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ABSTRACT

Locating products or services online that meet users” needs is increasingly difficult
due to the large pool of choices to consider before arriving at the desired one. A user
may spend a considerable amount of time exploring numerous online resources to
locate items that fit his requirements. Furthermore, users may not always express
their preferences in a manner that easily matches them to items that could meet
them. Searching for items online has been done mainly through database queries
that return a list of the most suitable items. Recommender systems technology can be
applied to ease the task of locating desired items online. This study proposes a
recommender system that enables users to carry out a preference-based search on
rental properties and enables them to refine those preferences using
example-critiquing in case they are not satisfied with initial search results. This
recommendation approach has been shown to provide more accurate search results.
This research adopted the Object-Oriented Systems Analysis and Design (OOAD)
approach to the development of the system. The system was developed as a Web
application using the Ruby on Rails framework. Furthermore, the system was tested

to ascertain that it performed as designed.
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OPERATIONAL DEFINITION OF TERMS

A recommender system

Preference-based search:

is any system that produces individualised
recommendations as output or has the effect of guiding
the user in a personalised way to interesting or useful

objects in a large space for possible options (Burke, 2002).

Given a collection O={o,, ..., 0,} of n options,
preference-based search (PBS) is an interactive process
that helps identify the most preferred option, called the
target option o,, based on a set of preferences that they

have stated on the attributes of the target (Viappiani,
Faltings, & Pu, 2006).

10
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CHAPTER 1: INTRODUCTION

1.1. Background to the study

Recommender systems are software tools and techniques providing suggestions for
items to be of use to a user, (Ricci, Rokach, Shapira, & Kantor, 2011). Users rely on
these suggestions to make various decisions include what movies to watch, what
news articles to read, what apartment to rent, etc. These systems have proved to be
useful in helping users deal with overwhelming amount of information while they
search for various items online. This study will result in the development of a

recommender system for rental properties for the city of Nairobi.

As online product catalogues evolved to include high-value products such as
apartments and computers, the task of locating the desired choice among a large set
of options is becoming increasingly intimidating for the average customer (Chen &
Pu, 2012). Consequently, many customers may experience difficulties finding what
they want. Search engines can be very useful in determining what users want;
however many people find it hard to match their preferences to a search query that
can produce results likely to satisfy their requirements, (Viappiani & Faltings, 2006;
Viappiani, Faltings, & Pu, 2006).

Recommender systems can be applied to address the problem of mapping user
preferences to objects that are likely to fit them (Viappiani et al.,, 2006). A
recommender system is any system that produces individualised recommendations
as output or has the effect of guiding the user in a personalised way to interesting or

useful objects in a large space for possible options (Burke, 2002).

Some of the business applications of recommender systems technology include News
Dude for news articles, Netflix for movies and TV shows, Amazon for a variety of

products, and DubLet for rental properties as proposed by Hurley and Wilson (2001).

The majority of Kenyan urban dwellers live in rented properties; specifically, only 18

13



percent of urban households own their home (The World Bank, 2011). Three factors
have contributed to the rising cost of building a house thus putting homeownership
out of the reach of many urban dwellers. They include high urban population
estimated at 11.36 million in 2016 (The World Bank, 2016), the purchasing power of a
growing middle class (Kenya Bankers Association, 2015), and the demand for houses

that outweighs its supply by at least 156, 000 units annually (The World Bank, 2011).

The residential and commercial rental property sector has become a major industry
in Kenya. In 2014, the real estate market was estimated at USD 4.5 billion (The
Standard, 2014). The Hass Property Index estimated that 75% of clients who
purchased apartments in 2014 did so to rent them (HassConsult Limited, 2014). With
the increased access to Internet and the ubiquity of smartphones, many people
search for rental properties online. However, locating rental properties online
remains a challenge in Kenya due to a wide range of options to consider and
numerous websites to visit. Applying recommender systems technology in this
sector has the potential of making the search for rental properties easier,

user-friendly and personalised.

1.2. Problem definition

Searching for rental properties online in Nairobi is a challenging task. Hurley and
Wilson (2001) note that a prospective tenant may spend hours or days exploring
numerous disparate sources of online property advertising to locate suitable
candidates. Furthermore, searching real estate properties online does not benefit
homebuyers in terms of time, flexibility, and intuitive results (Yuan, Lee, Kim, &
Kim, 2013). This led to the research problem addressed in this study, namely that
people may not find what they are looking for online, and that the available tools are
largely inadequate (Viappiani et al., 2006).

As indicated above, recommender systems technology can be used to efficiently
support users in matching their preferences with items that satisfy those
requirements. Amon the many approaches to recommendation, this study proposes

the use of preference-based search to elicit users’ requirements and example-critiquing to
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support them in refining their preferences (Viappiani et al., 2006). The proposed
system will deliver personalised rental property search results while balancing the

accuracy of offered recommendations and the efforts required of users.

1.3. Research objectives

(i) To review the factors relating to rental property recommendation
(ii) To evaluate systems and algorithms that can be applied to recommend rental
properties
(iii) To develop a prototype of a recommender system for rental properties

(iv) To validate the proposed system

14. Research questions

(i) What are the factors that relate to rental property recommendation?

(i) ~What systems and algorithms that can be applied to recommend rental
properties ?

(iii) How can a prototype of a recommender system for rental properties be
developed?

(iv) How can the proposed system be validated?

1.5. Significance of the study

The researcher has not found prior study that attempted to apply recommender
systems technology to online search for rental properties in Kenya. This study
proposes a novel approach to searching and locating rental properties in Kenya and
will result in a user-friendly recommender system for rental property. Furthermore,
this study will guide other researchers who are interested in recommender

technology.

1.6.  Scope of the study

The scope of the study is to review the recommender technology currently is use,

analyse algorithms that can be applied to a recommender system for rental

15



properties, develop the proposed recommender system for rental properties and test

it.
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CHAPTER 2: LITERATURE REVIEW

2.1. Introduction

This chapter accounts for the evolution of recommendation technology.
Furthermore, it discusses various recommender system functions and approaches to
recommendation. From this point, the chapter focuses on the specific
recommendation technology adopted by this study, preference-based search using
example-critiquing, and discusses in details how this technology will be applied to
recommend rental properties. Finally, the chapter provides a conceptual framework

that summarises the recommendation process adopted in this study.

2.2. Recommender systems

2.2.1. Evolution of recommender systems

The concept of recommendation dates way back before the emergence of computers.
Early forms of recommendation existed among ants, cave dwellers and other
animals (Sharma & Singh, 2016). Ants spread into space looking for food. If one of
them finds food, it goes back to the group leaving a scented trail that guides the rest
of the community to the location of the food. Individual cave dwellers discovered
new food by either trying it themselves or watching others try it. If one ate a new
herb and got sick, that was a recommendation to others not to eat the herb.

Otherwise, the herb was considered safe for consumption.

Sharma and Singh (2016) argue that in ancient human civilisations (4,000 to 1,200
BCE), recommendations took the form of what crop to cultivate, and what religion to
profess. Much later between the 14" and 18" centuries, recommendations were
about which territory to conquer. Very recently, senior family members found
suitable individuals to marry their younger relatives. People also asked others where

to buy the best food and what destinations to visit for holidays.

The emergence of computers brought new possibilities for recommendations. The

capacity of computers to provide recommendations was recognised fairly early in
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the history of computing (Ekstrand, Riedl, & Konstan, 2010). Grundy, a
computer-based librarian, used stereotypes derived from interviews to recommend
books to readers who fell in those stereotypes. Soon, Tapestry was proposed to
address overload in online information spaces. It enabled users to filter through their

emails separating those from known contacts from the rest (Sharma & Singh, 2016).

Automated recommender systems based on collaborative filtering emerged in the
1990s. Some of these included Ringo for music, BellCore Videos Recommender for
movies, and Jester for jokes, among others. Perhaps the most recognisable business
application of recommender system is Amazon. Based on the user purchase history,
browsing history, the current item the user is viewing, and other users” behaviour,
Amazon can recommend items for the user to consider purchasing (Ekstrand et al.,

2010).

Recommender technology has gone beyond collaborative filtering to include
content-based, Bayesian inference and case-based reasoning methods (Schafer,
Konstan, & Riedl, 2001). Research on recommender systems gained momentum with
the launch of the Netflix Prize, a one-million-dollar reward for research that could
improve by 10% the accuracy of Netflix recommendations for movies (Ekstrand et

al., 2010).

2.2.2. Recommender systems function

Recommender systems play a variety of roles. These functions fall into two
categories: the roles recommender systems play on behalf of the service provider
and for the end-user (Pazzani, 1999). According to Pazzani (1999), a service provider
may wish to use a recommender system to achieve the following:

Increased sales: the service provider would like to sell more items than those he
could sell without any recommender system. This goal is achieved because the
recommended items suit clients’ needs. The primary purpose of using a
recommender system then is to increase the conversion rate i.e. the number of

customers that accept a recommendation and consume an item, compared to others
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who do not do so.

Diversity of sold items: recommender systems also help users find things they may
not have discovered in the absence of an explicit recommendation for those items.
This way, a service provider can sell items that are unpopular in general, but that
may suit specific users.

Increase user fidelity: wusers are more likely to revisit a website that recognises
returning users and treats them as special visitors. Since recommender systems use
information from previous user behaviour (ratings), the more a user interacts with
the system, the more refined his user preference model becomes.

A better understanding of users” wants: recommender systems develop a description
of users’ preferences collected either explicitly or implicitly. The service provider can
reuse this information to achieve other goals such as improving the management of

the item’s production or stock.

Recommender systems also play numerous roles on behalf of the end-user.
According to Pazzani (1999), some these functions include the following:

Find some useful items: this involves recommending to a user a ranked list of things
with predictions of how much the user would like them. Some systems do not show
the predicted rating.

Find all useful items: this involves recommending all the objects that may meet
users’ needs. It is mostly common when the number of articles to suggest is small
and in mission-critical situations such as medical and financial applications.

Suggest a sequence: instead of recommending individual items, this involves
suggesting a series of articles that is pleasing as a whole. Some examples are
recommending a TV show or a compilation of musical tracks.

Recommend a bundle: this involves suggesting a set of items that go well together.
For instance, one may recommend a travel plan with destinations, attractions,

restaurants and hotels in particular area.
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2.2.3. Recommendation approaches

Various approaches have been used to develop recommender systems. This section
briefly describes some of these approaches namely collaborative filtering,
content-based  filtering, hybrid recommender systems, knowledge-based
recommender  systems, community-based recommender systems, and

demographic-based recommender systems.

2.2.3.1.  Collaborative filtering

Collaborative filtering is a popular recommendation algorithm that bases its
predictions and recommendations on the ratings or behaviours of other users in the
system (Ekstrand et al., 2010). Collaborative filtering methods build a preference
model by collecting and analysing data on the user’s past behaviour and preferences
and predict what the user will like based on similar decisions made by other users

(Pazzani, 1999).

The assumption made by this algorithm is that if users agree on the quality or
relevance of an item, they most probably will agree on other things. If some users
like the same movies as Jane does, it is likely that Jane will like a movie these users
like even if she has not seen it yet. Amazon is a great example of this type of system.
When a user purchases an item, Amazon recommends to her similar products using
such statements such as “Customers who bought this item also bought ...” and

displays those items.

Collaborative filtering can focus either on users or items. In user-based collaborative
filtering, a group of users with similar behaviour to that of the current user
regarding past ratings is identified, and their scores are used to predict what might
interest the current user (Sharma & Singh, 2016). In item-based collaborative

tiltering, the set of items the user has rated is considered, and the algorithm
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computes how similar they are to item i and then selects the k most similar items { 7,,

iy ..., 1} (Karypis et al., 2001).

2.2.3.2.  Content-based filtering

Content-based filtering approaches make recommendations by analysing the
description of the items rated by the users and the description of the items to be
recommended (Pazzani, 1999). In content-based filtering, keywords are used to
describe the items, and a user profile is built to indicate things the user may like. The
similarity of products is calculated based on the features associated with the
compared items (Ricci et al. 2011). If Mary likes watching comedies or movies
featuring Denzel Washington, it may be reasonable to recommend to her other

comedies or movies starring Denzel Washington.

2.2.3.3.  Knowledge-based systems

Knowledge-based recommender systems use the knowledge about users and
products to pursue a knowledge-based approach to generating a recommendation,
reasoning about what products meet the users’ requirements (Burke, 2000).
Case-based and constraint-based recommenders are two main types of
knowledge-based recommenders. Case-based recommender systems use a similarity
function to estimate how much user requirements (problem description) match the
recommendation (solution to the problem) (Ricci et al., 2011). The similarity score

represents the utility of the recommendation to the user.

Case-based and constraint-based recommenders are similar concerning the
knowledge they use and their functionality. The systems collect user requirements,
make recommendations based on the knowledge of how well they meet the
requirements, repair inconsistencies in situations where no solutions were available,

and provide explanations for recommendation results (Ricci et al., 2011).

The significant difference between the two types concerns the calculation of

solutions: case-based recommenders make recommendations based on similarity
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metrics whereas constraint-based recommenders exploit a predefined knowledge base
that contains explicit rules on how to relate user requirements to product features

(Felfernig et al., 2011).

2.2.3.4.  Demographic-based systems

Demographic information may be used to identify the type of users that like a
particular object. LifeStyle Finder classifies users in 62 predefined clusters and makes
recommendations to a particular user based on the group he belongs to (Pazzani,
1999). Demographic-based recommendations can also be made using the
region/country of the user. Netflix offers movies based on the area in which the user
lives (Sharma & Singh, 2016). Therefore, only movies available in the user’s location

can be part of a recommendation.

2.2.3.5.  Community-based systems

Community-based recommender systems claim that people a more likely to rely on
recommendations from friends rather than from other similar but unknown
individuals. Thus, the approach makes recommendations based on the preferences
of the user’s friends (Ricci et al., 2011). Community-based systems differ from
collaborative filtering in that the former relies on similarity with friends while the
latter is based on similarity with any users. The approach uses the social network of

the user’s friends and their ratings to make its recommendations.

2.2.3.6.  Hybrid recommender systems

Hybrid recommender systems combine two or more approaches in an attempt to
remedy shortcomings of one using the advantages of the other. For instance,
collaborative filtering methods cannot recommend a new item with no ratings.
However, the content-based approach does not face this problem since its
recommendations are based on the description of the article (Ricci et al., 2011).
Therefore, a combination of the two approaches can help in producing a

recommendation where one approach would not have been able to produce one.

22



Netflix uses a mix of collaborative and content-based approaches (Sharma & Singh,
2016). It recommends movies taking into account the user’s preference and the

similarity with other users.

2.3. Critiquing-based recommender systems

Traditional recommendation approaches, collaborative and content-based filtering,
are not well-suited in situations of high-value items such as vehicles, electronics and
real-estate assets, which are not purchased as frequently as other items. Since people
do not buy these types of products regularly, they do not express their opinions on
them often. Therefore, it is infeasible to collect many ratings on such items, and
potential customers may not be satisfied with years-old preferences expressed on

such items (Felfernig et al., 2011).

Knowledge-based recommender systems can be used to overcome these challenges
by exploiting explicit user requirements and knowledge underlying the product
domain for the calculation of the recommendations. Furthermore, knowledge-based
recommenders do not have cold-start problems since users state their preferences
during a recommendation session. However, knowledge-based recommenders
suffer from knowledge-acquisition bottlenecks associated with the initial efforts

required to generate the domain knowledge (Felfernig et al., 2011).

Critiquing-based recommender systems have emerged and have been broadly
recognised as an efficient preference-based search and recommender technology,
using a feedback mechanism called critiquing (Chen & Pu, 2012). These systems
make recommendations based on the current user preferences and then elicit user
teedback in the form of critiques such as “I would like a similar apartment with lower
rent.” This requirement elicitation cycle continues until the customer can settle on a
preferred product. A typical customer has many preferences and constraints that are
not stated up front, and the process enables him to be aware of these latent

preferences when proposed solutions violate them (Pu & Faltings, 2000).
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Critiquing-based recommender systems follow a four-step user-system interaction

model (Chen & Pu, 2012):

Step 1: the user is asked to provide some preferences on product features;

Step 2: the system returns one or more recommended items based on the
user’s initial preferences;

Step 3: the user either selects the desired item and terminates the process or
provides feedback on the presented items (critiquing);

Step 4: once the user provides the critiques, the system will update its
recommendations and return them for the next interaction cycle.

This user-system interaction model is illustrated in Figure 2.1.

One or
User' initial multiples
preferences » Outcomes

are elicited. are
displayed

Yes

l

No more
effort
required

natural language,
system-suggested
or user initiated
critiquing

Figure 2.1: The typical interaction between users and critiquing-based recommender
systems (Adapted from Chen & Pu (2012))

Chen and Pu (2012) conducted a comprehension survey on various critiquing-based
approaches proposed by different scholars. The study identified three main types of
critiquing-based recommender systems: natural language dialogue-based
recommender systems, system-suggested critiquing systems and user-initiated

critiquing systems. The following paragraphs briefly describe these approaches.

2.3.1. Natural language dialogue-based systems

Natural language dialogue-based recommender systems act as an artificial
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salesperson and interact with the customer through a dialogue interface. ExpertClerk,
a system that imitates a human sales clerk, and Adaptive Place Advisor, a system that
provides personalised place recommendations, are two examples of such
recommenders. Chen and Pu (2012) argue that these natural language
dialogue-based recommender systems are suitable for recommendations delivered
by speech (e.g. when the user is driving) but are not ideal for e-commerce

environments where users are shopping online.

2.3.2. System-suggested critiquing systems

System-suggested critiquing systems proactively generate a set of knowledge-based
critiques that the user may accept as a way of improving suggestions. FindMe uses
its tweaking feature to enable the user to critique the current recommendation by
allowing users to select pre-defined tweaks such as “bigger”, “cheaper”, etc. These
systems are not able to adjust to user’s changing needs and only allow critiquing on

a single attribute (unit critiquing) (Chen & Pu, 2012). In response to these challenges,

other approaches have been proposed.

Dynamic critiquing enables critiquing on multiple attributes (dynamic compound
critiques) and uses the association rule mining to discover different sets of value
differences between the current recommendation and the remaining

un-recommended items (Chen & Pu, 2012).

The MAUT-based compound critiques proposed by Zhang and Pu (2006) aimed at
curing a challenge faced by dynamic critiquing, namely that the latter does not take
into account the users’ interests in the suggested critiques. The Multi-Attribute
Utility Theory (MAUT) takes into account the conflicting value preferences and
produces a score for each item to represent its overall satisfaction degree with the

user preferences, (Chen & Pu, 2012).

Preference-based organisation interface sought to address a disadvantage faced by

the MAUT-based approach, in that each MAUT-based compound critique
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corresponds to one product only and that not many recommendations can be
displayed to the users (Chen & Pu, 2006; Pu & Chen, 2007¢). It does so by generating
critiques adaptive to users’ MAUT-based preference model and applying the
association mining rule to discover compound critiques that can be used to represent
the remaining datasets. Then, it diversifies critiques and their contained products to
assist users to refine and accumulate their preferences more efficiently (Chen & Pu,

2012).

2.3.3. User-initiated critiquing systems

The user-initiated critiquing systems show examples to users and stimulate the users
to make self-motivated critiques. These systems allow users to make both unit and
compound critiques over any combination of features in freedom. The aim of these
systems is to enable users to execute trade-off navigation (Pu & Chen, 2005), that is
finding a product that has more optimal values on important attributes while

accepting compromised values on less important attributes (Chen & Pu, 2012).

Example-critiquing combines a preference-based search tool and example-critiquing
capabilities (Pu et al. (2008). In such a system, the user starts the search by specifying
a few preferences in the query area; each preference is composed of an acceptable
attribute value and its corresponding importance (i.e.: weight); and the system
builds an MAUT-based preference model (Chen & Pu, 2012). From the initial
preference model, the search engine ranks alternatives by their corresponding scores
and returns k top ones (Chen & Pu, 2012). The ideal value of k should range between
5 and 20 (Faltings, Pu & Torrens, 2003). If the user is satisfied with an item, he picks

it; otherwise, he triggers the trade-off navigation to refine his preference.

24. Recommending rental properties

Having considered a variety of critiquing-based approaches to recommending items
to consumers online, this study will adopt the preference-based search tool and will
combine it with the example-critiquing approach. Preference-based search is a tool for

the elicitation of wusers’ initial preferences, whereas example-critiquing is an
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approach that enables users to refine their preferences to locate the ideal item that

suits their requirements (Viappiani et al., 2006).

This method invites users to state their preferences (preference-based search)

explicitly. Viappiani et al. (2006) formally defined the problem as:
Given a collection O = {o,, ..., 0,} of n options, preference-based search
(PBS) is an interactive process that helps users find the most preferred option,
called the target option o, based on a set of preferences that they have stated
on attributes of the target.

They define the target option as the option most preferred by the user among all the

possibilities.

Once the user has expressed his preferences and the preference model has been
developed, the system can then generate and display a set of examples for the user
to consider. These examples include candidates, items that are optimal for the current
preference query, and suggestions, items that are used to stimulate the expression of
further preferences (Viappiani et al., 2006). The user revises his preference model by
critiquing examples, a process that can take several iterations. When the user locates

the target item, he terminates the process. This process is illustrated in Figure 2.2.
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Initial preferences

User revises the preference
model by critiquing
examples

System shows K examples

A J

User picks thefinal choice

Figure 2.2: Example-critiquing interaction (Adapted from Viappiani et al. (2006))

Viappiani et al. (2006) proposed effective strategies for generating suggestions based
on the current preference model. These strategies assume that the user will minimise
his efforts and will only add preferences to his model only when he thinks they will
impact the solution. Updating the preference model in only useful in cases when:

(i) the user can see several options that differ in a possible preference,

(ii)  these choices are relevant, i.e. they could be acceptable options, and

(iii)  they are not already optimal for the already stated preferences.

Indicating additional preferences in all other cases is irrelevant. That is when all
options would evaluate the same way, or when the preference only has an effect on
choices that would not be eligible regardless or that are already the best choices
(Viappiani et al.,, 2006). They further argue that upon displaying a suggested
outcome whose optimality becomes clear if a particular preference is stated, the user
can recognise the importance of stating that preference. Consequently, they
developed the look-ahead principle, according to which suggestions should not be

optimal under the current preference model, but should provide a high likelihood of
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optimality when a user adds new preferences to the model.

2.4.1. User preference elicitation using preference-based search

The user expresses her preferences through a search engine on five attributes of
rental properties: type, location, rent, the number of bedrooms, and the number of
bathrooms. The researcher settled on these attributes after conducting an online
survey of websites that advertise rental properties in Kenya and identifying the most
common attributes used in searching rental properties. The user starts the search by
specifying one or more preferences in a search interface. Furthermore, she indicates
the importance (i.e.: weight) of each preference. Based on the first preference, the

system will identify and display a set of matching results (Chen & Pu, 2007).

2.4.2. System recommendation based on user initial preference

To generate recommendations for a particular user, we must first define his
preference model. The user’s preference on all rental properties is represented as a
weighted additive form of value functions based on the multi-attribute utility theory
(MAUT), according to Chen and Pu (2007). They formally define a preference model
as the pair ({V, ..., V,,},{w,, ..., w,}) where V', is the value function for each
attribute 4., and w; is the relative importance (i.e.: weight) of 4,. The utility of each
item ({a,, a,, ..., ayy) can then be computed using the utility function as shown in

Equation 2.1.

U((al, a,, ---Jan)) = Zwi Vi(ai)

Equation 2.1: Utility function (Adapted from Chen and Pu (2007))

2.4.3. Capturing user feedback using example-critiquing

Chen and Pu (2012) argue that most users searching for information are not familiar

with the set of available items and their characteristics. Example-critiquing can then
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be used to enable these users to construct their preference models as they learn about
possibilities progressively (Chen & Pu, 2012). Various scholars have used
example-critiquing in systems with preference models and those without preference

models.

In systems without preference models, the user tweaks the current best example to
make it fit his preferences. A prospective tenant may say “I would like a similar
apartment but cheaper.” Examples of such systems include FindMe, ExpertClerk and
the dynamic critiquing systems (Chen & Pu, 2012). In systems with explicit
preference models, each critique is added to the preference model to refine the
query. Some of these systems are ATA system, SmartClient and incremental

critiquing systems (Chen & Pu, 2012).

These systems with example-critiquing and an explicit user preference model have
the advantage of resolving users’ preference conflicts, according to Chen and Pu

(2012). This study will adopt this approach.

In example-critiquing, each critique can be considered as a soft constraint, and the
preference model can be developed by simply collecting critiques, according to Chen
and Pu (2012). They define a soft constraint as a function of an attribute or a
combination of attributes to a number that indicates the degree to which the
constraint is violated. When the value of an attribute violates the constraint, it is

mapped to 1, otherwise it is assigned to 0.

For example, a prospective tenant may be willing to pay a monthly rent of KES
50,000 and may tolerate the violation of this constraint up to KES 5,000. This
preference can be expressed using a piecewise function as shown in Equation 2.2. (x

represents the rent amount):
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1 if x > 55,000
0.2 (x - 50,000) if 50,000 < x < 55,000
0 if x < 50,000

Equation 2.2: Piecewise function for one preference expressed on one attribute
(Adapted from Chen and Pu (2012))

The user may wish to express several preferences on the same attribute. For
example, a prospective tenant may indicate that she needs an apartment with
monthly rent ranging from KES 30,000 to KES 50,000 and that she is willing to
tolerate a KES 5,000 violation on this preference. The resulting piecewise function for

this preference can take the form shown in equation 2.3.:

1 if x > 55,000
0.2(x — 50,000) if 50,000 < x < 55,000
0 if 30,000 < x < 50,000
0.2(30,000 —x) if 25,000 < x < 30,000
1 if x < 25,000

Equation 2.3: Piecewise function for multiple preferences expressed on the same attribute
(Adapted from Chen and Pu (2012))

All user preferences are seldom satisfied at the same time. Therefore, users are

required to make trade-offs: that is accepting an outcome that is undesirable in some

respects while advantageous in others, (Pu & Faltings, 2004). They have identified

three main strategies employed by users to make trade-offs:

(i)  value trade-off: the user changes the preference value of a particular attribute

value combination;

(i)  wutility trade-off: the user changes the weight of preference in the combined
ranking;

(iii)  outcome trade-off: the user adds additional preferences that increase the utility
of an outcome they want.

When soft constraints model preferences, these trade-off strategies can be

implemented by either revising the current set of soft constraints, or adding or

retracting constraints, posit Pu and Faltings (2004). They argue that to enable this
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type of user-system interaction, the system should be able to support the following
actions:
(i) revising user preferences;
(ii) providing trade-off scenario to resolve user preference conflicts;
(iii) revise the importance (weight) attached the preference; and
(iv)  elicit hidden preferences.
Once a user provides critiques, the recommendations can then be updated based on

these critiques.

2.4.4. Building a preference model for a user

The set of objects on which users can express preferences is the collection of options
O =1{o,, ..., 0,} with a fixed set of k attributes 4= {4,, ..., 4,}, associated with
domains D, ..., D,. Each option is characterised by the values a,(0), ..., a,(0),
where a,(0) represents the value that o takes on attributes 4, (Viappiani et al.,

2006).

A preference r is an order relation < of the values of an attribute a; and ~, means
that two values are equally preferred. Therefore, according to Viappiani et al. (2006),
a preference model R is a set of preferences {r, ..., r,}. They argue that
preferences are assumed to be independent and expressed on individual attributes.

Furthermore, they assert that since a preference r, always applies to the same

feature q;, the notation can be simplified to use <. and ,; directly to the options:

0,<,,0, iff a;(0,)<,;a;(0,). The use of <,; indicates that <, stands but not i
Any rational decision-maker will prefer an option to another if the first is at least as
good in all criteria and better for at least one criterion, argue Viappiani et al. (2006).
They further assert that Pareto-dominance, which is a partial order relation of the
options, can express this concept. An option o is Pareto-dominated by an option o

on R if and only if forall »,€R, 0 < 0" and for at least one ,ER, 0 < 0" (Viappiani,

Faltings, & Pu, 2006). The notations 0<,0 and o >,0 mean that o is
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Pareto-dominated by o'.

Viappiani et al. (2006) make an important assumption about preference combination
functions: they must be dominance-preserving. A preference combination function is
dominance-preserving if and only if whenever an option o dominates another

option o in all individual orders, then 0" dominates o in the combined order.

2.4.5. Making model-based suggestions

Strategies proposed by Viappiani et al. (2006) on making model-based suggestions
are based on the principle of choosing options that are most likely to become
optimal. This is done by considering new preferences and describing the probability
that they make a choice optimal. Viappiani et al. (2006) present two qualitative
notions of optimality, one based on Pareto-optimality and another based on the
combination function used to generate candidates. These concepts are discussed

before describing the strategies used to produce model-based suggestions.

The first notion is Pareto-optimality. An option is Pareto-optimal if and only if
another option does not dominate it. Pareto-optimality applies to any preference
model as long as the combination function is dominance-preserving. For any
dominance-preserving combination function, an option o* that is most preferred in
the combined preference order is Pareto-optimal, since any option o” that dominates

it would be more preferred (Viappiani et al., 2006).

The second notion concerns a dominating set and an equal set. A dominating set of an
option o on a set of preferences R is a set of all the options that dominate o:
Ox(0)={0'€E0: 0>po}. One can omit R if it is clear in the context and just write
O (0). An equal set of an option o on a set of preferences R is a set all of all the
options that are equally preferred to o: Ox(0) = {0’ €0 : 0 po} . One can use O for

O*U O~ (Viappiani et al.,2006).
When a user states a new preference r;,, a dominated option can become
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Pareto-optimal. Viappiani et al. (2006) argue that a dominated option o on a set of
preferences R becomes Pareto-optimal on RUr, if and only if o is strictly better
with respect to 7, than all options that dominate it on R; and not worse with respect

to r, than all options that are equally preferred on R.

The model-based suggestion strategies proposed by Viappiani et al. (2006), the
counting strategy and the probabilistic strategy, are based on the look-ahead
principle according to which suggestions should not be optimal under the current
preference model but have a high likelihood of becoming optimal when a user adds
a new preference. The assumption made here is that the system is aware of a subset
R of the user’s preference model R. The best suggestion is the option o that is

dominated in the current (partial) preference model R but that is ultimately optimal

with respect to the full preference model R (Viappiani et al., 2006).

This study will adopt the probabilistic strategy as, according to Viappiani et al.
(2006), it provides a more accurate estimate of the likelihood that a particular choice

will become Pareto-optimal.

Probabilistic strategy
General assumptions
The first assumption made in this strategy is that a cost function ¢; expresses each
preference r;. For the purpose of having a well-designed interface, we must restrict
these functions to a family of functions parameterised by one or more parameters.

Such a function with one parameter take the form shown in equation 2.4.

¢; = ¢;(6,a;,(0)) = ¢;(6,0)

Equation 2.4: Cost function (Adapted from Viappiani et al. (2006))
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The second assumption is that the following probability distributions express
possible preferences: p ., the likelihood that the user has a preference over an
attribute a,; and p(0), the probability distribution of the parameter associated with

the cost function of the considered feature.

To calculate the likelihood that a preference on attribute i makes o, be preferred to
o0, , we integrate over the values of 6 for which the cost of o, is less than that of o, .

We use the Heaviside step function: H(x)= if (x > 0) then 1 else 0:

5,(0,,0,) = f H(c,(8,0,) - ¢,(8,0,)) p(8)d8
[}

For qualitative domains, we compute by iterating over 6 and summing up the
probability contribution for the cases in which the value of 6 makes o, preferred to
0,

8,(04,0,) = Z H(c;(6,0,) - ¢;(6,0,)) p(6)

feD;

For the purpose of determining the likelihood of breaking the dominance relation
with all options in the dominating set through a,, all dominating options must have
a less preferred value for g, than that of the considered value. This approach for
determining the probability of breaking the dominance relation does not assume
independence between options and directly examines the distribution of all the

dominating options (Viappiani et al., 2006).

For numerical domains, we computed that probability as follows:

8,(0,0”) = f[l_[ H(c;(8,0) — ¢;(8,0)|p(6) do

o'€0>

For qualitative domains, the integral is replaced by the summation over 6 and

adding a new term into the integral to account for the fact the no new dominance
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relations with options in the equal set should be created.

ﬂ H(c;(8,0") — ¢;(8,0)) 1_[ H* (c;(8,0") — ¢;(8,0)) | p(6) dO

o'en> o''eo=

60,09 = |

Equation 2.5: Computing probability of breaking the dominance in qualitative
domains (Adapted from Viappiani et al. (2006))

where H" is a modified Heaviside function that assigns value 1 to whenever the

difference between two costs is 0 or greater (H"=if (x>0) then 1 else 0).

We assume that the user only has one hidden preference. We consider the
probability of becoming Pareto-optimal when a preference is added as the
combination of event that the new preference is for a particular attribute, and the
chance that the preference on this feature will make the option be preferred over all

values of the dominating options (Viappiani et al., 2006):

EO0)= ) Pyud(0,0)

a;€Ay

Preference functions and suggestion computation

Preference for a single value in the qualitative domain

These functions will be used to compute suggestions on qualitative attributes of a
rental property namely location and type. Let 6 be the value preferred by a
prospective tenant; the function c,(0, x) gives a penalty to any value of attribute a,
except 0. For instance, a potential tenant may say: “I would like an apartment in
Kileleshwa”, meaning that he prefers apartments in this neighbourhood to those in
other neighbourhoods.
c(0, x)= if a,(x) =0 then 0 else 1.

The likelihood of breaking a dominance relation between option o, and o, is the
probability that the value of option o, for attribute i is preferred when it differs

from the value of o, .
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5.( ) = { plo = a;(0))] if a;(0,) # a;(02)
i\01, 02/ = 0 otherwise
Consequently, assuming a uniform distribution, p(6) = ITI,-I for any 0 (any value in

the domain is equally likely to be the preferred value), the probability becomes \71-\

when a.(o,)#a,(0,) otherwise, it is equal to 0.

_ (1/|D;| if (Vo' € 07) a;(0y) # a;(0,)
8oy, 00) = { 0 l otherwise '

Equation 2.6: Computing preference for one value in qualitative domain (Adapted
from Viappiani et al. (2006))

Note that in this structure of preference, 5,0, O%) = §,(0, O”), because an option o
can only break the dominance relation only if a,(0) takes the preferred value, any

other option can be strictly better on that preference.

Directional preferences

These functions will be used to compute suggestions in numeric domains when the
preference order can be assumed to have a direction. They apply to attributes of a
rental property such as rent, the number of bedrooms, and the number bathrooms.
Regarding rent, lower is always preferred other things being constant; and
concerning the number of bedrooms and of bathrooms, more is always preferred

when other things are held constant. These functions are shown in equation 2.7.

5. ) if a;(0,) < a;(0,) then 1 else 0 a; numeric, natural preference <
i\01, 03 {
if a;(0,) > a;(0,) then1else 0 a; numeric, natural preference >

Equation 2.7: Computing directional preferences (Adapted from Viappiani et al.
(2006))

In directional preference, the cost function is a monotone function of the attribute
value.
When a step function represents the preference LessThan(0), an option is preferred

over a set of options with minimum value /; if the preference value 0 falls in
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between the values of the given option and /,. For a set of options O° whose values

on a; lies between /, and 4,, we have

1if a; (0) < li
0 otherwise

51‘(0;02){

Equation 2.8: Step function for preference when smaller values are preferred
(Adapted from Viappiani et al. (2006))

when smaller values are preferred, and

1 if a; (0) > hi
0 otherwise

5.(0, 02){

Equation 2.9: Step Function for Preference when Larger Values Are Preferred (Adapted from
Viappiani et al. (2006))

when larger values are preferred.

Generating a set of suggestions

The strategies we described are used to produce only one suggestion. However, it is
possible to provide a set / of suggestions simultaneously. In doing so, we should
choose a group G of suggested options by maximising the probability p, (G) that at
least one of the suggestions in the set G become optimal through a new user

preference (Viappiani et al., 2006):

pope@) =1 | | =Pt = | [(1 - 800", 020

ai€Ay o'eG

Equation 2.10: Generating multiple suggestions (Adapted from Viappiani et al.
(2006)
2.5. Algorithm for generating suggestions
Algorithm: Dominance-Check (o,, 0,, R)
The dominance-check between two options o, and o, with respect to preferences in R.

Legend: < dominated, > dominates, = not comparable, = equivalent
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Dominance can take values in {<, >, =, =}

This algorithm is presented in Figure 2.3.

dominance := VOID;
forallr; € R do
if (0, >, 0,) then
if (dominance != “<”) then
dominance « “>";
else
return “=";
if (0, <, 0,) then
if (dominance != “>") then
dominance «— “<”;
else
return “=";
if (0, ~, 0,)then

if (dominance == “="0R dominance == “VOID” then

dominance «— “=";
return dominance;

Figure 2.3: Algorithm for checking dominance between two options (Adapted from
Viappiani & Faltings (2006))

2.6. Conceptual framework

This conceptual framework summarises the process of eliciting user preference using

preference-based search and refining them using example-critiquing until the user

finds the items that best meets his needs. The conceptual framework is illustrated in

Figure 2.4.
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CHAPTER 3: RESEARCH METHODOLOGY

3.1. Introduction

Research is a careful, systematic investigation in some field of knowledge,
undertaken to establish facts or principles or to find answers to a problem (Grinnell,
1993). Research methodology is the science of doing research (Bhatnagar & Singh,
2013). This chapter is intended to present how data was collected and analysed with
the view of enabling readers to evaluate the validity and reliability of this study

(University of Southern California, 2016).

3.2.  System Development Methodology used

The System Development Life Cycle is the process of determining how an information
system (IS) can support business needs, designing the system, building it, and
deliver it to users (Dennis et al., 2012). This process contains four major phases

namely system planning, analysis, design and implementation.

This research aimed at developing a prototype of a recommender system for rental
property. It adopted the Object-Oriented Systems Analysis and Design (OOAD)
approach to develop the prototype. While this method can use any of the traditional
methodologies, the study employed the Rapid Application Development (RAD)
methodology, an iterative development with which it is mostly associated (Dennis et
al., 2012). The advantage of this methodology to application development over
others is the reduced development cycle it offers. This aspect is essential to the

success of the study considering the limited amount of time allocated to the research.

Traditional approaches to systems development tend to be either process-centric or
data-centric. However when modelling real world processes and data, one soon
realises that processes and data are closely intertwined. Decomposing processes and
data is, therefore, a major challenge for these approaches. The OOAD uses an
RAD-based sequence of System Development Life Cycle (SDLC) but attempts to
balance between process and data (Dennis et al., 2012). This is achieved by focusing

on decomposing problems in objects that contain both data and processes (Dennis et
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al., 2012).

The process of developing a system using OOAD starts with the planning phase,
then proceeds to the creation of use cases. From this stage, the first iteration
comprising of the analysis, design and implementation phases starts. The planning
phase is a fundamental process of understanding why an information system should

be built and determining how the project team would go about building it (Dennis et

al., 2012).

This chapter did not focus on system planning phase because many of its steps did
not apply to this case, as this is an academic endeavour. These steps include
identifying opportunity, analysing technical and economic feasibility, developing a

work plan, identifying staff project and controlling and directing the project.

Any object-oriented approach must be (i) use case driven, (ii) architecture-centric and
(iii) iterative and incremental (Dennis et al., 2012). According to (Dennis et al., 2012),
use case driven means that the behaviour of the system is modelled through use
cases; architecture-centric implies that the underlying architecture of the evolving
system drives the specification, construction and documentation of the system; and
iterative and incremental mean that each iteration brings the system closer and

closer to the final requirements of the end-users.

3.2.1. Requirements gathering

Requirements determination is performed to transform high-level statement of
business requirements into a more detailed, precise list of what the system must do
to provide the needed value to users. A requirement simply refers to a statement of
what the system must do or what characteristic it needs to have (Dennis et al., 2012).
This section addressed the population, sampling, and data collection aspects of the

study.
3.2.1.1.
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Population

The end users of the proposed recommender system are prospective tenants
searching for rental properties online. In order to identify criteria they used to
searching properties online, the researcher reviewed websites operated by property
management firms. Therefore, the population relevant to this study comprises of
real-estate development firms and property management companies that advertise
rental properties online. In September 2016, the Estate Agents Registration Board, a
regulatory body for estate agents in Kenya, had 331 registered members (Estate
Agents Registration Board, 2016). Real estate firms with functioning websites,

selected from these real estate agents, therefore, formed the population of this study.

3.21.2.  Sampling

When conducting research, one must determine the sample size whose responses he
needs to understand the problem at hand. Research requires an understanding of the
statistics that drive sample size decisions (Smith, 2013). A few concepts need to be

addressed before calculating the sample size for this research.

Population size refers to how many respondents are of interest to the researcher.
Margin of error (confidence interval) determines how higher or lower than the
population mean is the researcher willing to let the sample mean fall (Smith, 2013).

This is because no sample can perfectly represent the entire population.

Confidence level refers to how confident the researcher wants to be that the mean falls
within the confidence interval. According to Smith (2013), the most common
confidence intervals are 90% confident, 95% confident, and 99% confident. This
research used a confidence level of 95% whose corresponding Z-score is 1.96.
Standard deviation is a measure of the variance the researcher expects in the
responses. Smith (2013) argues that the safe decision is to use 0.5 as this number

ensures that the sample will be large enough.
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The formula for sample size calculation is provided in Figure 3.1.

z2 X p(1-p)
ez

zzxr(l—p))

Sample size =
1+( 22N

Equation 3.1: Formula for calculating a sample size (Adapted from (Smith, 2013))

Where N refers to population size; z refers to the z-score; e refers to the margin of

error; and p refers to the standard deviation.

Removing duplicates (agents working for the same company) and removing agents
who worked as individuals, the researcher identified 187 real estate companies
registered by this Board. Among the 187, 85 had functioning websites. These formed
the target population for the study. Using the formula for calculating a sample size;
with a population size of 85, a confidence level of 95%, and margin of error of 5%,

the researcher found that the appropriate sample size would be 70.

3.2.1.3.  Data collection

The data of interest to the research is the criteria used by prospective tenants to
select rental properties. This data was collected through content analysis by
reviewing websites run by these agencies as they contain information relevant the
criteria at issue. Content analysis is a research technique used to make replicable and
valid inferences by interpreting and coding textual material. By systematically
evaluating texts (e.g.: documents, oral communication and graphics) qualitative data
can be converted into quantitative data (University of Georgia, Terry College of

Business, 2012).

Parameters used for property search are a good indication of the criteria that
property managers believe prospective tenants consider when they are selecting
properties. Therefore, this data collected on websites was used to identify the most

important criteria for prospective tenants when they search for rental properties. The
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data informed the design and implementation of the prototype of the rental property

recommender system.

3.2.2. Systems analysis

As indicated in earlier, systems analysis is the second of the four main phases of the
System Development Life Cycle. The analysis phase answers the questions of who will
use the system, what the system will do, and where and when it will be used (Dennis
et al, 2012). The output of the system analysis phase is a system requirement

document. The detailed analysis of the proposed system is provided in Chapter Four.

3.2.3. Systems design

Systems design is the third phase of the System Development Life Cycle. The design
phase decides how the system will operate in terms of hardware, software, and
network infrastructure that will be in place, the user interface, forms and reports that
will be wused; and the specific programs, databases and files that will be
needed(Dennis et al., 2012). A detailed systems design is provided in the Chapter

Four.

3.2.4. Systems implementation

Systems implementation is the fourth phase of the System Development Life Cycle.
During the implementation phase, the system is actually built (or purchased in case of
a software design and installed). The objective of this phase it to deliver a fully
functioning and documented system (Dennis et al., 2012). The implementation of

the system is described in more details in Chapter Five.

3.3. Research design

Research design refers to the arrangement of conditions for collection and analysis of
data in a manner that aims to combine the relevance to the research purpose with
economy in procedure (Selltiz, Jahoda, Deutsch, & Cook, 1967). Research design is
the conceptual structure within which the research is conducted; it constitutes the

blueprint for the collection, measurement and analysis of data (Kothari, 2004).
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The type of research undertaken in this study is applied research. Applied research is
aimed at finding a solution of an immediate problem facing society or an
industrial/business organisation (Kothari, 2004; Cooper & Schindler, 2011). The
justification for this choice of type of research is that this research attempts to

address a perceived real world problem and to suggest a solution to it.

According to Kothari (2004), a good research design should have four main parts.
These parts are described in the following paragraphs and an account of how this

study addressed them is provided.

The sampling design deals with the method of selecting items to be observed in the
study. The study selected property management firms to be observed from the list of
registered real estate agents provided by the Real Estate Agents Board in Kenya.

Specifically, websites belonging to these firms were observed.

The observational design relates to the conditions under which the observations are to
be made. In this study, the websites were observed in the conditions in which they

appear to users (that is in a web browser).

The statistical design concerns the question of how many items are to be observed and
how the data collected is to be analysed. This study used a formula to compute the
sample size. This formula is given in section 3.2.1.2 (Sampling). The data was

analysed using Microsoft Excel.

The operational design deals with the techniques by which the procedures specified in

the sampling, statistical and observational designs are to be carried out.
The researcher observed specific characteristics of the websites, namely the criteria

used to select rental properties, and recorded them in a Microsoft Excel sheet. When

a particular criterion was observed, the researcher indicated that with the letter T,
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representing the value True, next to the Uniform Resource Locator (URL) of the
website associated with the firm. When the criterion was not observed, the

researcher recorded this with the letter F, representing the value False.

The researcher used the functionalities of Microsoft Excel to compute the total
number of websites in which each criterion was observed. After that, the researcher
used the same software to generate a graphical representation of these findings,

which appear in Chapter Four of this study.

3.4. Research quality - validity, reliability and objectivity of the research

Validity is the property of a research instrument that measures its relevance,
precision and accuracy (Sarantakos, 2005). It tells the researcher whether a tool
measures what is supposed to measure and whether this measurement is accurate
and precise. This study used face validity as a measure of validity. An instrument has
face validity, ‘on the face of it’, if it measures what is expected to measure
(Sarantakos, 2005). This study collected and analysed data on criteria used by
prospective tenants to select rental properties. The study satisfied the requirement
for face validity because the researcher actually examined the criteria as mentioned

above while collecting and analysing data on them.

Reliability refers to the capacity of measurement to produce consistent results
(Sarantakos, 2005). He argues that a method is reliable if it provides the same results
whenever repeated, and is not sensitive to the researcher, the research conditions or
the respondents. In this study, the researcher recorded whether or not a website
mentioned a particular attribute of rental properties. This approach produces

consistent results, unless the content of the websites changes over time.
Objectivity is the empiricist doctrine that the research process and design must be

free of personal bias and prejudice (Sarantakos, 2005). It ensures that personal values

and views of the investigator are kept out of the research process, argues Sarantakos
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(2005). In this study, objectivity was measured through representativeness and

generalizability.

Representativeness is a research principle that reflects the capacity of a social
research to produce results that are consistent with (representative of) what is
observable in the target population (Sarantakos, 2005). Generalizability is the ability
of the research to extrapolate the relevance of its findings beyond the sample, which
is the extent to which the study can generalise its findings to from the sample to the
whole population (Sarantakos, 2005). To achieve representativeness, the researcher
used a formula to compute a sample size that is representative of the entire
population. Consequently, the result findings are representative of and generalizable

to the entire population.

3.5. Ethical considerations

The researcher also maintained the confidentiality of any data collected on the
population. Where required, the data was presented in aggregated form and without
identifying specific property management firms that were considered in the study.
Furthermore, the researcher used this data solely for purposes of the study. Finally,
the researcher cited the work obtained from others authors and gave credit where it

was due.
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CHAPTER FOUR: SYSTEMS ANALYSIS AND DESIGN

The data collected on important criteria used to select rental properties online
informed systems analysis and design for the proposed system. These are, in order
words, attributes of rental properties that tenants considered in deciding which

properties fit their requirements.

To identify these attributes, the researcher reviewed websites of 70 real estate agents
registered by the Estate Agents Registration Board. Among the 70 websites, 53
contained relevant information about these attributes. Following a systematic review
of information contained in those websites, the researcher identified the most

common characteristics of rental properties that tenant found relevant.

Some of the attributes that were found to be common after the review of these
websites include property location, property type, rent, number of bedrooms,
number of bathrooms, the size of the living space, availability of parking space,
whether or not the rental properties were furnished, and whether or not they are
serviced. The researcher used the word True (T) to say that a particular website
mentioned an attribute, and the word False (F) to mean that the website did not
mention that attribute. Figure 4.1 presents the total number of websites that mention

each of the above attributes as a criterion to select rental properties.
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Figure 4.1: Number of websites that mention relevant attributes for selecting
rental properties

As Figure 4.1. shows that property location, property type, rent, number of
bedrooms, and number of bathrooms are mentioned in 52, 50, 52, 50, 33 websites
respectively as attributes of rental properties relevant to online search of rental
properties. Based on these findings, the researcher decided to use these attributes,
found in most websites for search rental properties, to develop the prototype of the

proposed recommender system.

As earlier described, the system development process based on Object-Oriented
Systems Analysis and Design, starts with describing use cases, followed by several
iterations comprising of the analysis, design and implementation phases of the
System Development Life Cycle. The following paragraphs present the final outputs

of these iterations.

4.2. Use cases

In OOAD, use cases are the primary modelling tools employed to define the
behaviour of the systems (Dennis et al., 2012). They further argue that a use case
describes how a user interacts with the system to accomplish certain tasks such as

placing an order or searching for information. The study produced the required use
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cases to model system behaviour.

4.2.1. Use case 1: “Add property”

This use case depicts the interactions of a staff with the system while he adds a new
rental property to the database. The use case starts with staff navigating to the login
page for authentication. Upon authentication, the system displays a new page with
all the rental properties currently in the database. The system further provides a link
to a page where the staff can add a new rental property. The staff specifies all the
attributes of the rental property he wishes to add to the database before attempting

to save it.

The use case may have two exceptions. The first is an authentication exception when
the staff’s credentials are not valid. The second is the staff does not specify all
attributes of a rental property. In both cases, the system displays appropriate error

messages. This use case is described in details in Figure 4.2.

Use Case Name: Add new rental property I ID: UC-1 Priority: High
Actor: System administrator (Administrator)

Description: The administrator adds a new rental property to the database by entering its details and saving it.

Trigger: The administrator wants to add a new rental property to the database.

I'ype: External

Preconditions:

1. The website is available

2. The rental property catalogue is up-to-date and on-line.
Normal course: Information for steps:
1.0 Add a new rental property

The administrator navigates to the login page.

The system displays the login page. «—— Email and password of the website
The administrator provides his/her login credentials administrator

The system authenticate the administrator

The system displays the all properties currently in the database and a successful login message. 44— Property details

The administrator navigates to the “Add New Property” page.

The administrator enters details of the new rental property

The administrator attempts to save the new rental property in the database.
The system administrator logs out.

OONSO G W

Exceptions
E.1: Login credentials are not valid (occurs at step 4)
1. The system displays an error message.
2. The administrator is no logged in.
3. The system displays the login page.
E.2: The administrator does not specify one or more property details
1. The system displays a message alerting the administrator of the missing attributes
2. The system does not save the new rental property.
3. The system displays the “Add New Property” page
Postconditions:
1. One rental property is added to the database.

Summary

Inputs Source Outputs Destination

Email password System administrator New Property Property Catalogue/Database
Property details System_administrator

Figure 4.2: Use case 1 “Add property”

4.2.2. Use case 2: “Locate property”
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This use case depicts the interactions of a prospective tenant (user) with the system
while she locates a desired rental property. The use case starts with the user
navigating to the landing page and where she is prompted by a search panel. She
specifies at least one attribute of rental properties she is interested in and indicates
its importance. The she clicks on the search button to initiate the search. The use case
continues as the user refines her preferences, if necessary, and ends when she locates

an ideal property. This use case is described in details in Figure 4.3.

Use Case Name: Locate rental property I 1D: UC-2 | Priority: High

Actor: Prospective Tenant (user)

Description: The user locates rental properties by expressing his or her preferences on attributes of rental properties and indicating the importance such
attributes.

Irigger: The user needs a house to rent

I'ype: External

Preconditions:
1. The website is available
2. The rental property catalogue is up-to-date and on-line.
Normal course: Information for steps:
1.0. Locate rental property
1. The user navigates to the landing page.
2. The system displays the landing page.
3. The user provides the desired attributes of a rental property and indicates each attribute’s
importance

| Property attributes and
importance of attributes
4. The user searches for properties matching his or her preferences [ Property Catalogue
5. The system generates examples and presents them to the user | List of properties
6. The user selects the most preferred rental property. Selected property
Alternatives Courses :
1. User refines his or her preferences on rental property after reviewing presented examples
(branch at step 5)
The user critiques the presented examples by making trade-offs on attributes
The user search for properties that matches the new preferences
The system generates a new set of examples and presents them to the user
The user selects the most preferred rental property.

| 11

—— Property attributes and
importance of attributes
Property Catalogue
List of properties

[~ Selected property

[ /11

Postconditions:
1. One rental property is selected by the user.

Summary

Inputs Source Outputs Destination
Property attributes Property catalogue List of properties User
Importance of attributes User Selected property User

Figure 4.3: Use case 2 “Locate property”

4.2.3. Use case 3: “Delete property”

This use case depicts the interactions of a staff member with the system while he
deletes a rental property from the database. The use case starts with the staff
navigating to the login page for authentication. Upon authentication, the system
displays the list of all rental properties currently in the database. The staff selects any
property he wants to delete and navigates to new page displaying only the property
at issue. Then he clicks on a “Delete” button to delete it before being rerouted to the

list of all properties again. This use case is described in details in Figure 4.4.
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Use Case Name: Delete an existing property I 1D: UC-3

Priority: Low

Actor: System administrator (administrator)

Description: The administrator deletes an existing rental property from the database.

I'rigger: The administrator wants to delete an existing rental property from the database.
I'ype: External

Preconditions:
1. The website is available
2. The rental property catalogue is up-to-date and on-line.

Normal course:

1.0. Delete an existing rental property

The administrator navigates to the login page.

The system displays the login page.

The administrator provides his/her login credentials (Alternative course 1.1.)
The system authenticate the website administrator

G LN

message.
The administrator enters clicks on a rental property he wants to delete
The system displays the said property on a new page.

o e N

The website administrator logs out.

The system displays the all properties currently in the database page and a successful login

The administrator clicks the “Delete” button deletes the rental property from the database.

<+

Information for steps:

— Email and password of the website
administrator

Alternatives Course 1.1. :

1.1. The login credentials of the website administrator are not valid.
1. The system displays an error message.
2. The system displays the login page.

Postconditions:
1. One rental property is deleted from the database.

Summary

Inputs Source Outputs Destination
Email and password of the website | Website administrator

administrator

Figure 4.4: Use case 3 “Delete property”

4.2.4. Use case diagram

The use case diagram provides a visual summary of the various interactions that
different actors have with the system while attempting to accomplish various tasks.
A staff member performs three main tasks: adding new properties to the database,
editing and removing some properties from the database. He can also perform tasks
performed by regular users including searching, viewing and selecting properties.
The users of the system perform one main task: locating properties that meet their

preferences. This action includes searching, viewing and selecting properties. The

use case diagram appears in Figure 4.5.
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Figure 4.5: Use case diagram for the proposed system

4.3. Object-oriented analysis

This phase addresses the questions of who will use the system, what the system will
do, and where and how it will be utilised (Dennis et al., 2012). The object-oriented
analysis is concerned with determining system requirements and identifying classes
and relationships among these classes. To understand system requirements, we must

identify the users or actors in the system and know how they use it.
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4.3.1. System requirements

The main functional requirements of the prototype of a recommender system for

rental properties, as proposed in this study, include the following:

4.3.1.1.  Ability to run on a web browser

The proposed system can run on all popular web browsers including Google

Chrome, Internet Explorer, Mozilla Firefox, and Safari.

4.3.1.2.  Ability to perform a preference-based search (PBS)

The system displays a search panel in which users can perform preference-based
search by entering attributes of rental properties they consider relevant and

indicating how important those attributes are to their search.

4.3.1.3.  Ability to display search results

Once a user has specified her preferences and clicked on the search button, the

system displays a set of rental properties that best match her preferences.

4.3.1.4.  Ability to select a preferred rental property

Once, a prospective tenant has located a preferred rental property; the system

provides him with the functionality to select this property.

4.3.1.5.  Ability to add rental property to the system, edit them and remove them

The proposed system provides a staff member with the functionality to add rental

properties to the database, edit their details, and remove them from the database.
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4.3.1.6.  Ability to register and log in a staff member

The proposed system also provides the functionality for authenticating a staff
member. This is the only user who requires authentication to perform his tasks. In
doing so, the system enables the staff to register his credentials and performs

authentication when he attempts to log in using those credentials.

4.3.2. Classes

For the purpose of this research, the prototype of a recommender system for rental
properties requires only two types of users: a staff member (for the property
management firm) and prospective tenants. The staff performs three main tasks,
namely adding new rental properties to the database, editing them and deleting
them from the database. The staff member needs to be authenticated to ensure that
only authorised individuals can carry out such sensitive tasks. The authentication
process requires an email and a password, which require registration before
authentication. The staff member also performs tasks carried out by regular users:

searching, viewing and selecting properties.

Prospective tenants, the target users of the system, will perform the tasks of locating
rental properties. This task includes searching, viewing and selecting rental
properties. As such, the system should provide functionalities that satisfy these user
requirements. The system provides a search panel, where a user can enter attributes
of rental properties that are relevant to her search and indicates the importance of
such characteristics. The system also provides a search results panel that displays to

the user the rental properties that match his or her preferences.

The user can select a rental property if he believes that it meets his preferences. The
system further provides functionalities to enable the user to refine the search
preferences in case the displayed examples do not satisfy the user’s preferences. This
search panel also displays the preferences the user has already stated, thus allowing

him to modify them. These are major processes the system supports.
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From the above description of processes supported by the recommender system for
rental properties, a few possible classes can emerge. The first class is the user class,
which represents users of the system and actions they can perform. This class has no
attributes as no information about users is required for them to carry out the tasks
described above. The second class is the staff class. This class represents the staff
members of a particular property management firm and contains their attributes and
actions they can perform. The third class is the property class that depicts rental
properties and their attributes. The fourth class is the preference model class, which

aggregates the user preferences expressed on rental properties.

The relationships between the various classes can be described in the following
ways. A staff member manages many properties while a property is managed by one
staff member. A user searches for many properties, and a property is searched by
many users. A user has one preference model, and a preference model belongs to a

user.

44. Object-oriented design

The objective of this phase is to design the classes and the user interface defined in
the analysis phase. In particular, a Class Diagram was designed. User interfaces are
also designed in this phase, and they are made of mark-ups with no implementation
code. To avoid duplication, the researcher decided to skip the design of
user-interfaces using mark-ups and instead provided user interfaces generated from

working code in the next chapter.

4.4.1. Classes

The Staff class has three attributes and five methods. The attributes are name, email,
and password. The methods are ‘register’, ‘login’, “add new property’, ‘edit existing
property’ and ‘delete existing property’. These attributes and methods adequately

satisfy the requirements of this class, for the purpose of this study.
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The user class has no attributes but has four methods. These are ‘express
preferences’, ‘search for property, ‘view property, and ‘select property’. For the
purpose of the research, these methods will adequate capture the behaviour of the

prospective tenant is the system.

The property class has the following primary attributes: type, location, rent, number
of bedrooms and number of bathrooms. In addition to these, it has derived attributes
including the cost function with respect to each primary attribute, an aggregate cost
function, a set of dominating properties with respect to the current preference

model, and a probability of escaping these dominance relations.

The preference model class aggregates the preferences expressed by a prospective
tenant on properties. Its attributes including the value and importance of the
preferences expressed on each attribute of a rental property (type, location, rent,

number of bedrooms and number of bathrooms).

4.4.2. Class diagram

A class diagram provides a visual representation of all these classes, their attributes
and methods, and the relationships between them. The class diagram for the

proposed system appears in Figure 4.6.
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Staff

+name
+email
+passwaord

+register()

+login()

+add new property()

+edit existing property()
+delete existing property()

Preference Model

+type_value
+location_value
+rent_value
+num_of_beds_value
+num_of_baths_value
+type_weight
+location_weight
+rent_weight

+locate property() +num_of_beds_weight

+num_of_baths_weight

1
1
+manages
+has

0..*

Property
+type
+location
+rent 1
+num_of_beds
+num_of_baths 0. * .4 User

+type_cost_function
+location_cost_function
+rent_cost_function
+bedrooms_cost_function
+bathrooms_cost_function
+item_cost_function
+dominance_escape_prob
+dominating_set

+searches +locate property()

Figure 4.6: Class Diagram of the Proposed Recommender System

4.4.3. Entity Relationship Diagram

An Entity Relationship Diagram (ERD) is a picture that shows the information that is
created, stored and used by an information system (Dennis et al., 2012). An ERD has
three main component namely entities, attributes and relationships. Entities are the
basic building blocks for a data model. They group together similar information in
boxes. Attributes are information that is captured about entities. They included in
the boxes that represent entities. Relationships are associations between entities.

They indicate how separate entities relate to each other.

59



In the context of this study, we have four entities: Staff, User, Property, and
Preference Model. The relationships between these entities are explained as follows:
a staff member manages zero or many properties while one staff member manages a
property; a user locates zero or many properties while a property is located by zero
or many users; a user has one preference model, and a preference model belongs to
one user. The attributes of various entities appear in the boxes representing those

entities as shown in Figure 4.7.

. PROPERTY
PK|ID o EI'D e
Name Mehdges ngation
Email I OS | Rent
Password is managed by Num_of_bedrooms
Num_of_bathrooms

Type_cost_function
Location_cost_function
Rent_cost_function
Bedrooms_cost_function
Bathrooms_cost_function
Dominance_escape_prob
Dominating_set

locates is located by

PREFERENCE MODEL

PK |ID has
Type_value O [ USER
Location_value !

Rent_value belongs to

Num_of_beds_value
Num_of_baths_value
Type_weight
Location_weight
Rent_weight
Num_of_beds_weight
Num_of _baths_weight

Figure 4.7: Entity Relationship Diagram for the proposed recommender system
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CHAPTER FIVE: SYSTEMS IMPLEMENTATION AND TESTING

5.1. Introduction

This chapter addresses the last phase of SDLC: systems implementation. In this
phase, the researcher built the code base of the system and tested the various
functionalities of the system to ensure that it performed at designed. The researcher
used the Ruby on Rails framework to develop the system. The framework contains
various types of files. The logic of the system was built using ruby files, while the
user interface was build using HTML and CSS files. The researcher used SQLite3 as
a development database, PostgreSQL as a production database, and WEBTrick as the
web server. The system was deployed on Heroku; a cloud Platform-as-a-Service

used as web application deployment model.

The architecture of the proposed recommender system has three main component: a
database, a webserver and a web client. The database stores data on properties,
users, and preference models of the users each in its own table. The web server
receives and processes HTTP requests to perform CRUD (create, read, update and
delete) actions on the data stored in the database. The web client provide the user
interface that enables users to interact with the system. The system architecture is

illustrated in Figure 5.1.

Database <:> Web Server <:> Web Client

Figure 5.1: Application architecture of the proposed recommender system

5.2
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User interfaces

User interfaces were built using HMTL for content and CSS for styling. Instead of
writing CSS from scratch, the researcher leveraged the functionalities of Twitter’s
Bootstrap front-end framework for web application development to quickly and
efficiently style HTML pages. The following are the main user-interfaces required in

the proposed system:

5.2.1. User interface for adding a new property to the database

This interface is used by a staff member to populate the database with rental
properties that users can search. This process must be accomplished before other
users can start using the system. The landing page of the system does not explicitly
make reference to this functionality as it is only used by the staff. Furthermore, the
system must authenticate the staff in order for him to perform this task. This user

interface is illustrated in Figure 5.2.

Smart Real Estate Agent  Sign Out

Type Apartment
Location Langata
Rent 25000
Bedrooms a

Bathrooms 3

Figure 5.2: User interface for adding new properties to the database

5.2.2. User interface for editing details of a property

This functionality is only used by a staff member to edit details of a property that
exist in the database. This action requires authentication by the system. This

user-interface is illustrated in Figure 5.3.
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Smart Real Estate Agent  Sign Out

Edit Property

Type Apartment
Location South B
Rent 35000
Bedrooms 2

Bathrooms 2

Figure 5.3: User interface for editing details of a property

5.2.3. User interface for removing a property from the database

This functionality is only used by a staff member to remove from the database any
rental property whose existence in the database may no longer be required. This
action requires authentication by the system and is only performed by the staff

member. This user-interface is illustrated in Figure 5.4.

Smart Real Estate Agent  Sign Out

Details of the rental property

Property Type Property Location Rent Amount Bedrooms Bathrooms Edit Delete

Apartment South B KES 35,000 2 2 Edit Delete

Back

Figure 5.4: User interface for removing a property from the database

5.2.4. User interface for searching property

This is the main functionality of the recommender system: it enables users to
perform preference-based search against the database with the view of locating
preferred rental properties. This interface displays a search panel in which the user
specifies attributes of rental properties relevant to their search, indicates the

importance of each attribute, and clicks on the ‘Search’ button to initiate the search.
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The system is configured to require the expression of preference on at least on
attribute. If the user does not specify any attribute, the system will display an error
message and prompt the user to indicate at least one attribute. Furthermore, the
system initially sets values of the importance or weight of those preferences to a

default value of 3, which is neutral. This user-interface is illustrated in Figure 5.5.

Smart Real Estate Agent

State initial preferences

Please select any feature of a rental property and indicate how important this feature is to you.

Property Type Apartment Importance 1 203 4 5
Property Location Langata Importance 1 203 4 5
Rent Amount 20000 Importance 1 203 4 5
No. of Bedrooms 2 Importance g 203 4 5
No. of Bathrooms 2 Importance 1 203 4 5

Figure 5.5: User interface for searching property

5.2.5. User interface for reviewing search results, selecting a preferred rental
property, and revising preferences

When the preference-based search is performed, the system will display a new
webpage containing three main elements. These include the search panel with the
previously stated preferences, a results panel displaying five rental properties that
best satisfy the already-expressed preferences (current preference model), and a
suggestions panel containing five rental properties that are supposed to encourage
the use to express more preferences. In the case the user decides to revise her
preferences, she does so by amending the preferences in the search panel and
clicking on the ‘improve your search” button. The same webpage will reload but now
it will contain updated data that reflects the new preferences. This user-interface is

illustrated in Figure 5.6.
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Smart Real Estate Agent

Your preference has been recorded

You stated the following preferences

You can change any preference based on the results shown.

Property Type Apartment Importance 1 2 4 @5
Property Location Langata Importance 1 2 04 5
Rent Amount 35000 Importance 1 2 4 05
No. of Bedrooms 3 Importance 1 2 04 5
No. of Bathrooms 2 Importance 1 2 04 5
Improve Your Search
Results
Property Type Property Location Rent Amount Bedrooms Bathrooms Select
Apartment Syokimau KES 32,000 3 2 Select
Apartment Roysambu KES 35,000 3 2 Select
Apartment Langata KES 45,000 3 2 Select
Apartment Langata KES 50,000 3 2 Select
Apartment South B KES 35,000 2 2 Select
These are the results that match your query the best.
Suggestions
Property Type Property Location Rent Amount Bedrooms Bathrooms
Apartment South B KES 35,000 2 2
Apartment Ruaka KES 50,000 3 2
Apartment Lavington KES 50,000 2 1
Apartment Kiambu Road KES 45,000 2 2
Apartment Ongata Rongai KES 28,000 3 1

Examine these suggestions and consider whether you need to revise some of your preferences.

Figure 5.6: User interface for reviewing search results, selecting a preferred rental
property, and revising preferences

5.2.6. User interface for selecting a preferred rental property

This interface is a result of the user clicking on the “Select’ button next to a property

they prefer. It shows the selected property on its own webpage. The interface is

illustrated in Figure 5.7.
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Smart Real Estate Agent

Details of the rental property

Property Type Property Location Rent Amount Bedrooms Bathrooms

Apartment Syokimau KES 32,000 3 2

Back

Figure 5.7: User interface for selecting a preferred rental property

5.2.7. User interface for registering as a staff member

This interface is used to register the credentials of a staff member to enable
authentication when he performs actions that modify the database. This user

interface is illustrated in Figure 5.8.

Smart Real Estate Agent

Register

Name
Email

Password

Figure 5.8: User interface for registering as a staff member

5.2.8. User interface for authenticating the staff member

This user interface is used to authenticate the staff member. If the credentials
provided by the staff are not valid, the system will display an error message and will
not perform login action. Furthermore, system is configured to protect actions that
require authentication from any attempt to perform them without authentication.
This means that if any user attempts to navigate to the parts of the application that
handle adding rental properties to and removing rental properties from the
database, the system displays an “Accessed Denied!” error message and redirects the

user to the login page.
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Smart Real Estate Agent

Sign In
Email

Password

Figure 5.9: User interface for authenticating a staff member

5.3. Organisation of the code base

The code that implements the core algorithms used in this prototype is written in the
ruby programming language. Ruby on Rails, being MVC (Model-View-Controller)
framework, these algorithms are housed in models (that map to classes defined in
Chapter Four). In particular, these algorithms that implement the logic of generating
results for the search defined in the ‘property” model. The ‘Views’ are responsible for
displaying user interfaces, while controllers are responsible for managing the flow of

data between the database, the models and the views.

5.4. Database

This study employed the SQLite3 database in the development environment as this
this the default database for the development environment. When the application
was deployed to the production environment, the database used was PostgreSQL, as
it is the default database for, Heroku, the cloud-based platform used in this study to
deploy the application. Figure 5.10 shows a snapshot of the ‘“properties” table in the

database in the development environment.
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Import  Export = Lf_i_ al v Bl
<+ properties -3 sse
Q Schema sQL
Tables property_type property_location rent_amount num_of_bedrooms num_of_bathrooms
» preference_models 5 Apartment South B 2 2
2 6 Apartment Ruaka 3 2
3 7 | Apartment Lavington 2 1
GLRDAE 8 Apartment Kiambu Road 2 2
> sc::;wnf,migrat‘wuns 5 9 Apartment Ongata Rongai 3 1
3 10 House Ongata Rongai 4 3
> sqallgs‘iequence 11 Apartment Roysambu 3 2z
12 Apartment Ruaka 2 2
[ i 13 Apartment Kilimani 1
14 House Karen 1 1
5 Apartment South B 2 2
16 Apartment Miolengo 2 2
17 Apartment Syokimau 2 2
18 Apartment Syokimau 3 2.
19  Apartment Kilimani 1
20 Apartment Karen Z
271 Apartment Uthiru 3 3
22 Apartment Karen 1 1
23 Apartment Ruaka 2 2
24  Apartment Ongata Rongai 1 1
25  Apartment Langata 3 2
26 Apartment Ruaka 1 1
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28 Apartment Langata 2 1
29 Apartment Langata 2 1
30 Studio Miolengo 0 1
31 Studio Syokimau 0 1
32 Apartment Kilimani 1 1
33 Apartment Imara Daima 3 3
34 House Ongata Rongai 4 2
35 Apartment Syokimau 3 3
36 Apartment Miolengo 1
37 Apartment Karen 2
38 Apartment Langata 1
+ | - [ % | A A Y 42 records in 0,000 seconds <1 of 1 >

Figure 5.10: A snapshot of the “properties’ table in the database

5.5. Application test results

The researcher used the Test-Driven Development approach to ensure that the
system performed as designed. In doing so, the researcher carried out three different
types of test: unit tests, functional tests and integration tests. Unit tests examine
different components in isolation. Functional tests are carried out to test multiple
components in collaboration. Integration tests follow a business process: components

work together to achieve a business objective.

Rails, the framework used to develop the prototype, being a Model-View-Controller
(MVC) framework, unit tests were carried on the “User” and “Property” models.
Functional tests were carried out on the “Properties Controller”, “Users Controller”,
“Sessions Controller”, and “Preference Model Controller.” Integration tests were
carried on major business processes including adding, viewing, editing, and deleting
a property; and viewing all properties. Furthermore, locating a property (an action
that includes searching, viewing and selection a property) was also tested. Finally,

the actions of registering and authenticating staff members were also tested.
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Table 5.1 provides a summary of business processes tested during integration tests.

Functionality Tested? Passed?

Register a staff member Yes Yes
Authenticate a staff member Yes Yes
Add a new property to the database Yes Yes
View all properties in the database Yes Yes
View a particular property Yes Yes
Edit a particular property Yes Yes
Delete a particular property from the Yes Yes
database

Search for properties Yes Yes
Generate and display search results Yes Yes
View search properties Yes Yes
Select a preferred property Yes Yes

Table 5.1: Summary of integration tests results

The prototype proposed in this study was tested on various web browser including
Google Chrome (Version 57.0.2987.98 (64-bit)), Mozilla Firefox (52.0.1), Safari
(Version 10.0.3 (12602.4.8) and Internet Explorer 11 both on Windows machine and a

Mac machine where possible.

The researcher further carried out performance tests to determine how much time it
took for a user to perform certain tasks. Performance testing is a non-functional
testing technique to determine the system parameters in terms of responsiveness and
stability under various workload. Performance testing concerns the quality attribute
of the system such as scalability, reliability and resource usage (Performance Testing,
n.d.). These quality attributes can include speed, scalability, stability and reliability.
The researcher tested the speed quality of the system to assess how quickly the

system responded on user actions.
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Functionality Tested? Time in
milliseconds
Search properties Yes 1,890
Improve search results Yes 1,580
Login Yes 98
Add new property Yes 150
Edit property Yes 163
Delete property Yes 77

Table 5.2: Summary of performance test results for speed testing
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CHAPTER SIX: CONCLUSION AND RECOMMENDATIONS

6.1. Introduction

Locating items of interest online has become increasing challenging for users given
the large pool of choices available to review while searching for items that meet their
needs. The situation is also true for searching for rental properties online in Kenya.
Currently available tools for querying databases fall short of the expectation of users,
and many of them may be unsatisfied with the results. In light of this, the researcher
proposed the development of a prototype of a recommender system for rental
properties. This chapter discusses the conclusions and recommendations of this

study.

6.2. Conclusion

This study had four main objectives including (i) to review recommender systems
technology currently in use, (ii) to evaluate algorithms that can be applied to
recommend rental property, (iii) to develop a prototype of a recommender system
for rental property, and (iv) to validate the proposed system. The next paragraphs
indicate how these objectives were achieved in the course of this research

endeavour.

The study achieved the first objective (to review recommender systems technology
currently in use) in Chapter 2 Section 2. In this section, the study examined the
currently available recommender system technologies focusing on the definition and
evolution of the recommender systems. It further discussed various functions of a
recommender system and reviewed briefly various recommendation approaches.
These include collaborative filtering, content-based, knowledge-based,

community-based, demographic-based, hybrid approaches.

The research achieved the second objective (to evaluate algorithms that can be

applied to recommend rental property) through Sections 3, 4 and 5 of Chapter Two.
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Section 3 discussed various types of critiquing-based recommender systems
including natural language-based systems, system-suggested critiquing systems and
user-initiated critiquing systems. These systems use various algorithms to arrive at

their recommendations.

Section 4 describes in details the user-system interactions used in user-initiated
critiquing systems focusing on the wuser preference elicitation, system
recommendation, user feedback and selection of desired item. These are steps used
by algorithms found in this type of recommender system. Section 5 presents one
particular algorithm wused in this study to generating suggestions for

recommendation. The algorithm is presented in the form of pseudo-code.

The research achieved the third objective (to develop a prototype of a recommender
system for rental property in Chapter Four and Five. In Chapter Four, Section 2 dealt
with the creation of use cases; Section 3 addressed system analysis through
requirements gathering and class definition; Section 4 dealt with systems design by
designing relevant classes and producing a class diagram. In Chapter Five, Section 1
presents the application architecture of the system; Section 2 displayed

user-interfaces; Section 4 presented a snapshot of the database.

The study achieved the fourth objective (to validate the proposed system) by
presenting the results of testing the system to ascertain that it performed as the

researcher intended.

6.3. Limitations of the prototype

If the number of attributes in which users express preferences increasing, the user
efforts also increase making it harder to the system to be used. The main objective of
this recommender system was to facilitate locating rental properties. Therefore, if the
number of attributes of rental properties increases, this may undermine the primary
objective of building such a system. Consequently, the researcher limited the

number of attributes on which users can express preferences to only five. Expressing
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attributes on five attributes is not overwhelming to users and thus the objective of

facilitating locating rental properties can be achieved.

6.4. Recommendations

With the increased availability of Internet connection in Kenya and the reducing
costs of accessing the Internet, coupled with increased interest in online commerce,
many consumers are turning to online resources to locate items that are of interest to
them. It is, therefore, important for businesses to invest in technology that supports
their customers to easily access the information they require to find what they are
looking for and ultimately make purchases. This analysis applies to the rental
properties market. The development of the prototype of a recommender system for

rental property in this study is an effort in this direction.

6.5. Future works

Many Kenyans use the Internet to access information. Many of those who access
information through the Internet use their mobile phones. The majority of
smartphones in the Kenyan market run on Android platform. Research work that
attempts to implement a recommender system for rental properties or any other
items on Android devices would be an effort worth making both for its academic

value and market potential.
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