

Strathmore University

SU+ @ Strathmore
University Library

Electronic Theses and Dissertations

2017

Forensic analysis of office open XML spreadsheets

David Odhiambo Godiah
Faculty of Information Technology (FIT)
Strathmore University

Follow this and additional works at http://su-plus.strathmore.edu/handle/11071/5614

Recommended Citation

Godiah, D. O. (2017). Forensic analysis of office open XML spreadsheets (Thesis). Strathmore

University. Retrieved from http://su-plus.strathmore.edu/handle/11071/5614

This Thesis - Open Access is brought to you for free and open access by DSpace @Strathmore University. It has been accepted for
inclusion in Electronic Theses and Dissertations by an authorized administrator of DSpace @Strathmore University. For more
information, please contact librarian@strathmore.edu

mailto:librarian@strathmore.edu

Forensic Analysis of Office Open XML Spreadsheets

Godiah David Odhiambo

Master of Science in Information Systems Security

2017

Forensic Analysis of Office Open XML Spreadsheets

Godiah David Odhiambo

Submitted in partial fulfilment of the requirements for the degree of

Master of Science in Information Systems Security at Strathmore University

Faculty of Information Technology

Strathmore University

Nairobi, Kenya

June, 2017

This dissertation is available for Library use on the understanding that it is copyright material and that no
quotation from the dissertation may be published without proper acknowledgement.

iii

Abstract

Digital Forensics is the science of acquiring, preserving, analysing and presenting digital evidence

from computers, digital devices and networks in a manner that is admissible in a court of law to

support an investigation. Microsoft Office, LibreOffice, OpenOffice, NeoOffice and Google

documents spreadsheets and presentations are widely used to store and circulate data and

information especially within organisations. They are often rich in information deeply embedded

in them that can be retrieved by examining metadata or deleted material still present in the files.

OOXML is a standard developed by Microsoft and registered by ECMA (as ECMA-376), and

approved by the ISO and IEC (as ISO/IEC 29500:2008) as an open standard for the development

of Office documents, spreadsheets and presentations. Documents, spreadsheets and presentations

created using this standard consist of zipped file containers, parts and relationships which upon

extraction and analysis reveals forensically interesting information. Existing forensic tools have

limitations as far as extracting and analysing OOXML spreadsheet metadata is concerned in that

most of them can extract only limited and basic metadata.

The objective of this research is to carry out forensic analysis of metadata in OOXML spreadsheets

by studying limitations of existing forensic tools in extracting and analysing metadata in OOXML

spreadsheets and designing and developing a Proof of Concept (PoC) implementation of a forensic

tool that supports automated forensic analysis of OOXML spreadsheets with improved

visualization, efficiency and advanced reporting functionality. This research adopts a methodology

to review OOXML spreadsheet metadata extraction and analysis capabilities of existing forensic

tools using sample spreadsheet datasets, carry out system analysis, design and PoC implementation

of a forensic tool. In addition, the research carries out manual, functional, and security tests; quality

assurance; and validation of the developed Proof of Concept implementation. The developed tool

is able to extract and analyse relevant metadata from OOXML spreadsheets and present results in

a forensic report.

Keywords: digital forensics, XML, OOXML, metadata, spreadsheets

iv

Table of Contents

Abstract ... iii

List of Figures .. vii

List of Tables .. xi

List of Abbreviations ... xii

Acknowledgements ... xiii

1. Introduction ... 1

1.1. Background of the Research .. 1

1.2. Statement of the Problem ... 2

1.3. Research Objectives ... 2

1.4. Research Questions .. 3

1.5. Research Hypothesis .. 3

1.6. Scope and Limitations .. 3

1.7. Relevance of the Research ... 3

2. Literature Review .. 5

2.1. Digital Forensics and Digital Evidence .. 5

2.2. Metadata ... 5

2.3. Why is Metadata Useful ... 6

2.4. OOXML Standard .. 7

2.5. Microsoft Office ... 9

2.6. LibreOffice ... 10

2.7. Relevant Research .. 11

2.8. Existing Forensic Tools .. 13

2.9. Conclusions .. 18

3. Methodology .. 20

3.1. Testing of Existing Forensic Tools .. 21

3.2. System Analysis, Design and Architecture .. 21

3.3. System Implementation, Testing and Validation ... 22

4. Testing of Existing Forensic Tools .. 26

4.1. Controlled Datasets Used ... 26

4.2. Metadata Extraction Using Existing Tools .. 26

v

4.3. Conclusions .. 35

5. System Analysis, Design and Architecture ... 37

5.1. System Analysis ... 37

5.2. Functional Specifications ... 38

5.3. Technical Specifications .. 38

5.4. System Design and Architecture .. 39

6. System Implementation, Testing and Validation .. 51

6.1. Implementation... 51

6.2. Testing .. 62

6.3. Validation ... 75

7. Discussion of Results... 78

7.1. Limitations of Existing Forensic Tools .. 78

7.2. Proof of Concept Implementation of Forensic Tool .. 79

7.3. Testing and Validation ... 79

8. Conclusions, Recommendations and Future Work ... 81

8.1. Conclusions .. 81

8.2. Recommendations .. 81

8.3. Future Work ... 81

References ... 83

Appendix A Metadata Present in OOXML Spreadsheets... 89

Appendix B Minimum Parts and Relationships Requirements for a Workbook 91

Appendix B1 Content Types for Relationship Parts, Workbook Part and Sheet Part 91

Appendix B2 Package-Level Relationship to Workbook Part .. 91

Appendix B3 Minimum Content for Workbook ... 91

Appendix B4 Workbook-Level Relationship to a Single Sheet .. 92

Appendix B5 Minimum Content for a Single Sheet Part .. 92

Appendix C Testing of Existing Forensic Tools... 93

Appendix C1 Extracting Metadata from Workbook.xml Using Metagoofil 2.2 93

Appendix C2 Extracting Metadata from Workbook.xml.rels Using Metagoofil 2.2 93

Appendix C3 Extracting Metadata from Worksheet.xml Using Metagoofil 2.2 94

Appendix C4 Extracting Metadata from Worksheet.xml.rels Using Metagoofil 2.2 94

vi

Appendix D System Implementation, Testing and Validation ... 95

Appendix D1 Implementation of Forensic Report .. 95

Appendix D2 Manual Test Cases Template .. 97

vii

List of Figures

Figure 2.1: Internal Directory Structure of an OOXML Document

Figure 2.2: Advanced OOXML Carver Metadata Extraction from Word Document

Figure 2.3: FOCA Extracting Metadata in Word Document

Figure 2.4: FTK Extracting Metadata in Word Document

Figure 4.1: Metadata Extraction Results Using Advanced OOXML Carver

Figure 4.2: Metadata Extraction Results Using FOCA

Figure 4.3: Metadata Extraction Results Using FOCA

Figure 4.4: Metadata Extraction Results Using OfficeDissector 1.0

Figure 4.5: Metadata Extraction Results Using OfficeDissector 1.0

Figure 4.6: Metadata Extraction Results using Python-OOXML 0.13

Figure 4.7: Metadata Extraction Results using Libextractor

Figure 4.8: Metadata Extraction Results using Libextractor

Figure 4.9: Metagoofil 2.2 Extracting Metadata from Public Spreadsheets in Microsoft.com

Figure 4.10: Metadata Extraction Results in docProps/app.xml file Using Metagoofil 2.2

Figure 4.11: Metadata Extraction Results in docProps/core.xml file Using Metagoofil 2.2

Figure 4.12: Metadata Extraction Results in /_rels/.rels directory Using Metagoofil 2.2

Figure 4.13: Metadata Extraction Results Using read_open_xml.pl

Figure 5.1: Use Case in Conventional Format

Figure 5.2: Class Diagrams

Figure 5.3: Class Diagrams

Figure 5.4: About OOXML Spreadsheet Analyser Wireframe

Figure 5.5: Extract Metadata Wireframe

Figure 5.6: Analyse Metadata Wireframe

viii

Figure 5.7: Forensic Report Wireframe

Figure 5.8: System Architecture

Figure 6.1: Metadata Extraction

Figure 6.2: Extracted Package Properties Metadata

Figure 6.3: Extracted Document Properties Metadata

Figure 6.4: Extracted Revision Header Properties Metadata

Figure 6.5: Extracted Users Metadata

Figure 6.6: Extracted Worksheet Metadata

Figure 6.7: Extracted Worksheet Comments

Figure 6.8: Extracted Sheet Revision History Metadata

Figure 6.9: Extracted Cell Revision History Metadata

Figure 6.10: Extracted Comment Revisions Metadata

Figure 6.11: Extracted Row and Column Revisions Metadata

Figure 6.12: Extracted Custom View Metadata

Figure 6.13: Metadata Analysis

Figure 6.14: Unique Identifier rId14

Figure 6.15: Unique Identifiers rId15 and rId16

Figure 6.16: Unique Identifiers rId23 and rId24

Figure 6.17: Forensic Report

Figure 6.18: Test Use Case Results by User

Figure 6.19: Test Use Case Results by User

Figure 6.20: Document Revision Metadata Extraction Testing

Figure 6.21: Sheet Name Revision Metadata Extraction Testing

Figure 6.22: Inserted Sheet Metadata Extraction Testing

ix

Figure 6.23: Inserted Comment Metadata Extraction Testing

Figure 6.24: Inserted Cell Text Metadata Extraction Testing

Figure 6.25: Cell Text Revision Metadata Extraction Testing

Figure 6.26: Last Printing Date Metadata Extraction Testing

Figure 6.27: Analysed Metadata from Spreadsheet Created by LibreOffice Calc

Figure 6.28: Windows 10 Machine IP Address

Figure 6.29: Cyborg Hawk 1.1 IP Address

Figure 6.30: Application Accessed from Cyborg Hawk Virtual Machine

Figure 6.31: Web Application Vulnerabilities

Figure 6.32: Web Application Vulnerabilities after Resolution

Figure 6.33: Code Analysis Feature of Microsoft Visual Studio

Figure 6.34: Code Analysis Results

Figure B1-1: Content_Types.xml Representation

Figure B2-1: Workbook Part Package-Level Relationship

Figure B3-1: Minimum Content for Workbook Part

Figure B4-1: Workbook-Level Relationship to a Single Sheet Part

Figure B5-1: Minimum Content for a Single Sheet Part

Figure C1-1: Metadata Extraction Results in Workbook.xml

Figure C2-1: Metadata Extraction Results in Workbook.xml.rels

Figure C3-1: Metadata Extraction Results in Worksheet.xml

Figure C4-1: Metadata Extraction Results in Worksheet.xml.rels

Figure D1-1: Package Properties Part of Forensic Report

Figure D1-2: Document Properties Part of Forensic Report

Figure D1-3: Users Part of Forensic Report

x

Figure D1-4: Cell Revisions Part of Forensic Report

xi

List of Tables

Table 2.1: SpreadsheetML Components

Table 2.2: Microsoft Excel File Name Extensions

Table 2.3: LibreOffice ODF File Name Extensions

Table 5.1: Technical Specifications

Table 5.2: Functional Specifications

Table 5.3: Browse OOXML File Use Case

Table 5.4: Extract Metadata File Use Case

Table 5.5: Analyse Metadata Use Case

Table 5.6: Generate Forensic Report Use Case

Table 6.1: Manual Test Plan

Table 6.2: Manual Test Cases Template

Table A1-1: OOXML Spreadsheet Metadata

Table A2-1: SpreadsheetML Components

Table D2-1: Manual Test Cases Template

xii

List of Abbreviations

XML: Extensible Markup Language

OOXML: Office Open XML

NIST: National Institute of Standards and Technology

ODF: Open Document Format

ISO: International Standards Organisation

IEC: International Electrotechnical Commission

ECMA: European Computer Manufacturers Association

DFRWS: Digital Forensic Research Workshop

CFTT: Computer Forensics Tool Testing

SDLC: Software Development Life Cycle

HTML: Hypertext Markup Language

ASP: Active Server Pages

OS: Operating System

IIS: Internet Information Services

OWASP: Open Web Application Security Project

PoC: Proof of Concept

SDK: Software Development Kit

URL: Universal Resource Locator

HTTP: Hyper Text Transfer Protocol

xiii

Acknowledgements

I would like to thank my supervisor, Dr. Ondrej Rysavy for the useful feedback throughout the

course of this dissertation.

I would also like to thank my classmates especially Caroline Wanjira for their valuable input in

discussions, criticism and exchange of ideas.

To the entire Strathmore University and Brno University fraternity, especially my lecturers who

supported me in one way or another, thank you very much.

Last but not least, special thanks to my wife, Lydia Wambui for her endless and dedicated support

and understanding in the course of this dissertation.

1

1. Introduction

1.1. Background of the Research

Many organisations use Microsoft Office, LibreOffice, OpenOffice, NeoOffice and Google

documents, spreadsheets and presentations to store and circulate data and information.

Spreadsheets are used to create small file based databases that store data and automate

computations. Apart from the surface content of these files, a lot of information can be retrieved

by examining metadata using forensic means. It is important for forensic investigators to be able

to analyse such files with accuracy and ease in order to extract relevant information and evidence.

The most popular Office suites of today store their files in zipped XML-based containers.

Microsoft Office 2007 and subsequent versions store files and related information in a file

container format called OOXML, as opposed to previously proprietary binary formats. Other

alternatives such as LibreOffice and OpenOffice store files as ODF by default. LibreOffice has

read and write support for OOXML while OpenOffice only has read support for OOXML. Google

Docs has functionality to import and export OOXML documents (Didriksen, 2014). OOXML files

often store a lot of data that can be useful for forensic investigations. This research carried out

forensic analysis of OOXML spreadsheets for Microsoft Excel and LibreOffice Calc that have the

capability to read and write to OOXML.

OOXML is a standard registered by ECMA (as ECMA-376), and by the ISO and IEC (as ISO/IEC

29500:2008) for representing documents, spreadsheets, charts and presentations. It is an open

standard that can be used to develop Office documents, spreadsheets and presentations, though it

is today majorly used by Microsoft. Microsoft WordprocessingML is a set of conventions for

representing an OOXML document of type Word processing (ECMA International, 2006b, p. 7).

Word processing documents are partitioned into sections, paragraphs, and fragments (also called

runs). A run is a sequence of characters with identical formatting with unique revision identifiers

(RI) related to the editing session when the run was introduced into the document or the session

when it was created or changed. This is independent of the activation of the change tracking feature

of the application. Looking at RIs it is possible to interpret how a document was modified or

composed from source documents. This helps to recreate the change history of a document if one

only has access to the document file itself. Microsoft SpreadsheetML is a set of conventions for

representing an OOXML document of type Spreadsheet (ECMA International, 2006b, p. 7). It

2

consists of three main components: ZIP package, parts and relationships. Metadata can be

extracted from shared spreadsheets using functionality developed by SpreadsheetML SDK.

OOXML documents store XML data that can support forensic investigations since they contain

unique identifiers that could be used for document tracking to for example uncover previously

unknown social networks (Garfinkel, 2009). Many forensic tools exist that can extract metadata

from these documents but have limited capability to analyse and present the information in

appropriate format to forensic investigators. In addition, these forensic tools are limited in

extracting metadata from spreadsheets and do not present a good analysis and visualization of

evidence from these files.

1.2. Statement of the Problem

There is need to collect and analyse forensic evidence from spreadsheets as these files are widely

used to store and manipulate data. Existing forensic tools have limited capability to extract and

analyse metadata from OOXML spreadsheets. These existing forensic tools cannot forensically

detect revisions made to shared OOXML spreadsheets by different users, including cell value

revisions, thus modifications and revisions to cell values in a shared spreadsheet may go

undetected. As much as some of these tools being able to extract metadata from OOXML

documents, they are only able to extract limited and basic metadata from OOXML spreadsheets.

1.3. Research Objectives

General Objectives

The objective of this research is to carry out forensic analysis of metadata in OOXML spreadsheets

by exploring previous work on OOXML, exploring the weaknesses of existing OOXML forensic

tools and come up with an improved and automated tool that fully supports forensic analysis of

OOXML spreadsheets.

Specific Objectives

The specific objectives of the research are the following:

1. Study the OOXML standard and identify metadata that can be used for forensic analysis of

OOXML spreadsheets;

2. Study the weaknesses of existing forensic tools in analysing OOXML spreadsheets;

3

3. Design, develop and test an improved Proof of Concept (PoC) implementation of OOXML

forensic tool which automates the process of extracting and analysing metadata in spreadsheets

with improved visualization and efficiency; and

4. Validate the developed OOXML forensic tool.

1.4. Research Questions

The following are the research questions that this research tries to answer:

1. What is the metadata existing in OOXML spreadsheets that is useful for forensic analysis?

2. What are the strengths and weaknesses of available forensic solutions with respect to metadata

extraction and analysis of OOXML spreadsheets?

3. What are the areas that the improved OOXML forensic tool is expected to address? and

4. Does the developed tool provide useful and comprehensive metadata extraction?

1.5. Research Hypothesis

The following are the hypothesis that this research seeks to address:

1. Existing forensic tools are limited in adequately extracting and analysing all metadata in

OOXML spreadsheets;

2. Previous research on OOXML forensics has not dwelt much on OOXML spreadsheets; and

3. It is not possible to extract metadata from write protected OOXML spreadsheets.

1.6. Scope and Limitations

This research is limited to forensic analysis of OOXML based spreadsheets. It seeks to develop a

Proof of Concept (PoC) implementation of OOXML forensic tool which can further be developed

at a commercial scale. Most metadata can only be extracted on shared OOXML spreadsheet files

thus the developed tool will work best with shared OOXML spreadsheets. The research also aims

to establish if there are any limitations on metadata extraction and analysis on write protected

OOXML spreadsheet files.

1.7. Relevance of the Research

Systems and information security is increasingly becoming a concern for organisations and

individuals due to advancement in technology and increasing affordable accessibility of the

internet. Software packages and data installed and used on devices are at risk from unauthorised

4

access and modification thus the need to enhance their security and continuously monitor and audit

them. An overview of existing forensic tools has established that these tools are limited in

extracting and analysing metadata in OOXML spreadsheets. Most of these tools were designed to

extract and analyse metadata from Office documents, thus the limited capability when used with

OOXML spreadsheets. Forensic investigators could benefit from the results of this research by

using the tool to accurately analyse file access, modifications and change history of OOXML

spreadsheets under investigation, thus be able to verify authenticity of files. Auditors could also

use the tool to track unauthorised modifications to spreadsheets especially changes to formulae

that could otherwise result in huge discrepancies of figures and potential financial losses to

financial institutions using these OOXML spreadsheet files.

5

2. Literature Review

This chapter describes a general overview of digital forensics and evidence; metadata; the

OOXML standard; related previous research on OOXML forensics; and capabilities of existing

forensic tools to extract and analyse metadata in OOXML spreadsheets. A lot of research has been

carried out on OOXML and its implications in digital forensics, though most of this research has

dwelt largely on Office documents. There is very little research that has been done specifically on

Office spreadsheets. Many tools have been developed that are capable of extracting metadata from

OOXML documents and some of these tools are capable of extracting limited metadata from

Office spreadsheets. This research takes a look at the OOXML standard and reviews some selected

literature on OOXML forensics and existing forensic tools. The literature review also answers

some of the research questions and hypothesis.

2.1. Digital Forensics and Digital Evidence

The report from the first DFRWS presented the following definition of digital forensic science:

“The use of scientifically derived and proven methods towards the collection, preservation,

validation, identification, analysis, interpretation, documentation and presentation of digital

evidence derived from digital sources for the purpose of facilitating or furthering the

reconstruction of events found to be criminal, or helping to anticipate unauthorized actions

shown to be disruptive to planned operation” (Pallmer, 2001).

Eoghan (2011) describes forensic as “a characteristic of evidence that satisfies its suitability for

admission as fact and its ability to persuade based upon proof (or high statistical confidence)”. In

addition to digital forensics being used for evidence admissible in a court of law, it can also be

applicable in investigating breach of corporate policies by employees. Digital Forensics has

evolved over the years from computers to information systems and today includes metadata

extraction and analysis of OOXML files.

2.2. Metadata

Metadata is a common term used in digital forensics. It is defined as “structured information that

describes, explains, locates, or otherwise makes it easier to retrieve, use, or manage an

information resource. Metadata is often called data about data or information about information”

(NISO, 2004). In digital forensics, metadata can play a big role in unearthing information about

6

data itself and help to reconstruct events that have occurred or test hypothesis of a case. Examples

of file metadata in forensic investigations include author, origin, data created, date modified, etc.

The SpreadsheetML as part of OOXML standard answers the research question of what are the

metadata existing in OOXML spreadsheets that are useful for forensic analysis, and reveals that a

lot of metadata can be extracted from OOXML spreadsheets. Table A1 of Appendix A shows the

kinds of metadata existing in OOXML spreadsheets (Microsoft, 2017d).

2.3. Why is Metadata Useful

Metadata has a lot of usefulness in forensic investigations. It can aid the detection of changes and

revisions in OOXML spreadsheets. Metadata such as creator, creation and modification dates aid

the reconstruction of events that took place in the entire lifetime of a spreadsheet.

Unauthorized access and manipulation of spreadsheets may go undetected if not keenly monitored.

For example, spreadsheets can be programmed with formulae that automate data manipulation,

and even the smallest change in these formulae by methods such as salami attack (slicing) can

potentially cause huge damage since these modifications are visually difficult to detect. Salami

slicing is defined a series of many minor actions performed in succession that together result in a

larger impact that would be difficult or illegal to perform at one go (Barry, 2010). Kabay (2002)

gives an example of the old “collect-the-roundoff” salami attack where a programmer modified

the arithmetic routines of interest computations such that calculations are carried out to several

decimal places beyond the customary 2 or 3 kept for financial records and the roundoffs of the

decimal numbers can go up to the nearest whole number. If a programmer collects these differences

of actual decimal numbers and the roundoffs in a separate account, a sizable fund can grow with

no warning to the financial institution.

In January 1993, four executives of a rental-car franchise in Florida, USA were charged with

defrauding at least 47,000 customers using a salami technique by modifying a computer billing

program to add five extra gallons to the actual gas tank capacity of their vehicles (Kabay, 2002).

These examples confirm that a salami attack on spreadsheets may go undetected at an individual

user level but the damage caused may be huge if the discrepancies of the changes are summed up.

Metadata about modifications in OOXML spreadsheets is therefore important in order to help

detect illegal and potentially harmful modifications early enough and thus save institutions from

massive losses.

7

2.4. OOXML Standard

Microsoft adopted an XML based file standard called Office Open XML (OOXML) in its 2007

release of Office Suite for storing and transporting office files as opposed to the binary format in

earlier versions of its Office Suite. OOXML standard is defined by the document (ECMA

International, 2006b) ECMA-376 Standard (Microsoft, 2011). This migration to XML format

brought numerous benefits including:

 Compact files – Files can be compressed up to 75% thus saving storage space and enhancing

overall efficiency (Microsoft, 2006);

 Improved damaged file recovery since not all files will be permanently damaged as there exists

different parts related to each other. Therefore, some information could still be recovered;

 Better privacy and more control over personal information - Personal and business-sensitive

information such as author names, comments, tracked changes, and file paths can be easily

identified and extracted independent of the Office file;

 Better integration and interoperability of business data - Documents, worksheets,

presentations, and forms can be saved in an XML file format that is freely available for anyone

to use. Information within an Office file can be extracted and utilized by other business

applications using a ZIP utility and XML editor;

 Backward compatibility - The 2007 and later Microsoft Office Suite is backward-compatible

with these earlier versions: Microsoft Office 2000, Microsoft Office XP, and Microsoft Office

2003; and

 More enhanced security, since macros are not stored inside the content thus it is difficult to

damage an entire document using compromised macros.

XML, which OOXML standard is based on is a text based file system used to present structured

data and documents and is composed of instructions in the form of tags and markup. In XML, a

document is defined by a sequence of elements start and end tags with one or more attributes which

basically define the properties and values of the element. XML has the advantage that any text

editor can read and modify the file without necessarily being the owner of the file (Castiglione,

D'Alessio, De Santis, & Palmieri, 2012). The OOXML standard has undergone many changes

since its adoption by ECMA and ISO/IEC, such as ISO/IEC 29500-1:2016, ISO/IEC 29500-

8

2:2012, ISO/IEC 29500-3:2015 and ISO/IEC 29500-4:2016. At the moment, only Microsoft fully

supports this standard while LibreOffice provides read and write functionality to this standard.

OOXML standard is a structure of building blocks and relationships used for composing,

packaging, distributing, and rendering document-centred content. These building blocks define a

platform-independent framework for document formats that enable software applications to

generate, exchange, and display documents reliably and consistently. This standard is based on the

simple and parts-based compressed ZIP file format specification and consists of XML reference

schemas and a ZIP container (ECMA International, 2006b). Each file is comprised of a collection

of any number of parts and has the following components:

 ZIP Package. This contains elements that are shared across Office applications, e.g. document

properties, style sheets, charts, hyperlinks, diagrams, and drawings as well as those that are

specific to an application e.g. worksheets in spreadsheets and slides in presentations. Each

Office created file is saved as a single file in a ZIP container, and remains as single file instance

(ECMA International, 2006b).

 Parts. These are the logical components of an OOXML ZIP Package such as thumbnail,

metadata, media, and relationships. Each of these parts can be extracted and edited individually

and later reassembled back to the original file. Parts used to describe Office applications data

are stored as XML and they conform to the XML reference schema that defines the associated

Office feature or object. Image content types are stored as binary files (.png, .jpg, etc.) within

the document package. The SpreadsheetML package contains a package-relationship item and

a content-type item (ECMA International, 2006b). The package-relationship item contains

implicit relationships with targets of the parts: WorkbookPart, DigitalSignatureOriginPart,

CoreFilePropertyPart, ThumbnailPart, CustomFilePropertyPart and

ExtendedFilePropertyPart.

 Relationships. This stores attribute information of the different components of the OOXML

file (ECMA International, 2006b). For example, the contents of the Office file, attachments,

embedded image and properties are all stored in different files but are linked via relationships

with identifiers. When a document is opened, the relationships are read and various

components and parts put together to form the whole document. There are two types of

relationships in OOXML documents, internal and external (Muhamad, 2011). All

9

relationships, including the relations associated with the root package are represented as XML

files. These XML files are stored inside a package and contain relationships information, for

example, the default location for relationships is “/_rels/.rels”. Relationships are composed of

four elements: an identifier (Id), an optional source (package or part), relationship type (URI

style expression) and a target (URI to another part).

 Non-XML data that may be included within the container, including such parts as binary data

representing images or OLE objects embedded in the document.

Figure 2.1 shows the internal structure of OOXML document showing ZIP package, parts and

relationships.

Figure 2.1: Internal Directory Structure of OOXML Document (Muhamad, 2011)

Figures B1-1, B2-1, B3-1, B4-1 and B5-1 in Appendix B shows the minimum requirements for a

Workbook in terms of representation of parts and relationships (ECMA International, 2006b, p.

62).

Table A2 in Appendix A shows a summary of various components of SpreadsheetML of the

OOXML standard (ECMA International, 2006b, p. 62).

2.5. Microsoft Office

Microsoft Office is a proprietary Office package developed by Microsoft and is the most widely

used Office Suite worldwide today (Aghire, 2012). Office 2007 version and later uses an XML

10

based file system for Word, Excel and PowerPoint that fully supports OOXML standard. Files can

be saved in formats supported by different versions of Office with the help of compatibility

checkers and file converters which allow file sharing between different versions of Office.

Excel files saved in the XML format have file name extensions “.xlsx” or “.xlsm” by default where

the latter contains macros. A file saved as a template will have “.xlst” extension. Table 2.1 shows

the full list of file extensions (Microsoft, 2017e).

Table 2.1: Microsoft Excel File Name Extensions (Microsoft, 2017e).

XML File Type Extension

Workbook .xlsx

Macro-enabled workbook .xlsm

Template .xltx

Macro-enabled template .xltm

Non-XML binary workbook .xlsb

Macro-enabled add-in .xlam

2.6. LibreOffice

LibreOffice Suite is an open source Office package developed by the Document Foundation and

is currently used by tens of millions of people around the world. It consists of Writer (word

processing), Calc (spreadsheets), Impress (presentations), Draw (vector graphics and flow charts),

Base (databases) and Math (formula editing) (LibreOffice, 2016a). By default, LibreOffice uses

the ISO standardized Open Document Format (ODF) but also supports the OOXML format. ODF

is an XML based standard for sharing files across platforms. LibreOffice version 4.2 and later can

read and write to OOXML files. Writing to OOXML format is an option within the LibreOffice

software with a warning of possible loss in content or formatting (Document Foundation Wiki,

2016). Output files from LibreOffice saved in OOXML format can be forensically analysed within

the scope of this research. LibreOffice Calc is more or less similar in structure and functionality to

Microsoft Excel. Table 2.2 shows the file formats supported by LibreOffice (LibreOffice, 2016b).

Table 2.2: LibreOffice ODF File Name Extensions (LibreOffice, 2016b)

XML File Type Extension

Writer (Document) .odt

Calc (Spreadsheet) .ods

11

XML File Type Extension

Impress (Presentation) .odp

Draw (Illustration or Graphics) .odg

2.7. Relevant Research

Research done by Garfinkel (2009) on “New XML-based Files Implications for Forensics”

concluded that unique identifiers stored in OOXML documents are very important in tracking the

movements and edits to a document as they are preserved when a document is edited. These

identifiers are 32-bit numbers that uniquely identify revisions within a document. The research

done by Garfinkel (2009) created 2007 Word documents, made a couple of revisions and saved

the files with different file names. It was discovered that the Revision Identifiers (RI) were

preserved across all saved files, meaning it is possible to determine and correlate a document’s

editing history even if change tracking is not enabled. This means it is possible to prove that one

document resulted from another. However, it is possible to manually alter these identifiers and

lose track of a document’s editing history or maliciously implicate a user. OOXML documents

store timestamps in the ZIP archive of when a document is created or modified (Garfinkel, 2009).

These timestamps could be important in correlating document revision history, determine multiple

editing sessions or indicate tampering with a document.

Langweg (2012) in his research on OOXML File Analysis of the Terrorist Manual Related to the

22/7 Attacks analysed the Microsoft word “manifest” distributed by the suspected terrorist of the

22nd July 2011 attacks in Oslo, Norway and on Utøya islands. This research studied the Revision

Identifiers (RI) in Office Word documents in order to find out how many times the document had

been edited and who was the original author. Metadata was extracted from docProps/app.xml,

docProps/core.xml and settings.xml files and used to analyse generated document table of contents,

document revisions, changes in formatting and language metadata of paragraphs to find evidence

of more than one author. Langweg (2012) research was rather manual and was carried out to find

out if the OOXML structure of the document was consistent with claims by the suspect

apprehended for the terrorist act, and to determine if there had been additional authors on the

Microsoft Office document. He manually analysed the generated Word document table of

contents, document revisions, changes in formatting and language metadata of paragraphs to find

evidence of more than one author. He was able to determine how many times the document had

12

been revised and saved using extracted revision identifiers and metadata. The findings were that

the terrorist manual had been edited (saved) 320 times over the period of creating, composing and

editing the document. Examining the pictures in the document using ExifTool revealed that the

pictures must have been save on a Windows machine.

Didriksen (2014) in his thesis research on “Forensic Analysis of OOXML Documents” and

presented to Department of Computer Science and Media Technology, Gjøvik University College

extended the work of (Langweg, 2012). His research was based on finding out the forensic value

of OOXML documents and what kind of metadata can be extracted from these documents to

support forensic investigations. He also tended to find out the forensic metadata difference

between different popular office suites such as Microsoft Office, LibreOffice and OpenOffice.

This research employed qualitative research by case studies, experimental research by studying

capabilities of different forensic tools that are able to extract OOXML metadata including

read_open_xml.pl, DOCXRevisions, DSO Tool, Encase Forensic, Forensic Toolkit and literature

review.

The research experiments proved that OOXML documents metadata and revision identifiers can

be trusted to be used for forensic investigations. It specifically found out that even if a document

was tampered with and metadata deleted, revision identifiers would still be intact. It was able to

determine that manual alterations to documents can be tracked since the timestamps are preserved

even after the document has been modified by a Word processor. The research developed a tool

called OOXML Forensic Analysis Tool (OFAT) which was presented to investigators from the

National Authority for Investigation and Prosecution of Economic, and Environmental Crime in

Norway (Norwegian: Økokrim) and NCIS Norway (Norwegian: Kripos). This tool was able to

validate Word documents by using OpenXmlValidator method in the official Microsoft OpenXML

SDK, extract document metadata including revision identifiers and correlate the two (Didriksen,

2014). A key finding of this research is that both LibreOffice and Google Docs do not use revision

identifiers. LibreOffice strips all existing identifiers from word/document.xml and

word/settings.xml files when it saves an edited document, while Google Docs replaces all existing

identifiers with a null sequence. The practical implication of these findings is that OOXML

documents created or edited in LibreOffice or Google Docs cannot be used in a revision identifier

comparison process thus reducing their forensic usefulness. Thumbnails created in Word 2007 are

unreadable, but it is possible to see how the content was structured (Didriksen, 2014). Word 2010,

13

2013 and 365 produce readable thumbnails, while Word Online, LibreOffice Writer and Google

Docs do not support thumbnails. Thumbnails produced in Word 2010, 2013 and 365 are therefore

more forensically useful than the other office suites.

Since the research by Didriksen (2014) was limited to Word documents, it suggested that future

research should dwell on spreadsheets and presentations and extend this to LibreOffice and

OpenOffice documents. The forensic tool developed by this research lacked good visualization

and it suggested further improvement to this.

Zhangjie, Xingming, Yuling, & Li (2011) came up with a forensic method based on the unique

value of the revision identifier (RI) of OOXML Word to determine the source of suspicious

electronic documents and the original author. The RI values are important in determining the

source of OOXML documents. If text or characters are copied from one document to another,

forensic investigation can reveal that the two documents are from the same source, thus helping to

reveal copied documents, templates and information. Timestamp information on dates of

document creation and modification were used to reveal the original author of the document and

the timeline of revisions and edits.

Muhamad (2011) in his thesis studied data hiding techniques in OOXML files. He categorized

these techniques into five, namely: data hiding using OOXML relationship structure; data hiding

using XML format feature; data hiding using XML format feature and OOXML relationship

structure; data hiding using OOXML file embedded resource architecture; and data hiding using

OOXML flexibility of swapping parts using steganographic techniques. The study came up with

OOMXQA algorithm that uses XQuery code and can be embedded with any steganalysis and

detection tool to query XML metadata of online documents. Muhamad (2011) concluded that

methods can be used to hide data within OOXML files that cannot be detected by text editors or

document inspector feature of Microsoft Office. Data is normally hidden in the OOXML ZIP

archive and it can have other parts or metadata. If the hidden data properly satisfies the

relationships order of the OOXML file, then it becomes difficult to recover this data as it will go

undetected.

2.8. Existing Forensic Tools

There are existing forensic tools that can analyse OOXML files and these include Advanced

OOXML Carver, Encase Forensic, read_open_xml.pl, DOCXRevisions, DSO Tool, Forensic

14

Toolkit, Python-OOXML, Forensic Toolkit, OfficeDissector, FOCA, Libextractor, and

MetaGooful. This research reviews documented information on some of these tools to find out

their strengths and weaknesses with respect to metadata extraction and analysis of OOXML

spreadsheets. Below is a review of the capabilities of some selected tools.

Advanced OOXML Carver

Schicht (2011) showed that the Advanced OOXML Carver tool was developed from a research on

that dwelt on recovering damaged ZIP packages of OOXML documents. It was initially meant for

newer Word DOCX, but applies equally well to XLSX, PPTX and ZIP archives generally. The

main component of the tool component performs searching, decompressing and generation of logs

(Schicht, 2011). This is supported by other modules of the tool that can extract metadata, analyse

DOCX files for consistency and repair damaged ZIP files.

This tool has been used by users to extract metadata from Word documents and results

documented. Sample results by a user is shown in Figure 2.2. It shows that the tool basically

extracts metadata such as document properties, revisions and relationships, but does not do

automated analysis. It also shows that the output is in text format.

Figure 2.2: Advanced OOXML Carver Metadata Extraction from Word Document (Schicht, 2011)

15

Fingerprinting Organisation with Collected Archives (FOCA)

FOCA is an automated Windows based tool developed by Eleven Pathways that can download

published documents from website using Google, Microsoft Bing and Exalead Search engines,

extract and analyse metadata from these documents as well as offline documents (Bajpai, 2014).

It supports DOC, PPT, PPS, XLS, DOCX, PPTX, PPSX, XLSX, SWX SXC, SXI, ODT, ODS,

ODP, PDF, WPD, SVG, SVGZ, INDD, RDP and ICA file formats and can extract metadata related

to users, folders, printers, software, emails, operating systems, passwords and servers and matches

information in an attempt to identify which documents have been created by the same team and

what servers and clients may be inferred from them (Eleven Paths, 2015). FOCA can also be used

to perform penetration testing and it can map a network, a feature which is useful for penetration

testers. It provides two view tree and timeline, which show events related to files organised by date

which enables quick view of events of a certain date (Kumar, 2012). Figure 2.3 shows sample

Word metadata being extracted by FOCA.

Figure 2.3: FOCA Extracting Metadata Stored in Word Document (Published at Blackhat.com) (Chema, Rando, Oca, &
Guzman, 2008)

16

OfficeDissector 1.0

OfficeDissector is a Python parser library created by Grier Forensics for the Cyber System

Assessments Group used for static security analysis of OOXML documents (Grier Forensics,

2015). It parses document properties, parts, content-type, relationships, embedded objects,

multimedia, and comments, and exposes metadata via a Python interface. It also provides full

JSON export, and a MASTIFF based plugin architecture (Grier Forensics, 2015). This command

based tool works on Linux/UNIX OS and fully supports Office Word document metadata

extraction. However, it’s not proven to fully support spreadsheets.

Python-OOXML 0.13

Python-OOXML is a Python library for parsing Office Open XML files. At the moment, it only

supports HTML as output format. Strong emphasis is put on easy customization of the output. The

library comes with an importer which is capable of splitting a document into separate chapters. It

works both with documents which use Word styles and those that do not (Python Software

Foundation, 2016). This tool only supports Office Word documents and output of results in HTML

format, therefore, it cannot be fully relied on for forensic analysis of spreadsheets (Python

Software Foundation, 2016).

Libextractor

Libre extractor is an open source tool for metadata extraction developed by GNU Operating

System (Free Software Foundation, 2016). It supports the following formats: HTML, MAN, PS,

DVI, OLE2 (DOC, XLS, PPT), OpenOffice (sxw), StarOffice (sdw), FLAC, MP3 (ID3v1 and

ID3v2), OGG, WAV, S3M (Scream Tracker 3), XM (eXtended Module), IT (Impulse Tracker),

NSF(E) (NES music), SID (C64 music), EXIV2, JPEG, GIF, PNG, TIFF, DEB, RPM, TAR(.GZ),

LZH, LHA, RAR, ZIP, CAB, 7-ZIP, AR, MTREE, PAX, CPIO, ISO9660, SHAR, RAW, XAR

FLV, REAL, RIFF (AVI), MPEG, QT and ASF (Free Software Foundation, 2016). It comes with

possibility to write and install additional plugins to enhance its functionality (GNU, 2008).

MetaGooful 2.2

MetaGoofil is an information gathering Python library that extracts metadata from public

documents hosted online (Bechtsoudis, 2011). It supports many file types including PDF, DOC,

XLS, PPT, DOCX, XLSX and PPTX. This tool traces published documents in a targeted website

17

using Google search engine, downloads the documents and extracts metadata using libextractor,

Hachoir and PdfMiner. It is also able to extract usernames and software version metadata from the

documents (Bechtsoudis, 2011).

Read_open_xml.pl

This is a tool written in Perl and it can extract metadata from OOXML documents (Gudjonsson,

2009). It takes an OOXML document as input, extracts it and reads the data stored in

docProps/app.xml and docProps/core.xml, which contains document metadata such as the title,

author, number of revisions, number of pages, last printed timestamp, created timestamp, modified

timestamp, total editing time, name and version of Word processor. However, it is limited to

documents core and application properties and thus not all metadata as summarised in Table A1

of Appendix A could be extracted.

Forensic Tool Kit (FTK)

Forensic Toolkit (FTK) is a commercial forensic tool for creating forensic images, browsing seized

file systems, viewing individual seized files, visualizing evidence and performing various evidence

analysis (AccessData, 2017). Didriksen (2014) tested the functionality of FTK version

3.4.1.34295, and observed that it seemed to by default have more functionality than EnCase

Forensic for handling OOXML documents. Unlike EnCase, OOXML documents loaded in FTK

were extracted automatically. However, the FTK only extracted metadata related to core, custom

and extended file properties. It did not extract all metadata including revisions needed for forensic

investigations. Figure 2.4 shows sample Word metadata being extracted by FTK.

18

Figure 2.4: FTK Extracting Metadata Stored in Word Document (Didriksen, 2014)

2.9. Conclusions

OOXML spreadsheets are some of the potential sources of forensic evidence. The OOXML

standard is fully supported by Microsoft, although other Office products support this standard with

limitations. LibreOffice offers read and write while OpenOffice offers only read capabilities of the

standard. Research has been carried out on the relevance of OOXML in digital forensics with a

conclusion that OOXML metadata can be trusted as source of forensic evidence. However, most

of this previous research dwelt on OOXML Office documents thus leaving a gap in research on

OOXML spreadsheets. This positively confirms the research hypothesis that previous research on

OOXML forensics has not dwelt much on OOXML spreadsheets.

19

From the review of existing forensic tools, it is evident that these tools are inadequate in extracting

and analysing OOXML metadata in spreadsheets. Most of the tools reviewed by this research can

extract limited metadata but none has the capability to extract and analyse all the metadata as

summarised in Table A1 of Appendix A, including revision metadata from shared OOXML

spreadsheets. The forensic tools that can extract some metadata from OOXML spreadsheets output

the results in a non-user friendly text format which is difficult to analyse in an automated way.

These answers the research question on strengths and weaknesses of available forensic solutions

with respect to metadata extraction and analysis of OOXML spreadsheets and positively confirms

the research hypothesis that existing forensic tools are limited in adequately extracting and

analysing all metadata in OOXML spreadsheets. Therefore, there is need to further analyse

OOXML spreadsheet metadata and develop a forensic tool that can extract and analyse metadata

in these spreadsheets.

20

3. Methodology

This chapter describes the methodology employed by this research for forensic analysis of

metadata in OOXML spreadsheets. The methodology consists of three main steps: testing of

existing forensic tools with regard to OOXML metadata extraction and analysis; system analysis,

design and architecture; and Proof of Concept (PoC) implementation of OOXML forensic tool,

testing and validation to address the gaps identified with existing tools.

The testing of existing forensic tools is carried out using selected reviewed forensic tools to extract

and analyse OOXML metadata from sample OOXML spreadsheet datasets, noting the amount and

type of metadata they can extract and analyse against the expected metadata as in Table A1 of

Appendix A.

Analysis is carried out by examining the weaknesses of the reviewed and tested forensic tools so

as to come up with specifications and requirements of the Proof of Concept implementation of

OOXML forensic tool. The design of the tool is carried out using a modified Agile Software

Development methodology to address the gaps identified in “Literature Review” and “Testing of

Existing Forensic Tools” chapters. Since this research aims at coming up with a Proof of Concept

implementation of OOXML forensic tool, applying all aspects of Agile Software Development

methodology is not feasible for a single developer and thus only specific aspects of Agile Software

Development methodology are applied. It is not expected to have in mind the all expectations and

specifications from final users at this point of Proof of Concept implementation of OOXML tool

analysis and design, and prototyping is limited to the first working version of the tool. The

modified Agile Software Development methodology is suited for these situations where primary

focus is developing the application without comprehensively knowing all specifications and

requirements (Ambler, 2014a). The research is not initially expected to come up with a

comprehensive and exhaustive specifications and design requirements arising from system

analysis. In addition, there is likelihood that these specifications and requirements will change as

development progresses given that this research is limited in time frame and thus more emphasis

is pegged on tool development rather than comprehensive system analysis and documentation.

Testing and validation is done using sound scientific methods to ensure that the test results are

repeatable when the same results are obtained using the same methods in the same testing

environment, and also reproducible when the same test results are obtained using the same method

21

in a different testing environment (NIST, 2015). This includes developing a test plan, developing

controlled datasets, conducting tests in a controlled environment and validating the test results

against known specifications and expectations.

3.1. Testing of Existing Forensic Tools

This research uses the existing forensic tools reviewed in “Literature Review” chapter to extract

and analyse metadata from OOXML spreadsheet datasets selected from a controlled pool so as to

establish the strengths and weaknesses of these tools. The controlled datasets consist of about 20

different OOXML spreadsheet files of sizes ranging from a few KB to 50 MB since it may not be

realistic to have very big spreadsheet datasets. These datasets are manually created using different

Microsoft Office and LibreOffice applications and their metadata changes noted including basic

properties, rows, cells, sheets, comments, revisions; comments, hyperlinks and embedded images.

A few of these sample datasets are intentionally corrupted to investigate the level at which the tool

can extract and analyse metadata from these corrupted files. Some of the sample datasets are write

protected by passwords to determine performance of the tool on write protected files and also seek

to confirm or reject the research hypothesis that it is not possible to extract metadata from write

protected OOXML spreadsheets. It is to note that the same spreadsheet files are used for all the

tools except for scenarios where these datasets are analysed directly on the cloud, and also in

testing and validation.

The research makes conclusions on the strengths and weaknesses of these tools with regard to

OOXML metadata extraction and analysis from these spreadsheet datasets, and this guides the

system analysis and design of the proposed tool.

3.2. System Analysis, Design and Architecture

System Analysis

Appropriate analysis is done to determine the relationship between the expected specifications and

the actual tool to be developed and to identify the goals and purpose of the proposed tool so as to

enable designing and developing the tool in in an efficient and effective manner in order to

determine if it will be economically, socially, technologically and organisationally viable to

develop the tool (Dennis, Wixom, & Roth, 2012). In particular, the system analysis comes up with

detailed functional and technical specifications as explained below.

22

 Functional specifications. These specifications contain the proposed functionality of the tool

arising from the weaknesses and gaps identified on existing forensic tools summarised in the

conclusions of “Literature Review” and “Testing of Existing Forensic Tools” chapters.

 Technical specifications. Using the functional specifications, technical specifications are

developed and these details how the functional specifications are implemented.

System Design

This research employs an object-oriented design methodology consisting of:

 Backend design. Use Cases are developed to model the interactions between entities and the

system using StarUML software (Jacobson, Spence, & Bittner, 2011). The system model also

incorporates Class Diagrams (Ambler, 2014b). These emulate the tool specifications and

functionality; and

 Frontend design. Wireframes are developed for front end display and manipulation of

metadata. It is intended that the frontend be a web based interface.

System Architecture

System Architecture consists of:

 Web server running in the cloud;

 Web application hosted in a web server. It consists of business processes, reporting module

and other services;

 Client interface consisting of standard web browsers through which users interact with the

system;

 Internet acting as communication media between web server and client; and

 Cross cutting components such as security and operational management.

3.3. System Implementation, Testing and Validation

System Implementation

In order to implement the system, the chosen development methodology focuses on object-oriented

development on a Microsoft platform and follows OWASP guidelines of secure coding standards

(OWASP, 2016). The implementation covers the following phases:

23

 Development and hosting. The tool is developed and hosted locally on Microsoft Internet

Information Services (IIS) which is a scalable, reliable and secure development and hosting

platform (Microsoft, 2017a). IIS is chosen because the OOXML SDK to be used is a product

of Microsoft and therefore highly compatible with this platform (Microsoft, 2011). The

developed prototype is then hosted at Microsoft Azure cloud hosting platform that is a secure

and scalable cloud hosting platform for ASP.NET web applications (Microsoft, 2017b);

 Backend development. Technical specifications and the developed Use Cases and Class

Diagrams from design phase are used to guide the backend development of the tool to

implement backend functionality;

 Frontend development. Technical specifications and the developed wireframes from design

phase are used to guide web based frontend tool development;

 Languages. Backend development is implemented primarily using C# programming language

that is a product of Microsoft within its .NET library and approved by ECMA (ECMA-334)

and ISO (ISO/IEC 23270:2006) (ECMA International, 2006a). Frontend development is

implemented using ASP.NET which is an open-source server side web application framework

(Neudesic, LLC, 2015), SQL Server Reporting Services for generating forensic report,

HTML5 (WHATWG Community, 2017), JavaScript (Wiley, 2016) and JQuery (jQuery

Foundation, 2017); and

 Frameworks and libraries. OpenXMLSDKTool version 2.5 which is the Microsoft library for

OOXML development forms the primary library to develop the tool (Microsoft, 2017c).

Testing

Testing of the tool is conducted including manual and functional tests on all modules of the tool

to ascertain that they are working correctly and satisfies the specifications and requirements.

Sample spreadsheets datasets created earlier are used as sample datasets for testing. Users to carry

out tests are randomly drawn from Strathmore University and work colleagues. They are provided

with sample OOXML datasets and each individually carries out the tests and documents findings

which are partially used for validation. The tests carried out are detailed below:

 Manual Tests. The research carries out thorough manual tests for each module developed to

make sure the tool is working correctly in terms of metadata extraction, analysis and reporting.

A manual test plan is created that details the scope of the testing including functions that are

24

tested and those that are not tested. Manual test cases are developed for metadata extraction,

analysis and reporting functionality. It is expected that the tool is able to extract all metadata

as summarised in Table A1 of Appendix A if this metadata is available in the OOXML files;

 Functional Tests. Functional tests are done on the overall functionality and stability of the tool

to determine if the tool is able to handle large spreadsheets without crashing;

 Security Tests. These tests are carried out by employing penetration tests using OWASP

guidelines for penetration testing to ensure the software and platform comply with security

standards (OWASP, 2017); and

 Quality Assurance. Results of the tests are compared against functional requirements to

determine if the application meets the specifications and requirements.

Validation

Validation of the developed tool is done to determine if the tool serves its intended purpose. The

validation will determine if the specifications and requirements were correct and verify that the

tool meets these specifications and requirements. This will include validating that developed tool

performs all intended functionality as outlined in the specifications, and validating that the results

output by the tool are accurate and correct.

1. Validation of the developed tool is achieved by comparing the functionality of the tool against

each of the specified requirements, and noting if the tool performs the functions correctly.

Three approaches are used for this validation namely:

o Documentation checks. This is to ascertain the completeness in technical

specifications, design, end user and technical manuals. The specifications are cross-

checked to make sure they are aligned with user requirements as derived through

system analysis;

o Functional completeness of the tool. Functional completeness of the tool is carried out

to ascertain that the tool implements all functionality as per the specifications. Most of

the testing is done under manual and functional testing; and

o Source code. Review of the tool design and data flow analysis to detect poor and

potentially incorrect program structures by scrutinizing the source code.

2. Validation of the accuracy and correctness of results obtained by the developed tool is carried

out using the following approach:

25

o Validation plan. This outlines the steps and requirements for the validation and how

many times a specification is tested. It also defines the error rates and confidence levels

to be achieved by the validation; and

o The tool is then validated using the controlled datasets and results compared against

expected results registered when manual changes are made to the files. The metadata

extracted by the tool is also be compared with the expected results as in Table A1 of

Appendix A to evaluate the success of metadata extraction. Each requirement is

validated at least three times to ascertain that they are repeatable and reproducible

(Brunty, 2011).

26

4. Testing of Existing Forensic Tools

This chapter explains in detail the tests that were practically carried out to extract metadata using

different forensic tools reviewed in “Literature Review” chapter in order to determine the strengths

and weaknesses of the tools as far as OOXML metadata extraction and analysis on spreadsheets is

concerned. It also elaborates the types and formats datasets that were used to carry out the tests.

The results of these tests are documented in detail and a conclusion at the end of the chapter

highlights the strengths and weaknesses of these tools.

4.1. Controlled Datasets Used

OOXML supported spreadsheet datasets of .XLSX format of varying file size were used to perform

tests on selected forensic tools. Some of the datasets were created manually and edits done on them

in shared mode, while some were downloaded from the internet. One file was write protected by

password.

4.2. Metadata Extraction Using Existing Tools

Advanced OOXML Carver

This research performed tests using Advanced OOXML Carver version 4. Test results as shown

in Figure 4.1 established that this tool can extract metadata related to document properties from

OOXML spreadsheets. This is metadata in docProps/app.xml: application name and version,

document security, shared document, links and if hyperlinks have been changed; and metadata in

docProps/core.xml: creator, creation and modification dates and user who last modified the

spreadsheet. The output of the extracted metadata is in a plain text file.

27

Figure 4.1: Metadata Extraction Results Using Advanced OOXML Carver

The tool was used on write protected files and results were same as in Figure 4.1.

Fingerprinting Organisation with Collected Archives (FOCA)

This research performed tests on FOCA using offline OOXML spreadsheet files to extract

metadata and the results are shown in Figures 4.2 and 4.3. It is evident from the results that FOCA

is capable of extracting basic metadata related to document properties including application name

and version, document security, links, shared document, creator, creation and modification dates.

The same results were achieved when write protected datasets were used.

28

Figure 4.2: Metadata Extraction Results Using FOCA

Figure 4.3: Metadata Extraction Results Using FOCA

29

OfficeDissector

OfficeDissector version 1.0 was installed in Linux Ubuntu 12 with Python version 2.7 for tests.

Test results showed that the tool could extract limited metadata from spreadsheets including core

properties such as create and modification dates, document name; parts metadata such as

comments; relationships and embedded images as shown in Figures 4.4. and 4.5. The tool is

command based and poses a challenge to users who do not have appropriate skills. Same results

were achieved when the tool was used on write protected OOXML files.

Figure 4.4: Metadata Extraction Results Using OfficeDissector 1.0

30

Figure 4.5: Metadata Extraction Results Using OfficeDissector 1.0

Python-OOXML 0.13

Python-OOXML version 0.13 was installed in Linux Ubuntu 12 with Python version 2.7 for tests.

An attempt to extract metadata from OOXML Excel file failed as shown in Figure 4.6, indicating

that this tool does not support OOXML spreadsheets.

Figure 4.6: Metadata Extraction Results Using Python-OOXML 0.13

31

Libextractor

Figure 4.7 and Figure 4.8 show sample tests carried out on Excel file in a Linux Ubuntu 12 and

Python version 2.7. The test results show that the tool is able to extract lots of metadata information

from shared spreadsheet files including Workbook, Worksheet names, revisions, styles, printers,

users and comments as in Figure 4.7 and 4.8. It however gives output in a command line interface

which is not user friendly and is difficult to analyse. A test on a write protected file revealed the

same results.

Figure 4.7: Metadata Extraction Results Using Libextractor

32

Figure 4.8: Metadata Extraction Results Using Libextractor

Metagoofil

Metagoofil version 2.2 was able to extract metadata related to document properties in

docProps/app.xml and docProps/core.xml from Microsoft.com domain and these were saved into

different files in the selected output directory. It could also extract metadata for drawings, images,

printer settings, themes and information in Worksheet and Workbook. Figures 4.10, 4.11 and 4.12

show metadata extracted from docProps/app.xml, docProps/core.xml and /.rels directory

respectively. Appendices C1, C2, C3 and C4 contains additional metadata extracted by Metagoofil

2.2.

33

Figure 4.9: Metagoofil 2.2 Extracting Metadata from Public Spreadsheets in Microsoft.com

Figure 4.10: Metadata Extraction Results in docProps/app.xml File Using Metagoofil 2.2

34

Figure 4.11: Metadata Extraction Results in docProps/core.xml File Using Metagoofil 2.2

Figure 4.12: Metadata Extraction Results in /_rels/.rels Directory Using Metagoofil 2.2

Read_open_xml.pl

Read_open_xml.pl was installed in Linux and sample .XLSX files used to extract metadata. The

results in Figure 4.13 shows that this tool was able to extract application metadata including type

of application, application version, number and names of Worksheets; and file metadata including

creator, user who last modified the file, creation and last modification date. The tool was able to

extract metadata from write protected OOXML files and give the same output as in Figure 4.13.

35

Figure 4.13: Metadata Extraction Results Using read_open_xml.pl

4.3. Conclusions

OOXML spreadsheets contain lots of metadata as summarised in Table A1 in Appendix A. Most

of the tested forensic tools supporting OOXML are not capable of extracting all metadata required

to aid effective and complete investigations of spreadsheets, but can only extract basic metadata

relating to document properties. However, Metagoofil, Libextrator and OfficeDisector are capable

of extracting more metadata related to individual package parts such as comments, Workbook,

Worksheet; relationships between different package parts and revisions done on the parts.

However, their output is not in a user-friendly manner thus making analysis manual and difficult.

For instance, Libextrator outputs a plain text format report that displays the corresponding XML

files without giving much details on the content of these files. OfficeDissector requires one to have

Python command line skills and an understanding of the library in order to extract metadata, which

can be challenging for most users. The results further reveal that write protection by passwords of

OOXML spreadsheets does not prevent metadata extraction, thus negating the research hypothesis

that it is not possible to extract metadata from write protected files. There is therefore need to have

36

an automated tool that extracts all metadata in a user friendly and can be used by low skilled users

while at the same time give a detailed forensic report.

37

5. System Analysis, Design and Architecture

This chapter covers in detail analysis done in order to understand the challenges of existing

forensic tools and specifications and requirements identified. It also contains details of the design

and architecture of the system.

5.1. System Analysis

System analysis was carried out in order to investigate the strengths and weaknesses of the existing

forensic tools as covered in conclusions of “Literature Review” and “Testing of Existing Forensic

Tools” chapters so as to come up with requirements that will aid the design and consequently

development of the Proof of Concept (PoC) implementation of OOXML forensic tool.

Most of the forensic tools reviewed and tested are only capable of extracting basic metadata from

OOXML supported spreadsheets without performing any analysis of the metadata. The few that

can extract much more metadata are tedious to work with in that they are command line based and

the user needs to have sufficient command of the tool’s API in order to extract metadata. Further

these tools output results as unanalysed in HTML or plain text format that is difficult to

comprehend at a glance especially by low skilled users. These limitations pose a challenge to a

forensic investigator in that not all required metadata can be extracted to support a forensic

investigation, thus crucial evidence may be uncollected therefore possibly watering down a case.

In addition, most of the forensic investigators usually may not be very skilled in command line

language that most of the tools use therefore limiting their use. Furthermore, most of the users

usually have limited time and requiring them to install and use these tools especially in new

platforms is time consuming and may not be productive. It is also notable that none of the tools

tested outputs a forensic report in proper standard with good visualization.

All the forensic tools reviewed and studied required the end user to install prior to using them, and

more so that these tools are specific to certain platforms and Operating System. This poses a

challenge to the user especially if the user does not run the OS required or the user is travelling

without his or her computer and needs to extract metadata.

The Proof of Concept implementation of the tool consists of various components including: user

interface where users interact with the system with various interactive sections such as uploading

38

OOXML datasets, metadata extraction, analysis and reporting; backend application logic that

process user requests from frontend and return feedback.

5.2. Functional Specifications

Functional specifications are derived as a result of system analysis including functionality,

usability, reliability, performance, supportability and security. Table 5.1 summarises the functional

specifications identified for the tool.

Table 5.1: Functional Specifications

Category Functional Specifications

Functionality Spreadsheet datasets should not be altered by the system

Highly interactive visualisation for end users

Extract all metadata as summarised as summarised in Table 1A of Appendix A
from OOXML spreadsheets including write protected files

Analyse the extracted metadata and correlate time series events in a flow format

Output a detailed and highly visualised standard forensic report

Compatibility with major browsers for client access

Usability No installation required for end user

Independent on end user platform and Operating System

Easy to use even by low skilled users

Reliability Online and accessible to users on demand

Performance Fast and accurate metadata extraction, analysis and reporting with speed more than
500KB of data per second

Supportability Fully maintained online by hosting entity

Open to future development to commercial version

Security Application developed with security considerations following OWASP secure
coding standards

Web application is secured by signed server certificate. Datasets are uploaded via a
web page and transferred to the application using secure HTTPS (if affordable)

Data not stored within the system, metadata is extracted and analysed on the fly

5.3. Technical Specifications

Technical specifications explain how the functional specifications will be implemented. Table 5.2

summarizes the technical specifications.

39

Table 5.2: Technical Specifications

Item Technical Specifications

Platform Web based system installed on the cloud

Web Server Microsoft IIS

Frontend
Development

ASP.NET, HTML5, JavaScript, JQuery

Backend Deployment C# and associated class libraries (Open XML SDK version 2.5)

Reporting SQL Server Reporting Services

Security OWASP secure coding standards

5.4. System Design and Architecture

The design of the tool is composed of use cases, class diagrams and wireframes in order to

implement the functional and technical specifications. From the specifications, it is evident that

the proposed tool should be able to extract and analyse metadata, and present a forensic report on

the analysed metadata. The tool is therefore designed to have three main modules – Metadata

Extraction, Metadata Analysis and Forensic Report; and a sub module for end user explanation of

what the tool is all about.

Use Cases

Figure 5.1 shows use cases in conventional format.

40

Figure 5.1: Use Case in Conventional Format

The Use Cases in Figure 5.1 are broken down to individual use cases in fully dressed format which

expounds on the diagrammatic representation of the Use Case into a more detailed tabular format

that makes the specifications clearer and maximizes the flexibility of the design and

implementations. Table 5.3 details the Browse OOXML File Use Case in fully dressed format.

This Use Case illustrates how a user browses, selects and uploads an OOXML file to extract

metadata. The user must have accessed the application on a web browser and the Use Case is

successful if the name of the selected file is displayed on the web page, otherwise an error message

is displayed.

Table 5.3: Browse OOXML File Use Case

System: OOXML Application Group ID:
Use Case Name: Browse OOXML File Use Case ID: UC 1
Primary Actor: User Priority:
Supporting Actor: System Use Case Points:
Goal: Browse and uploads OOXML file for metadata extraction
Trigger: User clicks the file browse button
Relationships:

 Association: +Browse
 Includes:

41

 Extends:
 Generalization:
 Extension Points:

Input:
Preconditions:

 User access application via web browser
Normal Flow of Events (Main Success Scenario Steps):

Actor System
1. User clicks file browse button on OOXML

application
3. User selects file

2. File select window is launched

4. File select window is closed
5. Selected file name is displayed

Alternative and Exceptional Flows:

Post-conditions on success:

 Selected file name is displayed
Post-conditions on failure:

 Error message displayed or selected file name is not displayed

Table 5.4 details the Extract Metadata Use Case in fully dressed format. This Use Case illustrates

the process to extract and display OOXML metadata. A user must have successfully selected a

valid OOXML file and the Use Case is successful when metadata is extracted and displayed in

tabular format on the web page, otherwise an error message is displayed.

Table 5.4: Extract Metadata File Use Case

System: OOXML Application Group ID:
Use Case Name: Extract Metadata Use Case ID: UC 2
Primary Actor: System Priority:
Supporting Actor: User Use Case Points:
Goal: Extract and display OOXML metadata
Trigger: User clicks the Extract button
Relationships:

 Association: +Extract
 Includes: Browse OOXML File
 Extends:
 Generalization:
 Extension Points:

Input: OOXML file contents
Preconditions:

 Browse OOXML File Use Case is successful
Normal Flow of Events (Main Success Scenario Steps):

Actor System
1. User clicks Extract button on OOXML

application
2. System analyses selected file to make sure it

is OOXML supported
3. System extract metadata

42

4. System displays extracted metadata in tabular
format

Alternative and Exceptional Flows:
2.1. File is not OOXML supported

a. System displays error message and requests user to select correct file
Post-conditions on success:

 Metadata is extracted and displayed in tabular format
Post-conditions on failure:

 Error message displayed

Table 5.5 details the Analyse Metadata Use Case in fully dressed format. This Use Case illustrates

the process to analyse and present metadata. A user must have successfully selected a valid

OOXML file and the Use Case is successful when information derived from metadata analyse is

displayed, otherwise an error message is displayed.

Table 5.5: Analyse Metadata Use Case

System: OOXML Application Group ID:
Use Case Name: Analyse Metadata Use Case ID: UC 3
Primary Actor: System Priority:
Supporting Actor: User Use Case Points:
Goal: Analyse OOXML metadata and display analysis information
Trigger: User clicks the Analyse button
Relationships:

 Association: +Analyse
 Includes: Browse OOXML File
 Extends:
 Generalization:
 Extension Points:

Input: OOXML file contents
Preconditions:

 Browse OOXML File Use Case is successful
Normal Flow of Events (Main Success Scenario Steps):

Actor System
1. User clicks Analyse button on OOXML

application
2. System analyses selected file to make sure it

is OOXML supported
3. System analyses metadata
4. System displays analysis information in

tabular format
Alternative and Exceptional Flows:
2.1. File is not OOXML supported

a. System displays error message and requests user to select correct file
Post-conditions on success:

 Metadata is analysed and analysis information displayed in tabular format
Post-conditions on failure:

 Error message displayed

43

Table 5.6 details the Generate Forensic Report Use Case in fully dressed format. This Use Case

illustrates the process to generate and present a forensic report. A user must have successfully

selected a valid OOXML file and the Use Case is successful when a forensic report is displayed,

otherwise an error message is displayed.

Table 5.6: Generate Forensic Report Use Case

System: OOXML Application Group ID:
Use Case Name: Generate Forensic Report Use Case ID: UC 4
Primary Actor: System Priority:
Supporting Actor: User Use Case Points:
Goal: Generate forensic report of analysed metadata
Trigger: User clicks the Report button
Relationships:

 Association: +Report
 Includes: Browse OOXML File
 Extends:
 Generalization:
 Extension Points:

Input: Analyse Metadata Use Case Output
Preconditions:

 Browse OOXML File Use Case is successful
Normal Flow of Events (Main Success Scenario Steps):

Actor System
1. User clicks Report button on OOXML

application
2. System generates forensic report
3. System displays forensic report

Alternative and Exceptional Flows:
2.1. Forensic report not generated

a. System displays error message
Post-conditions on success:

 Forensic report generated and displayed
Post-conditions on failure:

 Error message displayed

Class Diagrams

Class diagrams for the tool are developed using Visual Paradigm version 14.0. Figures 5.2 and 5.3

show the class diagrams of all classes designed for the tool. The classes and members are:

 ClsExtractMedatata – main class that is accessed directly by metadata extraction, analysis and

reporting modules and uses all the other classes.

44

 ClsSpreadsheetDocumentProperties - members and methods related to the Document

Properties of the Spreadsheet document;

 ClsSpreadsheetPackageProperties - members and methods related to Package Properties of

the Spreadsheet document;

 ClsSpreadsheetFileProperties – members and methods related to ExtendedFilePropertiesPart

of the Spreadsheet document;

 ClsSpreadsheetSharedUsers – members and methods related to WorkbookUserDataPart of the

WorkbookPart of the Spreadsheet document;

 ClsSpreadsheetWorkbook – members and methods related to the WorkbookPart of the

Spreadsheet document such as Worksheets, WorksheetComments, WorksheetDrawings,

SingeCellTable and WorksheetSortMap;

 ClsSpreadsheetRevisionHeader – members and methods related to

WorkbookRevisionHeaderPart of the WorkbookPart of the Spreadsheet document;

 ClsSpreadsheetSharedSheetRevisionHistory – members and methods related to the

WorkbookRevisionHeaderPart of the WorkbookPart of the Spreadsheet document and

contains all revisions at Worksheet and Cell level. Information captured by this class is related

to ClsSpreadsheetSharedCellRevisionHistory class by Relationship Id (rId).

 ClsSpreadsheetSharedCellRevisionHistory – members and methods related the

WorkbookRevisionLogParts of the WorkbookRevisionHeaderPart of the WorkbookPart of the

Spreadsheet document, and contains all revisions at Cell level including RevisionRowColumn,

RevisionCellChange, RevisionComments, RevisionInsertSheet, RevisionSheetName,

RevisionMove, RevisionDefinedName, RevisionAutoFormat, RevisionFormat,

RevisionCustomView, RevisionQueryTable and RevisionConflict;

 Extensions – static class that contains common methods across all modules; and

 ClsHelper – contains function to validate input spreadsheet files.

45

Figure 5.2: Class Diagrams

46

Figure 5.3: Class Diagrams

47

Wireframes

The design of OOXML tool has four modules namely About, Extract Metadata, Analyse Metadata

and Forensic Tool. These modules are designed in separate wireframes using Pencil version 2.0.5.

Figure 5.4 shows the wireframe design of “About” web page of the tool. This page contains

important information about the tool that can be of relevance to a user such as description of the

tool, supported data types, functionality and capability.

Figure 5.4: About OOXML Spreadsheet Analyser Wireframe

Figure 5.5 shows the wireframe design of “Extract Metadata” web page of the tool. This page

contains for browsing OOXML file, extracting and displaying metadata. Metadata display can be

categorised according to the types.

48

Figure 5.5: Extract Metadata Wireframe

Figure 5.6 shows the wireframe design of “Analyse Metadata” web page of the tool. This page

contains functionality to analyse and present metadata and further segregate this information

according to all users or selected a user in a time series format of metadata creation date.

Figure 5.6: Analyse Metadata Wireframe

49

Figure 5.7 shows the wireframe design of the “Forensic Report” web page of the tool. This page

contains functionality to generate and present a forensic report of important information from the

analysed metadata.

Figure 5.7: Forensic Report Wireframe

System Architecture

The system is designed to have a two-tier architecture with frontend client interface and a backend,

which is hosted remotely. The client interface consists of a supported web browser sends requests

to server and displays feedback information in a presentable manner. The backend consists of a

web server, web application and related services which processes and logic that receives client

requests, processes them and present feedback to the client in a presentable manner. The services

include security, operational management and communication. The client interface and backend

communicate with each other through the internet. Figure 5.8 shows the system architecture.

50

Figure 5.8: System Architecture

51

6. System Implementation, Testing and Validation

This chapter describes in detail how the implementation, testing and validation of the tool is carried

out and the results obtained. Implementation is carried out in accordance to the methodology

outlined in Chapter 3 of this research. Testing and validation were carried out on locally deployed

version of the tool.

6.1. Implementation

The implementation of the tool incorporates requirements and specifications identified in system

analysis so as to implement the system design and architecture. The tool accesses OOXML

spreadsheets selected by a user in read-only format to avoid unintended modification of the file.

The backend is implemented using the developed Use Cases and Class Diagrams in object-oriented

programming technology, while frontend is implemented using the designed wireframes. From

system analysis, the tool is best implemented to have three modules namely metadata extraction,

analyses and reporting. Each of these modules requires an OOXML file to be selected by a user.

The selected file is then uploaded to the application and validated using a validation process

developed using the OpenXmlValidator available in the OpenXML SDK. The uploaded file is

discarded when the metadata extraction, analysis and reporting is complete.

Metadata Extraction Implementation

The tool is able to extract metadata as described in Table A1 in Appendix A from selected shared

OOXML spreadsheets and display the metadata in tabular format. It also has the option of

extracting and displaying specific metadata that a user is interested in for example comments and

specific revisions. Figure 6.1 shows the metadata extraction functionality. Results of the metadata

extraction are displayed by type of metadata in tabular format. It is important to note that the tool

extracts metadata only if that type of metadata exists within the spreadsheet. For example, if an

OOXML does not have comments then no metadata of comments will be extracted and the

corresponding tabular display for comments metadata will not be shown.

52

Figure 6.1: Metadata Extraction

Package Properties:

Figure 6.2 shows extracted package properties metadata consisting of user, date and time of

creation and modification, user who last modified the file and date and time the file was last

printed.

Figure 6.2: Extracted Package Properties Metadata

Document Properties:

Figure 6.3 shows extracted document properties metadata. This includes if the spreadsheet is in

auto save mode, compression option, type of document and the mode of file access.

Figure 6.3: Extracted Document Properties Metadata

Revision Header Properties:

53

Figure 6.4 shows extracted Revision Header Properties metadata, including if the spreadsheet has

disk revisions, if it maintains revision history, if it tracks revisions, if it is a shared spreadsheet and

revision Id.

Figure 6.4: Extracted Revision Header Properties Metadata

Users:

Figure 6.5 shows extracted Users metadata. This metadata includes relationship id, user id, GUID,

name of user, and date and time the user accessed the file.

Figure 6.5: Extracted Users Metadata

Worksheets:

Figure 6.6 shows extracted Worksheets metadata. This contains all metadata information within a

Worksheet, including innerxml containing serialised markup of all child nodes of the Worksheet

and outerxml and outerxml that gives details of the Worksheet and all its child nodes.

54

Figure 6.6: Extracted Worksheet Metadata

Worksheet Comments:

Figure 6.7 shows extracted Worksheet comments metadata that includes the Id of the author,

comment text, the cell the comment is made and innerxml containing serialised markup of all child

nodes of the cell that contains the comment.

55

Figure 6.7: Extracted Worksheet Comments

Sheet Revision History:

Figure 6.8 shows extracted Sheet revision history metadata that contains the relationship Id with

parent Workbook, GUID, maximum and minimum revision Ids, maximum Sheet Id, innerxml,

user, date and time the sheet is edited and innerxml containing serialised markup of all child nodes

of the Sheet.

56

Figure 6.8: Extracted Sheet Revision History Metadata

Cell Change Revisions:

Figure 6.9 shows extracted Cell revision history metadata that consists of relationship Id with

parent Sheet, revision Id, Sheet Id, previous and current cell values, user, innerxml, date and time

the cell was revised and innerxml containing serialised markup of all child nodes of the cell.

Figure 6.9: Extracted Cell Revision History Metadata

57

Comment Revisions:

Figure 6.10 shows extracted comment revisions metadata. This has relationship Id with parent cell,

author, cell, Sheet Id, GUID, old and new lengths of the revision, user, date and time the revision

was done.

Figure 6.10: Extracted Comment Revisions Metadata

Row and Column Revisions:

Figure 6.11 shows extracted row and column revisions metadata consisting of relationship Id with

parent Sheet, revision Id, revision action, revision reference, Sheet Id, user, date and time the

revision was done.

Figure 6.11: Extracted Row and Column Revisions Metadata

Custom View:

Figure 6.12 shows extracted custom view metadata consisting of relationship Id, action performed,

GUID, user, date and time.

58

Figure 6.12: Extracted Custom View Metadata

Metadata Analysis Implementation

Analysis was performed on the extracted OOXML metadata, specifically revisions at Worksheet

and Cell levels of the spreadsheet document. This is based on relationship and revision identifiers

that relate information in ClsSpreadsheetSharedCellRevisionHistory class and all other revision

classes. The analysis output a chronological timeline of events right from the time the spreadsheet

document was created to the time analysis was being performed. The tool provides for the option

to analyse revisions done by all users or specific user. Figure 6.13 shows the metadata analysis

process.

Figure 6.13: Metadata Analysis

59

Figure 6.14 shows the analysis of two cell revisions that are related to

WorkbookRevisionHeaderPart by Relationship Id rId14. Both cells belong to the same Sheet 3

with different revision Ids and the revisions are carried out by the same user.

Figure 6.14: Unique Identifier rId14

Figure 6.15 shows the analysis of two cell revisions that are related to

WorkbookRevisionHeaderPart by Relationship Ids rId15 and rId16. Both cells belong to the same

Sheet 2 with different revision Ids and the revisions are carried out at different times by different

users.

60

Figure 6.15: Unique Identifiers rId15 and rId16

Figure 6.16 shows the analysis of a cell revision and a comment revision that are related to

WorkbookRevisionHeaderPart by relationship Ids rId23 and rId24 respectively. Both the cell and

comment belong to the same Sheet 1 and the revisions are carried out by the same user at different

times.

61

Figure 6.16: Unique Identifiers rId23 and rId24

Forensic Report Implementation

The forensic report shows a summary of package properties, document properties, comments,

users and other Parts of the spreadsheet document, together with analysed revisions at Sheet and

Cell levels. A user is able to input the case number and name of investigator that will appear in the

report. Figure 6.17 shows a generated forensic report that contains report title, case number, name

of investigator, file name, date of investigation and report contents. Figures D1-1, D1-2, D1-3 and

D1-4 in Appendix D1 show the various contents of the forensic report with regard to analysed

metadata.

62

Figure 6.17: Forensic Report

6.2. Testing

Manual Tests

Manual tests were carried out on all the modules of the application by different users. A manual

test plan was created that detailed the scope of the testing including functions to be tested (in scope)

and those not to be tested (out of scope), and datasets used to carry out the tests. Table 6.1 shows

in detail the manual test plan. Test Cases were the developed with step by step procedures for

metadata extraction, analysis and reporting with the testing results. The sample controlled datasets

were used to independently test that metadata extraction, analysis and reporting functionality

respond as expected. Users participating in the testing filled in prepared manual test cases with the

results of the testing. Each user was required to repeat testing each module at least three times

using the same datasets to ensure the results are repeatable. Table D2-1 in Appendix D1 shows

manual test cases template for metadata extraction, analysis and reporting used for the tests.

Table 6.1: Manual Test Plan

Item Value

Features/ Functions Tested (In Scope) Browsing and validation of OOXML spreadsheet

Extraction and display of metadata from
spreadsheets including write protected files. The
metadata to be extracted is related to Package
Properties, Document Properties, File Properties,
Users, Revision Header, Workbook, Worksheet,
Sheet Revision History and Cell Revision History

63

Item Value

Analysis of spreadsheet metadata and display of
analysed information

Generation and display of forensic report

Features/ Functions Not Tested (Out of Scope) None

Datasets Used Prepared controlled datasets of varying sizes
including write protected files

Testing Environment Locally hosted application

Figures 6.18 and 6.19 show the test use case results filled in by one of the users testing the tool.

From the actual results obtained, it is evident that all test cases succeeded and that the tool is

functioning properly as intended.

64

Figure 6.18: Test Use Case Results by User

65

Figure 6.19: Test Use Case Results by User

Functional Tests

Large spreadsheet dataset of about 12MB was used in the tool to test stability and responsiveness

of the tool. Results of this test show that the tool took approximately four seconds to extract

metadata from the large file; five seconds to analyse the metadata and six seconds to generate and

display the forensic report. The following steps were carried out as functional tests on the

developed tool using different datasets in the same testing environment.

The sheet “Sheet2” of spreadsheet document was renamed to “Godiah2” on 3rd April 2017 at

2:56PM. The tool was able to extract metadata of user and last modified date of the document as

shown in Figure 6.20. Figure 6.21 shows extracted metadata of the old sheet name as “Sheet2”,

new sheet name as “Godiah2”, Sheet Id as 3, revision Id as 20, relationship Id as rId25, user, date

and time.

66

Figure 6.20: Document Revision Metadata Extraction Testing

Figure 6.21: Sheet Name Revision Metadata Extraction Testing

A new Sheet was inserted and renamed to “New Sheet”. Figure 6.22 shows extracted metadata of

new inserted sheet including the user, date and time the sheet was inserted, Sheet name as “New

Sheet”, Sheet Id as 4, Sheet position as 3, revision Id as 21 and relationship Id as rId27.

Figure 6.22: Inserted Sheet Metadata Extraction Testing

A new comment with comment text “This is validation” was inserted in cell B3 in the second sheet.

Figure 6.23 shows extracted metadata of the comment including text as “This is validation” and

the cell as “A1” that the comment was inserted.

67

Figure 6.23: Inserted Comment Metadata Extraction Testing

The text “New Cell” was inserted into a blank cell A1 of sheet “New Sheet”. Figure 6.24 shows

extracted metadata for the new cell entry including the cell text as “New Cell”, user, date and

time of revision, Sheet Id as 4, relationship Id as rId28 and revision Id as 22.

Figure 6.24: Inserted Cell Text Metadata Extraction Testing

Cell text “New Cell” in Figure 6.24 was edited to “Edited Text”. Extracted metadata for this

revision as in Figure 6.25 shows old cell text as “New Cell”, new cell text as “Edited Text”, user,

date and time of revision, Sheet Id as 4 and revision Id as 23 and relationship Id as rId29.

68

Figure 6.25: Cell Text Revision Metadata Extraction Testing

The spreadsheet document was printed using “Microsoft to PDF Printer” and saved. Figure 6.26

shows extracted metadata showing when the document was last printed.

Figure 6.26: Last Printing Date Metadata Extration Testing

Spreadsheet file created using Microsoft Office Excel was opened and saved as a different file

using LibreOffice Calc. When metadata was extracted and analysed it was interesting to find that

the numbering of relationship and revision identifiers was restarted, but the sequence of revisions

was maintained as the analysis of the file saved using Microsoft Office Excel. This means the same

chronology of event timeline is obtained when this file is analysed. Figure 6.27 shows analysed

OOXML spreadsheet saved using LibreOffice Calc.

69

Figure 6.27: Analysed Metadata from Spreadsheet Created By LibreOffice Calc

Security Tests

Security tests performed were limited to the web application since it is a Proof of Concept

implementation and focus is on the application itself. The tests did not cover the hosting

infrastructure and network since these are dynamic depending on where the application is hosted.

The web application was deployed on local IIS web server in Windows 10 machine with IP address

192.168.1.11 on port 8071. Cyborg Hawk 1.1 was installed as a virtual machine within the

Windows machine with IP address 10.0.2.15 on interface eth0. Figures 6.28 and 6.29 show the IP

addresses of the two machines.

70

Figure 6.28: Windows 10 Machine IP Address

Figure 6.29: Cyborg Hawk 1.1 IP Address

It was confirmed that the web application could be accessed from Cyborg Hawk as shown in Figure

6.30.

71

Figure 6.30: Application Accessed from Cyborg Hawk Virtual Machine

Vulnerability assessment was carried out using Vega 1.0 installed on the Windows 10 machine. A

number of vulnerabilities were detected in the web application as shown in Figure 6.31.

72

Figure 6.31: Web Application Vulnerabilities

These vulnerabilities are categorised and summarised below.

 Medium (2):

o Local File System Paths Found. This allows a full URL of files to be exposed to clients.

 Low (2):

o ASP/ASPX Error Detected. Possible verbose error messages can be exposed to remote

clients hence giving an attacker an idea of the web server and application.

The above vulnerabilities were resolved by the following:

 Editing the source code to canonicalize the file paths to solve the page differential vulnerability

and make sure absolute URLs for file paths are not sent to clients;

 Editing Web.config file to disable error messages for remote users by setting mode of

customErrors flag to “RemoteOnly”.

73

Vulnerability assessment was again performed on the web application and the results show no

more vulnerabilities existing in the web application as shown in Figure 6.32. There was therefore

no need to continue with penetration testing in the absence of vulnerabilities.

Figure 6.32: Web Application Vulnerabilities after Resolution

Quality Assurance

Results of the tests of the tool were compared against functional specifications to determine if the

tool met the specifications and requirements. Below is a summary of the functional specifications

and the tests results that correspond to these specifications.

Functionality:

 The tool accesses spreadsheet files in read only mode so as not to modify the files. This makes

sure forensic evidence is preserved in the file without modification;

 The tool extracts metadata from OOXML spreadsheets including write protected files so long

as the metadata exists in the files. This metadata include package, document, revision header

and extended file properties; users, Worksheets, Worksheets comments and custom views. It

is also able to extract metadata related to revisions in the Sheet and Cell levels of a spreadsheet

document including Cell, Worksheet, comments, columns, rows, format, moved Sheets

74

revisions. This is proven in the implementation as shown in Figures 6.2, 6.3, 6.4, 6.5, 6.6, 6.7,

6.8, 6.9, 6.10, 6.11 and 6.12;

 The tool is able to analyse OOXML spreadsheet metadata and output the results in a time series

right from the time the file was created. This can be done for all users or for a selected user as

demonstrated in the implementation in Figures 6.14, 6.15 and 6.16; and

 A forensic report consisting of the most useful metadata information is output in a readable

format as shown in Figure 6.16 and Figures D1-1, D1-2, D1-3 and D1-4 in Appendix D1.

Usability:

 The tool is fully web based and is hosted remotely. The clients who access the system via URL

do not have to install any additional software, library or plugin; and

 It has a user-friendly interface that can be operated by low skilled users since all application

business processes and logic are hidden from the user.

Reliability:

 Currently a version of the system is hosted at Microsoft Azure cloud on trial basis. However,

it could be hosted in any cloud that supports Microsoft IIS and can be accessed on demand.

Performance:

 Metadata extraction, analysis and reporting takes approximately 7 seconds each when files

more than 12 MB are used.

Supportability:

 The application is developed as a Proof of Concept implementation and a lot of room has been

left for future development to commercial version.

Security:

 OWASP secure coding standard is used to implement the tool. The locally hosted version of

the application is secured using self-signed server certificate and it can be accessed via HTTPS;

and

 Security tests performed on the application show very few vulnerabilities mainly exposure of

full file URL to clients as in Figure 6.31. These vulnerabilities were addressed and the web

application is secure as shown in vulnerability scan in Figure 6.32.

75

6.3. Validation

Validation of the Tool

Document Checks:

Functional specifications in Table 5.1; technical specifications in Table 5.2; and the design

consisting of Use Cases in Figure 5.1 and Tables 5.3, 5.4, 5.5, 5.6, Class diagrams in Figures 5.2

and 5.3, and wireframes in Figures 5.4, 5.5, 5.6 and 5.7 and System Architecture in Figure 5.8

were scrutinized to ascertain that the specifications were designed correctly and that design is

correct and implements the specifications as expected. Functional and technical specifications

cover all required functionality of the tool. The Use Cases cover the required flows and functional

procedures of the system. System architecture, Class Diagrams and wireframes cover the design

of the tool so as to implement the functional specifications.

Source Code Review:

The Code Analysis feature of Microsoft Visual Studio was used to analyse source code for any

incorrect implementation. Figure 6.33 shows the Code Analysis feature.

Figure 6.33: Code Analysis Feature of Microsoft Visual Studio

Figure 6.34 shows the results of this code analysis. The results show two warnings and no errors,

which is evidence that the source code implementation is correct.

76

Figure 6.34: Code Analysis Results

Functional Completeness:

Tests were carried out on the tool using spreadsheets datasets of varied sizes and nature. These

datasets also included write protected files. A large dataset of approximately 12MB was used to

validate how the tool responds and how long it takes to extract and analyse metadata. The tool

took about four seconds to extract metadata and five seconds to analyse metadata and 7 seconds

to generate and display a forensic report. When write protected spreadsheet files were used, the

tool was able to extract all metadata as summarised in Table 1A of Appendix A, similar to

unprotected files.

Validation of Accuracy and Correctness of Results

Validation Plan:

A validation plan was developed elaborating the features/ functions and corresponding results to

validate and the controlled datasets to be used. The results obtained by the tool were compared

against expected results registered when manual changes are made to the files. Table 6.2

summarises the validation plan.

77

Table 6.2: Validation Plan

Item Procedure and Expected Outcome

Features/ Functions Validated Extraction and display of metadata from
spreadsheets including write protected files.
Changes and revisions are made to the
spreadsheet datasets for Package Properties,
Document Properties, File Properties, Users,
Revision Header, Workbook, Worksheet, Sheet
Revisions and Cell Revisions. It is expected that
the tool is able to extract metadata related to these
manual changes

Analysis of spreadsheet metadata and display of
analysed information. Relationship and revision
identifiers should properly be linked together

Generation and display of forensic report.
Forensic report should consist of the most
important analysed metadata information
displayed in a readable manner.

Features/ Functions Not Validated None

Datasets Used Prepared controlled datasets of varying sizes
including write protected files

Validation Environment Locally hosted application

How many times a procedure is repeated Three times

Validation of Results:

Results of the manual and functional tests were used to validate the accuracy and correctness of

the results of the tool. Figures 6.18 and 6.19 show the results of guided end user testing that

validates that the tool can extract and analyse metadata from OOXML spreadsheets. The tool can

specifically extract metadata on document properties, sheet name changes, comments, cell

revisions and print information from OOXML spreadsheets as shown in Figures 6.20, 6.21, 6.22,

6.23, 6.24, 6.25 and 6.26.

78

7. Discussion of Results

This chapter discusses the results of this research which include testing of existing forensic tools

supporting OOXML spreadsheets, spreadsheet metadata extraction and analysis using the

developed forensic tool, testing and validation. This research found that existing forensic tools

supporting OOXML are still limited in metadata extraction, analysis and reporting on spreadsheet

documents. The Proof of Concept (PoC) implementation of an improved forensic tool was able to

address most of the limitations of the existing forensic tools and is of added value to forensic

investigations of OOXML spreadsheets. This research also confirmed an earlier finding in the

research by Didriksen (2014) that an OOXML spreadsheet created in Microsoft Office Excel,

edited and saved in LibreOffice Calc will have its relationship and revision identifiers stripped by

LibreOffice Calc and the numbering of these identifiers will be restarted.

7.1. Limitations of Existing Forensic Tools

Metadata exists in OOXML spreadsheets that is very useful for forensic investigators. Previous

research however has dwelt majorly in metadata extraction from Office documents thus leaving a

gap in forensic analysis of spreadsheets. Most of this metadata can only exist in shared

spreadsheets. This means if a spreadsheet is created and never shared then only package, document

and extended file properties can be extracted since all other types of metadata is not stored in non-

shared spreadsheets.

Existing tools supporting OOXML were tested using controlled OOXML datasets of varying size

and nature, including write protected files. It was found that most of these tools are not capable of

extracting and analysing important metadata in spreadsheets, thus confirming the hypothesis that

existing forensic tools are limited in adequately extracting and analysing all metadata in OOXML

spreadsheets. They are limited only in extracting document properties which in many cases is not

sufficient metadata to support forensic investigations since forensic investigators would like to get

more information such as all revisions that have taken place in the spreadsheets. A few of the tested

tools such as Metagoofil, Libextrator and OfficeDisector were capable of extracting metadata

related to individual package parts such as comments, Workbook, Worksheet and relationships

between different package parts and revisions done on the parts. However, their output is text

format that is difficult to analyse. For example, Libextrator outputs a plain text format report that

displays the corresponding XML files without giving much details on the content of these files.

79

Another limitation of these tools is that they are command line based. OfficeDissector requires a

forensic investigator to have good Python command line skills and an understanding of the tool

library itself in order to extract meaningful metadata. Most forensic investigators may not have

these skills thus posing a challenge to the productive use of the tool. In addition, all the tools tested

require installation in a particular OS and there may not be a version of the tool corresponding to

a different OS. This limits a forensic investigator in that the investigator may not use a tool simply

because the Operating System requirement limitation. For instance, an investigator running

Windows machine cannot install a Linux based tool. The results further reveal that write protection

using passwords of OOXML spreadsheets does not prevent metadata extraction and analysis since

the tools were able to extract metadata from write protected files, thus negating the hypothesis that

it is not possible to extract metadata from write protected OOXML spreadsheets.

7.2. Proof of Concept Implementation of Forensic Tool

A Proof of Concept implementation of a new OOXML forensic tool was developed so as to address

the limitations identified in the testing of existing forensic tools supporting OOXML. This new

tool can extract and analyse a lot more metadata than the tested existing tools, including package

properties, document properties, extended file properties, revision header properties, users who

have edited the document, Worksheets, Worksheet comments, Sheet revisions, comment revisions

row and column revisions, cell revisions and custom view. This brings lots of advantage to an

investigator in that a lot more evidence can be unearthed from a shared spreadsheet document.

Analysis of extracted metadata is made easier by using relationship and revision identifiers present

in OOXML spreadsheets. Data in very component of a spreadsheet including packages and parts

are related to each other by relationship identifiers. For example, a cell is related to the parent

Sheet by a relationship identifier and metadata for every revision done on the cell is also referenced

in the parent Sheet by the relationship identifier. All revisions done on the spreadsheet have unique

revision identifiers. The developed tool correlates relationship and revision identifiers sequentially

so as to perform analysis on the chronology of events by different users as they took place in a

spreadsheet.

7.3. Testing and Validation

Testing and validation of the Proof of Concept implementation reveals a functional prototype that

is able to extract, analyse and present metadata in OOXML spreadsheets. Manual tests done by

80

different users show that the tool is able to extract and analyse metadata as expected. Functional

tests reveal that even with large spreadsheet datasets of 12MB the tool running on localhost is able

to extract and analyse metadata in approximately 6 seconds, which is fast enough for this purpose.

In addition, the tests also prove that the tool can extract and analyse metadata from write protected

files. Security tests performed reveal two medium level vulnerabilities related to local file system

that might expose full file URL to remote clients, and two low level ASP.NET vulnerabilities

related to verbose error output. These vulnerabilities were fixed and further vulnerability scan did

not reveal any vulnerability. Quality assurance carried out on functionality, usability, reliability,

performance, supportability and security reveal that the tool performs according the functional

specifications and requirements. Validation of the tool includes document checks for documents

such as Specifications, Use Cases, Class Diagrams and wireframes, source code review and

functional completeness. Specifications were examined and found to be in line with end user

requirements and that implementation of the specifications would achieve what the tool was

intended to do. Use Cases, Class Diagrams and wireframes were examined and found to be in sync

and correct according to the specifications, while source code review did not find any errors or

wrong implementation in the source code. Validation of accuracy of results was also done and the

results showed that the tool extracts and analyses metadata accurately and outputs a forensic report.

81

8. Conclusions, Recommendations and Future Work

8.1. Conclusions

Shared OOXML spreadsheets have a lot of metadata that can be very useful to forensic

investigators including package properties, document properties, extended file properties,

metadata related to Parts of the spreadsheet document and revisions. There are many existing

forensic tools that support OOXML, but very few of them can extract meaningful metadata that

can support a forensic investigation. These tools are not able to analyse metadata and present it in

a user-friendly manner.

The Proof of Concept implementation of an improved forensic tool has proved that is possible to

extract and analyse lots of metadata in OOXML spreadsheets as it addresses the limitations of the

existing forensic tool. The tool is implemented in accordance with specifications of functionality,

usability, reliability, performance, supportability and security. In addition, from results of the

testing and validation of the tool it can be concluded that the application performs as is expected

and is secure.

8.2. Recommendations

This research has come up with a Proof of Concept implementation of OOXML forensic tool that

is capable of extracting, analysing and reporting metadata in OOXML spreadsheets. It can be

useful for forensic investigators who wish to extract and analyse metadata in OOXML

spreadsheets without the need to install any software, thus saving them a great deal of time and

resources irrespective of their level of skill. This tool can also be used by auditors who may wish

to track unauthorised changes to spreadsheets made by different users and hence be able to

discover potential losses especially to financial institutions.

8.3. Future Work

This research has identified recommendations that can be incorporated in additional research in

metadata extraction and analysis of OOXML spreadsheets in the context of digital forensics.

Developing a commercial version of the Proof of Concept implementation

This research focussed on developing a Proof of Concept implementation of a forensic tool that

can extract and analyse metadata from OOXML spreadsheets. Future research should use the

82

findings of this research to develop a commercial version of the forensic tool. The commercial

version should have a more thorough testing and validation as the scope of this research was

limited to implementing the first working prototype of the forensic tool.

Extracting and analysing all possible metadata in OOXML spreadsheets

Not all metadata existing in OOXML spreadsheets can be extracted using the Proof of Concept

implementation of forensic tool. This research concentrated on metadata as summarised in Table

1A of Appendix A. Future work should focus on improving the tool to be able to extract and

analyse all metadata that can possibly exist in OOXML spreadsheets including imbedded objects

such as images.

Investigating stripping of relationship and revision identifiers in LibreOffice Calc

Validation of accuracy of results revealed that revisions made on OOXML spreadsheets created

by Microsoft Office Excel using LibreOffice Calc have the numbering of relationship and revision

identifiers stripped and restarted, although the chronological order of this numbering is the same.

Due to limited time, this research could not find out why this is the case. Future research should

try to investigate why LibreOffice strips unique identifiers in OOXML spreadsheets when a file is

edited and saved in LibreOffice Calc.

83

References

AccessData. (2017). Forensic Toolkit (Version 5.5) [Windows Software]. AccessData. Retrieved

from http://accessdata.com/solutions/digital-forensics/forensic-toolkit-

ftk?/solutions/digital-forensics/ftk

Aghire, I. (2012, June 10). Microsoft’s Office Has over One Billion Users. Retrieved from

http://news.softpedia.com/news/Microsoft-s-Office-Has-Over-One-Billion-Users-

280426.shtml

Ambler, S. (2014a). Examining the Agile Manifesto. Ambysoft Inc. Retrieved from

http://www.ambysoft.com/essays/agileManifesto.html

Ambler, S. (2014b). UML 2 Class Diagrams: An Agile Introduction. Ambysoft Inc. Retrieved

from http://www.agilemodeling.com/artifacts/classDiagram.htm

Bajpai, P. (2014, November 30). FOCA Metadata Analysis Tool [Security Journal]. Retrieved 19

December 2016, from http://lifeofpentester.blogspot.com/2014/11/foca-metadata-

analysis-tool.html

Bechtsoudis, A. (2011, May 2). Gathering & Analysing Metadata Information. Gathering &

Analyzing Metadata Information. Retrieved 2 June 2017, from

http://bechtsoudis.com/archive/2011/05/02/gathering-analyzing-metadata-

information/index.html

Brunty, J. (2011). Validation of Forensic Tools and Software: A Quick Guide for the Digital

Forensic Examiner. Retrieved from

http://www.forensicmag.com/article/2011/03/validation-forensic-tools-and-software-

quick-guide-digital-forensic-examiner

Castiglione, A., D’Alessio, B., De Santis, A., & Palmieri, F. (2012). New Steganographic

Techniques for the OOXML File Format. Retrieved from

http://dl.ifip.org/db/conf/IEEEares/murpbes2011/CastiglioneDSP11.pdf

Chema, A., Rando, E., Oca, F., & Guzman, E. (2008). Disclosing Private Information from

Metadata, hidden info and lost data. Retrieved from

84

https://www.blackhat.com/presentations/bh-europe-09/Alonso_Rando/Blackhat-Europe-

09-Alonso-Rando-Fingerprinting-networks-metadata-whitepaper.pdf

Dennis, A., Wixom, B., & Roth, R. (2012). System Analysis and Design (5th ed.). United States

of America: John Wiley & Sons, Inc. Retrieved from

http://www.saigontech.edu.vn/faculty/huynq/SAD/Systems_Analysis_Design_UML_5th

%20ed.pdf

Didriksen, E. (2014). Forensic Analysis of OOXML Documents (Master’s Thesis). Department of

Computer Science and Media Technology, Gjøvik University College, Norway.

Retrieved from https://brage.bibsys.no/xmlui/bitstream/id/211829/EDidriksen.pdf

Document Foundation Wiki. (2016, September 9). The Document Foundation, LibreOffice and

OOXML. In Wiki. Document Foundation. Retrieved from

https://wiki.documentfoundation.org/LibreOffice_OOXML

ECMA International. (2006a, June). C # Language Specification. ECMA International. Retrieved

from www.ecma-international.org/publications/files/ECMA-ST/Ecma-334.pdf

ECMA International. (2006b, December). Office Open XML File Formats (Standard ECMA-

376). ECMA International. Retrieved from http://web.mit.edu/~stevenj/www/ECMA-

376-new-merged.pdf

Eleven Paths. (2015). FOCA (Fingerprinting Organizations with Collected Archives) [Computer

Software]. English. Retrieved from

https://www.elevenpaths.com/labstools/foca/index.html

Eoghan, C. (2011). Digital Evidence and Computer Crime - Forensic Science, Computers and

the Internet (Third Edition). Academic Press. Retrieved from

http://booksite.elsevier.com/samplechapters/9780123742681/Front_Matter.pdf

Free Software Foundation. (2016). GNU Libextractor (Version 1.1) [Linux Software]. Retrieved

from https://www.gnu.org/software/libextractor/

Garfinkel, S. (2009). New XML-based Files Implications for Forensics. ResearchGate.

https://doi.org/10.1109/MSP.2009.44

85

GNU. (2008, November). The GNU libextractor Reference Manual [Reference Manual].

Retrieved 6 February 2017, from

https://www.gnu.org/software/libextractor/manual/libextractor.html

Grier Forensics. (2015). OfficeDissector (Version 1.0) [Python Toolkit]. Grier Forensics.

Retrieved from https://www.officedissector.com

Gudjonsson, K. (2009, October 7). Office 2007 Metadata [Blog]. Retrieved 11 November 2016,

from https://digital-forensics.sans.org/blog/2009/07/10/office-2007-metadata/

ISO/IEC. (2012, 2016). ISO/IEC 29500-1:2016, ISO/IEC 29500-2:2012, ISO/IEC 29500-3:2016,

ISO/IEC 29500-2:2016 - Office Open XML File Formats [ISO/IEC Standards]. Retrieved

26 September 2016, from

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

Jacobson, I., Spence, I., & Bittner, K. (2011). Use Case 2.0. Retrieved from

https://www.ivarjacobson.com/sites/default/files/field_iji_file/article/use-

case_2_0_jan11.pdf

jQuery Foundation. (2017). JQuery [Documentation]. Retrieved 10 February 2017, from

https://jquery.com/

Kabay, M. E. (2002). Salami Fraud. Norwich University. Retrieved from

http://www.mekabay.com/nwss/116p--salami_fraud.pdf

Kumar, M. (2012, April 15). Forensic FOCA - Power of Metadata in digital forensics. The

Hacker News. Retrieved 2 June 2017, from http://thehackernews.com/2012/04/forensic-

foca-power-of-metadata-in.html

Langweg, H. (2012). An OOXML File Analysis of the Terrorist Manual Related to the 22/7

Attacks. Retrieved from http://dl.ifip.org/db/conf/cms/cms2012/Langweg12.pdf).

LibreOffice. (2016a). What is LibreOffice [Documentation]. Retrieved 3 December 2016, from

https://www.libreoffice.org/discover/libreoffice/

LibreOffice. (2016b). What is OpenDocument? [Documentation]. Retrieved 3 December 2016,

from https://www.libreoffice.org/discover/what-is-opendocument/

86

LibreOffice, B. (2014, June). Does Libre Office fully support microsoft .xlsx and .docx file

formats? [LibreOffice Blog]. Retrieved 12 February 2016, from

https://ask.libreoffice.org/en/question/36148/does-libre-office-fully-support-microsoft-

xlsx-and-docx-file-formats/

Microsoft. (2006, May). Introducing the Office (2007) Open XML File Formats

[Documentation]. Retrieved 2 February 2017, from https://msdn.microsoft.com/en-

us/library/aa338205(v=office.12).aspx

Microsoft. (2011, April 7). Office Open XML, ECMA-376, and ISO/IEC 29500. Retrieved 12

February 2026, from https://msdn.microsoft.com/en-

us/library/office/gg607163.aspx#IIOXML_H2

Microsoft. (2017a). IIS Overview [Documentation]. Retrieved 10 February 2017, from

https://www.iis.net/overview

Microsoft. (2017b). Microsoft Azure [ASP.NET Cloud Hosting]. English, Microsoft. Retrieved

from https://azure.microsoft.com/en-us/?b=17.06

Microsoft. (2017c). Open XML SDK 2.5 for Microsoft Office [Documentation]. Retrieved 10

February 2017, from https://www.microsoft.com/en-us/download/details.aspx?id=30425

Microsoft, C. (2017d). DocumentFormat.OpenXml.Spreadsheet Class Library Reference [Open

XML SDK 2.5 Class Library Reference]. Retrieved 26 September 2016, from

https://msdn.microsoft.com/en-

us/library/office/documentformat.openxml.spreadsheet.aspx

Microsoft, C. (2017e). Open XML Formats and file name extensions [Article]. Retrieved 3

December 2016, from https://support.office.com/en-us/article/Open-XML-Formats-and-

file-name-extensions-5200d93c-3449-4380-8e11-31ef14555b18

Muhamad, A. R. (2011, March). DATA HIDING AND DETECTION IN OFFICE OPEN XML

(OOXML) DOCUMENTS (Master’s Thesis). University of Ontario Institute of

Technology, Oshawa, Ontario, Canada. Retrieved from https://ir.library.dc-

uoit.ca/bitstream/10155/146/1/Raffay_Muhammad.pdf

Neudesic, LLC. (2015, January 27). Open Source ASP.NET MVC, Web API, and Web Pages.

Retrieved 4 June 2017, from https://www.asp.net/open-source

87

NISO. (2004). Understanding Metadata. In Understanding Metadata. Bethesda, MD 20814

USA: National Information Standards Press. Retrieved from

http://www.niso.org/publications/press/UnderstandingMetadata.pdf

NIST. (2015, August). Computer Forensics Tool Testing (CFTT) Project Web Site [Computer

Forensics Tool Testing Program]. Retrieved 26 February 2017, from

http://www.cftt.nist.gov/

OWASP. (2016, March). OWASP Developer Guide [Software Developer Guide]. Retrieved 23

March 2017, from https://www.owasp.org/index.php/OWASP_Guide_Project

OWASP. (2017, February). OWASP Testing Guide [Penetration Testing Guide]. Retrieved 23

March 2017, from https://www.owasp.org/index.php/OWASP_Testing_Project

Pallmer, G. (2001). A Road Map for Digital Forensic Research - First Digital Forensic Research

Workshop. In The Digital Forensic Research Conference 2001, USA. USA: AFRL/IFGB,

Utica, New York. Retrieved from https://www.dfrws.org/sites/default/files/session-

files/a_road_map_for_digital_forensic_research.pdf

Popik, B. (2010, October 14). Salami Slicing (Salami Technique; Salami Attack). Retrieved from

http://www.barrypopik.com/index.php/new_york_city/entry/salami_slicing_salami_techn

ique_salami_attack

Python Software Foundation. (2016). Python-OOXML 0.13 (Version 0.13) [Python Library].

Python Software Foundation. Retrieved from https://pypi.python.org/pypi/Python-

OOXML

Schicht, J. (2011). Advanced OOXML (zip) carving/ recovery (Version 4) [Linux Software].

Retrieved from http://www.forensicfocus.com/Forums/viewtopic/t=7814/

WHATWG Community. (2017, June 2). HTML Standard. Retrieved 4 June 2017, from

https://html.spec.whatwg.org/multipage/interaction.html#editing-2

Wiley. (2016). What is JavaScript. Wiley. Retrieved from

http://media.wiley.com/product_data/excerpt/88/07645790/0764579088.pdf

88

Zhangjie, F., Xingming, S., Yuling, L., & Li, B. (2011). Forensic investigation of OOXML

format documents. Elsevier Ltd. Retrieved from

http://fulltext.study/preview/pdf/457873.pdf

89

Appendix A Metadata Present in OOXML Spreadsheets

The OOXML standard has a lot of metadata can be possibly present in an OOXML spreadsheet

as shown in Table A1.

Table A1 OOXML Spreadsheet Metadata (Microsoft, 2017d)

Property/ Description Metadata

Package Properties Creator, Title, Subject, Category, Content Type, Content Status,
Identifier, Description, Revision, Version, Created, Modified, Last
Printed

Document Properties Auto Save, Compression Option, Document Type, File Open Access

Document Header Properties Has Disk Revisions, Maintains Revision History, Last GIUD,
Revision Id, Track Revisions, Shared

Extended File Properties Application, Application Version, Company, Digital Signature,
Document Security, Heading Pairs, Hyperlink List, Hyperlinks
Changed, Shared Document

Users Date Time, GIUD, User Id, Name

Worksheet Comments GIUD, Author Id, Reference, Comment Text

Worksheet Revision Header Date Time, GIUD, Relationship Id, Maximum Revision Id, Maximum
Sheet Id, Minimum Revision Id, Sheet Id Map Count, Username

Workbook Revision Log Revision Id, Sheet Id, Revision Action, Revision Reference

Cell Revisions Revision Id, Sheet Id, Style Revision, Old Cell, New Cell, Extension
List, Format, Has Phonetic Text, Number Format Id, Old Differential
Format, Old Formatting, Old Phonetic Text, Row Column Formatting
Affected

Comment Revisions Sheet Id, Author, Cell, GIUD, Old Length, New Length, Action

Inserted Sheets Revision Id, Sheet Id, Sheet Position, Name

Sheet Revisions Revision Id, Sheet Id, Extension List, New Name, Old Name

Moved Cells Revision Id, Sheet Id, Source, Source Sheet Id, Destination

Format Revisions Sheet Id, Length, Row or Column Affected

Revision Conflicts Revision Id, Sheet Id, Inner Text

Relationships Relationship metadata between parts

Table A2 SpreadsheetML Components (ECMA International, 2006b)

Part Relationship Target of Root Element

Calculation Chain Workbook calcChain

Chartsheet Workbook chartsheet

Comments Chartsheet, Dialogsheet, Worksheet comments

Connections Workbook connections

90

Part Relationship Target of Root Element

Custom Property Workbook Not applicable

Custom XML Mappings Workbook mapInfo

Dialogsheet Workbook dialogSheet

Drawings Chartsheet, Worksheet wsDr

External Workbook References Workbook externalReference

Metadata Workbook metadata

Pivot Table Worksheet pivotTableDefinition

Pivot Table Cache Definition Pivot Table, Workbook pivotCacheDefinition

Pivot Table Cache Records Pivot Table Cache Definition pivotCacheRecords

Query Table Worksheet queryTable

Shared String Table Workbook sst

Shared Workbook Revision Headers Workbook headers

Shared Workbook Revision Log Shared Workbook Revision
Headers

revisions

Shared Workbook User Data Workbook users

Single Cell Table Definitions Dialogsheet, Worksheet singleCells

Styles Workbook styleSheet

Table Definition Dialogsheet, Worksheet table

Volatile Dependencies Workbook volTypes

Workbook SpreadsheetML package workbook

Worksheet Workbook worksheet

91

Appendix B Minimum Parts and Relationships Requirements for a

Workbook

Appendix B1 Content Types for Relationship Parts, Workbook Part and Sheet Part

The content types for relationship parts, the Workbook part, and at least one Sheet part must be

defined (physically located at /[Content_Types].xml in the package) as shown in Figure B1

(ECMA International, 2006b, p. 60).

Figure B1-1: Content_Types.xml Representation (ECMA International, 2006b)

Appendix B2 Package-Level Relationship to Workbook Part

The required package-level relationship to the Workbook part must be defined (physically located

at /_rels/.rels in the package) as shown in Figure B2 (ECMA International, 2006b, p. 60).

Figure B2-1: Workbook Part Package-Level Relationship (ECMA International, 2006b)

Appendix B3 Minimum Content for Workbook

The minimum content for the Workbook part must be defined (physically located at

/workbook.xml in the package) as shown in Figure B3 (ECMA International, 2006b, p. 61).

92

Figure B3-1: Minimum Content for Workbook Part (ECMA International, 2006b)

Appendix B4 Workbook-Level Relationship to a Single Sheet

The required workbook-level relationship to the single Sheet part must be defined, (physically

located at /_rels/workbook.xml.rels in the package) as shown in Figure B4 (ECMA International,

2006b, p. 61).

Figure B4-1: Workbook-Level Relationship to a Single Sheet Part (ECMA International, 2006b)

Appendix B5 Minimum Content for a Single Sheet Part

The minimum content for a single Sheet part must be defined (physically located at /sheet1.xml in

the package) as shown in Figure B5 (ECMA International, 2006b, p. 61).

Figure B5-1: Minimum Content for a Single Sheet Part (ECMA International, 2006b)

93

Appendix C Testing of Existing Forensic Tools

Appendix C1 Extracting Metadata from Workbook.xml Using Metagoofil 2.2

Figure C0.1-1: Metadata Extraction Results in Workbook.xml

Appendix C2 Extracting Metadata from Workbook.xml.rels Using Metagoofil 2.2

Figure C2-1: Metadata Extraction Results in Workbook.xml.rels

94

Appendix C3 Extracting Metadata from Worksheet.xml Using Metagoofil 2.2

Figure C3-1: Metadata Extraction Results in Worksheet.xml

Appendix C4 Extracting Metadata from Worksheet.xml.rels Using Metagoofil 2.2

Figure C4-1: Metadata Extraction Results in Worksheet.xml.rels

95

Appendix D System Implementation, Testing and Validation

Appendix D1 Implementation of Forensic Report

Figure D1-1: Package Properties Part of Forensic Report

96

Figure D1-2: Document Properties Part of Forensic Report

Figure D1-3: Users Part of Forensic Report

97

Figure D1-4: Cell Revisions Part of Forensic Report

Appendix D2 Manual Test Cases Template

Table D2-1 Manual Test Cases Template

Test
Case
ID

Test Case and
Procedure

Expected Results Actual Results Pass/
Fail

1 Test Name: Metadata
Extraction
Test Procedure:
 Click “Extract

Metadata” link
 Browser OOXML

file by clicking on
“Browser” button
and select the file

 Click “Extract”
button

 Metadata extraction
page is displayed

 Selected file name is
displayed in “Selected
File” text box

 Metadata is displayed
in tabular format
segregated into
properties and
revisions

 If an invalid file is
selected an error
message is displayed
requesting user to
select correct file

98

Test
Case
ID

Test Case and
Procedure

Expected Results Actual Results Pass/
Fail

2 Test Name: Metadata
Analysis
Test Procedure:
 Click “Analyse

Metadata” link
 Browser OOXML

file by clicking on
“Browse” button and
select the file

 Click “Analyse”
button

 Optionally select a
user from “User”
dropdown menu

 Metadata analysis
page is displayed

 Selected file name is
displayed in “Selected
File” text box

 Analysed metadata
information is
displayed in a time
series manner by
default for all users

 If an invalid file is
selected an error
message is displayed
requesting user to
select correct file

 If a user is selected,
only analysed
metadata specific to
that user is displayed

3 Test Name: Forensic
Report
Test Procedure:
 Click “Forensic

Report” link
 Input case number

and name of
investigator

 Browser OOXML
file by clicking on
“Browse” button and
select the file

 Click “Report”
button

 Navigate pages of
the report by
clicking on
navigation buttons
on the report header

 Save report in
Excel/PDF/Word
format by clicking
on “Save” button on
the report header

 Forensic report page is
displayed

 Selected file is
displayed in “Selected
File” text box

 Forensic report is
displayed with header
containing title, file
name, case number,
name of investigator,
report date and
metadata information

 Different pages of the
report are shown
depending on which
navigation button is
clicked

 Report is saved in
Excel/PDF/Word
format

Tested By: Date Tested:

	1.pdf
	2.pdf
	3.pdf
	4-112.pdf

