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Materials impact on the EU’s competitiveness of the renewable energy, storage and e-mobility 

sectors 

 

In the context of the decarbonisation of the European energy system and achieving the long-term climate 

change mitigation objectives, this study assesses the impact of materials on the competitiveness of the EU’s 

clean energy technology industry, taking into account several factors such as security and concentration of 

materials supply, price volatility, cost intensity in the technology, etc. These factors, together with the EU’s 

resilience to potential materials supply disruptions and mitigation possibilities, have been analysed for three 

technologies, namely wind turbines, solar PV panels and batteries. Wind power was found to be the most 

vulnerable technology in relation to materials supply, followed by solar PV and batteries. From the materials 

perspective, several opportunities have been identified to improve the EU’s industrial competitiveness with 

regard to the deployment of these technologies, such as boosting recycling businesses in the EU, promoting 

research and innovation, diversifying the supply and strengthening and increasing downstream manufacturing 

in the EU. 
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Executive summary 

This report presents an analysis about materials impact on the competitiveness of EU 

industry in relation to three technologies: wind energy, solar photovoltaic energy and 

battery technology. The proposed methodology is used to evaluate the EU’s resilience to 

potential supply shortages of raw, refined and processed materials and to identify a 

series of opportunities to strengthen the EU’s industrial competitiveness regarding these 

technologies. 

Policy context 

The fight against climate change and making EU industry stronger and more competitive 

are top priorities of the current Commission. Moreover, the EU’s transition to a low-

carbon economy implies, among other things, the large-scale adoption of renewable 

systems such as wind turbines and solar panels, more advanced grids and the 

development of battery technologies to store electricity to power the increasing fleet of 

electric vehicles. This inevitably leads to an increasing demand for certain materials in 

the medium and long term. The European Union is highly dependent on imports of 

materials in different forms: raw materials, refined metals, processed materials, 

compounds, etc. The supply of different materials required for the production of 

renewable energy technologies is often highly concentrated from just a few countries, 

some of which even obstructing trade. This makes the EU vulnerable to potential 

materials supply bottlenecks. Big countries such as China, USA, Brazil, India and Russia 

are also promoting ambitious decarbonisation policies, meaning that the deployment of 

renewables and electrification of transport will increase globally. Competition for the 

same material resources, the likelihood of rapid global demand growth and limitations on 

ramping up production capacity for certain materials are several factors that may greatly 

affect the EU’s resilience and competitiveness on the global renewables production and 

storage scene. 

Key conclusions 

The study shows that materials can greatly affect the competitiveness of the EU industry 

engaged in clean energy generation and storage sectors through several factors. Wind 

technology using permanent magnets is found to be the most vulnerable technology in 

relation to materials, followed by solar PV and batteries. 

Main findings 

Several opportunities to strengthen the EU’s competitiveness have been identified for 

wind power, solar PV and battery technologies with regard to materials required for these 

technologies. In the medium term (2025 horizon), recycling can become a viable solution 

to decrease the EU’s reliance on imports of materials. Extending and building new 

recycling capacity in the EU is essential, in particular to recover critical rare earth 

elements from wind turbine generators and electric motors, the potential for which 

appears to be high but not currently fully exploited. A large amount of related research is 

already being carried out in Europe, including recycling of materials from wind turbine 

blades. The new solutions should be adopted widely by industry in the coming years, 

supported by proper EU regulation. As most solar panels and batteries are still in use, the 

recycling of materials from these technologies is currently limited due to insufficient stock 

of end-of-life products. However, the recycling potential is high and it is expected to 

increase significantly after 2025, especially for lithium-ion batteries originating from 

decommissioned electric vehicles and from stationary electricity storage. 

Innovation is another worthy opportunity for the EU to stay competitive in the global 

context. Through innovation the EU will be able to find smart solutions and improve 

manufacturing processes at different stages of the materials supply chain, i.e. from raw-

materials excavation and processing, to manufacturing of components, to recycling and 

finding alternative materials. 
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A diversified materials supply is a tangible way to increase the EU’s resilience to potential 

materials supply shortages. The EU is very dependent on supply of materials from 

beyond Europe, and in particular from China. China is the global supplier of about half of 

the raw materials needed in wind energy, solar photovoltaic energy and batteries 

technologies. Although significant secondary materials flows might be generated in the 

future through recycling, it is unlikely that recycling alone can cope with the rapidly 

increasing demand for materials. Mined primary supply will always be needed to fill in the 

expected materials-demand gap. Therefore, stimulating the mining sector in the EU and 

increasing domestic production of raw materials, along with becoming partners in 

ongoing and future global exploration projects, could ensure a continuous and adequate 

supply of raw materials. Securing access to non-EU countries’ resources via trade 

agreements would represent an additional solution. 

The competition for refined and processed materials is even stronger than that for raw 

materials due to highly concentrated supply. With a few exceptions, China is the major 

supplier of all refined and processed materials analysed in this study. The EU has no or 

only a minor share in the global production of processed materials required in wind 

turbines, photovoltaic solar panels and lithium-ion batteries. Improving downstream 

manufacturing capacity could make EU Member States more competitive by ensuring 

viable access to refined and processed materials. This can eventually support and 

facilitate standardisation and recycling activities in Europe. Establishing long-term 

cooperation with China within the framework of EU–China cooperation on energy, 

resources and climate security is another option for the EU to remain competitive and 

achieve the renewables deployment targets. 

In the long term (after 2030), the substitution of critical and scarce materials with other 

more available materials or substitution at the technology level could play a significant 

role in improving the EU’s resilience and thus strengthening its competitiveness. 

Related and future JRC work 

In a recent study (EUR 28192), the European Commission's Joint Research Centre (JRC) 

evaluated the potential bottlenecks in the materials supply chain that may be 

encountered by the EU on the road to achieving the 2030 targets related to low-carbon 

energy and transport technologies. The EU’s resilience to supply bottlenecks was 

assessed for three technologies: wind, photovoltaic energy and electric vehicles. The 

present report takes stock of the previous study and goes further by identifying 

opportunities in order for the European Union to be competitive in the global market for 

wind, photovoltaic energy and batteries for energy storage. 

Quick guide 

This study investigates the impact of raw, refined and processed materials on the EU’s 

competitiveness with regard to deployment of wind power, photovoltaic and batteries 

technologies in the EU by 2030. Four key opportunities to enhance the EU’s industrial 

competitiveness in these three technologies are identified, namely: boosting recycling 

business; promoting research and innovation; diversifying supply; and strengthening and 

increasing downstream manufacturing. Substitution is also found to be a tangible 

opportunity for the EU in the long term — beyond 2030. 
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1. Introduction 

The possible implications of materials for the successful future deployment of wind, solar 

photovoltaic (PV) and battery technologies in the EU are analysed in this study. The 

analysis strives to identify the issues that might affect the EU’s competitiveness on the 

global market. Both raw materials and processed materials are considered in the 

analysis. Different factors, such as geopolitics, supply security, prices, future demand, 

materials recycling and substitution potential, are taken into account when assessing 

materials-related implications. 

How could materials influence the competitiveness of European industry in renewable 

technologies? 

Competition in the global wind and solar energy market is fierce, as many companies are 

competing for a share of the world’s leading market. Materials can offer European players 

a competitive edge, hence producing technologies for the generation and storage of 

renewable energy at a more competitive price. 

Several factors could provoke implications when addressing materials and their potential 

impact on the competitiveness of the clean energy sector. 

 Geopolitics. The suppliers of materials needed for wind, solar and battery 

technologies are different from the suppliers of fossil fuels. The EU is strongly 

reliant on supplies of raw materials from non-EU countries. For some materials 

near to monopoly supply situation is observed, often from politically unstable 

countries, sometimes having history of applying export quotas. A European 

Commission study (European Commission, 2017a) indicates that 62 % of the raw 

materials identified as critical for the EU economy are supplied from just one 

country — China (Figure 1, left side). The EU countries supplying Critical Raw 

Materials (CRMs) are Finland and France, each of them supplying 3 % of the 

materials needed for the EU economy. On a global scale China is delivering 70 % 

of CRMs (Figure 1, right side). 

Figure 1. Main suppliers to the EU (left) and global suppliers (right) of CRMs 

 

Source: European Commission, 2017a. 

 Competitiveness of the EU’s mining sector. The companies are stimulated to 

invest in mining activities only in view of a clear business case: if they can sell the 

product while garnering a certain profit. Opening or extending mining capacity is 

capital intense and in some cases may require up to 10 years. Therefore, new 

mine projects and processing facilities are often planned to be developed in 

countries that are already suppliers. Many of the existing suppliers are currently 

located in developing countries, where in general the environmental standards 
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and labour/energy costs are low. Since it is very likely that these countries would 

remain the major future suppliers, no significant change in the security of supply 

is to be expected. Mining raw materials in the EU at a competitive cost can be a 

challenge due to strict environmental restrictions and high labour costs, which can 

often slow the process down and make it more expensive compared to mining 

activities in developing countries. 

 Material use intensity. Wind power, solar PV and battery technologies are 

significantly more material intensive than traditional fossil-based energy-

generation and electricity-storage systems. Since renewable and battery-storage 

technologies are expected to be deployed more broadly in the coming decades, 

their share of global materials consumption is expected to grow rapidly. Thus, the 

supply of certain critical materials may not be sufficient to meet the increased 

demand in a timely manner. 

 Price volatility. Driven by global fluctuations of supply and demand, the price 

volatility of materials can greatly influence the production cost of a technology, 

and therefore the competitiveness of a manufacturing industry. A typical example 

is the four- to ninefold increase in the price of rare earth elements (REEs) during 

2011/2012 due to export restrictions imposed by near-monopolistic China. As a 

result, the cost of products containing REEs, such as wind turbines, has increased. 

Since the beginning of 2017 the price of some materials used in batteries has 

surged as a result of electric vehicle (EV) industry growth, raising concerns among 

manufacturers. 

 Specific technology share. The future demand for materials for renewable 

technologies will depend on how many wind turbines, solar panels and batteries 

are deployed in the coming years. Uncertainties are created by the fact that the 

demand for materials will be determined by technology type and share, for 

example if permanent magnet-based wind turbines are to be more widely 

deployed in future, the EU’s dependence on China for REEs will increase due to 

the near-monopolistic supply of such materials and magnets. Deploying more 

thin-film PV technology will introduce higher dependence on indium rather than on 

silicon, the reference material for common crystalline silicon PV. Therefore, the 

chosen specific technology will affect the EU security of supply in a different way 

due to different geopolitics related to the supply of the required materials. 

 Supply chain integration. To deal with the increasing effects of globalisation 

and fiercer competition worldwide, some companies/countries are adopting a so-

called supply chain competitiveness strategy. China is a good example. An 

important element of its success is the integration of the entire supply chain (end 

to end), from raw materials to final systems. Having undistorted access to raw 

materials is a necessity, but is not a sufficient condition to be competitive. Better 

integration of materials sourcing, processing, manufacturing and delivering 

processes are equally important in improving the overall industry competitiveness. 

 Inter-sectoral competition. Several emerging technologies and sectors could 

require the same materials. For example, wind turbines require the same 

materials as EVs and other non-energy sectors, such as ICT, defence, etc. 

Therefore, materials demand for renewable technologies should be also assessed 

in a multi-sectoral context. 

Box 1. Materials can significantly influence the competitiveness of EU industry related to 

renewable generation and storage technologies through a combination of factors, among 

which rapidly growing demand, security and concentration of supply, price volatility and 

materials cost intensity of the technologies. 
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2. Methodological approach 

In this study, the competitiveness of European industry in wind power, solar PV and 

battery technologies from a materials perspective is addressed in relation to the EU’s 

resilience to materials supply issues. In this study resilience is considered to be a key 

element of industry competitiveness. The EU’s overall resilience to potential supply 

bottlenecks of materials used in wind turbines, solar PV and batteries is assessed as a 

combination of the EU’s resilience at several levels of the value chain: raw materials, 

processed materials and technological level (Figure 2). The latter is influenced by various 

mitigation measures. 

 Raw materials: includes material criticality, cost, key suppliers and associated 

supply risk, along with recycling and substitution potential. 

 Processed materials: analysis of key suppliers and associated supply risk. 

 Technological developments: evaluation of the effect of selected mitigation 

measures on the technologies under consideration in the 2030 timeframe.  

Figure 2. Methodological approach followed in the analysis 

 

Source: JRC representation. 

The EU’s resilience at the level of raw materials is estimated by a semi-quantitative 

assessment of seven parameters: materials criticality; cost impact; price evolution; EU 

import reliance; major production countries and associated supply risk; recycling; and 

substitution potential. 

The average value is then used to determine the EU’s resilience for each technology in 

relation to raw materials required for this particular technology. 

The estimate of the EU’s resilience at the level of processed materials is based on major 

countries and EU production shares, taking into account the concentration of supply and 

political stability of the supplier countries. Details on the calculations of this parameter 

were provided in a recent JRC study (Blagoeva et al., 2016). 

The estimate of the EU’s resilience at the technology level is based on four elements: 

regulation; research and innovation; existing capacity; and future potential of the 

selected mitigation measures by 2030. More details are given in Section 6. 
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All parameters used for the assessment of resilience are assigned scores ranging 

between 0 (red) and 1 (green). The results are presented in a traffic light assessment 

matrix, with red indicating potential problems and green indicating no issues. 

The overall resilience for each technology is estimated as the average of resilience over 

three steps of the supply chain — raw materials, processed materials and technological 

developments, the later influenced by the most effective mitigation measures. The EU's 

resilience for wind technology is calculated as follows: 

𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑤𝑖𝑛𝑑 =
[𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 (𝑅𝑎𝑤 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠)𝑤𝑖𝑛𝑑 + 𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠)𝑤𝑖𝑛𝑑 +
𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒(𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡𝑠)𝑤𝑖𝑛𝑑]/3  

The EU’s resilience for solar PV and batteries is calculated in a similar way: 

𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑃𝑉 = [𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 (𝑅𝑎𝑤 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠)𝑃𝑉 + 𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠)𝑃𝑉 +
𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒(𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡𝑠)𝑃𝑉]/3  

and 

𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 =
[𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 (𝑅𝑎𝑤 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠)𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 + 𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠)𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠 +
𝐸𝑈 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒(𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡𝑠)𝑏𝑎𝑡𝑡𝑒𝑟𝑖𝑒𝑠]/3  

The resilience assessment is finally used to identify potential opportunities to improve the 

EU’s competitiveness in the context of the analysed technologies from a materials 

perspective. 
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3. Selection and assessment of raw materials 

3.1. Selection of raw materials 

Different sub-technologies were considered in order to select the relevant raw materials 

for wind turbines, solar PV and batteries, as described below. 

Wind turbines. Today a mix of wind turbines differing by generator type are used to 

meet the various specific onshore and offshore site conditions, for example: doubly fed 

induction generators, electrically excited synchronous generators, squirrel-cage induction 

generators and permanent magnet synchronous generators (PMSGs). While the onshore 

market is dominated by traditional doubly fed induction generators, with capacities up to 

6 MW, the offshore wind market mostly uses Siemens 3.6-MW turbines, which operate 

with a high-speed transmission and a squirrel-cage asynchronous generator. 

Manufacturers of wind power technology have focused on enhancing turbine performance 

in terms of energy production, reliability, operation, maintenance, capital cost and 

transportation. The direct-drive turbine with permanent magnet synchronous generators 

(DD-PMSG) offers certain advantages in terms of efficiency, weight, dimension and 

maintenance. However, this type of turbine is associated with a high demand for REEs. 

About 2 tonnes of permanent magnets are used in the 3 MW DD-PMSG turbine (low-

speed design), or approximately 650 kg of REEs. In 2015 the global market share of DD-

PMSGs was estimated at 19 %. Based on their technical advantages, the global market 

share of PMSGs is expected to increase in the future, especially for offshore 

applications — up to 29 % by 2020 and 44 % by 2030 (Lacal-Arántegui and Serrano-

González, 2015). The future deployment of wind power generation may be affected by 

potential disruptions in supply and the rising price of critical REEs. 

Solar PV. Crystalline silicon solar panels currently account for about 96 % of global 

installed PV capacity. Since the deployment of thin-film PV technologies, namely copper-

indium-gallium-selenide and cadmium telluride, is expected to increase in the future, 

these sub-technologies are also taken into consideration in the analysis. 

Batteries. Currently, two major battery technologies are used in EVs: nickel metal 

hydride (NiMH) and lithium-ion (Li-ion). However, NiMH batteries are gradually being 

replaced by Li-ion batteries (Eurobat, 2016). In the power sector, several battery types 

are currently used to store electricity, mainly sodium sulphur (~ 400 MW), followed by 

Li-ion (~ 175 MW), advanced lead-acid (~ 75 MW), redox flow (~ 30 MW) and nickel 

cadmium (~ 25 MW). The numbers refer to the installed global capacity in 2012 (IRENA, 

2015a). Between 2013 and 2014 Li-ion batteries saw the largest increase in capacity 

(around 33 %), while the other types of batteries had a very marginal increase of about 

1-2 %. Germany is Europe’s leader in terms of implementing renewable energy. In 2016, 

92 % of the newly installed storage capacity in Germany was Li-ion batteries, and only 

8 % lead-acid batteries (Figgener et al., 2017). Such facts would lead it to the conclusion 

that the future tendency will be a steady increase in the Li-ion battery market in both 

electro-mobility and stationary electricity storage. Advanced lead-acid batteries are also 

expected to be present in 2030. Therefore, two battery chemistries were considered in 

this study: Li-ion and advanced lead-acid (World Bank Group, 2017a; Schmidt et al., 

2017). 

Two recent studies published by the World Bank Group (World Bank Group, 2017b) and 

Bloomberg (BNEF, 2017a) were also considered when selecting raw materials relevant to 

the three technologies analysed. 

The materials selected for further evaluation required in wind power generation, solar PV 

and battery technologies are listed in Figure 3. The materials identified as critical for the 

EU economy (European Commission, 2017a) are highlighted in red. 
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Figure 3. Representative materials required in wind turbines, PV and battery technologies 

analysed in this study (1) 

 

 

 

Source: JRC analysis. 

                                           
(1) NB: (i) Boron is obtained from borate minerals. Borate is identified as critical in the 2017 CRM list. (ii) 

Silicon is intended to be silicon metal: silicon used in solar PV is in the form of polysilicon. Silicon metal is 
the primary feedstock for almost all polysilicon used in solar PV. Silicon metal is identified as critical in the 
2017 CRM list. 
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3.2. Assessment of raw materials 

Several parameters, mainly concerning the sustainable supply of raw materials, are used 

to assess semi-quantitatively the EU’s resilience to raw materials supply for the mass 

deployment of wind, solar PV and battery technologies (Figure 4). In addition, recycling 

and substitution potential were taken into consideration for the assessment. 

Figure 4. Parameters used to assess the EU’s resilience at raw materials level. 

 

Source: JRC representation. 

A short explanation is given below for each of the parameters used. 

3.2.1.  Criticality of materials 

The criticality of the selected materials is in accordance with the latest European 

Commission study on CRMs (European Commission, 2017a). The materials in red circles 

were assessed as critical for the EU economy, thus having both high supply risk and high 

economic importance. The role of the selected materials in the different technologies is 

also described in Figure 3. 

Overall, 40 % of the materials required for wind, solar PV and batteries are critical 

according to the new 2017 CRMs list. Lithium and silver were also identified as materials 

for which supply shortages can be expected for the large-scale deployment of batteries 

and solar PV (Blagoeva et al., 2016). Thus, 44 % of the materials listed in Figure 3 are 

potentially problematic materials for these three technologies. 

Assessment: all critical materials according to the CRM 2017 list required in a given 

technology were assigned a value equal to 0. Conversely, non-critical materials were 

assigned a value equal to 1. The average of all assigned values — a numerical between 0 

and 1 — was taken as a measure of "Material criticality" parameter — see Figure 4. 

Box 2. 40 % of the materials used in wind turbines and around 25 % of the materials 

used in PV panels and batteries are evaluated as critical for the EU economy based on 

the 2017 CRMs list. 

3.2.2.  Impact of materials on the cost of technology 

The price of materials is a substantial part of the final cost of the three technologies. 

Therefore, an increase in the price of materials may adversely affect the production costs 

and profit margins of technology manufacturers. 

Batteries rely on the most intensive use of materials per unit output, leading to a 

substantial part of the cost of batteries — up to 74 % (Figure 5). This means that any 

volatility in the price of materials can significantly affect the cost of batteries. 
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Figure 5. Impact of material prices (2) on the cost of wind turbines, solar PV panels and batteries 

 

Source: JRC representation, with data from: Berger, 2011; CCS, 2012; CEMAC, 2015a; CEMAC, 2015b; DoE, 
2015; EIA-ETSAP, 2017; Greentechmedia, 2012, 2017; IRENA, 2012 and WEC, 2016. 

A relatively large impact of materials in the cost breakdown is also observed for solar 

panels, for example 57 % for thin film PV and 71 % for c-Si modules. 

The least vulnerable technology in terms of the cost of materials is wind technology. 

Materials are responsible for 10-45 % of the cost of wind technology. This range takes 

into account different types of wind turbines, different capacities and different installation 

locations (onshore or offshore). The cost of offshore wind farms is less impacted with 

regard to materials. The future tendency, however, is to build larger turbines, employing 

bigger generators and blades. As blades become larger, the demand for materials 

increases exponentially, leading to a larger share of the final cost breakdown. 

Assessment: the "Cost impact" parameter (Figure 4) was assessed as the complement 

(3) of the mean value of the impact of materials' prices on the cost of the relevant 

technology (Figure 5). 

Box 3. Batteries are the most ‘material cost-intensive’ technology, and are therefore 

most vulnerable to price volatility, followed by solar and wind. 

3.2.3.  Changes in the price of materials 

Increases in the price of raw materials can significantly influence the cost of technology, 

especially for more ‘materials-intense’ technologies, adversely affecting the profit 

margins of companies and therefore their competitiveness. Hence, price fluctuations are 

considered as a separate parameter in the following assessment. Changes in the price of 

the selected materials from 2000 to 2016 are shown in Figure 6. 

  

                                           
(2) In this figure ‘material prices’ refers to the costs associated with both raw materials and processed 

materials. 
(3) Complement of a number is determined by subtracting that number from 1. 
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Figure 6. Raw materials prices from 2000 to 2016 
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Source: JRC representation, with data from: Asian metal, 2017; Metalary, 2017; USGS, 2003, 2009, 2013 and 
2017; World Bank, 2017a. 

Materials are traded in a variety of forms, ores/refined grades and currencies, and under 

different contract periods. The price of materials varied dynamically between 2000 and 

2016 following changes in supply and demand and in the economic and political situation 

worldwide. A particular cause for concern is the price of REEs, namely neodymium, 

praseodymium and dysprosium, which surged several times in 2011 due to export 

restrictions imposed by China as the monopoly supplier. Overall, prices rose from 2000 to 

2016 for most materials needed for the considered technologies in this analysis (Figure 

7). 

The highest price increase was registered for the above mentioned REEs. The price of 

neodymium and praseodymium increased considerably in the first half of 2017 (by 21 % 

for neodymium oxide and 34 % for neodymium-praseodymium alloys). These materials 

are used in the production of permanent magnets, which are used in manufacturing 

PMSG-based wind turbines and in high-efficiency permanent magnet synchronous-

traction motors used in EVs. The price of neodymium and praseodymium increased by 

8 % and 6 % respectively in the second quarter of 2017 compared to the first quarter. 

The price of dysprosium fell by 2 % over the same period as a consequence of a 

reduction in specific consumption in non-temperature-dependent magnet applications. 

According to Roskill, the prices for neodymium and praseodymium are forecast to grow 

strongly over the next 3-4 years as demand for neodymium iron boron (NdFeB) magnets 

takes off (Roskill, 2017). 
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Figure 7. Changes in the price of materials between 2000 and 2016 

 

Source: JRC representation, with values from Figure 6. 

The price of lithium carbonate and cobalt, used in the cathode of a battery, almost 

doubled in the first semester 2017 as result of the increasing popularity and rising sales 

of EVs. Moreover, there are concerns among carmakers about securing the future supply 

of lithium and cobalt. It is expected that the growth in the production of cobalt would not 

be able to keep up with the growth in demand. A cobalt production deficit may be 

registered in 2021, followed by a significant shortage in the years after that (BNEF, 

2017b). 

The price of lead rose by 17 % in the first half of 2017, with the price of copper up by 

14 %. Aluminium also registered a price increase of 13 % due to resurgent economic 

growth, particularly in China, and in increase in its use by carmakers. 

According to the World Bank the price of metals increased by 10 % in the first quarter of 

2017 and is projected to rise by 16 % by the end of 2017, driven by strong Chinese 

demand (World Bank, 2017b). The increase in the price of metals could be further 

boosted by increasing sales of global high-tech applications and EVs, declining mining 

mineral grades and possible production-cost inflation (Bloomberg, 2017a). 

Assessment: for each technology, an average of the price increase rates (% change) in 

the period 2000-2016 for all relevant materials was determined. Subsequently, the three 

averages were normalised to the maximum; the complement of such values are then 

taken as the "Price evolution" parameter — see Figure 4.   

Box 4. The price of most of the materials required in wind turbines, solar PV panels and 

batteries has increased significantly between 2000 and 2016. The price of about half of 

the materials increased more than double and for several materials surged by a factor 9 

to 13. The price of metals is projected to increase by 16 % in 2017, driven by resurgent 

economic growth, particularly in China. 
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3.2.4.  EU import reliance 

While raw materials are abundant in the Earth’s crust, a potential deficit of mining and 

refining production could represent a bottleneck in the supply of materials for low-carbon 

energy technologies. The EU lacks extractive industry (mining activities) for many raw 

materials, therefore the refining and manufacturing industries rely on production and 

supply from mainly non-EU countries. 

The EU largely depends on imports for materials that are important for the manufacture 

of wind turbine, PV and battery technologies (Figure 8). The EU’s import dependency is 

100 % for a group of seven materials, namely boron (borates), dysprosium, 

molybdenum, neodymium, niobium, praseodymium and tellurium. For 19 materials out of 

24 the share of EU imports is above 50 %. Only indium shows an import dependency 

equal to zero. 

Figure 8. Import dependency for the selected materials used in wind, PV and battery 
technologies (4) 

 

Source: JRC representation, with data from European Commission, 2017a. 

Assessment: For each technology, the average import reliance for all relevant materials 

was determined; subsequently its complement was used as "EU import reliance" 

parameter (see Figure 4). 

                                           
(4) NB: Cadmium is not included in this representation due to a lack of data. Data for iron ore were taken 

from the Raw Materials Scoreboard 2016 (European Commission, 2016a). 
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3.2.5.  Major production countries 

The geographical distribution of the major production countries of the selected materials 

is represented in Figure 9. Countries’ share of global production, global material 

production (as an average value for the 2010-2014) and the EU’s share of global 

production are displayed for each material. 

Figure 9. Major production countries of the selected materials used wind turbines, solar PV panels 
and batteries in 2016 (5) 

 

 

                                           
(5) Global production represents the 2010-2014 average, except for iron ore, which refers to production in 

2016. 

Aluminium refining 

(2010-2014): 

Global production = 47 

million tonnes  

EU share of global 

production = 4.7 % 

Boron (borates) 

extraction (2010-2014):  

Global production = 1 

million tonnes  

EU share of global 

production = 0 % 
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Cadmium refining 

(2015):  

Global production =     

23 200 tonnes 

EU share of global 

production = 7 % 

Chromium extraction 

(2010-2014):  

Global production = 30 

million tonnes 

EU share of global 

production = 2.5 % 

Cobalt extraction 

(2010-2014):  

Global production =   

135 500 tonnes 

EU share of global 

production = 0.9 % 
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Copper extraction 

(2010-2014):  

Global production = 17.1 

million tonnes 

EU share of global 

production = 4.7 % 

Gallium refining 

capacities (2014):  

Global capacity = 340 

tonnes 

EU share of global 

capacity = 8.8 % 

Graphite (natural) 

extraction (2010-2014):  

Global production = 1.1 

million tonnes 

EU share of global 

production = 0.05 % 
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Indium refining (2010-

2014):  

Global production = 690 

tonnes 

EU share of global 

production = 6.9 % 

Iron ore extraction 

(2005):  

Global production = 2 

billion tonnes 

EU share of global 

production = 6.9 % 

Lead extraction (2010-

2014):  

Global production = 5 

million tonnes 

EU share of global 

production = 4.3 % 
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Lithium extraction 

(2010-2014):  

Global production =     

25 500 tonnes 

EU share of global 

production = 1.4 %  

Manganese extraction 

(2010-2014):  

Global production = 49.7 

million tonnes 

EU share of global 

production = 0.3 % 

Molybdenum 

extraction (2010-2014):  

Global production =   

271 500 tonnes 

EU share of global 

production = 0 % 
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Nickel refining (2010-

2014):  

Global production = 1.75 

million tonnes 

EU share of global 

production = 6.6 % 

Niobium extraction 

(2010-2014):  

Global production =   

113 000 tonnes 

EU share of global 

production = 0 % 

Rare earth oxide 

extraction (2015):  

Global production =   

130 000 tonnes 

EU share of global 

production = 0 % 

 

Global production 

(2010-2014): 

Dysprosium = 1360 

tonnes 

Neodymium = 22 400 

tonnes 

Praseodymium = 6500 

tonnes 



23 

 

 

 

Selenium refining 

(2010-2014):  

Global production = 

2700 tonnes 

EU share of global 

production = 42 % 

Silicon metal refining 

(2010-2014):  

Global production = 2.29 

million tonnes 

EU share of global 

production = 8.5 % 

Silver extraction (2010-

2014):  

Global production =     

25 070 tonnes 

EU share of global 

production = 6.9 % 
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Tellurium refining 

(2010-2014):  

Global production = 142 

tonnes 

EU share of global 

production = 8.5 % 

Tin refining (2010-

2014):  

Global production =   

358 400 tonnes 

EU share of global 

production = 3.2 % 

Zinc extraction (2010-

2014):  

Global production = 13.1 

million tonnes 

EU share of global 

production = 5.7 % 

Source: JRC representation, with data from European Commission, 2017a; Statista, 2017a; USGS, 2017. 
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Most of the materials selected for this study are mainly produced outside the EU, and in 

some cases the production is concentrated in one country. For example, more than 90 % 

of niobium is currently produced in Brazil, 83 % of REEs are produced in China and 78 % 

of boron is produced in Turkey. China is the main producer of 10 of the 23 materials 

listed in Figure 9, while the EU is the main producer of only one material — selenium. 

The EU has no production at all for four materials (i.e. boron, molybdenum, niobium and 

REEs). For the other three materials (i.e. cobalt, natural graphite and manganese) the 

EU’s share of global production is below 1 %. 

Special attention should be given to REEs due to the high concentration of supply — the 

quasi-monopoly of China — and the lack of substitutes without compromising 

performance. The supply chain for REEs consists of mining, separation, refining, alloying 

and manufacturing (devices and component parts). Pursuing its techno-industrial 

development strategy, China has become the worldwide leader in all these steps. In this 

respect, in June 2017 it was announced that a Chinese-led consortium had purchased the 

US Mountain Pass rare earths mine and processing facility previously operated by 

Molycorp (Mining, 2017a). Between 1965 and 1985 the Mountain Pass mine was the 

principal worldwide supplier of REEs. 

The lack of mining, refining, alloying and manufacturing capacity that could extract and 

process REEs is a major issue for the EU. China is ramping up its production of wind 

turbines, EVs and bikes, consumer electronics and other items, and will therefore require 

more and more REEs from its own domestic production to cope with the increasing 

demand. Environmental standards are also becoming more stringent in China, which may 

affect both the production volume and cost of REEs. 

Assessment: The supply risk for all relevant materials as assessed in the 2017 CRM list 

(European Commission, 2017a) is used to account for the security and concentration of 

supply. For each technology, the average value of the supply risks for all relevant 

materials is normalised to the maximum supply risk to obtain a numerical value between 

0 and 1. The complement is then used as "Supply risk" parameter (Figure 4). 

Box 5. There is no or little EU sourcing of raw materials required for wind turbines, solar 

PV panels and batteries. China is the largest global supplier for about half of them. 

3.2.6.  Mining versus refining 

Some materials needed for renewable energy generation (wind power and solar PV) and 

its storage applications (batteries) are often not extracted and refined in the same 

country. This is particularly true for aluminium, cobalt and copper. While in 2015 

Australia was the main producer of bauxite, the Democratic Republic of the Congo the 

main producer of mined cobalt and Chile the main producer of mined copper, China was 

the largest producer of refined metals for all these three materials. For other materials, 

such as iron, lead, nickel, thin and zinc, China is the main producer of both mined and 

refined materials. 

The major producing countries of some of the refined materials, in addition to mining 

countries, are shown in (Figure 10) for comparison. 
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Figure 10. Major producing countries of some mined and refined metals 
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Source: JRC representation, with data from BGS, 2017. 
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3.2.7.  Recycling 

Recycling can help to improve the availability of materials by generation of so-called 

secondary materials, thus increasing security of supply. In addition it can bring down the 

costs of raw materials, thus securing long-term business and improving the 

competitiveness of EU technology manufacturers. Moreover, it has been proved that 

recycling can often reduce the environmental impact of mining for primary materials. 

The EoL-IRRs of the materials used in wind, solar PV and battery technologies are shown 

in Figure 11. In this analysis the end-of-life input recycling rate (EoL-IRR) is used as a 

measure of the recycling potential of a given material. It represents the share of the 

recycled (secondary) material flow of the total material production. For example, EoL-

IRR = 30 % means that 30 % of the total production material consists of recycled 

material from end-of-life products and 70 % is primary mined material.  

Figure 11. EoL-IRR of materials used in wind, solar PV and batteries 

 

Source: JRC representation, with data from European Commission, 2016a, 2017; ISSF, 2017; UNEP, 2011. 

Today around one third of the materials used in wind turbines, solar PV panels and 

batteries have an EoL-IRR lower than 10 %. The fraction of materials exhibiting a very 

high recycling potential (EoL-IRR > 50 %) is relatively small, varying between 13 % in 

wind and 24 % in solar PV technology (see Figure 12). 
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Figure 12. Recycling potential expressed as an EoL-IRR of materials for wind turbines, solar PV 

panels and batteries 

 

Source: JRC representation, with data from European Commission, 2017a. 

Assessment: The "Recycling" parameter in Figure 4 corresponds to the recycling rate 

(EoL-IRR) evaluated for each technology as the average of the EoL-IRR of all relevant 

materials as determined in the 2017 CRM list (European Commission, 2017a). 

Box 6. Currently, the recycling potential expressed as an overall EoL-IRR of the 

materials used in wind turbines, solar PV panels and batteries (Li-ion) is fairly low. 

3.2.8.  Substitution 

Substitution is considered a sustainable strategy to moderate the demand for some 

critical materials and thus reduce the supply pressure and EU import dependency on 

these materials. Moreover, it can be also an innovative way to create diversification in 

the supply of materials with benefits for the EU’s competitiveness concerning materials. 

Around 50 % of the materials required in wind turbines are barely substitutable (they 

have a low substitution potential). This percentage increases to 57 % for batteries and 

67 % for solar PV panels (Figure 13). In general, the substitution potential of materials 

for the three technologies is low (Figure 14). 

Figure 13. Substitution potential (6) of materials for wind, solar PV and battery technologies 

 

Source: JRC representation, with data from European Commission, 2017a. 

                                           
(6) Substitution potential refers to the substitution of a material used for different end-use applications as 

estimated in the 2017 CRMs list (European Commission, 2017a). 
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Figure 14. Substitution potential of the materials used in wind turbines, solar PV panels and 

batteries 

 

Source: JRC representation, with data from European Commission, 2017a. 

Assessment: For each technology, the corresponding substitution index is calculated as 

the average of the substitution indexes of all relevant materials as determined in the 

2017 CRM list (European Commission, 2017a). According to the EC methodology, the 

substitution index can be as high as 1 if a material is not substitutable at all. To account 

for the reverse logic in our study, the "Substitution" parameter in Figure 4 is the 

complement of the substitution index for each technology. 

Box 7. The overall substitution potential of materials used in wind turbines, solar PV 

panels and batteries is generally low, especially for solar PV. 

Finally, a traffic lights assessment matrix for the raw materials required in wind turbines 

using permanent magnets, solar PV panels and battery technologies is shown in Figure 

15 following the methodological approach proposed in this work.  
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Figure 15. Assessment matrix for raw materials needed in wind turbines, solar PV panels and 

battery technologies 

 

Source: JRC analysis. 

As can be seen, oranges and reds prevail in the assessment matrix, which denotes that 

potential issues linked to raw materials can be expected for all three technologies. Based 

on the above assessment, wind turbines employing rare earth-based permanent magnets 

appear to be the most vulnerable technology due to the very high supply risk associated 

with REEs, high EU import reliance, negligible recycling and the lack of substitutes. 
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4. Selection and assessment of processed materials 

The EU’s dependency at the downstream stages in the supply chain may also be a strong 

limiting factor affecting the EU’s resilience on materials supply and further the 

competitiveness of the EU renewable energy industry. Besides raw materials, several 

processed/finished materials are required in these three technologies. The processed 

materials selected for evaluation in terms of global suppliers are as follows: steel for all 

technologies, permanent magnets for wind turbine generators, composite materials for 

turbine blades and solar grade silicon for crystalline silicon PV, along with cathode and 

anode materials and electrolytes for batteries. The share of the main suppliers of these 

materials is visualised in Figure 16. This study addresses only those processed and 

finished materials for which supply issues can be expected. Steel is included because of 

its relevance to all three technologies and recent developments associated with the 

restructuring of the global steel industry. 

Figure 16. Estimated share of key producing countries in 2015 for several processed and finished 

materials used in wind turbines, solar PV panels and batteries 

 

Source: JRC assessment based on information from various sources presented in Blagoeva et al., 2016. 

Details for each processed material can be found in the following subsections. 

4.1. Steel 

Steel is an important processed material used in all three technologies for different parts 

and equipment as follows. 

 Wind turbines, in the key components of the turbine: tower, nacelle and rotor. 

 Solar PV, in racks or frames for attaching the modules in both ground- and roof-

mounted PV systems. 

 Batteries, in different parts, e.g. tabs, end plates, terminal assemblies, 

container, etc. 

Since a wind turbine is largely made of steel, the wind power sector needs far more steel 

per megawatt than solar PV and batteries. Is has been estimated that the global demand 

for steel in 2015 for the global installed capacity of both wind and solar power was 

10.1 million tonnes (BNEF, 2015). This amount represented less than 1 % of global steel 

production in the same year, which was 1 621 million tonnes. China accounts for about 

half of global production and the EU for 10.2 % (see Figure 16). 
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Even though no issues are expected in the supply of steel for low-carbon technologies in 

particular, the EU’s competitiveness in steel production is currently affected by Chinese 

overcapacity registered in recent years, which led to a collapse in prices. A process of 

transformation, restructuring and innovation, along with policy measures, is needed to 

promote a level playing field to ensure that the European steel companies are not put at 

a disadvantage in relation to steelmakers from other regions or competing materials. 

While process control, innovation and automation lead in general to an increase in the 

productivity and competitiveness of a certain industry, the number of jobs within the 

sector may be affected. This is the case for Voestalpine AG, a new rolling steel mill that 

opened in 2017 in Austria and is able to make about 500 000 tonnes of steel wire a year 

with only 14 employees (Bloomberg, 2017b). To produce the same product volume in a 

facility built in the 1960s as many as 1 000 employees were needed. Overall, in the past 

20 years the number of worker-hours needed to make a tonne of steel has decreased by 

64 % (from 700 to 250) as a consequence of improving productivity. Following the steel 

crisis between 2008 and 2015, the European steel industry lost almost 84 000 jobs 

(about 20 %), and the number of jobs is predicted to decrease by a further 20 % over 

the coming decade (Bloomberg, 2017b). 

Steel is an infinitely recyclable material and it also has a limited environmental impact, 

thus it plays a key role in the circular economy model. 

4.2. Permanent magnets 

Permanent magnet generators for wind turbines are being used more and more, 

especially in offshore applications, as this type of generator provides self-protection 

against overloads and easy maintenance. The expected high growth rate of wind power is 

likely to drive the global permanent magnet market, including for high-energy-density 

NdFeB magnets. This segment is estimated to grow at a compound annual growth rate of 

over 10 % by 2024 (Global Market Insights, 2017). 

Although Japan is the world leader in innovation for permanent magnets and holds most 

of the patents for NdFeB manufacture through Hitachi Metals Ltd, most NdFeB magnet 

production is based in China. The manufacturing capacity of the United States for all 

types of magnets is also rapidly declining and starting to move to China (Freedonia, 

2015; Humphries, 2013; Hurst, 2010; Morrison and Tang, 2012). 

With China controlling the majority of rare earth metal mines, a large number of 

manufacturers of NdFeB magnets are now located in that country. In 2014 China 

produced 69 000 tonnes of NdFeB magnets, or about 83 % of global production, and it 

has the capacity to produce almost double that amount (Roskill, 2015). Japan is the 

second-largest country in terms of production share. 

Faster-growing markets for permanent magnets are expected in developing areas. Due 

to their superior performance, demand for NdFeB magnets is likely also to increase in the 

automotive sector for electric traction motors. For example, for its new Model 3 RWD 

Long Range carline, Tesla is considering to switch from the rare earth-free asynchronous 

reluctance (induction) motors (currently used in the Model 3 RWD standard and the 

Model X AWD vehicles) to a three-phase permanent magnet motor to increase efficiency 

of the electric powertrain. 

4.3. Carbon fibre composite 

Carbon fibre composite (CFC) has already proved to be an enabling technology for 

structural parts of wind turbine blades. It allows production of a thinner blade profile and 

can lead to weight savings of at least 20 % compared to an all-glass blade. Offshore wind 

systems especially would benefit from the characteristics of carbon fibres. 

Vestas and Gamesa were the first companies to use CFC in their turbine design. Although 

the cost of CFC is 10 to 20 times as much as E-glass, these companies reported that the 
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whole system cost is less than a system with an all glass-fibre blade, since carbon fibre-

based blades require less-robust turbine and tower components. 

Supply concerns, the high price of carbon fibre and processing challenges for blades are 

some of the factors that the manufacturers need to evaluate before they make the 

transition to a new CFC-based blade technology. 

In 2015 the wind turbine market was the third-largest segment in terms of carbon fibre 

consumption, after the aerospace and defence, and automotive sectors, requiring 

14 500 tonnes of CFC, or 13 % of global demand (Kühnel and Kraus, 2016). The key 

suppliers in the global carbon fibre market are Cytec Solvay (Belgium), Hexcel (United 

States), SGL (Germany), Teijin (Japan) and Toray (Japan). 

The EU is an important player in CFC production, with a capacity of about 18 % in 2015 

(Figure 16). However, the total EU demand for CFC was estimated to be much higher 

(35 % of the global demand) (Kühnel and Kraus, 2016). 

It is estimated that the global demand for CFC in wind turbines will increase at a 

compound annual growth rate of 10-12 % (2015-2022), as larger turbines with ever-

longer rotor blades will depend on a higher proportion of carbon fibre for the supporting 

structures to guarantee stability and acceptable weight. 

4.4. Solar-grade silicon 

Solar grade silicon, called also polycrystalline silicon, is the principal feedstock in the 

crystalline silicon-based PV industry for the production of conventional solar cells. 

Crystalline silicon PV technology represents around 96 % of the solar PV market in 

Europe. High-purity polysilicon is also used in the electronics industry. 

China is the major supplier of solar-grade silicon, with 51 % of the global market share, 

followed by South Korea (18 % market share). The major Chinese suppliers are GCL-Poly 

Energy Holdings Limited and TBEA Silicon Co. Ltd. The European company Wacker 

Chemie AG (Germany) supplied about 14 % of global polysilicon production in 2015 

(Jäger-Waldau, 2016). 

4.5. Cathode, anode and electrolyte materials (Li-ion batteries) 

In 2015, 88 % of the world’s total LIB manufacturing capacity for all end-use applications 

was located in Japan, South Korea and, increasingly, China. These countries also 

produced the vast majority of battery-cell components such as cathodes (85 % of global 

capacity), anodes (97 %), separators (84 %) and electrolytes (64 %) (Gerpisa 2017). 

4.5.1.  Cathode materials 

Several metals in oxide form are used in Li-ion battery as cathodes: lithium cobalt oxide, 

lithium nickel manganese cobalt oxide, lithium nickel cobalt aluminium oxide, lithium 

manganese oxide and lithium iron phosphate. Since the quality of the cathode material 

impacts the overall performance of the cell, the major battery-cell manufacturers, such 

as Panasonic (Japan), LG Chem (South Korea) and BYD (China), have chosen to develop 

their own in-house cathode material production capacity (Hocking et. al., 2016). The 

total market demand for cathode materials was approximately 140 000 tonnes in 2015, 

with a quarter of it used in the automotive sector (Pillot, 2015a). The production of 

cathode active materials is dominated by Asia, with China manufacturing around 39 % 

(by weight) of the total amount produced in 2015, Japan around 19 % and South Korea 

around 7 %. The EU suppliers — Umicore (BE) and Johnson Matthey (UK) — together 

produced about 13 % (by weight) of the total amount of cathode materials in 2015 

(Pillot, 2016). 

The highest growth rate is expected for lithium nickel manganese cobalt oxide chemistry 

(almost five times), followed by lithium nickel cobalt aluminium oxide and lithium 

manganese oxide (around three times) by 2025. EU suppliers have the opportunity to 
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increase their supply of lithium nickel manganese cobalt oxide. The production of lithium 

nickel cobalt aluminium oxide, currently dominated by Japan, may also represent an 

opportunity for existing/new EU manufacturers. 

4.5.2.  Anode materials 

The vast majority of Li-ion batteries use graphite powder for their anodes. Graphite 

materials are either synthetically produced (synthetic graphite) or mined from the ground 

(natural graphite), then heavily processed before being baked onto a copper foil to serve 

as anodes. 

The total market for anode materials for all Li-ion battery applications exceeded 

76 000 tonnes in 2015, with 40 % required by the automotive sector. This is expected to 

grow to more than 250 000 tonnes by 2025. Historically, the production of anode active 

materials has been dominated by Japan and China (Element Energy Limited, 2012). In 

2015 Japan supplied 57 % of anode active materials, China 27 % and South Korea 5 %. 

The main global players are Hitachi Chemicals (Japan), BTR Energy (China) and Nippon 

Carbon (Japan), together supplying more than 60 % of anode active materials. Other 

producers include Mitsubishi Chemical (Japan), LS Mtron Carbonics (South Korea), 

ShanshanTech (China) and Tokai Carbon (Japan). EU-based companies such as SGL, 

Imerys, and Heraeus, along with other non-EU firms such as 3M, DuPont, Dow, Dow 

Corning, Envia (United States) and ShinEtsu (Japan), have also shown an interest in 

anode active materials manufacturing, but do not yet play a significant role in the global 

supply. 

4.5.3.  Electrolytes 

The global market for electrolytes for all Li-ion battery applications was slightly over 

62 000 tonnes in 2015, with a 33 % market share required by the automotive sector. 

Market growth to more than 235 000 tonnes is expected by 2025, with the share 

required by the automotive sector increasing to around 50 % (Pillot, 2015b). 

Similar to cathode and anode active materials, the production of electrolytes for Li-ion 

batteries is dominated by Asian suppliers, with China producing close to 60 % (by 

weight) of the total market, Japan 18 % and South Korea 7 %. The EU-based electrolyte 

producer — BASF (Germany) — supplied around 200 tonnes of electrolyte, or about 

0.4 % of the total market volume, in 2014, but decreased its supply significantly in 2015. 

Nevertheless, there may be opportunities in formulating and producing advanced new 

electrolytes, for example for high-voltage Li-ion cells. 

Assessment: The EU Resilience with regards to processed materials required in wind 

turbines, solar PV panels and Li-ion batteries is addressed via concentration of supply 

and the EU share of the global market for each specific material. Details on this 

evaluation can be found in the JRC report (Blagoeva, 2016). 

Box 8. Wind technology using permanent magnets appears to be the most vulnerable 

technology in terms of the supply of processed/finished materials, followed by batteries 

and solar PV. 
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5. Mitigation measures 

There are several ways to improve the EU’s resilience to potential issues linked to 

materials supply, as summarised in Figure 17. 

Figure 17. Mitigation measures to improve the EU’s resilience in relation to materials supply 

 

Source: JRC representation. 

 Recycling: recovering materials from end-of-life products and production scrap 

and reusing them, thus reducing waste and environmental harm. 

 Substitution: replacing some problematic materials with other materials which 

are more abundant and possibly less expensive. 

 Material efficiency: using less material to produce the same output. In 

particular, this may be important for minor metals, such as REEs which are 

expensive and supplied by only one country — China. A typical example is the 

reduction of the amount of dysprosium in permanent magnets for non-high-

temperature applications, such as wind turbines. Another example is the reduction 

of the cobalt content in batteries as the battery design becomes more efficient. 

Cobalt is mostly mined in the Democratic Republic of the Congo (conflict area) 

and refined in China. 

 Diversified supply: extending the number of ‘secured’ suppliers to the EU via 

trade agreements and blocking export restrictions (European Commission, 2013). 

Diversified supply also includes extending the existing mining capacity in the EU 

and opening new mines. 

The abovementioned measures were analysed in depth in a recent JRC report in the 

context of the future deployment of wind, PV and EV (including battery) technologies 

(Blagoeva et al., 2016). Substitution appears to play an important role in the long term 

(after 2030), whereas ‘recycling is found to be the most effective mitigation measure to 

deal with potential materials supply shortages in the 2030 timeframe’. Recycling and 

substitution are also seen as a business opportunity for many EU companies, with 

benefits for economic growth and new jobs. 

Box 9. By 2030 recycling can be a viable mitigation measure to deal with potential 

material supply shortages for wind turbines, solar PV and battery technologies. 



39 

6. Technological developments 

Since recycling was found to be a feasible mitigation measure to secure some secondary 

materials flows and also to reduce the expected waste in the considered timeframe, 

recycling aspects for the technologies concerned (wind turbines, solar PV and batteries) 

are further analysed and elaborated upon below. 

Substitution as a mitigation measure has great potential in the longer term — after 2030. 

Therefore, future opportunities for substitution in these three technologies are also briefly 

discussed below, although they are not taken into account in the final resilience 

assessment up to 2030. 

6.1. Recycling of materials from wind turbines, solar panels and 

batteries 

Recycling, or the possibility to recover certain material from its various end-use 

applications, has already been addressed in Section 3 at the level of raw materials. The 

three technologies under consideration — wind power, solar PV and batteries — are 

expected at the end of their lives to become the major secondary source of some specific 

materials, such as REE, lithium, cobalt, silicon, graphite, etc. Therefore, it is important to 

evaluate the recycling potential at the technology level as well. 

The recycling of materials from renewable plants is challenging, since these technologies 

have been relatively recently installed, with a long lifetime and are dispersed throughout 

Europe. Only a few plants have reached the end of their lives, and the low amount of 

waste available is a limiting factor for the development of recycling processes at the 

industrial scale. 

6.1.1.  Recycling of wind turbines 

Wind power is an emerging sector with high potential for closing the loop, in the context 

of a 100 % circular economy. The wind industry is relatively young, and thus practical 

experience in recycling materials from wind turbines is very limited. This is particularly 

true for offshore wind turbines, which is a fairly recent technology. Most wind turbines 

have a design lifetime of 20-25 years or even longer. However, the recycling of 

materials from wind turbines is rising up the agendas of policymakers, researchers and 

industry. Most of the materials used in wind power, such as steel, cast iron, aluminium 

and copper, are recyclable to a large extent. According to the literature (Pehlken et al., 

2012), around 90 % of a wind turbine’s mass, including the parts made of concrete, such 

as foundations, can be recycled. Most turbine components have a commercial value since 

they contain valuable materials such as steel, aluminium and copper. However, two 

components pose specific recycling challenges: generators containing rare earth 

permanent magnets and blades. 

6.1.1.1.  Generators containing rare earth element magnets 

Only recently have industry and society started to pay more attention to the recycling of 

REEs due to rapid growth in demand, potential risks to future supplies, unstable prices 

and policies that mandate recycling of these critical elements (EPA, 2012). Currently the 

end-of-life recycling rate of REEs is less than 1 % (UNEP, 2011), and recycling of post-

consumer permanent magnets is also very limited (European Parliament, 2015). 

REEs such as neodymium, dysprosium and praseodymium, which are used in relatively 

large quantities in permanent magnet generators, can be extracted from 

decommissioned wind turbines. Some demonstration projects on recycling of REEs in 

permanent magnets show very high potential for recovery of these critical materials 

(Fraunhofer, 2015). However, the decommissioning of a sufficiently large number of wind 

turbines is expected to take place only after 2030. Hence, even though recycling 

permanent magnets and their constituent elements may provide great economic 

advantages offering an alternative source for this strategic alloy, at present there is no 



40 

process at the industrial scale which allows for the recycling of REEs from end-of-life 

turbines (Gauß et al., 2015). The recycling of materials from electrical generators and 

motors is currently not officially regulated in the EU, although some Member States have 

announced their intention to add this to their national legislation (GOV.UK, 2017). 

Some developments have been registered regarding recycling valuable materials from 

end-of-life hybrid and electric vehicles (H & EVs). The recycling of permanent magnets 

from H & EVs is expected to take place in the EU between 2023 and 2025. EREAN, a 

European network for the recycling of REEs from permanent magnets (EREAN, 2017), 

and another EU Horizon 2020 project, Demeter, recently published a new policy brief 

entitled ‘Processing options and future possibilities for sustainable recycling of hybrid 

electric vehicles and internal combustion engine vehicles at vehicle recycling sites’ 

(Demeter, 2017a). This policy brief addresses future challenges with respect to the 

recycling of EVs, including magnet electrical motors. The current EU directive (Directive 

2000/53/EC) on the recycling of conventional internal combustion engine vehicles does 

not include the first wave of retired EVs. 

Currently there is no collection, sorting and disassembly system for permanent magnets 

in Europe, meaning that no reliable feedstock supply is yet available. The recycling 

potential is also decreased due to the exporting of industrial machinery for materials 

reuse. However, the potential recycling of permanent magnets in the EU could be a 

profitable business. A recent study carried out by Öko-Institut revealed that the available 

annual feedstock of permanent magnets for recycling from different industrial 

applications (excluding H & EVs and wind turbines) in Germany will increase from 

40 tonnes in 2015 to 100 tonnes in 2030 (Öko-Institut, 2015). 

In short, the main emerging applications able to provide a tangible material feedstock to 

support recycling business at an economic scale in the EU would be EV traction motors 

and wind turbine generators. However, up to 2030, most wind turbines will still be in 

operation (assuming a 25-30-year lifetime). Therefore, the initial push for recycling 

companies in Europe is anticipated to come from the EV sector after 2023. At the same 

time, several projects dedicated to recycling permanent magnets have either been 

approved or are under way in China (Roskill, 2015). Thus it can be expected that China 

will strive to maintain its leadership position in supply of not only primary but also 

secondary REEs recovered from recycled magnets. 

6.1.1.2.  Blades 

The recycling of blades could also be seen as a sustainable business, leading for instance 

to reduced amounts of waste originating from wind turbines and useful feedstock for the 

construction sector. Wind turbine blades have not been recycled until now since recycling 

has not been feasible either technologically or economically. However, over the last few 

years the potential for recycling blades has been explored in different R&D projects and 

in industry, and a number of solutions have been developed (EWEA, 2017). The EU’s 

LIFE+ BRIO project, for example, is an initiative that aims to create a new sustainable 

system to manage and recycle wind turbine blades that are no longer in use (BRIO, 

2016). The project demonstrated the potential to reuse the long fibres recovered from 

the composite to reinforce prefabricated concrete components, and use the remaining 

blade material with insulating properties in multilayer panels for construction purposes. 

In this respect the BRIO project proposes viable solutions to optimise procedures to 

dismantle wind farms by properly providing for the management of waste of this type. 

However, to support this business, legislative recommendations and guides to good 

practices within the European Union have to be drawn up to regulate these aspects. The 

benefit will be in terms of a cut in the management costs linked to dismantling and a 

reduction in the environmental impact of the service life cycle of wind farms. 

6.1.2.  Recycling of solar PV panels 

Similarly to wind, solar PV is an emerging technology, with about 85 % of the global PV 

capacity having been installed in the last 5 years (Maydbray and Dross, 2016). The 
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recycling of silicon, indium, gallium and other materials from PV modules, such as glass, 

aluminium, copper, silver, germanium and others, has a great deal of potential: more 

than 95 % of the total material mass is recyclable without additional cost or even at a 

profit. Solar PV modules manufactured with recycled materials need three times less 

energy than those made of newly produced silicon at equal capacity, thus making them 

more cost-effective (BINE, 2010). 

Due to the long lifetime of PV modules — more than 25 years — significant recycling 

flows of solar modules are expected only after 2030. This still-young technology has 

generated little waste so far — only 1 % of the recycled panels are at end-of-life — which 

means the recycling PV panels is not yet economically viable. However, the potential is 

huge. A new study released by the International Renewable Energy Agency (IRENA) 

states that between 2 and 8 million tonnes of PV waste could be generated by 2030 

depending on the failure scenario (IRENA, 2016). The figures will substantially increase 

by 2050, up to 60-75 million tonnes. The recyclable material in old solar modules will be 

worth USD 15 billion by the year 2050 assuming 4 500 GW of global installed PV 

capacity. This potential influx of material could produce 2 billion new panels. ‘This brings 

about new business opportunities to “close the loop” for solar PV panels at the end of 

their lifetime. To seize these opportunities, however, preparations for the surge in end-

of-life material should begin now’ (IRENA, 2017). Industry should be prepared to recycle 

such quantities by setting standards. Moreover, if not properly disposed of, end-of-life PV 

panels can have negative environmental impacts, such as leaching of lead or cadmium 

and loss of valuable resources, for example aluminium, glass and rare metals such as 

indium, silver, gallium and germanium. 

The EU is a pioneer in regulating PV waste: the EU waste electrical and electronic 

equipment (WEEE) directive requires that all solar PV panel suppliers finance the end-of-

life collection and recycling costs. PV CYCLE (7) is an EU association, established in 2007, 

representing 85 % of the European PV market. The association is engaged in collecting 

and disposing of PV waste free of charge; the target is to collect 65 % of all dismantled 

PV modules. PV CYCLE is already recycling solar panels (mainly production scrap, panels 

damaged during delivery or installation or that failed before reaching end-of-life) from 

Spain, Germany, Italy, Belgium, Greece and the Czech Republic. No statistical data on PV 

collection and recycling is yet available for the EU. 

While in the EU collecting and recycling solar panels is strictly regulated, these 

regulations do not yet exist in other advanced countries. In the United States there is no 

such regulation at federal level, except for the minority of panels that fail the toxicity 

characteristic leaching procedure test and thus are subject to the Resource Conservation 

and Recovery Act. Other rapidly growing solar PV panel markets such as China and India 

also currently lack specific PV panel waste regulations, though long-term policy goals 

have been established in these countries. 

What can be expected by 2050? According to IRENA’s study, more than 40 % of PV 

waste will be accumulated in China, 20 % in the United States, 15 % in Japan, 15 % in 

India and only 9 % in the EU (only Germany has been taken into consideration in the 

analysis) (IRENA, 2016). Once again China comes up as potentially the biggest future 

producer of recycled (secondary) materials coming from decommissioned PV modules. 

6.1.3.  Recycling of batteries 

Batteries are expensive and have a relatively short life span, therefore they offer good 

business opportunities for recyclers. Lead-acid remains the most suitable battery for 

recycling as 70 % of its weight contains reusable lead (Battery University, 2017). 

Currently, lead-based batteries are the only battery technology that operates in a closed 

recycling loop in EU, with 99 % being collected and recycled for the manufacture of new 

automotive batteries. This can be considered a good example of the circular economy 

already in action in the EU (ILA, 2016). Nickel-based batteries can also be recycled 

                                           
(7) http://www.pvcycle.org/ 

http://www.pvcycle.org/
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easily. Iron and nickel are retrieved and used again in stainless steel production. There 

are no particular issues associated with recycling lead-acid or nickel-based batteries, thus 

this study focuses on recycling for the emerging technology of Li-ion battery. 

The recycling of materials from Li-ion batteries is technologically possible but 

economically unpractical. Often it is cheaper to mine and process a raw material than to 

retrieve it from recycling, and this is the case for the materials in Li-ion batteries. At 

present, Li-ion battery recycling is mainly limited to portable batteries from consumer 

electronics. Only 5 % of the Li-ion batteries sold in 2010 were collected and recycled in 

the EU (Gies, 2015). 

The estimated weight composition of a Li-ion battery is 5-20 % cobalt, 5-10 % nickel, 5-

7 % lithium, 15 % organic chemicals, 7 % plastics and 12-21 % graphite, with the 

remaining weight being copper, aluminium and steel (Dunn et al., 2012; Gaines and 

Nelson, 2010; Shin et al., 2005). The materials that are commonly recycled from Li-ion 

batteries today are cobalt and iron. However, specific challenges related to the declining 

use of cobalt in some Li-ion battery types may make its recycling even less attractive, 

unless economical recovery is not also extended to the other materials (e.g. lithium and 

graphite) (CEC, 2015). Retrieving lithium from end-of-life batteries may never reach the 

break-even level. Moreover, if the purity of the recovered lithium is below 99.5 % then it 

is not suitable to be reused as a raw material in battery applications. Currently there is 

no form of large-scale recycling in place for graphite, which is the state-of-the-art anode 

material for most commercial Li-ion batteries. The main issue relates to the ageing 

process of the graphite electrode during operation, which affects the conductivity 

properties of the graphite. New processes are proposed by researchers to overcome this 

problem, which should be tested on a larger industrial scale (Morandi and Botte, 2016). 

The cost of manufacturing Li-ion batteries is not related to the price of raw materials, as 

is the case with lead-acid and NiMH batteries. What makes Li-ion battery particularly 

expensive is the long processing and purification processes of the raw materials to reach 

battery grade. To overcome this issue, a specific recycling process, called ‘direct 

recovery’ is proposed by the US’ company called OnTo Technology (8). Rather to recover 

basic elements throughout the traditional methods, this new process involves 

rejuvenating the cathode and re-using it again in a battery. The method seems to be a 

promising solution as it is cheaper, low-energy, low-emissions and generating limited 

waste. 

Due to the recent adoption of EVs in the global and European markets, and taking into 

account the average lifetime of a battery, estimated to be approximately 10 years, EV 

batteries have not yet reached end-of-life insignificant numbers. Large-scale recycling is 

not expected before 2020 and will only be effectively realised after 2025. However, the 

future recycling potential of EV batteries is significant as these batteries may be easier to 

collect from customers if a dedicated system of return is established. The existing 

collection system for lead-based batteries is difficult to use due to inherent safety 

problems during storage (ILA, 2015). 

The recycling of batteries in the EU, including collection and the treatment and recycling 

process, is regulated through the EU battery directive (Directive 2006/66/EC) (European 

Parliament and Council, 2006). Companies such as Umicore (Belgium) and Recupyl 

(France), which have developed their own recycling processes, have been active for 

several years in the battery-recycling sector. Japan has legislation for batteries that is 

similar to that of the EU (IRENA, 2015b). The Japan Portable Rechargeable Battery 

Recycle Center (JBRC), a non-profit organisation, provides used-battery collection boxes 

across the country. In the United States there is no federal law governing waste 

batteries, and each state may choose to implement its own policy and laws. China 

currently lacks appropriate policies and collection systems for batteries despite growing 

community concern about the impact of waste Li-ion batteries on the environment and 

public health. Adequate recycling infrastructure for batteries also needs to be developed 

                                           
(8) http://www.onto-technology.com/  

http://www.onto-technology.com/
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in China (Zeng et al., 2015). From the data available today, China and Europe are almost 

equally positioned in terms of battery recycling capacity (different types of batteries are 

considered, including Li-ion) (Lebedeva et al., 2016). However, it can be expected that 

China will also strengthen its future leadership in this area, as there are many efforts to 

put in place appropriate policies and collection systems for battery recycling and building 

recycling infrastructure (CEF, 2011). 

6.1.4.  Semi-quantitative assessment of the recycling potential of 
materials from wind turbines, solar PV and batteries 

The outcome of the above analysis is summarised in Table 1, taking into account the 

following four distinct elements. 

 Regulation: whether or not a directive exists regulating recycling of the 

technology concerned; if ‘no’ = 0; if ‘yes’ = 1. 

 Research and innovation: whether or not EU research projects are in place 

addressing the recycling issues of the technology concerned; if ‘no’ = 0; if ‘yes’ = 

1. 

 Existing recycling capacity: whether or not EU companies are already 

implementing recycling of the concerned technology; if ‘no’ = 0; if ‘yes’ = 1. 

 Recycling potential timeframe: whether or not significant feedstocks for 

recycling can be expected by 2030 for the technology concerned; if ‘no’ = 0; if 

‘yes’ = 1. 

Table 1. Technological development assessment in relation to materials recycling from wind 
turbines, solar PV panels and batteries 

Criteria Applicability 

(yes/no) 

Assessment 

score (0-1) 

Remarks 

Wind power technology 

Regulation No 0 There is a lack of EU regulations for the 

recycling of wind turbines, and more 

specifically of permanent magnets-based 

generators and blades 

Research 

and 

innovation 

Yes 1 EU is engaged in R&I activities for the 

recycling of permanent magnets and 

blades 

Existing 

recycling 

capacity 

No 0 Industrial recycling capacity in the EU for 

permanent magnets and blades is 

currently lacking 

Recycling 

potential by 

2030 

No 0 Positive contribution for secondary 

material flows from recycling of 

permanent magnets and blades from wind 

turbines can be expected after 2030 

Final score 

wind tech. 

 0.25  

  



44 

Criteria Applicability 

(yes/no) 

Assessment 

score (0-1) 

Remarks 

Solar PV 

Regulation Yes  1 Directives on the recycling of PV modules 

are already in place 

Research 

and 

innovation 

Yes 1 R&I on the recycling of PV modules is 

ongoing 

Existing 

recycling 

capacity 

Yes 1 Industrial recycling of PV modules in the 

EU is already being done 

Recycling 

potential by 

2030 

No 0 Substantial supply of secondary materials 

from PV modules is expected after 2030 

Final score 

solar PV 

 0.75  

Batteries 

Regulation Yes  1 Recycling of Li-ion batteries is regulated 

in the EU 

Research 

and 

innovation 

Yes 1 There are many R&I projects addressing 

the recycling of Li-ion batteries 

Existing 

recycling 

capacity 

Yes 1 Some industrial capacity for recycling of 

Li-ion batteries already exists in the EU 

Recycling 

potential by 

2030 

Yes 1 A contribution from the recycling of Li-ion 

batteries can be expected before 2030 

Final score 

batteries 

 1  

Source: JRC assessment. 

Box 10. A significant contribution to the supply of secondary materials from wind 

turbines, solar PV panels and Li-ion batteries is expected only after 2025-2030, as these 

technologies are relatively young and have a long lifetime. 

While the recycling of solar modules and Li-ion batteries is regulated in the EU and some 

recycling capacity already exists, the recycling of permanent magnets and blades still 

needs to be regulated. Collection, sorting and disassembly systems for permanent 

magnets and blades should be established to support future recycling in the EU. 
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6.2. Substitution at technology level: wind turbines, solar PV and 

batteries 

As previously noted, ‘substitution’ per se is not used in the current evaluation due to the 

timeframe under consideration — 2030. Yet it is tangible mitigation measure with great 

potential as a game changer in the future and, therefore, merits some further 

elaboration. 

Substitution should be addressed from different perspectives and levels, such as 

substitution at materials level (as discussed in Section 3.2) and substitution at 

technology level. For example, neodymium is a material with medium substitution 

potential in relation to all sectors in which it is used. However, no viable substitute 

materials for permanent magnets offering the same performance are currently 

commercially available. There are alternative technologies to permanent magnet-based 

turbines that are widely used, especially in onshore wind applications, however they do 

not offer the same level of performance. The EU plans to significantly increase the 

deployment of offshore wind turbines in the future. This will have a significant effect on 

the supply of materials such as REEs (neodymium, praseodymium and dysprosium) 

unless another highly efficient magnet technology is commercialised in the meantime. 

For instance, iron-nitride permanent magnets could in the future be a promising 

alternative to neodymium magnets due to their lower production costs, environmentally 

friendly manufacturing process, good compatibility with mass-production techniques, 

suitability for many high-tech applications — including electric traction motors, wind 

turbine generators and electronics — and, last but not least, ability to offer better 

performance than neodymium-based magnets (UMN, 2017). Currently this new magnet 

is in the demonstration phase, and progress should be seen on this technology in the 

future. 

It is also possible to substitute silicon in solar PV, but in the longer term — at least 10-

15 years from now. Perovskite solar cells are considered to be a future alternative to 

silicon technology, though again it is about substitution at technology (system) level 

rather than at materials level. For the time being, indium is not substitutable in thin-film 

solar cells without losing performance. 

Concerning Li-ion batteries, a number of alternative chemistries, such as metal-air, 

lithium-sulphur, sodium-ion, magnesium-ion and flow batteries, are currently being 

explored. Hydrogen fuel cells and aluminium-ion and graphene-based batteries are also 

recognised as potential future alternatives to Li-ion. All these battery chemistries are at 

different development stages, and according to the experts they are 15-20 years away 

from commercialisation. 

Box 11. Substitute materials and alternative technologies for wind turbines, PV solar and 

batteries do not exist today at industrial scale without compromising performance and 

costs. Technological breakthroughs can be expected only after 2030. 
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7. Overall assessment of the EU’s resilience to materials 

supply issues for the mass deployment of wind, solar PV 

and batteries technologies 

The EU’s resilience to potential materials supply issues on the road to the mass 

deployment of wind, solar PV and batteries is evaluated though a semi-quantitative 

rating  illustrated by a traffic light assessment matrix (Figure 18). Greens are associated 

with no particular issues, while reds indicate potential problems. 

Figure 18. Assessment matrix of the EU’s resilience linked to materials-related aspects for mass 
deployment of wind turbines, solar PV and batteries 

 

Source: JRC analysis. 

Permanent magnet-based wind turbines appear to be the most vulnerable technology in 

respect of raw materials. The reason is the EU’s very strong dependency on REEs needed 

for permanent magnets in direct-drive wind turbines. REEs are expensive materials with 

very high supply risks and currently negligible recycling and substitution rates. Wind 

technology is also most susceptible in terms of the supply of processed/finished 

materials. In addition, and recycling progress made in the EU is somewhat lagging behind 

when compared to the other two technologies. All this this makes wind the most 

vulnerable technology with regard to materials (Figure 19). 

Figure 19. The EU’s overall resilience to materials supply for wind, PV and battery technologies 

 

Source: JRC analysis. 

This assessment is based on the assumption that direct-drive permanent magnet wind 

turbines will prevail due to their higher efficiency, such as their ability to produce more 
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power output with slower wind speeds. The direct-drive configuration also eliminates the 

major cause of maintenance and repair of a wind turbine, which is the gearbox. Another 

reason to focus on this type of wind turbine is the EU’s long-term plans to greatly 

increase offshore wind power, a sector in which turbine generators with permanent 

magnets are state-of-the-art technology. 

The EU’s resilience to materials supply issues in relation to the deployment of PV energy 

and batteries is higher than for wind power. Although the impact of materials on the cost 

of the technology is higher than for wind turbines, solar PV and batteries use materials 

most of which are not associated with high supply risk, and the EU’s import reliance for 

these materials is somewhat lower. Europe holds a minor share of the market in the 

materials supply chain for all three technologies. However, the supply of materials 

needed for solar PV and batteries is somewhat less concentrated in comparison to 

materials used in efficient wind turbines. 

Concerning the recycling of PV modules and Li-ion batteries, some recycling initiatives 

and types of infrastructure are available in the EU, while recycling of REEs from wind 

turbines and electric cars motors, particularly of neodymium, dysprosium and 

praseodymium, has yet to be regulated and commercially begun. Several initiatives have 

been taken in this regard (Demeter, 2017b; EREAN, 2017; European Parliament, 2015). 

Currently, China is actively involved in recycling permanent magnets and seems to be 

taking the lead in this sector, thus closing the loop from the mining of raw materials to 

the use and recovery of materials from end-of-life products. 

A recent study highlighted the longer-term supply risk to the European wind and solar 

energy industry in terms of CRMs and the explicit role of China as a major supplier (Rabe 

et al., 2017). In this study some conclusions were drawn regarding the EU’s future 

policy: the development of alternative substitute technologies which are less reliant on 

critical materials and the recycling of these materials are essential measures to secure 

the successful deployment of wind and solar energy in the EU. 

Supporting and incentivising the recycling business in the EU is crucial in the context of a 

circular economy. It not only implies the generation of a secondary materials flow but will 

also contribute to preventing environmental issues caused by dumping waste batteries, 

PV modules and electrical motors/generators. Moreover, new jobs could be created in 

recycling companies. Innovative recycling processes need to combine environmental 

benefits and a secure supply of materials with a financial profit for the companies. Li-ion 

batteries are an emerging technology for the growing automotive and energy storage 

sectors. The availability of raw materials for this technology and the environmental 

effects associated with their extraction are often overlooked (McLellan, 2017). In 

addition, some materials are not currently produced in very economical conditions, such 

as in the case of lithium. But a reliable lithium supply is of vital importance for increasing 

the future production of cell batteries in the EU. Other materials such as cobalt and nickel 

are currently recycled from batteries. However, due to the low collection rate of batteries 

(around 9-10 % according to expert opinion), the total amount of secondary cobalt and 

nickel coming from these batteries is relatively low. The recycling of Li-ion batteries, 

solar panels and wind turbines is also highly relevant for the EU’s circular economy 

(ECESP, 2017). 
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8. Opportunities to improve the competitiveness of the EU’s 

wind, photovoltaic energy and battery industry through a 

sustainable materials supply 

In general terms, the level of play of the EU’s non-energy extractive industry (primary 

materials) and recycling industry (secondary materials) was evaluated in a recent study 

carried out for the European Commission (European Commission, 2015). 

Several initiatives were suggested to support non-energy extractive industry, such as: 

 improving knowledge of mineral endowment; 

 addressing the cost of energy; 

 focusing R&I on more-efficient extraction methods; 

 simplifying the regulatory framework. 

As for the recycling industry, the following actions are suggested: 

 providing demand-side stimuli for the industry; 

 addressing concerns associated with quality of recyclates; 

 placing a stronger focus on the enforcement of existing legislation; 

 establishing better accounting of the recycling industry within the EU Member 

States by collecting information and data on a regular basis. 

Financial support mechanisms, fiscal incentives, reducing VAT and tax shelters for 

secondary materials can help to address the cost gap between primary virgin and 

secondary raw materials (SUEZ, 2016). For instance, China already has a VAT rate of 

0 % on secondary raw materials to attract recycled material. 

Furthermore, the analysis carried out in this study is used to anticipate and define some 

opportunities that could contribute to increasing the EU’s competitiveness in wind, PV 

and battery technologies in relation to materials. China’s leadership in producing many of 

the raw and processed materials needed in these technologies, as well as its increasing 

role in the whole supply chain, including recycling, may facilitate the country to 

strengthen its position as competitor in the future. Adequate measures should be taken 

in a timely manner in order to strengthen the EU’s competitiveness in these three sectors 

in relation to an adequate and sustainable materials supply. 

Four main opportunities have been identified and elaborated upon below for each of the 

three technologies. 

Box 12. Opportunities to improve the competitiveness of the EU’s renewables industry 

1. Recycling and reuse following the circular economy model 

2. Research and innovation 

3. Diversifying the materials supply 

4. Strengthening downstream manufacturing 

8.1. Recycling and reuse following the circular economy model 

8.1.1.  Wind power technology 

The Chinese and other big economies will continue to grow over the coming years, and 

China might struggle to keep its production in line with the rising global demand for 

REEs. There are indications that China’s domestic demand for neodymium used in 

permanent magnets may exceed global production by 2025 (Mining, 2017b). Global 

companies located in China still have access to REEs at a significant price discount 

despite the recent WTO rulings. This in turn incentivises strategic downstream 
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manufacturing companies, such as magnet producers, to move to China in order to be 

more competitive. In relation to recycling capacity, China is claiming also to be the future 

leader in permanent magnet recycling: several new projects have been approved or are 

under development in China that in total account for more than 37 000 tonnes of 

recycled magnet annual capacity (Roskill, 2015). By closing the production loop China 

has the opportunity to preserve its almost total monopoly on the supply of REEs. 

As concluded in the report carried out by the European Rare Earth Competency Network 

(Erecon): ‘China has nurtured its REE industry over decades at a great expense, and will 

continue to try to capitalize on the opportunities this offers for developing high-tech 

industries. In the meantime, volatile prices and insecure rare earths access threaten to 

undermine European innovation and competitiveness and may slow the diffusion of 

priority technologies, such as electric vehicles and offshore wind’ (Erecon, 2015). 

One feasible way to secure future EU access to the REEs needed for wind turbines, EV 

motors and other high-tech applications is to ensure a sustainable flow of secondary 

materials through recycling. 

Adequate collection and recycling capacity should be established in the EU as soon as 

possible to deal with the increasing flows of used permanent magnets from industrial 

machinery. Additional feedstock will come from end-of-life EVs from 2025 onwards. The 

same companies could also recycle materials from decommissioned wind turbine 

generators. Due to the specificity of the recycling processes, proper regulation and the 

introduction of a mandatory labelling system indicating the type of permanent magnets 

will facilitate the recycling process and make it more effective. This can support the 

permanent magnet industry in the EU in the light of the growing market for EVs and wind 

turbines, which will contribute to increasing the demand for neodymium and 

praseodymium by almost 250 % over the next 10 years (Financial Times, 2017a). Tesla 

is also opting to use REE magnets in its Model 3 RWD Long Range vehicles instead of 

induction motors, to increase the performance of the electric powertrain (Industrial 

minerals, 2016). 

It is worth noting that REEs generated from recycling will not meet the primary demand 

in a growing market. Expert estimates show that the contribution of recycling to the total 

supply could be up to 20 % due to imperfect end-of-life collection rates and recycling 

yields (recovery rate). Nonetheless, this may be sufficient, to a large extent, to secure 

the magnet-producing industries in EU in the short term, whilst in the long term primary 

mined sources could be developed (Erecon, 2015). 

8.1.2.  Solar photovoltaic technology 

Silicon metal is currently not recovered from post-consumer waste. Most chemical 

applications, which account for 54 % of end uses, are dispersive and thus do not allow 

for a recovery/recycling process. Silicon metal is also not recovered from aluminium-

silicon alloys, which represent 38 % of silicon metal applications. 

In those industries that use metallurgical grade silicon some recycling streams exist for 

economic and environmental reasons. However, very little material is sold back to the 

market by metallurgical silicon users. The recycling of silicon wafers from the 

semiconductor industry is the subject of research and is not yet realised in marketable 

solutions. 

There is some potential for recycling silicon metal from scrap in the PV industry. Most 

silicon scrap generated during crystal ingot and wafer production for electronic 

applications can be used in the PV industry due to the higher quality (purity) of the 

silicon metal (Woditsch and Koch, 2002). Yet this potential is rather limited; electronic 

applications account for only 2 % of silicon metal end uses. 

Therefore, the tangible flow of recycled silicon metal for the PV industry is the industry 

itself. Including a recycling strategy in the manufacturing process for PV modules is 

important since it can ensure some secondary material flows for PV manufacturers and 



50 

can also maximise their profits. Moreover, recycled silicon metal is less energy intensive 

than the primary form. The early adoption of recycling targets, unified for all Member 

States, may lead to higher recycling and recovery rates, as seen in Japan and Sweden 

(Auer, 2015). In addition, unification of the classification of waste streams from PV 

panels across Europe is highly desirable. Different definitions used across the EU have 

negative implications to collection and recycling financing as well as waste 

responsibilities, which pose challenges for producers. 

8.1.3.  Battery technology 

The recycling of batteries is crucial to deal with raw materials supply issues in the future. 

One of the challenges making the business of recycling Li-ion batteries insufficiently 

developed at present and insecure for the future is the quantity of battery material 

needed to keep the rate of use of recycling facilities sufficiently high (Financial Times, 

2017b). The risk is therefore to have an insufficiently large infrastructure in place and in 

time for the first big wave of spent Li-ion batteries coming from electric vehicles. 

Although several companies in the EU are already recycling Li-ion batteries, mainly from 

consumer electronics, the EU recycling infrastructure targeting EVs and storage batteries 

has to be further strengthened. Certain companies have already begun to implement 

schemes for the recycling of used EV batteries. The expected growth in the demand for 

EVs in the coming decades is the long-term growth driver for companies such as 

Umicore, which in 2011 opened an industrial-scale recycling facility for end-of-life 

rechargeable batteries at its Hoboken plant (Belgium) (Umicore, 2017). 

The concept of promoting the reuse of end-of-life EV batteries is spreading all over the 

globe, from the perspective of using resources more effectively and reducing the need for 

new products (batteries in this case) (EAARB, 2014). In specific cases, batteries that are 

no longer usable for their first application still have residual capacity that could be 

employed for other purposes (second use). A number of research initiatives and pilot 

projects have been developed to assess the reuse of batteries that are no longer suitable 

for EVs in energy-storage applications. Batteries2020 (9), the Energy Local Storage 

Advanced system (ELSA) (10), ABattReLife (11) and Netfficient (12) are examples of EU-

funded projects aimed at finding the most suitable and sustainable second-use 

applications for EV batteries. Other research projects are being developed in collaboration 

with industry, including the following: 

 In the Netherlands the project 2BCycled aims to determine the business case for a 

second life for discarded EV batteries, evaluating the economic potential of the 

local household system (ARN, 2014). As another example, 280 second-life 

batteries will provide 4 MW of power and 4 MW of storage capacity to the 

Amsterdam Arena (ArenA, 2016). 

 BMW and Vattenfall have begun a research project looking at the secondary use 

of high-voltage EV batteries from MINI-E and BMW ActiveE vehicles for a 

multipurpose second-life application (trading, frequency regulation, etc.) (Bosch, 

2016). 

 Renault and Connected Energy are collaborating on the E-STOR energy storage 

product (Charged, 2016a). 

 Nissan and Eaton have formed a partnership to introduce a unit home-energy 

storage system with second-life EV batteries (Charges, 2016b). 

                                           
(9) http://www.batteries2020.eu/ 
(10) http://www.elsa-h2020.eu/ 
(11) http://www.abattrelife.eu/ 
(12) http://netfficient-project.eu/ 

http://www.batteries2020.eu/
http://www.elsa-h2020.eu/
http://www.abattrelife.eu/
http://netfficient-project.eu/
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8.2. Research and innovation 

Research and innovation, in close collaboration with industry, is one of the key 

opportunities for the EU to ensure the energy transition and deal with supply issues of 

raw and processed materials. Research and innovation is needed to improve material 

efficiency, increase recycling rates and find suitable substitutes. Innovation is a valuable 

asset also for the mining industry in Europe, addressing the challenge to mine deeper, 

recover more from the less available and less concentrated resources and use more 

effectively the mine tailings (considered waste) to recover materials. Resource efficiency, 

development of advanced recycling and mining technologies, and finding adequate 

alternative materials are research topics already addressed through various Horizon 2020 

projects and the European Innovation Partnership on Raw Materials’ Commitments (CRM-

InnoNet, 2015; EASME, 2015; European Innovation Partnership, 2015, 2016). For 

instance, around EUR 14.5 million has been allocated for the period 2014-2015 for 

projects focusing on the recycling of raw materials from end-of-life products and 

buildings (European Parliament, 2015). 

Investing in training and education programmes is also imperative for creating and 

maintaining the knowledge base and high professional skills in Europe. 

8.2.1.  Wind power technology 

In 2013 the European Rare Earth (Magnet) Recycling Network (EREAN) was established 

with the objective of training young researchers in the science and technology of REEs, 

with an emphasis on the recycling of these elements from permanent magnets. 

The development of innovative highly efficient recycling methods may alleviate the 

supply risk for some critical materials, especially REEs. Recycling technologies for REEs 

are still in the early stages of development and face inherent difficulties: many devices 

contain less than one gram of valuable REEs; the product design is unfriendly and not 

suitable for the easy separation of components, which makes the recycling process 

expensive. In addition, there is insufficient information of the REE content of different 

products. On top of this is the insufficient collection rate of end-of life products. All these 

inconveniences together can explain the current very low recycling rate of REEs — less 

than 1 %. 

Finding alternative technologies can drastically change the long-term picture. New 

advanced technologies will come with new material requirements and new suppliers. For 

instance, if iron-nitride permanent magnet technology is proved and commercialised in 

the coming years this could significantly alleviate the EU’s dependency on China for wind 

and EV materials since this new magnet relies on more abundant and cheaper materials. 

The EU offers support for the development and demonstration of material-efficient 

solutions for equipment used in wind energy technologies (e.g. the Horizon 2020 project 

Neohire (13) on the use of REE, cobalt and gallium in permanent magnets). 

As for the recycling of blades (another problematic component for recycling), at present 

there is not a large supply of composite waste for commercial recycling companies to be 

prosperous and to push for innovative recycling methods. The development of innovative 

techniques for blade recycling is highly desirable, and EU industry should be ready to 

adopt these processes within the next 10-15 years. It is also important to improve the 

design of next-generation wind turbine blades, which will make their disposal and 

recycling process easier and cheaper in future. 

8.2.2.  Solar photovoltaic technology 

The development of innovative recycling methods for PV modules will allow the recovery 

of a larger amount of materials, reducing the demand for primary materials and thus 

lessening the EU’s reliance on importing these materials. 

                                           
(13) http://neohire.eu 

http://neohire.eu/
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For example, the European research project ‘Full recovery end life photovoltaic’ 

(FRELP) (14) developed a pilot plant which allows the recovery of around 35 kg of 

metallurgical grade silicon from 1 000 kg of waste crystalline PV panels. The work also 

assessed the environmental performance of this innovative recycling process in 

comparison with the current treatment of PV waste in generic WEEE recycling plants (15). 

The results proved that the FRELP recycling plant has a slightly larger impact on the 

processing of PV waste compared to WEEE recycling plants, but it implies much higher 

benefits in terms of larger amounts of recycled materials (mainly silicon, precious and 

base metals, and glass). 

8.2.3.  Battery technology 

Innovation in batteries can contribute overall to increasing the EU’s resilience through, 

for instance, establishment of new ‘European’ eco-friendly designs, allowing for reduced 

use of critical materials and obtaining high recovery rates through advanced recycling 

processes. This could also support the standardisation of Li-ion chemistries within the EU 

and will also give a push to the recycling industry in the EU. 

Several examples can be given regarding innovation activities in batteries. Recupyl, a 

French company, which already collects and recycles batteries from EVs, has formed 

partnerships with the manufacturers of batteries and EVs in order to design eco-friendly 

batteries that can be recycled more easily and to develop high-yield processes to recycle 

next-generation batteries (Recupyl, 2017). Another French company, SNAM (Société 

Nouvelle d’Affinage des Métaux), which collects and recycles hybrid and EV batteries, is 

able to recycle up to 80 % of the battery weight (SNAM, 2015). A battery-recycling 

network has been developed by Toyota with certified companies such as SNAM and 

Citron (France), Accurec (Germany), Batrec (Switzerland) and Saft (Sweden) (Christidis 

et al., 2005). Colabats is an EU-funded project aimed at developing economically viable 

methods of NiMH and Li-ion battery recycling (C-Tech, 2017). The aim is to recover 

valuable materials including cobalt, lanthanum, cerium and other REEs. 

8.3. Diversifying the materials supply 

8.3.1.  Wind power technology 

In view of the current quasi-monopolistic supply of REEs from China, it is essential for 

Europe to diversify its supply via partnerships and participation in various ongoing and 

future exploration projects for REEs at a global scale. Several mines and processing 

facilities for REEs are now slowly ramping up their production after long delays. The 

United States did not produce REEs in 2016, but seven other countries aside from China 

did, namely Australia, Russia, India, Brazil, Thailand, Vietnam and Malaysia (Bradsher, 

2011; Rare Earth Investing, 2017; Worstall, 2014). 

High potential for REE mining also exists in Europe. The exploration projects in Sweden 

and Greenland, by Canadian and Australian companies, could potentially secure a large 

part of the European needs for REE in the coming decades according to experts 

(ERECON, 2015). It is claimed that with adequate funding and permits they could begin 

mining REE concentrates before 2020. A number of smaller projects are found in several 

other European countries, including Germany, Greece, Spain, France, Italy, Portugal, the 

United Kingdom and the western Balkan nations. These sites still require proper 

evaluation and therefore could potentially contribute to the domestic supply of REEs in 

the longer term. 

Learning from the strategies of other countries that are heavily dependent on REE 

imports could also provide good examples to follow. For instance, China supplies more 

than 80 % of the REEs needed by the Japanese economy. Japan’s strategy to secure 

                                           
(14) https://frelp.info/ 
(15) Current treatment of waste PV panel is mainly based to the dismantling of aluminium frame and cables, 

and the further undifferentiated shredding of the panel. 

https://frelp.info/
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access to REE is multifold: Japanese companies and the Japanese government are 

making joint venture agreements and partnerships around the world to secure supplies of 

REEs, particularly at the raw-material stage, and are investing in various exploration 

projects for potential mining in different countries. Research investment to increase 

material-use efficiency and finding substitutes for REEs in magnets and other critical 

applications is another mitigation measure. The Japanese government is also establishing 

a ‘recycling-based society’ with major efforts in urban mining (i.e. the recovery of 

materials from end-use applications, such as laptops and cell phones). 

China is also striving to diversify sources and expand its capacity beyond its own 

territory. For example, the Mountain Pass rare earths mine and processing facility in the 

United States, previously operated by Molycorp, was recently purchased by the Chinese-

led consortium MP Mine Operations LLC following Molycorp’s bankruptcy in 2015. The 

REE market is rather dynamic and it is difficult to foresee what the supply balance will be 

by 2030. The available information on potential future mines points to reduced 

concentration of supply due to new players entering the market. However, the EU’s 

dependency will remain high and it can be expected that the REE supply shortage will still 

negatively impact the EU’s competitiveness in high-tech industry. It could also impede 

the progress of emerging clean technologies such as electric cars, fuel cells, PVs, 

windmills and efficient lighting (Ebner, 2014; Massari and Ruberti, 2013). 

8.3.2.  Solar photovoltaic technology 

Crystalline silicon is currently the dominant global PV technology. Around 90 % of the 

market is based on this technology, and it will remain the leading technology in the EU at 

least until 2030. Meanwhile, thin-film PV technology is slowly gaining ground on the PV 

market. Other emerging PV technologies, such as those based on perovskite materials, 

dye-sensitised solar cells, organic compounds and quantum dots, look very promising 

and are subject of scientific interest, but their future looks insecure. 

The main materials for solar PV technology for which potential supply bottlenecks can 

occur are silicon and silver. While silver can be substituted, for example by aluminium, 

no viable substitutes yet exist for silicon, and it is possible that none may be available in 

the short term. Silicon is used in wide range of applications and the prospects point to a 

constant increase in the demand for silicon in the future. 

China is by far the largest supplier of raw silicon, accounting for around 65 % of world 

production in 2016 (Statista, 2017b). China is also investing in new raw silicon projects, 

while such projects are not expected to be started in Europe in the near future (16). New 

projects for opening new production facilities for silicon metal were also recently 

implemented in China. For example Xinjiang province increased its capacity by 1.8 million 

tonnes in 2016. It has been estimated that the total capacity of silicon production in 

China is about twice the current global demand (European Commission, 2017a). 

China is also the main producer of silicon metal (the pure form of silicon required to 

produce polysilicon for PV modules). It produces more than 60 % of the worldwide 

supply. The next largest producers are Brazil and Norway, which account for 10 % and 

7 % respectively. Silicon metal is identified as a critical material for the EU economy. 

According to the Global silicon industry update report (May, 2015), the global demand for 

silicon metal in 2015 slightly exceeded the global supply, which is an indication of supply 

bottlenecks. 

The EU is a net importer of silicon metal as domestic production cannot satisfy domestic 

demand. The reliance of the EU on imports of silicon metal is estimated to be 64 %. 

Norway, Brazil and China are the main exporter countries to the EU, covering 73 % of 

total EU imports of silicon metal (Eurostat, 2016). It is challenging for Europe to be 

competitive in the global silicon metal market. The processing of silicon is an energy- and 

carbon-intensive process. The main energy source used by the major silicon-producing 

                                           
(16) Private communication with experts in the field. 
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countries such as China is coal, while most silicon metal plants in Europe have historically 

been located close to hydropower sources. Chinese producers also benefit from lower 

power tariffs, which explains the lower manufacturing cost of the silicon metal produced 

in China. In addition, silicon production in the EU is subject to the directive on the 

emissions trading scheme (Directive 2003/87/EC), which entails direct and indirect 

carbon costs. 

The European manufacturing industry supplying solar grade silicon is represented by 

Wacker Chemie AG (Germany), which in 2015 provided around 14 % of total global 

production. 

8.3.3.  Battery technology 

There are some concerns among Li-ion battery manufacturers that future production 

could be hindered by potential supply shortages of lithium, cobalt and natural graphite 

materials. 

Lithium 

Chile is the largest producer of lithium ore (44 %), followed by Australia (32 %) and 

Argentina (11 %). The three major suppliers of refined lithium compounds, such as 

lithium carbonates and lithium hydroxides (required in batteries), are Chile (36 %), 

Australia (31 %) and China (16 %). The reliance of the EU on imports of lithium 

compounds is estimated to be 86 %, of which the major part is imported from Chile 

(77 %), followed by the United States (10 %) and China (6 %) (European Commission, 

2017a). 

Only Argentina has export taxes on lithium products (OECD, 2016), and a free trade 

agreement is in place with Chile, the main supplier of lithium to the EU (European 

Commission, 2016b). Therefore, no particular supply issues should be expected for 

lithium in the short term. However, the lithium market is becoming very dynamic 

following the recent developments in the EV sector. It appears that this sector is evolving 

more rapidly than the forecast growth, and EV producers and battery manufacturers are 

rushing to ensure long-term supply contracts for lithium. In the context of planning 

future construction of mega-factories for Li-ion batteries, for example in Germany, the 

EU needs to take action to overcome a potential lithium supply shortage. 

Cobalt 

The battery industry is one of the major end uses of cobalt, requiring more than 40 % of 

the total demand. Although the Democratic Republic of the Congo is the main producer of 

mined cobalt, providing around 64 % of total mining production, most refined cobalt is 

supplied by China (42 %) (European Commission, 2017a). The EU relies greatly on 

imports of cobalt: more than 90 % of cobalt ores and concentrates are imported from 

Russia, followed by 7 % from the Democratic Republic of the Congo. The import of other 

forms of cobalt, such as cobalt hydroxides, originates mainly from the Democratic 

Republic of the Congo, which satisfies around 50 % of EU demand. The Democratic 

Republic of the Congo is also the main supplier of cobalt for China — the Chinese 

consumption of cobalt supplied by the Democratic Republic of the Congo has increased 

from 55 % to 70 % in just 5 years. The very high global competition for cobalt also 

means that there is a high risk of supply disruptions for the EU. Regarding export 

restrictions, China and the Democratic Republic of the Congo imposed export taxes of up 

to 25 % on cobalt ores and concentrates over the 2010-2014 period (OECD, 2016). 

Some EU free trade agreements are in place with minor suppliers such as South Africa 

and Turkey (European Commission, 2016c). 

Graphite 

China is the world’s leading supplier of natural graphite, with approximately 70 % of 

global production, followed by India (12 %) and Brazil (8 %). The EU is almost entirely 

dependent on imports of natural graphite. There is some marginal production in the EU, 

but this accounts for less than 1 % of the global output. The main suppliers of graphite to 
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the EU are China (66 %), Brazil (13 %) and Norway (7 %) (European Commission, 

2017a). 

China has imposed export quotas on 12 commodities, including graphite and cobalt, both 

of which are critical materials for the EU economy (2017 CRM list). For several materials 

the export quotas were recently removed, and it is expected that they will be cancelled 

for all 12 materials between 2017 and 2018 (Roskill, 2016). 

In summary, the current supply to the EU of materials essential for building Li-ion 

batteries is rather concentrated: 77 % of lithium is supplied from Chile, 90 % of cobalt 

ores and concentrates originated from Russia, 50 % of other cobalt compounds come 

from the Democratic Republic of the Congo and 66 % of the natural graphite is imported 

from China. Therefore, extending the list of potential supplier countries and ensuring 

long-term supply contracts is essential for EU industry to stay competitive in the dynamic 

Li-ion market. The possibility to extend EU domestic production should also be explored. 

8.4. Strengthening downstream manufacturing 

A sustainable supply of raw materials is necessary but not sufficient to ensure a 

competitive European renewables industry. The supply of raw materials is just the first 

step in the value chain, and therefore the whole supply chain should be strengthened, 

including downstream manufacturing. 

Such a policy is also being adopted by China. The country is enhancing its 

competitiveness by closing the supply chain and prioritising its own downstream industry. 

In addition the Chinese policy includes attractive conditions for foreign investors, with 

guaranteed access to REEs and other materials as well as to the emerging Chinese 

market, which leads to the movement of foreign-owned facilities to China. 

8.4.1.  Wind power technology 

Besides secure access to REEs, their processing and downstream manufacturing facilities 

are an important asset for the competitiveness of the renewables industry. Several steps 

are required to make the transition from raw materials to the production of permanent 

magnets, and China is keeping leadership in all these steps: mining, milling and 

concentrating ores (80-85 %), separation (80-85 %), refining (> 95 %), production of 

alloys and powders for magnets (> 95 %) and manufacturing (> 80 %) (DOE, 2015). 

Besides mining, the processing of REEs is a critical step due to its high environmental 

impact. Therefore, securing a sustainable supply of primary and secondary raw materials 

can also boost companies producing sintered neodymium-based magnets, which are now 

disappearing from Europe. 

Monitoring innovation and new developments (e.g. iron-nitride permanent magnets) and 

being able to initiate production or timely secure contracts with producing countries are 

other opportunities for improving the sector’s competitiveness in the long term. 

8.4.2.  Solar photovoltaic technology 

China now effectively controls the solar PV market. It owns two thirds of the world’s solar 

cell capacity and also purchases half of the world’s solar panels (The New York Times, 

2017). China’s solar-power production capacity expanded more than tenfold from 2007 

to 2012. Six of the top 10 solar-panel manufacturers are Chinese, including the top two, 

compared with none a decade ago. To bypass anti-dumping and anti-subsidy measures 

imposed by the EU and the United States on Chinese PV panels a few years ago, Chinese 

companies have invested in building factories in other countries, particularly Malaysia and 

Vietnam. Chinese plans for the solar industry in the next 6 years are even more 

ambitious. Beijing has pushed state-owned banks to provide at least USD 18 billion in 

low-interest loans to solar-panel manufacturers and encouraged local governments to 

subsidise them with cheap land. 
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Within this scenario, and considering that the EU has only minimal solar cell production 

(around 2 % of the global market in 2015), it is extremely challenging for the EU to 

compete with China. EU solar companies are going out of business due to unfair 

competition from China. According to the European PV community, solar manufacturers 

have being going bankrupt around Europe and many important players are considering 

withdrawing from the solar market. The EU solar industry needs urgent measures as 

stated in an open letter to European policy-makers (PV magazine, 2017). 

Europe has capacity to produce solar grade silicon — Wacker Polysilicon AG (Germany, 

United States) is one of the world’s leading manufacturers of hyper-pure polysilicon for 

the semiconductor and PV industry. However, there is no sufficient manufacturing 

capacity of solar cells, which appears to be the weakest link of the solar PV value chain in 

the EU. Actions to support the European PV industry have been largely discussed and 

proposed in a dedicated JRC study (Ossenbrink at al., 2015). 

8.4.3.  Battery technology 

In relation to Li-ion battery manufacturing, the EU’s reliance is very high for both raw 

materials and battery-related processed materials, such as cathodes, anodes and 

electrolytes. Li-ion battery manufacturing is concentrated in Asia — mainly China. China 

is also investing heavily in increasing its production capacity. A recent Bloomberg report 

indicates that by 2021 China could produce 120 MWh of battery capacity (enough to 

supply around 1.5 million Tesla Model S vehicles). This is over three times the cell 

capacity of the Tesla Gigafactory. This means that China is opting to keep its dominance 

in the Li-ion battery market in the decade to come. 

Germany has also announced that it is to build a new gigafactory for Li-ion battery 

production in Frankfurt with a capacity of 34 GWh. Several proposals for further factories 

in Hungary, Poland and Sweden have been announced, though not all of them will 

produce Li-ion batteries (NextBigFuture, 2017). However, it is unlikely that the amount of 

batteries produced in the EU will be enough to satisfy the EV roll-out, a sector which is 

growing more rapidly than expected. 

EU has little chance of competing with China when it comes to battery cost, availability of 

raw materials and manufacturing capacity. The EU can, however, compete on innovation 

aspects such as development of advanced materials, recycling and substitution, cell 

chemistry and manufacturing technologies that provide high performance, durability, 

sustainability and safety. The EU's battery industry should be supported via reducing the 

risk for investors, which could lead to further economies of scale. A number of actions to 

increase the competitiveness of the EU’s battery industry have been proposed in a recent 

JRC study (Lebedeva et al., 2016). 

EU leaders are becoming more aware of the need to sustain the development of battery 

technology in Europe in support of European carmakers. Maroš Šefčovič, the European 

Commission Vice-President in charge of Energy Union, hosted in October 2017 a summit 

with the top executives from European chemicals groups, carmakers and battery 

manufacturers to promote cooperation in the sector, with up to EUR 2.2 billion of EU 

funding available to support the plan. Mr Sefcovic told Reuters that ‘Our ambition is to 

create real production [i.e. of Li-ion batteries] in the EU — a full value chain, including 

recycling’ (Reuters, 2017) and the Financial Times that ‘what we need is an Airbus for 

batteries. In the 1960s, we had a lot of smaller companies with cutting edge technologies 

but what they missed was the scale. We needed the Germans, the French and other 

Europeans to get together and to develop what today is a marvellous plane’ (Financial 

Times, 2017c). 

Further collaboration with China under the EU-China Collaborative Research Arrangement 

(European Commission, 2017b) and Investment Agreement (European Commission, 

2017c) (negotiations launched in 2013) is beneficial to support the building of a robust 

supply chain for a higher degree of EU resilience. An example of such collaboration is the 

Swedish graphite project Woxna. The Woxna production facility produces high-purity 
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spherical graphite for Li-ion batteries. This facility can become an integral part of the EU 

supply chain for battery manufacturing. The project is being carried out in collaboration 

with a strategic Chinese technology partner with a well-established battery design 

(Mining Sea, 2016). Work is now underway to produce a larger quantity of high-purity 

spherical graphite that fulfils the commercial specifications. 
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9. Conclusions 

Materials can have a significant impact on the competitiveness of the European clean-

energy generation and storage manufacturing industry through several factors, among 

which the growing demand, security and concentration of supply, price volatility and 

materials cost intensity of the technologies. These factors, along with the EU’s resilience 

to potential materials supply disruptions and possible mitigation actions, have been 

analysed for three key technologies, namely wind turbines, solar PV and batteries.  

Between 25 % and 40 % of the materials used in wind turbines, solar PV and batteries 

are identified as being critical to the EU economy. The price of raw and processed 

materials can have a large impact on the cost of technology — up to 70 % for batteries 

and solar PV technologies and 45 % for wind technology. Therefore, the increase in the 

price of materials can negatively affect the competitiveness of the EU related industry 

dealing with generation of clean energy and storage. Most of the materials used in these 

three technologies registered an increase in price in the period between 2000 and 2016. 

The most prominent price rise — between 700 % and 1 200 % — was observed for REEs 

(neodymium, dysprosium and praseodymium), with a further increase expected over the 

next few years due to projected growth in demand for neodymium-based magnets. The 

price of lithium has also risen by almost 400 % in the last 10 years and is still growing 

steadily, almost doubling in the first half of 2017 due to recent developments in Li-ion 

batteries for the EV sector. The resurgent economic growth of some countries, mainly 

China, has stimulated demand for basic commodities like copper, aluminium and lead. 

Overall, an increase in metal prices of 16 % is expected by the end of 2017, driven by 

strong Chinese demand. 

The EU is highly dependent on imports of raw and processed materials. The reliance of 

the EU on imports of raw materials is over 50 % for around 80 % of the materials 

required in wind turbines, solar PV modules and batteries. China is the global supplier of 

about half of the raw materials and is the major supplier of the refined materials 

considered in this study. China is also the leading supplier of all processed materials 

analysed in the study, with the exception of CFC for wind blades and anode materials for 

batteries, for which the United States and Japan are the leaders. 

Overall, this study indicates that the wind power is the most vulnerable 

technology in relation to materials, followed by solar PV and batteries.  

From the materials perspective, several opportunities to improve the competitiveness of 

the EU industry in the deployment of these technologies have been identified, namely: 

recycling and reuse; research and innovation, including maintaining knowledge and the 

high level of professional skills in the EU; diversified supply; and strong downstream 

manufacturing industry.  

Hence, the main opportunities for the EU lie in investing in recycling, increasing 

manufacturing capacity along the materials supply chain, developing innovative mineral 

extraction, processing and refining techniques, recycling methods and finding alternative 

materials or technologies that do not require problematic materials. This should be 

sustained by adequate standardisation and regulation processes. Currently, recycling and 

substitution have little potential to increase the sustainability of materials supply. 

However, recycling could significantly improve the EU’s resilience to potential materials 

supply bottlenecks and thus strengthen industry competitiveness in the medium term 

(2020-2025). Substitution could offer competitive advantages in the longer term (after 

2030). Besides recycling and substitution, material efficiency and further diversification 

of supply could strengthen the competitiveness of European industries. Liaising with 

other countries such as China, Japan and the United States under various collaboration 

agreements, including innovation and research, establishing agreements with new 

suppliers, securing trade contracts with new partners for raw, refined and processed 

materials and increasing domestic production can support the competitiveness of EU 

industry within the 2030 time frame and beyond.  
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