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Abstract 

This report is a public manual for the POLES-JRC model, the in-house tool of the European 

Commission for global and long-term analysis of greenhouse gas (GHG) mitigation policies 
and evolution of energy markets. The model includes a comprehensive description of the 

energy system and related GHG emissions for a large set of significant economies and 
residual regions, covering the world and including international bunkers. Through linkage 

with specialised tools it also provides a full coverage of GHG emissions, including from land 
use and agriculture, as well as of air pollutant emissions. 

The POLES-JRC model builds on years of development of the POLES model while adding 
specific features developed internally within the JRC. 

The model version presented in this report is used in particular to produce the JRC Global 

Energy and Climate Outlook (GECO) series. 

Complementary information can be found on the JRC Science Hub website: 

http://ec.europa.eu/jrc/poles 
http://ec.europa.eu/jrc/geco 

  

http://ec.europa.eu/jrc/poles
http://ec.europa.eu/jrc/geco
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Introduction 

The use of quantitative models of the energy sector in supporting policymaking has been 

increasing drastically in recent decades. The global partial equilibrium model POLES has a 
strong track record in providing analyses for the preparation of policy proposals in the area 

of climate change and energy. To this end, the model has continuously evolved so as to 
better match the needs of the policymakers. 

The POLES (Prospective Outlook on Long-term Energy System) model has been used for 
more than two decades as an analytical tool for providing energy scenarios that inform the 

energy policy trade-offs for sustainable energy development at both world and EU levels. It 
was initially developed in the 1990s at the University of Grenoble (France) in the then IEPE 

laboratory ( 1) and was first funded under the JOULE II and JOULE III programmes of 

Directorate-General XII of the European Commission and under the Ecotech programme of 
the French CNRS. The model then was transferred to a simulation software by the Joint 

Research Centre (JRC). 

Since then the model has been improved and extended on several occasions to capture the 

most recent market and policy developments. Modelling upgrades include final energy 
demand, electricity production, the role of hydrogen as an energy vector, the oil, gas and 

coal international markets and GHG emission projections. 

Its features and the extensive range of results produced have been used to support a 

number of studies on energy prospects and on GHG emission mitigation policies for various 

European, international and national institutions over the last 20 years. 

The JRC has co-developed the model for some time and recently issued the POLES-JRC 

version. 

This report documents the latest version of the POLES-JRC model as of early 2017, which 

shares elements with other versions of the POLES model used by other institutions (2). 
Following a general description of the model and the economic activity, it details the 

approach implemented in the various end-use and supply sectors. Considering the 
application of the model in assessing global GHG emission scenarios, specific sections 

address the calculation of emissions and of scenario building. This version is used for the 

JRC Global Energy and Climate Outlook series (GECO) (3). 

  

                                          

(1) Now part of the GAEL laboratory: https://gael.univ-grenoble-alpes.fr/?language=en 

(2) GAEL (French research laboratory) https://gael.univ-grenoble-alpes.fr/research-areas/energy-

axis?language=en; Enerdata https://www.enerdata.net/  

(3) www.ec.europa.eu/jrc/geco, see GECO 2016 (Kitous et al. 2016). 

https://gael.univ-grenoble-alpes.fr/?language=en
https://gael.univ-grenoble-alpes.fr/research-areas/energy-axis?language=en
https://gael.univ-grenoble-alpes.fr/research-areas/energy-axis?language=en
https://www.enerdata.net/
http://www.ec.europa.eu/jrc/geco
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1 General description 

This section gives an overview of the model in terms of scope and objectives, modelling 

principles and geographical breakdown. 

The POLES-JRC is a simulation model designed for energy and climate policy analysis. Its 

main features are the following: 

 full description of the energy sector: 

o demand and supply linked through prices, 
o detailed representation of end-use sectors, power generation and other 

transformation sectors and primary supply, 
o disaggregation to all types of energy fuels, 

o explicit technology dynamics, 

o historically calibrated behaviour of economic agents; 
 energy and non-energy related emissions of GHGs and air pollutants; 

 a global coverage while keeping regional detail; 
 updated information (historical data up to current year – 1); 

 an annual time step and typical projection horizon until 2050. 

Figure 1: Schematic representation of the POLES-JRC model architecture 

 

1.1 Scope and objective 

The POLES-JRC model is a simulation model for the development of long-term energy 

supply and demand scenarios, including related emissions, for the different regions of the 
world. It simulates technology dynamics and follows the discrete choice modelling paradigm 

in the decision-making process. It determines market shares (portfolio approach) of 
competing options (technologies, fuels) based on their relative cost and performance while 

also capturing non-cost elements like preferences or policy choices. 

POLES-JRC covers the entire energy sector, from production to trade, transformation and 
final use for a wide range of fuels and sectors. In addition, non-energy greenhouse gases 

as well as air pollutants are covered, be they associated with the energy sector or with 
other economic activities (4). 

                                          

(4) The model provides a full coverage of GHG emissions: detailed emissions from the energy sector and 

industrial processes are derived directly from the core modelling, while emissions from agricultural activities 

 

Modelling Model outputs Model inputs 

Technology 1 
(costs, efficiency…) 

Macro assumptions 
(GDP, Pop, …) 

Carbon constraints 
(tax, cap on emissions…) 

Specific energy policies 

(subsidies, efficiency…) 

Resources 
Oil 
Gas 
Coal 
Uranium 
Biomass 
Wind 
Solar 
Hydro 

66 energy demand regions 
Service needs (mobility, surfaces, 

heating …) 
Energy demand 
Energy transformation 
Energy supply 
Fuel/technology competition 

Regional Energy Balance 

Primary energy production 
Power generation and other 

transformations 
Final energy demand  
Energy-related land use 

66 regional balances 

International markets 

Oil (88 producers – 1 mkt) 
Gas (88 producers – 14 import mkts) 
Coal (81 producers – 15 import mkts) 
Biomass (66 producers – 1 mkt) 

Trade 

Technology learning 

International prices 

GHG emissions 
Air pollutants emissions 

End-user prices 
Energy supply investments 
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The model’s scope is global, with an explicit representation of 66 geographical entities (see 
Section 1.3). 

The POLES-JRC model runs in annual time steps, with the model’s outlooks typically 
extending from 1990 to 2050, the time horizon for which the technological representation is 

most relevant; for very long-term climate mitigation assessments the model can be run to 
2100. 

The model is conceived for the purpose of providing analytical support on the following: 

 Assessment of policies related to the energy sector 

The model is used to quantify the impact of policies on the evolution of the energy sector 
compared to its evolution without that intervention or with an alternative policy 

formulation. This is achieved through the comparison of scenarios concerning possible 
future developments of world energy consumption and corresponding GHG emissions under 

different assumed policy frameworks. Policies that can be assessed include: energy 

efficiency, support to renewables, energy taxation/subsidy, technology push or prohibition, 
access to energy resources, etc. 

 Greenhouse gas emissions abatement strategies 

The model can assist the formulation of GHG emissions reduction strategies in a national or 
international perspective. The high sectoral and technological detail of the model can help 

in identifying and prioritising strategic areas of action for mitigation through the 

comparative analysis of multiple reduction scenario pathways in terms of emissions and 
costs. Additionally, it can be used to assess the costs of compliance with global, national 

and sectoral emission targets. 

Finally, the model allows assessment of the impact of energy and climate policies on air 

pollutants (5) (see Section 5.2). 

 Technology dynamics 

The model can assess the market uptake and development of various new and established 
energy technologies as a function of changing scenario conditions. The key parameters 

characterising the costs and performances as well as the diffusion process of these 
technologies are incorporated in the model for power generation, hydrogen production, 

vehicles and buildings. 

The global coverage allows an adequate capture of the learning effects that usually occur in 

global markets. In particular the modelling of power production technologies is associated 
with dynamic technology learning. 

 International fuel markets and price feedback 

The model can provide insights into the evolution of the global primary energy markets and 

the related international and regional fuel prices under different scenario assumptions. To 
this end, it includes a detailed representation of the costs in primary energy supply (in 

particular oil, gas and coal supply), for both conventional and unconventional resources. At 
the same time, the (regional) demand for the various fuels is simulated and matched 

through price adjustments. 

The model can therefore be used to analyse the impacts of energy and climate policies and 
energy taxation/subsidy phase-in/out on the international energy markets. The interaction 

                                                                                                                                     

and LULUCF (land use, land use change and forestry) are derived from a linkage with the GLOBIOM model 

(IIASA 2016a) (see Section 5.1.5). 

(5) Through a linkage with the GAINS model (IIASA 2016b) 
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of regions and energy fuels allows for the study of the effects of policies on producers’ 
revenues, of the price feedback on consumers or of carbon leakage. 

1.2 Modelling principles and methodology 

1.2.1 Model structure 

POLES-JRC is a partial equilibrium model of the energy system (i.e. without feedback on 
the economic system) using recursive simulation. 

Figure 2: Schematic representation of the POLES-JRC sectors 

 

Energy demand by region and sector is derived from socioeconomic developments 
(exogenous assumptions), policy conditions and the evolution of international energy 

prices. It is met by the operation of the installed equipment, be it transformed or primary 
energy. Simultaneously the model identifies expected future energy needs and determines 

the required capacity to cover these needs, accounting for the decommissioning or 
underutilisation of existing equipment. 

Primary energy consumption by region is given by the aggregated sectors’ final energy 
demand and energy used in transformation. It is supplied by domestic energy production 

via international markets. The comparison of demand dynamics and export capacities for 

each market establishes the market equilibrium and the determination of the price for the 
following period, which impacts future demand and supply with lagged variables. 

Primary Energy Supply 
- Oil (6 types) 
- Gas (5 types) 
- Coal (2 types) 
- Uranium 
- Biomass (3 types) 
- Primary energy carriers for electricity: wind, solar, 
hydro, nuclear, geothermal, ocean 

Energy transformation 
- Electricity production 
- Hydrogen production 
- Liquid fuels production: coal, gas and biomass conversion 
- Heat production, including solar heat 
- Other transformation and losses 

Final energy demand 
11 main sectors (10 sub-sectors in transport) 

- Buildings: Residential; Services 
- Transport: Road (passenger (private, public), freight (light, 

heavy)); Rail (passenger, freight); Air (domestic, international); 
Water (domestic waterways, international bunkers) 

- Industry: Steel; Non-metallic minerals; Chemicals (Energy uses; 
Chemical feedstocks; Rubber and plastics); Other 

- Agriculture 
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For each region, the model represents three main modules, themselves with several sub-
modules, as described in the Figure 2. This structure allows for the simulation of an energy 

balance for each region. 

1.2.2 New equipment and competition across options 

The model makes use of a common modelling approach across sectors in order to represent 

the need for new energy equipment and the competition across options: 

1. The evolution of the total stock (or capacity) is set by activity drivers, energy prices 

and technological development; 
2. The installed equipment can meet part of the total demand, once depreciation 

(scrapping) has been taken into account; 
3. The remaining needs after contribution of the un-scrapped equipment is covered by 

a competition between options (fuels or technologies). 

Figure 3: Schematic representation of the energy needs and depreciation procedure in POLES-JRC 

 

 

1. The standard demand equation follows the general form: 

𝑫𝒆𝒎𝒂𝒏𝒅 = 𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚𝒆𝒚 × 𝒇[(𝑨𝒗𝒈. 𝑷𝒓𝒊𝒄𝒆)−𝒆𝒔] × 𝒇[(𝑨𝒗𝒈. 𝑷𝒓𝒊𝒄𝒆)−𝒆𝒍] × 𝑻𝒓𝒆𝒏𝒅 

It combines: 

 an income or activity effect, through an activity elasticity (ey): the activity variables 

are sector-specific: income per capita, sectoral value added, household surfaces etc; 
 price effects: the structure of the equations allows for taking into account both 

short-term (es) and long-term (el) price elasticities, with a distributed lag structure 
over time and possible asymmetries between the increasing or decreasing price 

effect; 
 an autonomous technological trend that reflects non-price-dependent evolution of 

the equipment performance, due to purely technological advancements or to non-
price policies (e.g. efficiency standards); 

 the fact that the activity elasticity and the trend can be dynamic so as to capture 
saturation effects. 

2. Installed equipment is determined by a survival law that considers the general dynamics 

of total demand, the average lifetime of the equipment and the evolution of the relative 
cost of use of the option compared to others. 

3. In order to take into account the flexibilities and rigidities introduced by existing capital 
stocks, the competition between options takes place only in the space created between the 

Sectoral demand 
at t 

Sectoral demand 
at t+1 

"Gap" 

"Scrapping" 

Option 1 

Option 2 

Option 3 

Remaining equipment 
("un-scrapped") 

Inter-options 
competition 

New additional Option 3 

New additional Option 2 

New additional Option 1 

1 

2 

3 
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total needs and the un-scrapped equipment: a ‘gap’ to be filled by new equipment (‘putty-
clay’ demand function). 

Fuel or technology market shares are calculated in a cost-based competition process using 
a discrete choice formulation. 

It takes into account: 

 the user cost of the different options (Ci), which includes the investment cost, the 

lifetime, a time discounting factor ( 6), the fuel utilisation efficiency and the fuel 

price; 
 a weighting factor to capture the observed deviation from pure cost-based 

competition (ai), calibrated on historical market shares and reflecting non-economic 
preferences; it can evolve exogenously over the simulation to capture infrastructure 

developments, technology choices, etc. 

𝑴𝒂𝒓𝒌𝒆𝒕 𝒔𝒉𝒂𝒓𝒆𝒐𝒑𝒕𝒊𝒐𝒏 𝒊 =
𝒂𝒊 × 𝑪𝒊

−𝒆

∑ 𝒂𝒊 × 𝑪𝒊
−𝒆

𝒊
 

The total demand by option is then the sum of remaining demand after depreciation and of 

the new demand. 

This formulation is found in the final demand sectors and in fossil fuel supply. 

The planning of power capacities follows a similar logic, except that the competition takes 

place over the entire expected demand looking 10 years ahead. This expected demand 
takes into account investors’ expectations on the evolution of the policy framework, as well 

as fuel prices; expectations are based on extrapolations of historical trends, and therefore 
do not constitute a perfect foresight. Since the capacity planning in power generation is of a 

recursive nature, investment decisions taken in year t can be modified in year t + 1 except 
for those installations for which construction was assumed to have started already (a tenth 

of the total). 

1.2.3 Energy technology dynamics 

The concept of technology learning (7) links the improvements in performance, productivity 

and/or cost of a technology to the accumulation of experience. Instead of trying to 
disentangle the technology cost reductions to multiple items, the model uses the ‘One-

factor-learning-curve’ (8) approach that links the unit cost development of a technology to 

the evolution of the accumulated production of that technology. 

Due to the global nature of the power equipment market, learning is assumed to take place 

as a function of the worldwide installed capacity of a certain technology (in W). Depending 
on the scenario settings, which affect the deployment of a given technology, different 

trajectories of the technology costs can be derived. 

                                          

(6) The time discounting factor used for investment decisions includes a discount rate and a sector-specific risk 

preference factor. 

(7) See for example Wright (1936). 

(8) The literature identifies more complex formulations, which include for instance learning by researching, 

learning by using, learning by scaling and learning by copying (i.e. knowledge spillovers) (Sagar and van der 

Zwaan, 2006). The ‘learning by searching’ in particular (linked to R & D expenditures) has been explored 

with the POLES model — see the SAPIENT, SAPIENTIA and CASCADE MINTS projects. However Wiesenthal et 

al. (2012) show that lack of historical data and robust projections of the associated drivers make them 

difficult to handle. 
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𝑪𝒕 = 𝑸𝒕
𝒍𝒏(𝟏−𝑳𝑹𝒕)/𝒍𝒏(𝟐)

 

with C = Costs of unit production (€/W) 

 Q = Cumulative Production (W) 

 LR = Learning rate 

 t = Technology 

Learning rates (LR) correspond to the percentage decrease of investment cost of a 

technology when the installed cumulated capacity of the technology doubles. 

For Carbon Capture and Storage (CCS) plants, different learning applies to the power 
production facility on the one hand and to the carbon capture component on the other 

hand. Similarly, in concentrated solar power plants, the investment cost of storage is 
separated from the learning in the rest of the plant. 
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1.3 Geographical breakdown 

The world energy consumption is decomposed into 66 geographical entities (see Figure 4): 
the EU-28, 26 large economies (including detailed OECD countries, G20 and emerging 

Asian countries) and 12 country aggregates. International bunkers (air and maritime) are 
also taken into account. 

Figure 4: POLES-JRC geographic breakdown 

 

The geographical decompositions for oil, gas and coal production are different, in order to 
represent resource-rich countries in greater detail, with more than 80 individual producers. 

Mappings are provided in Annex 2: Country mappings. 

1.4 Main activity drivers 

Population and economic activity expressed as GDP (gross domestic product) — together 

with a sectoral decomposition of the value added — are direct inputs to the model driving 

the evolution of sectoral energy-consuming activity variables. The main information sources 
used are (see also Section 7 on data): 

 for the EU: the Ageing Report (European Commission 2015); 
 for non-EU regions: UN for population (UN 2015), IMF and OECD for economic 

growth (respectively IMF 2016 and OECD 2013). 

The evolution of other socioeconomic variables like housing needs (number, size) and 

mobility (both passengers and freight) is also derived from the inputs on population and 
growth of GDP per capita 

Economic variables are expressed in real monetary terms (constant US dollars). Data on 
GDP and sectoral value added are expressed in purchasing power parity. 
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2 Final energy demand 

Final energy demand in the model is dealt with explicitly for four sectors: industry, 

residential and services, transport and agriculture. This chapter describes for each of them 
the related activity drivers and resulting energy needs. In addition, one section is dedicated 

to the formulation of energy prices, which play an important role in the dynamics of energy 
demand. 

2.1 Industry 

2.1.1 Disaggregation and general approach 

Industry is disaggregated into different manufacturing sectors and mining and 
construction (9). In line with the IEA/Eurostat balances, industrial energy consumption does 

not include transport used by industry (which is reported under transport); it also excludes 
the fuel input for auto-production but includes the auto-produced electricity. 

Final energy demand in industry is divided into four energy sectors: 

 iron and steel; 

 chemicals; 

 non-metallic minerals (NMM): cement, lime, glass, ceramics and other NMM; 
 other industry: other manufacturing, mining and construction. 

The industrial sectors that are modelled individually were chosen because of their energy-

intensive processes; they represented approximately 50 % of the energy consumption (10) 
of industry at world level in 2010. 

Additionally, the consumption of fuels for non-energy uses is captured for two types of 

products: chemical fertilisers and plastics and rubber. 

Figure 5 shows the evolution of total input fuels (both for energy uses and non-energy-use) 

and industry value added since 1990. The sector undertook a decoupling with total value 
added more than doubling while fuel inputs increased only by 60 % over the period. 

Figure 5: World consumption of industry per sector (left) and industry value added (right), reference 
scenario 

 

  

                                          

(9) The energy transformation industry (transformation of energy fuels, including the power sector) is treated 

separately from the industry that is a final energy consumer. 

(10) Energy uses only, see Enerdata (2015a) 

0

5

10

15

20

25

30

35

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

1990 1995 2000 2005 2010 2015

tn
 U

SD
 

G
to

e
 

Plastics & rubber

Chemical feedstocks

Other industry

Non-metallic Minerals

Chemicals

Steel

Industry value added

Non-energy 
use 

Energy use 



 

12 

2.1.2 Steel sector 

2.1.2.1 Steel activity 

The activity indicator for the steel industry is the tonnes of steel produced. 

Regional steel demand is modelled using the concept of intensity of use (van Vuuren et al. 
1999; Hidalgo et al. 2003): consumption per unit of GDP first increases through a rapid 

equipment phase and industrialisation, then peaks and goes through an extended 
decreasing phase as the economy shifts to services. It is modelled with the following 

equation: 

𝑪𝒐𝒏𝒔

𝑮𝑫𝑷
= 𝒇 (

𝟏

𝑮𝑫𝑷
𝑷𝒐𝒑

) , 𝒇 (
𝑮𝑫𝑷

𝑷𝒐𝒑
) , 𝑭𝒍𝒐𝒐𝒓 

This behaviour is calibrated for each world region (see Figure 6). 

The model evaluates the stock of steel in the economy and the amount of scrap available 
each year, considering obsolescence factors in the different sectors consuming steel. 

Figure 6: Apparent steel consumption per unit of GDP versus income per capita for select G20 
countries, 1990-2015 

 

NB: Russia’s high point in steel/GDP corresponds to 1992 figure. GDP is in USD 2005 PPP. 

The model differentiates between secondary steel (electric arc furnaces), which depends on 

the amount of scrap available (estimated from the stock of steel and average lifetime of 
use in the different sectors), and primary steel (from thermal processes) that makes the 

difference from total steel production needs. 

After consideration of the decommissioning of existing capacities, the additional production 

capacities — distinguished between electric arc and integrated steel production — are 
allocated across all regions with a competition based on pre-existing capacities, evolution of 

local steel consumption and steel production cost (energy cost and a fixed infrastructure 
cost). 
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2.1.2.2 Steel industry energy demand 

The consumption of each fuel is distributed between thermal processes and electric 

processes considering tonnes produced by process, theoretical energy needs per tonne and 
fuel conversion efficiency in the case of auto-production of electricity. Coking coal and 

marketed heat are always assigned to thermal processes. 

In each of the two processes, total demand for non-electric fuels in competition and 

electricity follows a standard demand equation, determined by the evolution of the tonnes 

of steel and the energy price. Within non-electric fuels in competition (oil, gas, coal and 
biomass), the fuel substitution processes and the equipment lifetime are similar to those in 

the other industrial sectors. 

Coking coal in thermal processes follows its own standard demand equation, influenced by 

the price of coking coal. Blast furnace gas produced during the combustion of coke and 
used as a fuel input in steel processing is also calculated based on coke consumption. This 

is taken into account in the emissions from the sector (see 5.1.2 Energy-related 
emissions). 

2.1.3 Other industrial sectors 

This section applies to the three non-steel industrial sectors: chemistry, non-metallic 
minerals and other industry. In each case the activity indicator is the sector’s value added. 

For each sector, total demand for process heat is calculated with a standard demand 
equation, influenced by the sector’s value added and the average price of the fuels in 

competition. Within that total, a cost-based competition takes place between oil, gas, coal 

and biomass. For each fuel, costs include fixed infrastructure costs, a fuel utilisation 
efficiency and fuel-specific weighting factors reflecting the initial historical distribution of 

fuel demand and evolving towards cost-only competition. 

Demand for electricity is calculated separately, with a standard demand equation. 

2.1.4 Non-energy uses of fuels 

Two economic activities using fuels as raw material are differentiated: 

 chemical fertilisers that can consume oil, gas and coal; 

 plastics and rubber that can consume oil and biomass. 

The activity indicator is the chemical industry value added. 

Related process and end-use CO2 emissions are covered. 

2.2 Residential and services 

The residential sector and the services sector share a number of common features, since 

they are mostly related to buildings. The energy demand in each sector depends on specific 
activity variables (the number and surface of dwellings for the residential and the sectoral 

value added of services, respectively), the energy prices and the cost of technologies 
(heaters, boilers and insulation). 

The modelling in the residential sector is described below. The same modelling applies to 
the services sector, with sectoral value added instead of surfaces. 

2.2.1 Surfaces in residential building 

Total residential dwellings surface is derived from: 

 the total number of dwellings, which captures the evolution of population and of the 

number of people per household which tends to decrease with increasing income per 
capita; 
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 the surface per dwelling, which increases with income per capita: larger dwellings 
are constructed to meet the new demand for dwellings and to replace scrapped 

dwellings. 

Three types of surfaces are described, associated to a specific energy consumption pattern: 
standard, medium and low consumption. 

Diffusion of medium- and low-consumption buildings takes places on new (medium and low 
consumption) or renovated surfaces (medium consumption). It is calculated endogenously 

driven by the return on investment of investing in insulation compared to the energy 

savings realised, and can therefore vary across different scenarios in response to changes 
in policy assumptions and prices. 

Figure 7: Example of the distribution of standard-, medium- and low-energy consumption surfaces in 
the residential sector, world, in a Reference and a 2 °C scenario 

 

Source: GECO 2016. 

2.2.2 Space heating, water heating and cooking 

Energy needs for space heating, water heating and cooking can be addressed by several 

fuel sources. Total energy needs link to surfaces, the evolution of the energy prices and the 
level of insulation. 

The need for new energy installations is calculated by the gap created by the increased 

consumption and the installed equipment after taking account of the replacement of 
obsolete equipment. This gap is met by investments in new equipment; the share of 

competing types of new equipment — which is defined through their primary fuel, i.e. oil, 
gaseous fuels (natural gas and hydrogen), electricity, modern biomass and solar 

heating (11) — is determined through a competition based on the total costs of fuel use. 
This includes the fuel price, an infrastructure cost and the fuel utilisation efficiency. It also 

considers historically calibrated factors to cover for elements going beyond the purely cost-
based modelling, such as consumer preferences. 

The remaining fuels follow historically calibrated trends and fuel-specific constraints: 

 coal, also sensitive to the carbon price; 
 traditional biomass, sensitive to the biomass potential; 

 district heating, constrained through the availability of distribution networks. 

                                          

(11) Solar heating is sensitive to the resource potential (see Section 3.2 Heat production), 
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2.2.3 Space cooling, appliances and lighting 

Specific electricity demand (for lighting, space cooling and appliances) is calculated based 

on needs per dwelling, which depends on the electricity price, the income and an 

autonomous technological trend. 

Consumption of specific electricity per capita (Figure 8) is still 5 to 10 times lower than for 

heat-related uses, but shows a strong growth since 1990, with a fairly linear relation with 
income per capita. 

Figure 8: Specific uses of electricity per capita vs income per capita, residential, 1990-2010 

 

2.3 Transport 

POLES-JRC projects vehicle stocks per engine type, related energy use and GHG emissions. 
It allows a comparison of energy consumption and emissions across all modes and regions 

for different scenarios. 

Transport energy demand satisfies the needs of passenger mobility and freight. In road 

transport, the modelling includes a detailed representation of the vehicle stock and 
propulsion technologies; in rail, air and water transport energy demand is directly related 

to the activity indicators. 

2.3.1 Mobility 

2.3.1.1 Passengers 

Passenger mobility is expressed in passenger-kilometres and takes place on land (road, 
rail) and by air. It is driven by income and energy prices in the different modes, with partial 

substitution taking place across modes: private means (cars, motorcycles) or public means 

(buses, rail, air). 

For private means, the vehicles are modelled explicitly, with a vehicle stock and new annual 

sales. The total mobility is the product of the vehicle stock and the average mileage per 
vehicle. 

The vehicle stock is defined by a per capita equipment rate, influenced by income and 
capped by a saturation level; for motorcycles, the equipment rate decreases with the 

income per capita. 

The average mileage per vehicle is driven by the equipment rate (more vehicles translates 

into lower usage per vehicle) and average fuel price (decrease of use with higher prices). 

Motorcycles are bundled with private cars by translating their mobility into a ‘car 
equivalent’. 
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Figure 9: Equipment rate vs income per capita for select G20 countries, 1990-2015 

 

The land-based mobility by public means (buses, rail) is driven by per capita income and 

average fuel prices through a positive elasticity which translates partial substitution with 
private means. 

Air mobility grows with GDP per capita (positively) and by the average fuel price 

(negatively, considering both fossil-based kerosene and liquid biofuel). A distinction is 
made between domestic and international air transport. 

Figure 10 shows the average evolution at world level, which has increased from 5 000 km 
per capita in 1990 to about 8 000 km in 2015. While there is still a large potential for 

mobility increase in non-OECD countries with increasing income per capita, it seems to 
have stabilised over the last few years in OECD countries. 

Figure 10: Passenger mobility, average by mode (left), as a function of income (right) 
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2.3.1.2 Freight 

The model describes freight transport in road, rail and maritime ships. 

Rail and road freight in each country and region evolves with GDP, with saturation 
depending on population size. Road transport distinguishes between light trucks (up to 0.5 

tonnes) and heavy trucks. 

Maritime trade is modelled at the global level and identifies the following commodities 

(UNCTAD 2015), each characterised by a specific activity driver: 

- oil and liquid biofuel imports/exports, 
- coal and solid biofuel imports/exports, 

- LNG flows, 
- iron (driven by primary steel production), 

- chemical goods (driven by the value added of the chemicals industry), 
- other industrial products (driven by the value added of ‘other industry’), 

- containers (driven by the gross world product), 
- grains (driven by the cereals trade (12)). 

Figure 11: Freight mobility, world 

 

2.3.2 Energy consumption in transport 

2.3.2.1 Road 

In road transport, energy service needs (i.e. the activity variables of passenger mobility or 

freight tonnage) are associated with each of the five vehicle types described — cars, 
motorcycles, buses, light trucks and heavy trucks — driving total energy needs. 

The model describes six different engine technologies: 

- ‘conventional vehicles’ with an internal combustion engine (ICE), which can function 

with gasoline or diesel or a blend of either with liquid biofuels; 
- plug-in hybrid vehicles that combine an ICE engine and an electric battery that 

consumes electricity; 

- full-electric vehicles; 
- compressed natural gas vehicles; 

- hydrogen fuel cell vehicles; 
- thermal hydrogen vehicles, which use hydrogen through a reformer to propel a 

classical ICE. 

                                          

(12) Based on look-up curves that take into account the reaction of cereals trade to the price of carbon and the 

price of biomass-for-energy, derived from the GLOBIOM model (IIASA 2016a) 
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Liquid biofuels can penetrate as blends with oil-based liquid fuels, in the consumption of 
ICE and hybrid vehicles. Their penetration is driven by price considerations or standards 

and is capped by a technical maximum blending (differentiated for biodiesel and 
bioethanol). 

In each time step, the total demand for vehicles and the remaining vehicles per engine type 
after scrapping are calculated, determining the needs for new sales within each vehicle 

type. 

Technology substitution among the engine technologies occurs in the new sales, based on 
the vehicles’ cost of use considering the annualised fixed cost (investment, a sector-specific 

time discounting factor (13) and lifetime) as well the variable cost (consumption and fuel 
price). An additional maturity factor accelerates or decelerates the adoption of new 

technologies, reflecting the development of new infrastructure and consumer preference. 

Figure 12: Schematic representation of road transport in POLES-JRC 

 

Fuel efficiency evolves with a price effect. Fuel or emission standards on new vehicles can 

be imposed. 

Private and commercial vehicles use different prices for oil products as a consequence of 

distinct taxation regimes they are exposed to. 

Actual energy consumed and GHG emissions are the result of the use of the vehicle stock 

considering behavioural effects via short-term price elasticities. 

2.3.2.2 Rail 

Rail satisfies energy services for passengers (passenger-kilometres grow with GDP and with 

price of road transport) and for freight (tonne-kilometres grow with GDP). 

                                          

(13) See footnote 6. 
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Total rail transport energy demand then follows the evolution of the total rail mobility need. 
It can be satisfied by three different types of fuels: electricity, oil and coal, with the last 

two following historically calibrated trends. 

2.3.2.3 Air transport 

Air transport energy demand is determined by the evolution of domestic and international 
air passenger mobility and by fuel prices. 

A short-term price elasticity captures the changes in fuel consumption per passenger of the 

existing fleet, while a long-term price elasticity captures the evolution of planes’ fuel 
efficiency and air transport organisation. 

A price-based competition takes place between kerosene and aviation biofuel. 

2.3.2.4 Waterways 

Oil consumption for domestic water transport (domestic sea lines, inland water transport) is 
determined by GDP and by fuel prices. 

2.3.2.5 International maritime bunkers 

Energy consumption for maritime bunkers is driven by the evolution of trade volume 

(expressed in tonne-kilometres) and energy consumption per tonne-kilometre. 

The energy consumption per unit transported evolves with marginal abatement cost curves 
(IMO 2015) that interact with bunker fuel prices for: 

 the existing fleet: incremental improvements, 
 the newly commissioned fleet: new technological options. 

The distribution of consumption between oil and gas-fuel engines depends on the evolution 

of the oil price. 

Figure 13: International bunkers’ energy consumption and their share in total transport energy 
consumption 

 

2.4 Agriculture 

This sector actually encompasses energy consumed in the agriculture sector, fishing and 

forestry. It includes oil demand for running tractors and agricultural equipment. 

For each fuel, total energy demand is determined by the value added of agriculture and an 

additional trend depending on income per capita, which reflects the potential intensification 
of agricultural production. 

Climate policies negatively affect oil and gas consumption that are substituted by biomass 

and electricity. 
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2.5 Energy prices 

Final user energy prices are calculated from the variation of import prices (themselves 
derived from the variation of international prices) to which is applied: 

 the value added tax (in percentage), 
 scenario-specific energy fiscal policy evolution (taxes, subsidies), 

 environmental policy elements (e.g. carbon pricing). 

By default the volumes of price components not explicitly represented in the model remain 

the same as historical levels (excise taxes, transport and distribution duties, other taxes 
and duties). 

Subsidised fuels are identified at the start of the simulation by comparing final user prices 
with a fuel-specific reference price, which is the import price or the fuel price at the closest 

energy market (for fuel exporters), plus value added tax. The subsidies ratio can then be 

kept constant or can be progressively phased out. 

Domestic final user prices of transformed fuels (electricity, hydrogen, synthetic liquids) are 

deduced from the evolution of production costs. Transport and distribution costs as well as 
excise taxes are assumed to remain constant. For electricity, the production costs of base 

load production are assigned to the price for industry and those of peak load to residential 
services. 
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3 Energy transformation 

Energy transformation comprises all activities of energy conversion from primary forms of 

energy to end-use energy. Energy transformation consists of several sectors (14): refining of 
oil and gas; and production of electricity, heat (and co-generation with electricity), 

hydrogen and synthetic liquid fuels from coal, gas and biomass. Most prominent within 
energy transformation is the electricity sector, in which a broad range of energy 

carriers/fuels are converted to electricity. 

3.1 Electricity sector 

Electricity is an energy carrier that has been experiencing an increasing role in the final 

energy demand, influenced by the evolution of the economy towards services, 
electrification in industry and the widespread uptake of electronic consumer devices 

(including ICT applications). Figure 14 shows that this applies to all regions and that non-

OECD countries in particular are catching up quickly. 

At the same time, the power production sector appears as a key sector for decarbonisation 

with various mitigation options that are often cheaper than the mitigation options available 
at the end-user side, which further supports electrification within the framework of carbon 

constraints. 

Figure 14: Share of electricity in total final energy consumption, 1990-2015 

 

3.1.1 Electricity demand 

The total electricity demand is computed by adding together the electricity demand from 

each sector presented in the previous section: residential, services, transport, industry and 
agriculture. This is complemented by ‘other consumptions’, which include the auto-

consumption of power plants and of the rest of the energy sector, the grid losses, the water 
electrolysis consumption (for hydrogen production) and the net electricity exports. 

The evolution over time of the sectoral electricity demand is driven by the activity of each 
sector, as well as by the relative fuel prices for substitutable energy needs. 

Each sector has its own load shape for a summer and a winter representative day, with a 2-
hour time-step — Figure 15 shows an example. Therefore, the total electricity load curve 

changes over time (year of the simulation) and place (country) with the sectoral evolution 

of electricity demand. 

                                          

(14) The transformation of coking coal is not covered in this sector but in the iron and steel industry sector. Final 

energy consumption in that sector includes coal consumption for its conversion into coke in coking ovens. 
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Demand-side management is allowed in some sectors, most notably electric vehicles and 
space heating. 

Figure 15: Illustrative decomposition of electricity demand by sector in 2-hour blocks, for the winter 
and summer days. 

 

3.1.2 Power plant technologies 

The electricity generating technologies (Table 1) include existing technologies as well as 

emerging or future technologies. They are categorised as either centralised or decentralised 
technologies, which are modelled differently. The development and production from 

centralised technologies are based on a competition between grid-level plants, while the 
decentralised technologies compete with the retail prices perceived by consumers. 

The technologies are initialised for each country with the historical capacities and electricity 

produced: vintage of installed power mix (Platts 2015), market share in new capacities and 
observed load factor. 

Each technology has the following technical characteristics: input fuel, transformation 
efficiency, lifetime, auto-consumption rate and CO2 capture rate when relevant. 

The economic characteristics are: 

 a fixed cost: 

o investment, which evolves according to technology learning curves (see 
Section 1.2.3 Energy technology dynamics), 

o operation and maintenance (O&M), 

o subsidies or taxes on investments, 
o for CCS technologies, CO2 capture costs and related loss of efficiency; 

 a variable cost: 
o fuel cost, 

o variable O&M cost, 
o subsidies or taxes on power output or fuel input (including a potential carbon 

value), 
o for CCS technologies, CO2 transport and storage costs; 

 a discount rate. 

In addition renewables have a maximum resource potential (see Chapter 4 Energy supply). 

Similarly the deployment of CCS technologies is linked to region-specific geological storage 
potential. 

In addition to these technical and economic characteristics, non-cost factors are calibrated 
to capture the historical relative attractiveness of each technology specific to each country, 
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in terms of investments and of operational dispatch. The coefficient evolves depending on 
assumptions of future societal, political and market factors. 

Considering a learning curve (cost component) and an increasing maturity (non-cost 
component), the diffusion process follows a truly dynamic approach with path-dependency. 

Table 1: Electricity generating technologies 
Fuel Technologies Option with CCS 

Nuclear Conventional nuclear design  

 New nuclear design (4th generation)  

Coal Pressurised coal supercritical Yes 

 Integrated coal gasification with combined cycle (IGCC) Yes 

 Lignite   

 Coal conventional thermal  

Gas Gas conventional thermal  

 Gas turbine  

 Gas combined cycle Yes 

 Gas fuel cell*  

 Combined heat and power (CHP) (*) (**)  

Oil Oil conventional thermal  

 Oil-fired gas turbine  

Water Large hydro  

 Small hydro (< 10 MW)  

 Tidal and wave   

Geothermal Geothermal power  

Biomass Biomass conventional thermal  

 Biomass gasification  Yes 

Wind Wind onshore (3 different resource quality areas (***))  

 Wind offshore (3 different resource quality areas (***))  

Solar PV power plant (centralised)  

 Decentralised PV (*)  

 Solar thermal power plant  

 Solar thermal power plant with thermal storage  

Hydrogen Hydrogen fuel cell (*)  

(*) These technologies are considered as decentralised; they compete with grid electricity. 

(**) Gas-fired CHP is considered as driven by electricity needs, heat co-generation is a by-product. 
More information on heat production can be found in Section 3.2. 
(***) The onshore and offshore wind technologies have each been divided into three types of wind 

resource potential, based on the average wind speed for onshore technologies and on the average 
wind speed and distance to the coast for offshore technologies. 

3.1.3 Electricity production 

The power sector operation assigns the generation by technology to each of the 2-hour 

blocks. The available technologies must meet the overall demand, including the grid 
exports. The operation is decided following priorities and rules as shown below. 

The decentralised production is considered first. This includes decentralised solar PV, 
decentralised CHP, small hydro and stationary fuel cells. They are considered to be 

distributed at the customer site and thus compete with the retail electricity price. Their 
production is deduced from the grid-level demand with set production profiles. 



 

24 

Non-dispatchable centralised technologies (wind, large solar, marine) then produce 
according to specific profiles and are deduced from the demand that has to be met with all 

dispatchable centralised technologies, unless curtailment takes place (see below). 

Figure 16 shows some production profiles of the main non-dispatchable renewables 

technologies. 

Figure 16: Typical production profiles for solar and wind technologies 

 

NB: 100 % is the average load factor over the year. 

Nuclear and hydro are considered as ‘must-run technologies’ and are characterised by their 
yearly load factor and a default production profile. Their profiles can adapt to the total load 

profile (e.g. forced outages for nuclear maintenance) and also include some flexibility to 
accommodate for the high penetration of variable renewable energy sources (VREs). 

Hydro pump and storage adds flexibility, storing when VRE production is high and 
producing when VRE production is low. 

Finally production curtailment is allowed in the case of a combined oversupply of solar, 
wind, hydro, marine and nuclear power. 

The remaining technologies, constrained by their available capacity on each 2-hour block, 

compete based on their variable production costs taking into account a non-cost factor 
based on the historical tendencies of dispatching practices. 

The electricity prices are based on the result of this dispatch: a price for industrial 
consumers is derived from the evolution of the average cost of supplying the industrial 

loads, while the electricity price for other consumers follows the evolution of the average 
cost of supplying the non-industrial loads. 

The operation of the power technology also gives the overall primary fuel consumption of 
the power sector. 

3.1.4 Electricity capacity planning 

Decentralised technologies are planned separately, and compete directly with grid 
electricity on new needs. All other technologies are developed to cover the remaining 

electricity demand from the grid. 

The planning of centralised capacities is based on the expected 10-year trend of the 

demand evolution (net of the contribution of decentralised means). This trend is corrected 

every year (rolling myopic expectations). The expected load is distributed between the 
expected peak and expected base load, to form expected load blocks with various capacity 

factors. 
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The distribution across technologies per load block follows a portfolio approach, whereby 
total production cost per load block and a historically calibrated non-cost factor set the 

market share. 

Most renewable technologies are capped by their maximum potential. The modelling 

ensures that the market shares are distributed in a balanced mix of technologies. 

Figure 17 shows an example of the resulting investment by technology and by block. 

Figure 17: Illustrative 10-year capacity expectations of the main technologies, split into duration 
blocks 

 

For each technology, the sum of the expected capacities over the different blocks is 
compared to the remaining capacities in 10 years (the decommissioning of old plants is 

captured through the vintage of installed capacities) and an investment gap is computed. 
Finally, the actual investments carried out on the following year are a tenth of that 

identified gap. In this manner, the electricity module of the model recognises the 
importance of inertia, caused by the particularly long lifetime of equipment. 

Finally, an assumption on technical availability for large-scale deployment is made for some 
new technologies, such as fossil technologies with CCS (from 2035, which can be fully new 

plants, or refurbished fossil fuel plants) or fourth-generation nuclear plants (from 2050). 

3.2 Heat production 

Sectoral district heat demand follows a trend. 

The related supply comes from co-generation, either distributed or centralised in some 

regions (represented in the model as a by-product of electricity) or from heat plants (which 
follow the heat demand). 

Heat from low-temperature solar develops through a logistic curve that compares the cost 
and potential of solar heat to the average price of fuels for space and water heating. A 

higher return on investment triggers more investments. 

3.3 Hydrogen 

The complete processing chain for hydrogen use, production, transport, delivery and 
storage (15) is represented. 

3.3.1 Hydrogen demand 

Hydrogen demand comes from: 
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- Stationary sources: 
o hydrogen fuel cells in industry, residential and commercial sectors; their use 

is in competition with grid electricity and other forms of distributed power 
generation; 

o hydrogen can also be mixed with natural gas and used for thermal 
applications; 

- transport sources: road transport, in private cars and freight transport, where two 

types of engine use this fuel: hydrogen fuel cell vehicles and direct thermal 
hydrogen engine vehicles. 

Table 2: Hydrogen demand sectors 
 Fuel cell Direct combustion 

Stationary Distributed power generation in 
demand sectors (industry, 
residential, services) 

Mixed with natural gas in gas grid 

Transport Engine type in road transport 
vehicles (passenger, freight) 

Engine type in road transport vehicles (passenger, freight) 

The hydrogen prices for each sector are derived from production costs and transport and 

delivery costs (see below). 

3.3.2 Hydrogen production 

Hydrogen can be produced through chemical, thermo-chemical or electrical routes. Table 3 

shows the different hydrogen production technologies represented in the model. 

Table 3: Hydrogen production technologies 
Energy input Process Option with CCS 

Gas Gas steam reforming Yes 

Coal Coal gasification Yes 

Oil Oil partial oxidation  

Biomass Biomass pyrolysis  

Biomass gasification Yes 

Solar Solar methane reforming   

Solar thermal high-temperature thermolysis   

Nuclear Nuclear thermal high-temperature thermolysis  

Water electrolysis with dedicated nuclear power plant  

Wind Water electrolysis with dedicated wind power plant  

Grid Water electrolysis from grid electricity  

The projected hydrogen production capacities are calculated on the basis of the total costs: 
investment costs and fuel costs (and storage cost for CCS options). Each year, production 

among the different technologies is distributed based on the variable costs of each 

technology and under the constraints of existing capacities. 

3.3.3 Hydrogen transport 

Due to its relatively low volumetric energy density, transportation and final delivery to the 
point of use is one significant cost component of the hydrogen supply. 

Five transport chains are identified in the model, being combinations of the type of plant 

that produces hydrogen (big, small), the transport means (pipeline, truck) and the type of 
use downstream (direct use for stationary demand, refuelling stations for mobile demand). 
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Table 4: Hydrogen transport chains 
Transport means 
 Pipeline Truck 

Capacity of production 

Large 1. Direct use 
2. Refuelling station 

n/a 

Small 3. Direct use 
4. Refuelling station 

5. Refuelling station 

The calculation of the cost of transport and delivery in the model is realised as the sum of: 

 the cost of transport, which depends on the hydrogen flow in this chain, on the 

population density and on the distance of transport in this chain (itself depending on 
the size of the installations and population density); 

 the delivery cost, which depends on the size of production installations and 
population density; 

 the variable cost, which depends on the type of consumption for every chain 
(electricity or diesel oil for the transport by truck). 

For each demand sector, a loss factor on transport and distribution is added. 

3.4 Synthetic liquids 

3.4.1 Liquids from coal and gas 

Liquids from coal and natural gas can contribute to the demand for liquid fuels. 

The development of liquefaction is determined by the comparison of the process cost with 
the difference between the value obtained from selling liquid products on the international 

oil market and the value of the coal or gas directly sold on the corresponding national or 

regional market. The diffusion follows a logistic curve. 

The liquefaction processes are described by investment costs and conversion efficiencies. 

Both routes exist with the option to do carbon sequestration. 

Coal liquefaction and gas liquefaction take place in a limited number of regions, identified 

as key coal or gas producers. 

3.4.2 Liquids from biomass 

Different liquid biofuel types are distinguished: first-generation biofuels (biodiesel and 

bioethanol from dedicated agricultural crops) and second-generation biofuels (biodiesel and 
bioethanol from cellulosic materials) (see Section 4.4 Biomass for the supply of solid 

biomass). 

Demand for liquids from biomass is driven by competition with fossil-based liquids in the 

transport sector, subject to a technical cap on blending. 

The model identifies four production technologies: biodiesel first generation, biodiesel 
second generation, bioethanol first generation and bioethanol second generation. The 

production technologies are described with fixed investment costs, O & M costs and a 
conversion efficiency. Additionally, second-generation technologies exist with and without 

CCS. For each biofuel a cost-based competition takes place to distribute new production 
capacity between the various options. 

International trade is allowed and competes with domestic production. The international 
price is set as the average of global production costs and an international transport cost. A 

cost-based competition takes place to allocate that production, based on each region’s 

production cost and each region’s remaining potential for biomass for liquefaction. 



 

28 

Figure 18: Biofuel production for domestic consumption and for international trade, world, Reference 
scenario 

 

3.5 Other transformation and losses 

Losses and self-consumption in oil refineries are determined with an efficiency factor and 

the ratio of oil products needs covered by domestic refineries (calculated on historical 
energy statistics. 

Transport and distribution losses for coal, gas and oil are calculated with factors based on 

historical energy statistics. 

Own-consumption for oil, gas and coal production is calculated per fuel type and adjusted 

to historical statistics. 

The remaining energy consumption in the energy sector ( 16 ) is captured through a 

coefficient based on historical statistics. 

  

                                          

(16) Other treatment of fuels (e.g. uranium, gas, coal refineries), gas infrastructure (e.g. operation of LNG 

storage facilities) and operation of water distribution system. 
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4 Primary energy supply 

All existing primary energy fuels are represented in the model: oil, natural gas, coal, 

uranium, biomass, hydro, wind, solar and geothermal. In the case of fossil fuels and 
biomass the representation further distinguishes fuel types by fuel quality and production 

technology. 

GHG emissions from fossil fuel production and transport are represented in the modelling: 

CO2 from on-site energy inputs (see below) and CH4 from fugitive emissions in both 
production and transport (see Section 5.1.2.2). 

4.1 Oil 

4.1.1 Production and fuel types 

The oil market is considered as one ‘great pool’ with no clustering into regional markets, 
and whereby only net imports/exports are calculated. 

Producers (88 countries or groups of countries) are defined as either large producers (41) 
that can export to the world market, or as small producers (47) that produce only for 

domestic needs. 

Figure 19: POLES-JRC geographic breakdown for oil and gas production 

 

The modelling differentiates between different types of fuel, which can be grouped in the 

following categories: 

 crude oil in onshore and shallow offshore fields, including NGLs and tight and shale 

oil; 

 other ‘non-conventional’ resources: bitumen (oil sands), extra-heavy oil and oil 
shale (kerogen); 

 environmentally sensitive oil, which is differentiated into deep-water oil (> 500 m 
depth) and Arctic oil (north of the Arctic Circle), with a limited number of countries 

having resources of either type. 

4.1.2 From oil resources to oil reserves 

The ultimate recoverable oil resources are inputs to the model (BGR 2015, USGS 2013, 

Schenk 2012). 
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For conventional oil, the modelling of reserves increases in two ways, following Figure 20: 

 new fields discovery (arrow from (C) to (B)): each year, the level of drilling activity 

drives forward a curve of decreasing return of the cumulative drilling effort; drilling 
activity is dependent on the oil price (can decrease); 

 enhanced oil recovery (EOR, arrow from (D) to (B)) that increases the size of 
discovered reserves; the recovery ratio is dependent on the oil price. It is capped by 

a maximum ratio of oil in place (typically 70 %). 

The reserves are then the difference between discoveries and cumulated production. 

For non-conventional resources, reserves are derived from the evolution of the recovery 

rate, which is a logistic function of the price of oil. 

Figure 20: Schematic representation of the oil sector from resources to reserves 

 

Source: Derived from McKelvey (1972). 

4.1.3 Oil production costs 

Production costs follow cost curves with an energy return on investment logic (EROI curve). 

The production cost curve is calculated and is impacted by changes in energy prices and 
production levels via investment needs and energy inputs to production. 

The EROI curve is determined by the cumulative extraction of resources. As production 
increases, the energy required for additional resource extraction increases; a cost-based 

competition takes place to determine which fuels will supply the energy required. 

𝑬𝑹𝑶𝑰 = [𝒆𝒙𝒑 (𝜶 ×
𝑪𝒖𝒎. 𝑷𝒓𝒐𝒅

𝑼𝑹𝑹
) − 𝟏] + 𝑬𝑹𝑶𝑰𝟎 

With α  = parameter driving EROI evolution 

Cum.Prod  = cumulated production 

URR  = ultimately recoverable resources 

EROI0  = EROI at first output produced. 
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The investment and energy inputs to production are calculated considering: 

 direct inputs: combustion fuels for steam and heating, electricity for pumping and 

gas for upgrading from bitumen to syncrude; using the energy prices for industry; 
 indirect inputs embedded in steel production for machinery, fuel usage in various 

support services, etc.: determined with a resource-specific direct/indirect energy 
input ratio and an average indirect energy intensity. 

4.1.4 Oil production 

The production of conventional oil is summarised in Figure 21. 

OPEC producers are distinguished from non-OPEC producers. Non-OPEC producers are 

considered as ‘fatal producers’ while OPEC producers can behave as ‘swing producers’ in 
order to match the level of global demand (‘call on OPEC’). 

For non-OPEC producers, production is the ratio between reserves and the 

reserves/production ratio (R/P, expressed in years). 

 Reserves evolve as explained in Section 4.1.2. 

 The R/P ratio follows a standard equation influenced by the oil price and is capped 
by a minimum value, reflecting resource management policies. 

 A comparison of the production cost with the oil price affects new production. 

For non-conventional resources, the production depends on the level of reserves (with a 

floor on the reserves/production ratio), a logistic function of the difference between the 
production cost and the oil price. 

The total call on OPEC conventional oil production is calculated as the difference between 
total oil demand on the one hand (including international bunkers) and the contribution of 

other sources (non-OPEC producers, environmentally sensitive oil production, non-
conventional oil production, liquids from coal and from gas). OPEC production is then 

distinguished between: 

 OPEC non-Gulf producers: the production is a function of the total call on OPEC and 

of the producer’s share in the total OPEC reserves, capped by a floor to the 

reserves/production ratio; 
 OPEC Gulf producers: once non-Gulf producers have been taken into account, the 

remaining production is allocated according to the oil production capacities of Gulf 
producers that depend on the reserves/capacities ratio and the capacities utilisation 

rate. 
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Figure 21: Schematic representation of oil production for conventional oil 

 

4.1.5 Oil price 

The oil price converges towards a value that depends on three factors: 

 the marginal production cost, derived from the cumulated production curve ranked 

according to production costs across all resource types; 
 the variations in the capacity utilisation rate of the Gulf countries; the elasticity to 

the capacity utilisation rate of Gulf countries is variable, reaching high values when 
the call on OPEC Gulf is very demanding; 

 oil stocks variations that either add a mark-up above the marginal price or deflate 
the price towards the average production cost; the effect of historical stocks 

variation is progressively phased down over time (10 years), assuming a balance 
over the long run. 
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4.2 Gas 

The gas supply module shares some common features with the oil supply module: detailed 
producers, different fuel types and a process to transform resources into reserves. But it 

also has distinct features, in particular with respect to the trade pattern that captures the 
important role of transport infrastructures and regionalisation of markets. 

4.2.1 Gas production and fuel types 

The gas consumption is split into 14 regional markets that are supplied by 88 producers 
(see Figure 19), differentiated into small producers (47), which produce only for domestic 

needs, and large producers (41) that can export to importing markets. Unlike for oil, trade 
flows of gas are directional from producers to the different consuming markets. 

The modelling differentiates between various types of natural gas sources, which can be 

grouped into the following categories: 

 onshore and shallow offshore ‘conventional’ gas fields; 

 other ‘non-conventional’ resources: shale gas and coal-bed methane; 
 environmentally sensitive gas, which is differentiated: deep-water gas (> 500 m 

depth) and Arctic gas (north of the Arctic Circle), with a limited number of countries 
having resources of either type. 

Figure 22: Mapping of gas producers and demand markets 

 

NB: Large + small producers correspond to oil producers (Figure 19). ‘Rest’ regions are adapted to 
the relevant singled out producers; they are different from the energy demand and coal production 
regions. 

4.2.2 From gas resources to gas reserves 

Recoverable gas resources (BGR 2015) are transformed into reserves through discoveries, 

which depend on the drilling effort — in common with the oil sector (reflecting common 
E & P activity). 

Demand Markets 

N America | Central America | S America 
Europe | N Africa | Sub-Saharan Africa | CIS | Middle East 

China | India | Rest S Asia | Rest SE Asia | Japan & S Korea | Pacific 

Large producers 

Canada | USA | Mexico | Trinidad & Tobago 
Venezuela | Colombia | Ecuador | Brazil | Argentina | Bolivia | Peru 

Netherlands | UK | Norway 
Algeria | Libya | Egypt | Nigeria | Gabon | Angola 

Russia | Azerbaijan | Kazakhstan | Turkmenistan | Uzbekistan | Rest CIS 
UAE | Kuwait | Oman | Qatar | Saudi Arabia | Iran | Iraq 

Pakistan | Myanmar | India | Brunei | China | Malaysia | Indonesia | Australia 

Small producers 

Chile | Rest Central America | Rest S America 
Other EU28 x26 | Iceland | Switzerland | Balkans | Turkey | Ukraine 

Morocco & Tunisia | S Africa | Rest Africa | Mediterranean Middle-East | Rest Persian Gulf 
Thailand | Vietnam | Rest S Asia | Rest SE Asia | S Korea | Japan | New Zealand | Rest Pacific 
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4.2.3 Gas production costs 

The production costs description is the same as for oil. 

4.2.4 Gas production and trade capacities 

The production is calculated to meet the demand, split into 14 regional markets. 

Large producers supply the various consuming markets, net of the contribution of small 

producers within each regional market. 

The modelling first assesses the supply capacities of large producers for regional markets 
and then the actual supply. The model identifies three types of gas transport route: 

onshore pipeline, offshore pipeline and LNG. All routes from producers to markets are 
characterised by a distance and a cost (see Figure 23). 

Figure 23: Gas transport costs in the POLES-JRC model 

 

Source: GasNatural Fenosa (2012). 

The modelling of supply capacities per route considers the evolution of the consuming 
market, a depreciation of existing capacities and a minimum utilisation of the existing 

capacities. The allocation of new trade capacity by a producer to a given market is based on 
the reserves and on a return on investment calculation comparing the gas price and the 

transport cost to that market. 

Actual gas supply is then calculated based on the use of these capacities; market shares 
are determined by the exporter’s reserves/production ratio, the variable costs over the 

route and coefficients reflecting the historically observed trade matrix. 

For small producers, gas production evolves with the reserves and the reserves/production 

ratio. 

 Reserves evolve as explained in Section 4.1.2. 

 The R/P ratio follows a standard equation influenced by gas market prices and is 
capped by a minimum value, reflecting resource management policies. 

The functioning of the production and trade module is summarised in Figure 24. 
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Figure 24: Schematic representation of the gas production and trade module 

 

 

4.2.5 Price 

Trade is grouped into three large continental markets for international gas prices: Asia, 
America and Europe-Africa. 

In each of the three markets, the gas price includes: 

 the transport cost to that market (weighted average of flows and routes); 
 an indexation on the variation of the reserve/production ratio of the supplies inside 

that continental market to capture possible supply tension; 
 an indexation to the evolution of the international oil price to reflect long-term 

contracts; 
 an indexation to the gas price in the two other continental markets, capturing the 

integration of prices due to the development of worldwide LNG supply. 

In addition, the gas import price for each of the 14 regional markets also takes into account 

a transport capacity utilisation factor. 

  

Additional gas sources 

The modelling also identifies additional sources of natural gas: 

 urban waste methane,  
 underground coal methane,  

 gas production fugitive emissions.  

The production is derived from CH4 emissions from the respective source being 

recovered and used as an energy source (see Section 5.1 Greenhouse gases). 
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4.3 Coal 

Figure 25 shows the different coal producers (81) considered in the modelling. 

Figure 25: POLES-JRC geographic breakdown for coal production 

 

NB: The following countries are broken down into sub-national production regions: Australia (2 
regions), China (4 regions), India (4 regions), United States (4 regions). 

The coal supply module is based on three main sub-modules: 

 key producers, 

 demand, 
 trade. 

Coking coal and steam coal are differentiated but modelled in similar ways. A link between 
coking and steam coal modelling is implemented at the resource level, since both types of 

coal share the same resources in the model. Mining costs are differentiated between steam 
coal and coking coal so as to account for quality differences, while transport costs are 

common (all calculated in USD/t). 

The resources are based on ‘proved amount of coal in place’ (WEC 2013a). 

The price of coal includes both mining and transport costs. 

The modelling of the mining cost captures both the evolving need and use of the production 

factors and the cost evolution of each of these factors: labour, energy use, materials use 

and others components (repairs, machinery, mining parts, tyres, explosives; including 
processing and additional administrative costs and taxes). It combines: 

 an aggregated cost curve including: 
o a long-term component reflecting changes in accessibility of the resource, 

geological conditions and a decrease in the energy content; 
o a short-term component reflecting the utilisation rate of existing capacities; 

 the evolution of the cost of the different factors is as follows: 
o labour: income per capita; 

o energy: price of oil and electricity to industry; 

o materials use: energy price of steelmaking; 
o other components: considered as remaining constant. 
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Transport costs are the sum of: 

 inland transport costs from mining site to export terminal (rail); 

 inland transport costs from export terminal to importer (rail); 
 maritime transport costs from export terminal to importer: sum of port charges 

(port facilities, loading, unloading) and freight charges that depend on the distance 
from exporter to importer and on the price of maritime bunker fuel. 

The functioning of the production and trade module is similar to that of gas (see Figure 24). 

Trade takes place between large producers (26 countries or regions) and demand markets 

(15 regional markets) (see Figure 26). Small producers (55) only produce for domestic 
consumption, based on domestic demand and coal prices (positive elasticity); their 

contribution decreases regional supply needs.  

Coal trade (of steam coal and of coking coal) is calculated based on demand. The 

competition between coal producers for market shares in each importing market is driven 

by the total costs (mining and transport) with an elasticity and weighting factors allowing 
the historical trade matrix to be recreated. 

Figure 26: Mapping of large coal producers and demand markets 

 

NB: ‘Rest’ regions are adapted to the relevant singled-out producers; they are different from the 

energy demand and oil and gas production regions. 

Traded volumes are adjusted through export capacities: for each large producer both the 
expansion of new capacities and the total supply capacity are capped, to reflect respectively 

bottlenecks in industrial organisation capabilities and resource management policy. The 

global need for new supply capacities is then allocated to each trade route in order to 
satisfy demand. 

The resulting coal price for a demand market is the weighted average of the total costs of 
supply to that market. 

Lignite remains a local resource, and its price is not affected by the coal market. 

  

Demand Markets: 15 

N America | Central America | S America 
Europe | N Africa | Sub-Saharan Africa | CIS | Middle East 

China | India | Rest S Asia | Rest SE Asia | Japan | S Korea | Pacific 

Large producers: 26 

Canada | USA x4 | Colombia | Venezuela 
Poland | Ukraine | Russia | Kazakhstan 

Mozambique | S Africa 
India x4 | Vietnam | Indonesia | Mongolia | China x4 | Australia x2 

Small producers: 55 

Mexico | Argentina | Brazil | Chile | Rest Central America | Rest S America 
Other EU28 x27 | Iceland | Norway | Switzerland | Balkans | Turkey | Rest CIS 

Morocco & Tunisia | Algeria & Libya | Egypt | Rest Africa 
Mediterranean Middle-East | Saudi Arabia | Iran | Rest Persian Gulf 

Thailand | Malaysia | Rest S Asia | Rest SE Asia | S Korea | Japan | New Zealand | Rest Pacific 
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4.4 Biomass 

The model distinguishes three primary biomass resource types for energy uses. Each type 
is associated with an energy potential and a supply cost curve. They are: 

- forest residues (cellulosic), 
- short rotation energy crops (cellulosic), 

- dedicated agriculture energy crops (non-cellulosic) for first-generation liquid 

biofuels. 

For agriculture crops (used in first-generation liquid biofuels), the energy potential is 
derived from available area (assumed decreasing share of agricultural areas) and yield. 

For cellulosic biomass (forest residues and short rotation crops, used in all other uses: 
heating, electricity, second-generation biofuel) the energy potential and the production cost 

curve come from the GLOBIOM model (17). An international price of cellulosic biomass is 

derived from the aggregation of regional cost curves. 

Figure 27: Schematic representation of biomass flows in the POLES-JRC model 

 

The domestic production of agriculture crops for energy purposes is determined by 
domestic needs for first-generation liquid biofuels production, considering the trade in liquid 

biofuels. 

The domestic consumption of cellulosic biomass is determined by needs for combustion and 
conversion into second-generation liquids. A competition takes place between domestic 

production and imports, comparing the local production cost and the international market 
price. 

                                          

(17) The cost curves integrate a carbon value dimension (see Havlik et al. 2014, IIASA 2016a). 
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Figure 28: Biomass-for-energy production and potential, world 

 

Sources: Biomass production: GECO 2016; potential estimate and qualification of agreement in 
literature: Creutzig et al. (2015). 

 

4.5 Uranium 

The conventional nuclear power technology in POLES-JRC corresponds to generic light 
water reactors using enriched uranium fuel (3.5 % U235 from about 0.7 % in natural 

uranium). 

The price of nuclear fuel takes into account all costs within the nuclear fuel cycle from 

mining via enrichment to fabricating fuel rods (WISE 2016). A global cost-resource curve 
for mining natural uranium includes resources of up to 14.5 Mt of natural uranium 

(IAEA/OECD 2013) (18). 

Mass flows of nuclear material and its interactions are implemented on a global level. This 
allows the tracking of the amount of high radioactive waste and depleted uranium (0.3 % 

U235), which can be tapped as a resource for nuclear fuel by taking into account re-
enrichment. The implementation of nuclear mass flows also allows further insights into the 

resource availability of uranium for nuclear power generation. 

Advanced nuclear design (fourth generation) using breeder technology is introduced from 

the middle of the century onwards. The advanced nuclear design breeds plutonium from 
fertile U238, thus increasing the theoretical availability of nuclear fuel by two orders of 

                                          

(18) This comprises uranium resources in the categories identified, inferred and undiscovered resources according 

to the annual revised estimations of the International Atomic Energy Agency (IAEA) and OECD Nuclear 

Energy Agency (NEA). 
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magnitude. The interaction of nuclear fuel cycles for conventional and advanced nuclear 
design is taken into account. 

4.6 Hydro potential 

Three types of hydro power plants are modelled: large hydro (> 20 MW), small hydro (< 20 
MW) and hydro pump and storage. 

Yearly hydro power production is determined by capacity and load factor and is capped by a 

production potential that is detailed for large and small hydro (Enerdata 2015a). 

The production profile is adjusted to account for storage needs (see Section 3.1.3 Electricity 

production). 

The model allows for soft linkage towards hydrological models to capture possible future 

change in rain patterns and consequent seasonal or yearly availability of water for 
hydroelectricity. 

Figure 29: Hydroelectricity potential in 2015 (left) and % of potential used over 1990-2015 (right) 

 

4.7 Wind potential 

Wind power production is determined from production profiles (see Section 3.1.3 Electricity 
production). Its deployment is determined by costs and potential. 

Onshore and offshore wind potential is derived from a detailed technological representation. 

The wind potential is derived from NREL (2013) using the following factors. 

 The meteorological potential (19), in available area (km2) where the mean wind 

over time exceeds a certain value at 10 m height, is aggregated into six classes 
according to wind speeds and distance from the shore (20). 

 Exclusion factors are applied, due to land-use (e.g. marine protected areas, share 
of forest area) and social constraints (dependent on population density and on 

income per capita). In addition, to account for other types of constraints (minimum 
distance to heritage sites, NIMBY-type opposition etc.), the installation potential of 

wind onshore is capped at 0.1 MW/km2 on average in the country/region. 

                                          

(19) Wind atlases for onshore and offshore are elaborated using wind resource models like WAsP (Wind Atlas 

Analysis and Application Program), which computes the annual mean wind speed for thousands of grid points 

(van Wijk et al. 1993: Matthies et al. 1993) 

(20) Classes correspond to US wind energy classes (see NREL 2013): C1-C2 (not suitable for wind power 

generation), C3 (lower energy content, 5.35 m/s), C4 (intermediate, 5.8 m/s) and C5-C7 (most energetic 

winds, 6.7 m/s and above). Aggregation for onshore: C3; C4; C5-C7. Aggregation for offshore: C5-C7 at 0-

10km distance; C3-C4 at 0-10km distance; C5-C7 at 10-30km distance. 
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 Wind machine and wind field characteristics provide the technical potential: it is 
obtained from the power rating per turbine and a wind machine density in wind 

farms, which depends on the turbine spacing and the diameter of the turbine. 

Figure 30: Schematic representation of the wind potential treatment in POLES-JRC 

 

The potential (W) is then implemented as a limitation (Wh) to wind capacities in the model 

using load factors (site-specific starting point with historical data). The average wind 
capacity load factor evolves as new installations join the total capacities. The load factor for 

new installations is derived from a function of the wind power density at hub height, which 
grows over time. 

4.8 Solar potential 

4.8.1 Solar power plant potential 

Solar power plants’ production is determined from production profiles (see Section 3.1.3 
Electricity production). Their deployment, in competition with centralised power production 

means, is determined by costs and potential. 

The potential of solar power plants (concentrated solar, with and without storage, and 

utility-scale PV) relate to available surface for constructing such facilities; they develop in 

desert areas and a share of grasslands. The potential to produce per surface relates to solar 
irradiation, taking into account geographical and environmental factors. 

The surface on which power plants can be deployed is related to a solar power supply 
curve, which provides the load factor as a function of the percentage of used surface 

(Pietzcker et al. 2014). The potential surface is shared between technologies according to 
expected power needs. 

The resulting load factor is an input in the electricity sector. 

4.8.2 Solar distributed photovoltaic potential 

Distributed PV power production is determined from production profiles (see Section 3.1.3 

Electricity production). Its deployment, in competition with grid electricity and other 
decentralised technologies in buildings, is determined by costs and potential. 

Distributed PV is assumed to be installed on rooftops of dwellings and service buildings. The 
potential of distributed PV is estimated as share of total rooftop surface and an average 

unit production (kWh/m²) which is derived from average solar irradiation and technical 

efficiency. 
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Technical potential (GW) 

Technology characteristics 
(turbine power, mast height,  

 wind farm density) 
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The share available for distributed PV considers that: 

 only a portion of the actual surface is available due to characteristics of the buildings 

(orientation, type of rooftop etc.), construction norms or social factors; 
 PV competes with solar thermal installations for rooftop surface. 

4.8.3 Solar thermal potential 

Solar thermal heat production (i.e. solar collectors) follows a return on investment logic to 
address space and water heating needs (see Section 3.2 Heat production). 

The evolution of the potential is analogously modelled to distributed PV (with an average 
unit production given in toe/m2). 

4.9 Geothermal electricity 

World geothermal potential is set at 50 GW, in the lower end of the range provided by the 

World Energy Council (WEC 2016) of 35-200 GW. The regional distribution depends on 
installed capacities and identified projects. 
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5 Emissions 

5.1 Greenhouse gases 

5.1.1 Modelling principles and marginal abatement cost curves 

The GHGs emitted by human activities that are covered by the model are the six ones 
identified in the UNFCCC Kyoto Protocol: carbon dioxide (CO2), methane (CH4), nitrous 

oxide (N2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and sulphur hexafluoride 

(SF6). 

GHGs are emitted in a range of economic activities. Energy and industry (CO2 and non-CO2 

combined), which form the focus of the model, represent a very important share of total 
emissions (83 % in 2014); CO2 emissions from the energy sector (i.e. combustion of fuels) 

are the most important single contributor (69 % in 2014). 

Figure 31: World greenhouse gas emissions per activity type, 2014 

 

NB: Waste is non-CO2; agriculture is non-CO2; LULUCF is CO2. 

For CO2 emissions from fossil fuel combustion, emission volumes are obtained directly from 

the use of individual fossil fuels with an emission factor. 

CCS technology can develop both in power generation and in industry sectors. 

For other GHG emissions from energy and industrial processes, the projection is based on: 

 a sector-specific economic driver (sectoral value added, energy production or 

energy consumption); 

 a trend capturing technology changes; 
 a marginal abatement cost curve (MACC) that describes the interaction with climate 

mitigation policies; MACCs comes from the EPA (2013). 

For GHG emissions from AFOLU (21), baseline emissions and mitigation potential are derived 
from the specialised GLOBIOM model (IIASA 2016a). 

                                          

(21) AFOLU: agriculture, forestry and land use. 

CO2 energy 69% 

Non-CO2 energy 
8% 

CO2 Indus. process 
5% 

Non-CO2 Indus. 
process 2% 

Waste 3% 

Agriculture 11% 
LULUCF 2% 

48.2 GtCO2e 
(2014) 
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Global warming potentials (GWPs (22)) are applied to non-CO2 greenhouse gases to convert 
emissions to CO2-equivalent. 

Figure 32 gives as an illustration the aggregated MACCs of the main sectors at world level, 
which sums the country and regional level MACCs. 

Figure 32: Marginal abatement cost curves (all gases, all sources, world, 2030) — volume (left) 
relative to baseline emissions (right)  

 

 

Sources: Energy CO2 from POLES-JRC, other GHGs from energy and industry from EPA (2013), 
agriculture and LULUCF from GLOBIOM (IIASA 2016a). GWPs from SAR (IPCC 1996a). 

The model allows GHG emissions trading markets to be represented via the comparison 
between emissions resulting from equalisation of marginal abatement costs and emission 

permits (or emission endowments). 

5.1.2 Energy-related emissions 

Energy-related emissions refer to GHG emissions where the primary driver is energy 

production or consumption. They consist in CO2 emissions from fossil fuel combustion and 
non-CO2 emissions from energy-related activities. 

5.1.2.1 Combustion-related emissions 

CO2 emissions from the combustion of fossil fuels are the most important GHG source 

(about 64 % of the global total GHG emissions in 2014). 

Emissions are calculated from energy balances by applying a fuel-specific emission factor 

according to IPCC guidelines (IPCC 2006). 

CO2 emissions from the combustion of solid biomass are not accounted for, with the 

assumption that the chain of biomass-for-energy production is carbon neutral; however, an 

emission factor was included in order to account for carbon captured when biomass is used 
in CCS. Similarly, the combustion of liquid biofuels is considered to be carbon neutral (CO2 

is only emitted due to the energy use in their production process, which is captured 
endogenously); however, an emission factor can be used for the calculation of vehicle 

emission standards. 

A finer level of detail is given for emissions from oil products in transport, where specific 

carbon emission factors have been introduced. 

                                          

(22) GWP as defined in the IPCC assessment reports. 
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Table 5: CO2 emission factors 
Fuel/sector Emission factor (tCO2/toe) 

Oil 3.17 

Gas 2.34 

Coal 3.98 

Oil: domestic and international air transport 2.93 

Oil: international maritime bunkers 3.19 

Biomass (*) 4.19 
(*) Biomass and its products are considered as carbon-neutral in the emissions balances. 

Total emissions balances take into account carbon that is captured in CCS (in power plants, 

synthetic fuel production, hydrogen production and industry) and the uptake of carbon in 
steelmaking from coking coal. 

5.1.2.2 Non-CO2 energy-related emissions 

These emissions are captured by an emission intensity (with a MACC) applied to the 
relevant activity (see summary below). The following GHG emissions relate directly to 

energy production, transport or consumption. 

 CH4 emitted by the fossil fuel sector evolves with the projected production and 

transport of fossil fuels: 
o processes in the oil industry (exploration, production and refining, venting 

and flaring); 
o upstream processes of natural gas production; 

o transmission and distribution in the natural gas sector; 

o underground mining and surface coal mining. 

 CH4 and N2O as by-products of incomplete combustion processes are accounted for 

in: 
o the electricity and industrial sectors; 

o the residential and service sectors; 

o the transport sector. 

 SF6 is used, and emitted, in electricity transmission and distribution for insulation 

and current interruption. 

5.1.3 Process emissions in industry 

These GHG emissions are the result of chemical or physical reactions other than 

combustion and where the primary purpose of the industrial process is not energy 
production. 

 In the iron and steel sector: CO2 is emitted from the use of coal and coking coal in 

the iron ore reduction process. 
 In the non-metallic mineral industry (cement, glass, ceramics): CO2 is emitted when 

carbonates contained in the raw material are thermally decomposed in the process. 
 In the chemical industry: CO2 process emissions occur in some processes (e.g. 

ammonia production), while N2O emissions take place in the production of nitric acid 
and adipic acid. 

 A variety of HFCs are emitted from air conditioning, refrigeration, foams, solvents 
and other processes. 

 PFCs are emitted in the production of primary aluminium and other industrial 

processes (semiconductors, solvents etc.). 
 SF6 is emitted in magnesium refining and semiconductor processing. 

The projected emissions evolve with the sectoral value added, a technological trend and the 
abatement potential in case of GHG mitigation policy. 
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5.1.4 Waste 

CH4 is emitted from solid waste disposal (municipal and industrial origin) and wastewater 

treatment. N2O is generated from processing wastewater due to the de/nitrification 

processes of the nitrogen present. 

The main drivers of emissions increases are urban population and industrial value added, a 

technological trend and the abatement potential in case of GHG mitigation policy. 

5.1.5 Agriculture, forestry and other land use (AFOLU) 

The agriculture sector is a source of CH4 and N2O emissions. CH4 is emitted by various 

activities such as enteric fermentation, manure management, soils and rice cultivation. N2O 
is emitted from manure management and soils (fertilisers). 

LULUCF emissions include CO2 emissions from net forest conversion (CO2 emissions by 
deforestation and CO2 sinks by afforestation) and CO2 emissions from other forestry and 

land use. 

Projections of AFOLU emissions evolve based on look-up data from the GLOBIOM model 

(Havlik et al. 2014, IIASA 2016a) (curves that take into account the price of carbon and the 

price of biomass in order to determine biomass use and AFOLU emissions). 

5.1.6 Greenhouse gas coverage summary 

Table 6 provides a summarised view of the GHG emissions flows in the model. 
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Table 6: Greenhouse gas emission sources 
Sector Category GHG Emission activity Modelling driver 

Energy Fuel combustion CO2 Burning of fossil fuel Fossil fuel combustion 

Oil and gas sector  CH4 Production, transmission and distribution Oil and gas production 
Gas transport and use 

Coal production CH4 Underground and surface mining Coal production (underground and 
surface differentiated) 

Power and heat, transport, 
residential 

N2O 
CH4 

Combustion by-products Sectoral final energy consumption 

Power systems SF6 Transmission and distribution Electricity production 

Industrial processes Steel  CO2 Iron ore reduction  Tonnes of steel using thermal processes 

Non-metallic minerals  CO2 Carbonate decomposition  Non-metallic minerals industry value 
added 

Chemistry  CO2 
N2O 

Steam reforming 
Nitric and adipic acid 

Chemicals industry value added 

Aluminium PFCs Primary aluminium  
Semiconductor and PV 

‘Other’ industry value added 

Magnesium, 
semiconductors 

SF6 Magnesium refining, 
Semiconductor and PV 

Industry value added 

Residential, services, 
transport  

HFCs Air conditioning, refrigeration 
aerosols, foams, solvents 

Industry value added 

Waste Waste CH4 
N2O 

Solid waste and wastewater 
Burning of waste 

Urban population (urban waste) 
Industry value added (industrial waste) 

Agriculture, forestry and 
other land use (AFOLU) 

Agriculture CH4 
N2O 

Enteric fermentation, manure 
management, soils and rice cultivation  

Default emission profile from 
GLOBIOM, influenced by the biomass 
price as a proxy for land use activities. 

Forestry and land use CO2 Deforestation, afforestation, other forestry 
and land use  

Biomass price (derived from GLOBIOM 
cost curves) as a proxy for forestry 
activity and other land use 
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5.2 Pollutant emissions 

The coverage of this dimension in the POLES model is done through a linkage towards 

the specialist GAINS model that provides emission factors per pollutant and sector fuel 
(see IIASA 2015 and IIASA 2016a) that are then mapped to POLES series. 

Symmetrically, the POLES-JRC energy balances have also been used as inputs to the 
GAINS model to derive the evolution of air pollutant emissions (see Rafaj et al. 2013). 

5.2.1 Pollutants covered 

The following air pollutants and short-lived climate forcers are represented in the model: 

 SO2 : sulphur dioxide, 

 NOx : nitrogen oxides, 

 (NM)VOCs : non-methane volatile organic compounds, 

 CO : carbon monoxide, 

 BC : black carbon, 

 OC : organic carbon, which can be converted into organic matter (OM), 

 PM2.5 : particulate matter of 2.5 µm, the sum of BC, OM and other PM2.5, 

 PM10 : particulate matter of 10 µm, the sum of PM2.5 and other PM10 

 NH3 : ammonia. 

Pollutants resulting from the interaction of the above species with other gases 

(precursors) such as ozone are not modelled 

5.2.2 Emission calculation 

The pollutant emissions are calculated as the product of activity and the emissions 

intensity factor (specific for each pollutant and sector). 

The pollutant emissions flows in the model are listed below, with their corresponding 

activity indicators, totalling 48 flows per pollutant. 
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Table 7: Pollutants considered with emission factors as direct inputs 
Sector Source Activity indicator 

Industry Biomass Biomass in industry 

Coal Coal in industry (excluding coking coal) 

Gas Gas in industry (excluding non-energy uses) 

Oil Oil in industry (excluding non-energy uses) 

Steelmak
ing 

Tonnes of steel 

Buildings Biomass Biomass in residential and services 

Coal Coal in residential and services 

Gas Oil in residential and services 

Oil Gas in residential and services 

Transport Coal Coal in transport (rail) 

Gas Gas use in transport 

Diesel Diesel used in road transport 

Gasoline Gasoline used in road transport 

Oil Oil products in non-road, non-air transport 

Oil Oil products in domestic air transport 

Oil Oil products in maritime bunkers 

Oil Oil products in international air bunkers 

Agriculture Oil Oil products in agriculture 

Power generation Biomass Biomass inputs in power generation (*) 

Coal Coal inputs in power system for capacity historically installed 
(conventional coal) 

Coal Coal inputs in newly installed power capacity (conventional 
coal) 

Coal Coal inputs in newly installed power capacity (advanced 
coal) (*) 

Gas Gas inputs in power generation (*) 

Oil Oil inputs in power generation 

Other energy 
transformation 

Oil Losses in refineries 

Oil Oil and gas production (on-site own consumption) 
(*) An additional flow is considered when associated to CCS, where a multiplying emission 
coefficient is applied to the coefficient without CCS. 
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Table 8: Pollutants considered with emission factors recalculated from historical data 
Sector Source Activity indicator 

Industrial 
production 

Cement Total energy in non-metallic minerals industry 

Chemicals Total energy in chemicals industry 

Fertilisers Total energy in chemical feedstocks industry 

Solvents Value added of chemicals industry 

Other combustion Oil in other industry 

Other processes Total energy in other industry 

Buildings Other/unattributed Oil in residential and services 

Surface 
transportation 

Other/unattributed Oil in road transport 

Agriculture Non-energy N2O emissions from agriculture  

Energy 
transformation 

Other/unattributed Oil inputs in power generation 

Other energy 
transformation 

Oil Oil auto-consumption of the energy transformation 
sector and oil T & D losses 

Gas Gas auto-consumption of the energy transformation 
sector and gas T & D losses 

Coal Coal auto-consumption of the energy transformation 
sector and coal T & D losses 

Fires Forest fires None (trend) 

Savannah fires None (trend) 

Peat fires None (trend) 

Agricultural waste 
burning 

None (trend) 

Waste All Urban population 

Other Other/unattributed Population 

The future evolution of the emissions intensity factors are based on IIASA (2016a). Their 
future evolution moves within boundaries defined by current legislation and maximum 

technical feasible reductions (as defined by GAINS scenarios — see IIASA 2015). 

The default behaviour in the model reflects current legislation adopted by countries 

around the world in the medium term ( 23 ). In the longer term, it is assumed that 
technologies and air pollution policies diffuse across world regions at different speeds 

depending on per capita income. This results in a ‘middle-of-the-road’ trajectory of 

emission intensity factors, between factors frozen at their last historical point and factors 
corresponding to the best technology expected to be available in the future (24). Further 

reductions can be achieved as co-benefits of a climate policy, caused by the reduction of 
fossil fuel consumption. 

  

                                          

(23) For example, the 2030 objectives of the EU’s ‘Clean air programme’ (Directive 2016/2284/EU), see: 

http://ec.europa.eu/environment/air/pollutants/ceilings.htm  

(24) These assumptions are compatible with the socio-political definition of the SSP2 scenario. For emission 

intensity factors going beyond those derived from current legislation, their evolution by country group and 

across time is similar to the method in Rao et al. (2016). 

http://ec.europa.eu/environment/air/pollutants/ceilings.htm
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6 Energy and climate policy implementation 

The model allows variant scenarios to be developed and policies to be translated into 

quantitative modelling inputs, by sector and region, by 2050 in a standard configuration 
and up to 2100 for long-term mitigation strategies. 

It can also be connected to specialised models to expand the assessment towards other 

policy areas (e.g. macroeconomics, land use, water, etc.). 

The following dimensions can be considered. 

Socioeconomic context 

 Population, economic growth, income, urbanisation 

 Discount rates on energy investments 
 Lifestyle analysis (dwellings and mobility) 

 

Energy resources 

 Assumptions on ultimately recoverable resources or accessible resources 

 Indigenous fossil fuel resources management 

Climate and energy policies 

Climate and environmental policies 

 Cap on all or selected GHG emissions 

 Pricing of all or selected GHG emissions 

Technology support policies 

 Technology availability, costs and learning rate assumptions 
 Technology purchase: subsidies and low interest rate loans 

 Power-specific policies: feed-in tariffs or premiums 

 Transport-specific policies: development of infrastructure for alternative vehicle 
technologies 

Energy consumption policies 

 Fiscal policy on energy fuels to assess the impact on energy consumption and 

energy independence 
 Subsidy on energy fuel 

 White certificate to spur energy efficiency 
 Building-specific policies: renovation rates of buildings, development of insulation 

 Transport-specific policies: fuel and emission standards, modal shift 
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7 Data 

The model uses annual historical data to initialise the projections, typically for the period 

1980 to the latest data available (for most series: up to the year preceding the current 
year). 

Due to the recursive simulation nature of the model, projected data presents a high 

degree of continuity with historically observed data. 

The historical data is used to derive parameters that enhance the model’s capability to 

take into account country and sector specificities in investment and consumption 
behaviour: elasticity to price or activity, autonomous technological trends and non-cost 

weighting parameter in the competition for new equipment or fuels. 

The following information is needed: 

 socioeconomic and activity variables: population (total, urban vs rural), GDP, 
sectoral value added, mobility, number of dwellings, surfaces, etc., 

 energy balances: final demand, transformation, supply, 

 energy prices and taxes, 

 energy reserves and resources, 

 GHG emissions. 

7.1 Economic activity 

Data for EU population and activity comes from Eurostat for history (Eurostat 2015) and 

the EU Ageing Report for projections (European Commission 2015). 

Population data for non-EU countries and regions from the UN (UN 2015) and the EU 

Ageing Report. Historical GDP and value added come from the World Bank (WB 2016), 
while projections of GDP growth come from the IMF (for the next 5 years, IMF 2016) and 

the OECD for the longer term (OECD 2013). 

Information on sectoral activity variables (mobility, surfaces, dwellings, industrial 
production, etc.) come from the IRF (2014), UIC (2014), ICAO (2015), Unctad (2015), 

WSA (2015), World Bank (2016), Enerdata (2015a), Enerdata (2015b) and national 
sources. 

7.2 Energy 

Data for energy balances and prices comes from Enerdata (2015a), with additional 
information from: 

 Eurostat: energy balance of EU countries (Eurostat 2015); 

 IEA: energy balance for non-EU countries, energy prices (IEA 2015a, IEA 2015b); 

 Platts: power plant capacities (Platts 2015); 

 BP: oil and gas reserves and production (BP 2015); 

 Specialist studies for energy resources: fossil fuels (BGR 2015, USGS 2013, 

Schenk 2012), hydro (WEC 2016b), wind (NREL 2013), solar (Pietzcker et al. 
2014), bioenergy (IIASA 2016a), geothermal (WEC 2016a); 

 Specialist studies for technology costs: the JRC (2014b), WEC (2013b), IRENA 
(2015), IEA (2014). 

7.3 Greenhouse gas emissions 

Historic emissions for CO2 emissions from combustion processes are derived from energy 

balance data. 
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For UNFCCC Annex I countries, all other GHG historical emissions are from UNFCCC 

inventories (UNFCCC 2015). 

For Non-Annex I countries, emissions from energy, industry and agriculture are from the 

EDGAR database (European Commission JRC 2011, 2014a), while CO2 emissions from 
LULUCF refer in principle to FAOSTAT (FAO 2015) and for some countries to national 

inventories (Brazil, Mexico). For Indonesia the LULUCF CO2 emissions from FAOSTAT are 
complemented by emissions from peat fires from EDGAR data (25). 

Certain additional emissions time series are included in the model to determine specific 
aspects of energy/emissions accounting: total CO2 emissions of the road transport 

sector, total CO2 emissions of the steel sector and process CO2 emissions of the steel 

sector. 

7.4 Air pollutants 

Sources for historical air pollutant emissions are: 

 GAINS ECLIPSE v5a (IIASA 2015) for most sectors; 

 estimates from emission factors using IPCC emissions guidelines (IPCC 1996b) 

and AERO2k (26) for air transport emissions; 

 EDGAR v4.2 (European Commission JRC 2011) for fires; 

 national sources to complement. 

Information on future emissions and future emissions factors is from: 

 GAINS ECLIPSE v5a for most sectors; 

 AERO2k for air transport; 

 UNEP report for CCS technologies; 

 national sources for policies. 

7.5 Summary 

Table 9 provides a synthetic view of the data sources used in the POLES-JRC model.

                                          

(25) Fires introduced as an exogenous series to complete country emissions; can be modified to reflect policy 

objectives. 

(26) FP6 project; 

https://www.researchgate.net/publication/224796937_AERO2k_Global_Aviation_Emissions_Inventories_f

or_2002_and_2025; http://www.aerodays2006.org/sessions/A_Sessions/A1/A13.pdf  

https://www.researchgate.net/publication/224796937_AERO2k_Global_Aviation_Emissions_Inventories_for_2002_and_2025
https://www.researchgate.net/publication/224796937_AERO2k_Global_Aviation_Emissions_Inventories_for_2002_and_2025
http://www.aerodays2006.org/sessions/A_Sessions/A1/A13.pdf
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Table 9: Data sources in POLES-JRC 

Series  Historical data GECO projections 

Population UN, Eurostat UN (medium fertility) 

GDP, growth World Bank European Commission, IMF, OECD (see Dellink et al. 

2014) 

Other activity 

drivers 

Value added World Bank 

POLES-JRC model 

Mobility, vehicles, households, tonnes of steel Sectoral databases 

Energy 

resources 

Oil, gas, coal BGR, USGS, WEC, sectoral information 

Uranium IAEA/OECD 

Biomass GLOBIOM model 

Hydro Enerdata 

Wind, solar NREL, Pietzcker et al. (2014) 

Energy 

balances 

Reserves, production BP, Enerdata 

Demand by sector and fuel, transformation 

(including. power), losses 

Enerdata, IEA 

Power plants Platts  

Energy prices International prices, prices to consumer Enerdata, IEA POLES-JRC model 

GHG emissions Energy CO2 Derived from POLES-JRC energy balances POLES-JRC model 

Other GHG Annex 1 UNFCCC POLES-JRC model, GLOBIOM model 

Other GHG Non-Annex 1 (excl. LULUCF) EDGAR POLES-JRC model, GLOBIOM model 

LULUCF Non-Annex 1 National inventories, FAO POLES-JRC model, GLOBIOM model 

Air -pollutant emissions GAINS model, EDGAR, IPCC, national 

sources 

GAINS model, national sources 

Technology costs POLES-JRC learning curves based on literature, including but not limited to: JRC, WEC, IEA 

Technology Roadmaps, TECHPOL database(*) 

(*) Developed in several European research projects: SAPIENT, SAPIENTIA, CASCADE MINTS. 
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Acronyms and definitions 

AFOLU  agriculture, forestry and land use 

CCS  carbon capture and storage 

CHP  combined heat and power 

CNRS  Centre national de la recherche scientifique 

DG  directorate-general (European Commission) 

EDGAR  Emission Database for Global Atmospheric Research 

E & P  exploration and production (fossil fuels) 

EOR  enhanced oil recovery 

EPA  Environmental Protection Agency (United States) 

EROI  energy return on investment 

FAO  UN Food and Agriculture Organisation 

GDP  gross domestic product 

GECO  Global Energy and Climate Outlook (JRC report) 

GHG  greenhouse gas 

GWP  global warming potential 

IAEA  International Atomic Energy Agency 

ICE  internal combustion engine 

ICT  information and communication technology 

IEA  International Energy Agency 

IEPE  Institut d’Economie et de Politique de l’Energie 

IIASA  International Institute for Applied Statistical Analysis 

IMF  International Monetary Fund 

IMO  International Maritime Organisation 

IPCC  Intergovernmental Panel on Climate Change 

IRENA  International Renewable Energy Agency 

ISIC  International Standard Industrial Classification 

JRC  Joint Research Centre (European Commission) 

LNG  liquefied natural gas 

LR  learning rate 

LULUCF land use, land use change and forestry 

MACC  marginal abatement cost curve 

NEA  Nuclear Energy Agency 

NGL  natural gas liquids 

NMM  non-metallic minerals 

NREL  National Renewable Energy Laboratory (United States) 

O & M  operation and maintenance 
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OECD  Organisation for Economic Cooperation and Development 

OPEC  Organisation of the Petroleum Exporting Countries 

PPP  purchasing power parity 

PV  solar photovoltaic 

R/P  ratio of reserves over production 

SSP  shared socioeconomic pathway 

T & D  transmission and distribution 

UNFCCC United Nations Framework Convention on Climate Change 

VRE  variable renewable energy source 

WEC  World Energy Council 

Chemical species 

BC  black carbon 

CH4  methane 

CO  carbon monoxide 

CO2  carbon dioxide 

HFC  hydrofluorocarbon 

NH3  ammonia 

NOx  nitrogen oxide 

N2O  nitrous oxide 

OC  organic carbon 

OM  organic matter 

PFC  perfluorocarbon 

PM  Particulate matter 

SF6  sulphur hexafluoride 

SO2  sulphur dioxide 

(NM)VOC (non-methane) volatile organic compound 

Models 

GAINS  Greenhouse Gas — Air Pollution Interactions and Synergies 

GLOBIOM Global Biosphere Management Model 

GEM-E3 General Equilibrium Model for Economy — Energy — Environment 

POLES  Prospective Outlook on Long-term Energy Systems 

Country and regional codes 

CIS  Commonwealth of Independent States 

EU  European Union 

EU-28  European Union of 28 Member States 

G20  Group of Twenty 

OECD  Organisation for Economic Cooperation and Development 
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OPEC  Organisation of the Petroleum Exporting Countries 

Units 

Energy 

Bcm billion cubic metres 

EJ exajoule    1 000 000 000 000 000 000 J 

Gtoe billion tonnes of oil equivalent 1 000 000 000 toe 

Mtoe million tonnes of oil equivalent 1 000 000 toe 

Electricity 

GW gigawatts    1 000 000 000 W 

kW thousand watts   1 000 W 

kWh thousand watt-hours   1 000 Wh 

TWh tera watt-hours   1 000 000 000 000 Wh 

W watts 

Emissions 

GtCO2e giga-tonnes of CO2-equivalent 1 000 000 000 tCO2 

tCO2e tonnes of CO2-equivalent emissions 

Monetary units 

USD  US dollars 

USD PPP USD at purchasing power parity 

K USD  thousand dollars  1 000 USD 

tn USD  trillion dollars   1 000 000 000 000 USD 

Other 

cap capita 

Gm2 billion square metres   1 000 000 000 m2 

Gtkm billion tonne-kilometres  1 000 000 000 tkm 

kcap thousand capita   1 000 cap 

km kilometres 

t metric tonnes 
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Annex 1: ISIC classification of sectors in POLES-JRC 

Using: International Standard Industrial Classification of All Economic Activities, 

Rev.4 (28) 

Building and services: G (45-47) I (55-56) J (58-63) K (64-66) L (68) M (69-75) 

N (77-82) O (84) P (85) Q (86-88) R (90-93) S (94-96) T (97-98) U (99) 

Transport: Groups 491-492 and Divisions 50-53 

Agriculture (covers fishing and forestry): Divisions 01-03 

Industry: 

 Iron and steel: Group 241 and Class 2431 

 Chemicals: Divisions 20 and 21 
o Chemical feedstocks: part of Group 201 

o Plastics and rubber: part of Group 201 
 Non-metallic minerals (cement, lime, glass, ceramics): Division 23 

 Other industry (other manufacturing, mining and construction): Divisions 07; 08; 

10-18; 22; 25-33; 41-43; Groups 099; Group 242 and Class 2432 

Energy transformation: 

 Power generation: Division 35 
 Other energy transformation: Divisions 05, 06, 19, 36-39; Groups 091, 493 

  

                                          

(28) http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=27  

http://unstats.un.org/unsd/cr/registry/regcst.asp?Cl=27
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Annex 2: Country mappings 

Energy and emissions balances 

54 individual countries + 12 regions 

Table 10: List of 54 individual countries represented in POLES-JRC 
Non-EU individual countries EU-28 Member States 

Argentina Austria 

Australia Belgium 

Brazil Bulgaria 

Canada Croatia 

Chile Cyprus 

China Czech Republic 

Egypt Denmark 

Iceland Estonia 

India Finland 

Indonesia France 

Iran Germany 

Japan Greece 

Malaysia Hungary 

Mexico Ireland 

New Zealand Italy 

Norway Latvia 

Russia Lithuania 

Saudi Arabia Luxembourg 

South Africa Malta 

South Korea Netherlands 

Switzerland Poland 

Thailand Portugal 

Turkey Romania 

Ukraine Slovakia 

United States Slovenia 

Vietnam Spain 

 Sweden 

 United Kingdom 

NB: Hong Kong and Macau are included in China. 
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Table 11: Country mapping for the 12 regions in POLES-JRC 
Rest Central America Rest Balkans Rest Sub-Saharan Africa Rest South Asia 

Bahamas Albania Angola Afghanistan 

Barbados Bosnia and Herzegovina Benin Bangladesh 

Belize Former Yugoslav Republic of Macedonia  Botswana Bhutan 

Bermuda Kosovo  Burkina Faso Maldives 

Costa Rica Moldova Burundi Nepal 

Cuba Montenegro Cameroon Pakistan 

Dominica Serbia Cape Verde Seychelles 

Dominican Republic Rest CIS Central African Republic Sri Lanka 

El Salvador Armenia Chad Rest South East Asia 

Grenada Azerbaijan Comoros Brunei 

Guatemala Belarus Congo Cambodia 

Haiti Georgia Democratic Republic of the Congo Laos 

Honduras Kazakhstan Côte d’Ivoire Mongolia 

Jamaica Kyrgyzstan Djibouti Myanmar/Burma 

Nicaragua Tajikistan Equatorial Guinea North Korea 

NL Antilles and Aruba Turkmenistan Eritrea Philippines 

Panama Uzbekistan Ethiopia Singapore 

São Tomé and Príncipe Mediter. Middle East Gabon Taiwan 

St Lucia Israel Gambia Rest Pacific 

St Vincent and Grenadines Jordan Ghana Fiji 

Trinidad and Tobago Lebanon Guinea Kiribati 

Rest South America Syria Guinea-Bissau Papua New Guinea 

Bolivia Rest of Persian Gulf Kenya Samoa (Western) 

Colombia Bahrain Lesotho Solomon Islands 

Ecuador Iraq Liberia Tonga 

Guyana Kuwait Madagascar Vanuatu 

Paraguay Oman Malawi   

Peru Qatar Mali   

Suriname United Arab Emirates Mauritania   

Uruguay Yemen Mauritius   

Venezuela Morocco and Tunisia Mozambique   

  Morocco Namibia   

  Tunisia Niger   

  Algeria and Libya Nigeria   

  Algeria Rwanda   

  Libya Senegal   

   Sierra Leone   

   Somalia   

   Sudan   

   Swaziland   

   Tanzania   

   Togo   

   Uganda   

   Zambia   

    Zimbabwe   
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Oil and gas production 

77 individual countries + 11 regions 

(*): 41 exporters 

Table 12: List of 77 individual oil and gas producing countries represented in POLES-JRC 
Non-EU individual countries EU-28 Member States 

Algeria  (*) Mexico (*) Austria 

Angola (*) Myanmar/Burma (*) Belgium 

Argentina (*) New Zealand Bulgaria 

Australia (*) Nigeria (*) Croatia 

Azerbaijan (*) Norway (*) Cyprus 

Bolivia (*) Oman (*) Czech Republic 

Brazil (*) Pakistan (*) Denmark 

Brunei (*) Peru (*) Estonia 

Canada (*) Qatar (*) Finland 

Chile Russia (*) France 

China (*) Saudi Arabia (*) Germany 

Colombia (*) South Africa Greece 

Ecuador (*) South Korea Hungary 

Egypt (*) Switzerland Ireland 

Gabon (*) Thailand Italy 

Iceland Trinidad and Tobago (*) Latvia 

India (*) Turkey Lithuania 

Indonesia (*) Turkmenistan (*) Luxembourg 

Iran (*) Ukraine Malta 

Iraq (*) United Arab Emirates (*) Netherlands (*) 

Japan United States (*) Poland 

Kazakhstan (*) Uzbekistan (*) Portugal 

Kuwait (*) Venezuela (*) Romania 

Libya (*) Vietnam Slovakia 

Malaysia (*)  Slovenia 

  Spain 

  Sweden 

  United Kingdom (*) 
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Table 13: Country mapping for the 11 oil and gas producing regions in POLES-JRC 
Rest Central America Rest Balkans Rest Sub-Saharan Africa Rest South Asia 

Bahamas Albania Benin Afghanistan 

Barbados Bosnia and Herzegovina Botswana Bangladesh 

Belize Former Yugoslav Republic of Macedonia Burkina Faso Bhutan 

Bermuda Kosovo Burundi Maldives 

Costa Rica Moldova Cameroon Nepal 

Cuba Montenegro Cape Verde Seychelles 

Dominica Serbia Central African Republic Sri Lanka 

Dominican Republic Rest CIS (*) Chad Rest South East Asia 

El Salvador Armenia Comoros Cambodia 

Grenada Belarus Congo Laos 

Guatemala Georgia Democratic Republic of the Congo Mongolia 

Haiti Kyrgyzstan Côte d’Ivoire North Korea 

Honduras Tajikistan Djibouti Philippines 

Jamaica Mediter. Middle East Equatorial Guinea Singapore 

Nicaragua Israel Eritrea Taiwan 

NL Antilles and Aruba Jordan Ethiopia Rest Pacific 

Panama Lebanon Gambia Fiji 

São Tomé and Príncipe Syria Ghana Kiribati 

St Lucia Rest of Persian Gulf Guinea Papua New Guinea 

St Vincent and Grenadines Bahrain Guinea-Bissau Samoa (Western) 

Rest South America Yemen Kenya Solomon Islands 

Guyana Morocco and Tunisia Lesotho Tonga 

Paraguay Morocco Liberia Vanuatu 

Suriname Tunisia Madagascar   

Uruguay  Malawi   

   Mali   

   Mauritania   

   Mauritius   

   Mozambique   

   Namibia   

   Niger   

   Rwanda   

   Senegal   

   Sierra Leone   

   Somalia   

   Sudan   

   Swaziland   

   Tanzania   

   Togo   

   Uganda   

   Zambia   

    Zimbabwe   



 

71 

Coal production 

59 individual countries (4 of which with infra-national detail) + 12 regions 

(*): 16 exporters (4 of which with infra-national detail) 

Table 14: List of 59 individual coal producing countries represented in POLES-JRC 
Non-EU individual countries EU-28 Member States 

Argentina Austria 

Australia (x 2 regions) (*) Belgium 

Brazil Bulgaria 

Canada (*) Croatia 

Chile Cyprus 

China (x 4 regions) (*) Czech Republic 

Colombia (*) Denmark 

Egypt Estonia 

Iceland Finland 

India (x 4 regions) (*) France 

Indonesia (*) Germany 

Iran Greece 

Japan Hungary 

Kazakhstan (*) Ireland 

Malaysia Italy 

Mexico Latvia 

Mongolia (*) Lithuania 

Mozambique (*) Luxembourg 

New Zealand Malta 

Norway Netherlands 

Russia (*) Poland (*) 

Saudi Arabia Portugal 

South Africa (*) Romania 

South Korea Slovakia 

Switzerland Slovenia 

Thailand Spain 

Turkey Sweden 

Ukraine (*) United Kingdom 

United States (x 4 regions) (*)  

Venezuela (*)  

Vietnam (*)  
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Table 15: Country mapping for the 12 coal producing regions in POLES-JRC 
Rest Central America Rest Balkans Rest Sub-Saharan Africa Rest South Asia 

Bahamas Albania Angola Afghanistan 

Barbados Bosnia and Herzegovina Benin Bangladesh 

Belize Former Yugoslav Republic of Macedonia Botswana Bhutan 

Bermuda Kosovo Burkina Faso Maldives 

Costa Rica Moldova Burundi Nepal 

Cuba Montenegro Cameroon Pakistan 

Dominica Serbia Cape Verde Seychelles 

Dominican Republic Rest CIS Central African Republic Sri Lanka 

El Salvador Armenia Chad Rest South East Asia 

Grenada Azerbaijan Comoros Brunei 

Guatemala Belarus Congo Cambodia 

Haiti Georgia Democratic Republic of the Congo  Laos 

Honduras Kyrgyzstan Côte d’Ivoire Myanmar/Burma 

Jamaica Tajikistan Djibouti North Korea 

Nicaragua Turkmenistan Equatorial Guinea Philippines 

NL Antilles and Aruba Uzbekistan Eritrea Singapore 

Panama Mediter. Middle East Ethiopia Taiwan 

São Tomé and Príncipe Israel Gabon Rest Pacific 

St Lucia Jordan Gambia Fiji 

St Vincent and Grenadines Lebanon Ghana Kiribati 

Trinidad and Tobago Syria Guinea Papua New Guinea 

Rest South America Rest of Persian Gulf Guinea-Bissau Samoa (Western) 

Bolivia Bahrain Kenya Solomon Islands 

Ecuador Iraq Lesotho Tonga 

Guyana Kuwait Liberia Vanuatu 

Paraguay Oman Madagascar   

Peru Qatar Malawi   

Suriname United Arab Emirates Mali   

Uruguay Yemen Mauritania   

  Morocco and Tunisia Mauritius   

  Morocco Namibia   

  Tunisia Niger   

  Algeria and Libya Nigeria   

  Algeria Rwanda   

  Libya Senegal   

   Sierra Leone   

   Somalia   

   Sudan   

   Swaziland   

   Tanzania   

   Togo   

   Uganda   

   Zambia   

    Zimbabwe   



 

 

 

GETTING IN TOUCH WITH THE EU 

In person 

All over the European Union there are hundreds of Europe Direct information centres. You can find the 

address of the centre nearest you at: http://europea.eu/contact 

On the phone or by email 

Europe Direct is a service that answers your questions about the European Union. You can contact this 

service: 

- by freephone: 00 800 6 7 8 9 10 11 (certain operators may charge for these calls), 

- at the following standard number: +32 22999696, or 

- by electronic mail via: http://europa.eu/contact 

FINDING INFORMATION ABOUT THE EU 

Online 

Information about the European Union in all the official languages of the EU is available on the Europa 

website at: http://europa.eu 

EU publications 
You can download or order free and priced EU publications from EU Bookshop at: 

http://bookshop.europa.eu. Multiple copies of free publications may be obtained by contacting Europe 

Direct or your local information centre (see http://europa.eu/contact). 

http://europea.eu/contact
http://europa.eu/contact
http://europa.eu/
http://bookshop.europa.eu/
http://europa.eu/contact
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