test)

 print("trigram with tfidf Accuracy")

 #print(metrics.confusion_matrix(y_test,ypred6))

 print(metrics.accuracy_score(y_test,ypred6))

 print(metrics.classification_report(y_test,ypred6))

def experiment3(X,y):

 """Different Feature set with Naive Bayes"""

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

)

 nb=createNB(X_train,y_train)

 y_pred=nb.predict(X_test)

 print("Original Accuracy")

 print(metrics.classification_report(y_test,y_pred))

 print(metrics.accuracy_score(y_test,y_pred))

nb2=Pipeline([('vect',CountVectorizer()),('nb',MultinomialNB())]

)

 nb2=nb2.fit(X_train,y_train)

 ypred2=nb2.predict(X_test)

 print("Just counts Accuracy")

 print(metrics.classification_report(y_test,ypred2))

 print(metrics.accuracy_score(y_test,ypred2))

nb3=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('nb',

MultinomialNB())])

 nb3=nb3.fit(X_train,y_train)

 ypred3=nb3.predict(X_test)

 print("bigram counts Accuracy")

 print(metrics.accuracy_score(y_test,ypred3))

 print(metrics.classification_report(y_test,ypred3))

nb4=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('nb',

MultinomialNB())])

 nb4=nb4.fit(X_train,y_train)

 ypred4=nb4.predict(X_test)

 print("Trigram counts Accuracy")

69

 print(metrics.accuracy_score(y_test,ypred4))

 print(metrics.classification_report(y_test,ypred4))

nb5=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('tfid

f',TfidfTransformer()),('nb',MultinomialNB())])

 nb5=nb5.fit(X_train,y_train)

 ypred5=nb5.predict(X_test)

 #drawrocSVM(y_test,ypred5)

 print("bigram with tfidf Accuracy")

 print(metrics.accuracy_score(y_test,ypred5))

 print(metrics.classification_report(y_test,ypred5))

nb6=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('tfid

f',TfidfTransformer()),('nb',MultinomialNB())])

 nb6=nb6.fit(X_train,y_train)

 ypred6=nb6.predict(X_test)

 #drawrocSVM(y_test,ypred5)

 print("trigram with tfidf Accuracy")

 print(metrics.classification_report(y_test,ypred6))

 print(metrics.accuracy_score(y_test,ypred6))

def experiment4(X,y):

 """Different feature sets with KNN"""

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3

)

knn=Pipeline([('vect',CountVectorizer()),('tfidf',TfidfTransform

er()),('knn',KNeighborsClassifier())])

 knn=knn.fit(X_train,y_train)

 ypredknn=knn.predict(X_test)

 print("Original Accuracy: Unigram tfidf")

 print(metrics.accuracy_score(y_test,ypredknn))

 print(metrics.classification_report(y_test,ypredknn))

knn=Pipeline([('vect',CountVectorizer()),('knn',KNeighborsClassi

fier())])

 knn=knn.fit(X_train,y_train)

 ypredknn=knn.predict(X_test)

 print("Unigram counts")

 print(metrics.accuracy_score(y_test,ypredknn))

 print(metrics.classification_report(y_test,ypredknn))

70

knn=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('knn'

,KNeighborsClassifier())])

 knn=knn.fit(X_train,y_train)

 ypredknn=knn.predict(X_test)

 print("Bigram counts")

 print(metrics.accuracy_score(y_test,ypredknn))

 print(metrics.classification_report(y_test,ypredknn))

knn=Pipeline([('vect',CountVectorizer(ngram_range=(1,2))),('tfid

f',TfidfTransformer()),('knn',KNeighborsClassifier())])

 knn=knn.fit(X_train,y_train)

 ypredknn=knn.predict(X_test)

 print("Bigram tfidf")

 print(metrics.accuracy_score(y_test,ypredknn))

 print(metrics.classification_report(y_test,ypredknn))

knn=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('knn'

,KNeighborsClassifier())])

 knn=knn.fit(X_train,y_train)

 ypredknn=knn.predict(X_test)

 print("trigram counts")

 print(metrics.accuracy_score(y_test,ypredknn))

 print(metrics.classification_report(y_test,ypredknn))

knn=Pipeline([('vect',CountVectorizer(ngram_range=(1,3))),('tfid

f',TfidfTransformer()),('knn',KNeighborsClassifier())])

 knn=knn.fit(X_train,y_train)

 ypredknn=knn.predict(X_test)

 print("Trigram tfidf")

 print(metrics.accuracy_score(y_test,ypredknn))

 print(metrics.classification_report(y_test,ypredknn))

def main():

 print("Hello Main method")

 X,y=readcsv()

 print("Experiment One")

 experiment1(X,y)#call Different Experiments

if __name__=="__main__":

71

 main()

Collect Tweets Module

This module collects tweets from the Twitter Search API matching keywords provided by

the user.

-*- coding: utf-8 -*-

"""

Created on Wed Apr 5 15:44:29 2017

@author: Kaari

"""

import tweepy

import csv

consumer_key="eCx6UFJlVXBzkgxliR3m7anK3"

consumer_secret="fAAjkFnNNyUkNxnt0yj1owMLoIoEdKmHm4KHYjKf8BTq17v

acR"

access_token="222455698-

b2sFM3Oavip4CUuR8oR9C6NuXIugelk3i0aSbMA5"

access_secret="U7mtX8StbQZz5HIS0aPSXAyk8cIIBKP7vWwZnxfRvdOep"

auth = tweepy.OAuthHandler(consumer_key, consumer_secret)

auth.set_access_token(access_token, access_secret)

api = tweepy.API(auth)

Open/Create a file to append data

csvFile = open('tweets.csv', 'w')

#Use csv Writer

csvWriter = csv.writer(csvFile)

def getkeywords():

 f=open("mycriteria.dat",'r')

 keywords=[]

 text=f.readline()

 text=text.split(';')

 for t in text:

 keywords.append(t)

 return keywords;

keywords=getkeywords()

#print(keywords)

72

csvWriter.writerow(["text"])

print("here now")

for tweet in tweepy.Cursor(api.search,q=keywords).items():

 print (tweet.text)

 csvWriter.writerow([tweet.text.encode('utf-8')])

Prediction Module

Once tweets are received from the twitter search API using the collect tweets module, they

are cleaned, preprocessed and predicted using the persisted model created at training.

-*- coding: utf-8 -*-

"""

Created on Mon Apr 3 15:26:04 2017

@author: Kaari

"""

import json

import pandas as pd

import string

from sklearn.externals import joblib

def readjson():

 tweets_data=[]

 file=open("tweets.txt",'r')

 for line in file:

 try:

 t=json.loads(line)

 tweets_data.append(t['text'])

 except:

 #print("error")

 continue

 print(len(tweets_data))

 #print(tweets_data)

 df=pd.DataFrame()

 df['text']=tweets_data

 print(df)

 df.to_csv("readtweets.csv",encoding="utf8")

 #df['text']=map(lambda tweet:tweet['text'],tweets_data)

 #print(df.text)

73

def clean_tweets():

 #reading csv file into panda dataframe

 df=pd.read_csv("readtweets.csv", error_bad_lines=False)

 print("CSV file read")

 print("Removing RTs")

 df.text=df.text.str.replace("RT","",False)

 df.text=df.text.str.lower()#change tweets to lowercase

 print("Removing usernames from tweets")

 df.text=df.text.str.replace("@\w*\s?","")#remove usernames

from tweets

 print("Removing urls")

 df.text=df.text.str.replace("https?:\/\/.*[\r\n]*","")

#remove url links froms tweets

 #removing hashtags

 print("Removing hashtags")

 df.text=df.text.str.replace("#\w*","")#removing hashtags

 #removing punctuations

 print("Removing punctuations")

df.text=df.text.str.translate(str.maketrans("","",string.punctua

tion))

 #remove non utf8 characters

 df.text=df.text.str.replace("[^\x00-\x7F]+","")

 print("Writing clean CSV")

 df.to_csv("clean_tweets.csv",encoding="utf8")

def predict():

 df=pd.read_csv("clean_tweets.csv")

 df=df.dropna(how='any')

 df=df.drop_duplicates()

 model=joblib.load("model.pkl")

 df['label']=model.predict(df.text)

 print(df.label)

 df.to_csv("predicted.csv",encoding="utf8")

 #print(model.predict(df.text))

 print("read")

def main():

 readjson()

 clean_tweets()

 predict()

if __name__=="__main__":

 main()

