
Playing Nomic using a Controlled Natural Language

John J. Camilleri, Gordon J. Pace and Michael Rosner
Department of Intelligent Computer Systems

University of Malta
Msida, Malta

jcam0003, gordon.pace, mike.rosner@um.edu.mt

ABSTRACT
Controlled natural languages have been used in a variety of
domains, to enable information extraction and formal rea-
soning. One major challenge is that although the syntax
is restricted to enable processing, without a similar restric-
ted domain of application, it is typically difficult to extract
useful results. In this paper we look at the development of
a controlled natural language to reason about contractual
clauses. The language is used to enable human players to
play a variant of Nomic — a game of changing contracts,
whose very nature makes it extremely challenging to me-
chanise. We present the controlled natural language with
its implementation in the Grammatical Framework, and an
underlying deontic logic used to reason about the contracts
proposed by the players.

Keywords
Controlled natural language, deontic contract logic, Nomic,
Grammatical Framework

1. INTRODUCTION
The use of controlled natural languages (CNLs) to en-

able processing of and formal reasoning about statements in
a particular domain is a rather well-established approach.
By constraining the language, together with the structural
complexity of the grammar, one obtains a language to make
statements about the underlying domain, without moving
too far off from a natural language description. In identi-
fying an appropriate domain-specific CNL, one faces two pri-
mary challenges — that of identifying the basic underlying
concepts in the domain, and secondly that of selecting an
appropriate and sufficiently rich grammar through which to
combine these basic concepts. Going further, and enabling
formal reasoning and manipulation of statements made in
the CNL is further hindered by the fact that typically, rela-
ting the basic concepts together requires much tedious and
error-prone work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICT 2010 Malta
Copyright 2010 ACM ...$10.00.

One area in which CNLs have been applied is that of
contracts — agreements between two or more parties regula-
ting their behaviour. Typically contracts state obligations,
permissions and prohibitions of actions or states. Contracts
have been used in a variety of settings, ranging from game
rules and user-level agreements to national legislation and
international directives. For instance, a particular game may
include clauses in its rules, such as ‘Players take turns in a
counter-clockwise direction’, and ‘Upon starting their turn,
the player throws two dice’.

In practice, using a CNL for contracts requires not only
semantics of the language operators, but also the underlying
implicit concepts (for instance, a player may give the dice
to the next player at the end of his or her turn, but may
not give his or her counter to another player). In this paper
we investigate the use of a CNL to describe game rules.
In particular, to enable interesting cases, and the need for
consistency checking of the rules, we apply the technique
to implement a variant of the game of Nomic — a game in
which changing the rules is part of the game itself.

2. NOMIC AND BANANOMIC
Nomic is a game of self-amendment [4] — starting with

an initial rule set, each player takes their turn changing the
game’s rules through a system of rule proposals and player
voting. What makes Nomic so particular is that everything
is theoretically up for amendment during the game, inclu-
ding the voting system itself and what players need to do
to win. Despite the popularity of the game, only one Nomic
variant could be found which uses automated rule proces-
sing. The game is encoded and played directly in Perl [2],
and circumvents the contract specification and processing by
identifying the contract with the Perl program governing the
voting process — what the program accepts (or rejects) is
considered to be the semantics of the program. Encoding the
full game of Nomic with natural language contracts is par-
ticularly challenging, since it combines challenges in natural
language analysis and formal reasoning about contracts.

The major challenges in Nomic playing using natural lan-
guage contracts are twofold: (i) formulating a language in
which the contract clauses are expressed — rich enough to
be able to reason about notions such as permission and obli-
gation; and (ii) the contracts frequently refer to statements
about the real world which require a strong semantic frame-
work (‘Players wearing glasses cannot propose amendments
to clauses labelled by a prime number’). The former pro-
blem we have addressed by developing a CNL, which we
discuss more concretely in the next section, and the latter

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132620336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

was circumvented by reducing the domain of the game to a
simpler setting.

BanaNomic is a more concrete version of Nomic, in which
players represent monkeys living in a tree, fighting to pick
bananas and defend their stash. The constitution corres-
ponds to the rules of the jungle — and can refer to the state
of affairs (e.g. how many bananas a player owns) and ac-
tions possible in this limited setting (e.g. climbing up the
tree). The rules cannot be violated, but the monkeys are
allowed to add and remove rules at will. During each turn,
the players may carry out actions and modify the constitu-
tion. The game is governed by banana-time, thus enabling
constitution clauses to refer to time.

3. A DEONTIC CONTRACT LANGUAGE
FOR BANANOMIC

The contract grammar devised for BanaNomic is based
on the deontic logic we have explored in [1]. The deontic lo-
gic is based on three fundamental deontic modal operators:
obligation O, permission P and prohibition F, and is action-
based, in that all the deontic operators act on action expres-
sions. Furthermore, all actions are tagged by their subject
and object (if relevant) e.g. the action throwBanana takes
both the name of the monkey throwing the banana, and the
monkey at whom it is being thrown: throwBanana(Michael ,
Gordon). To enable quantification over actors, rather than
introducing explicit quantifiers, we borrow the notation used
for polymorphic type place-holders from type systems, and
enable quantification by using a name placeholder * e.g.:
F(throwBanana(∗, John)) would be the statement saying that
everyone is forbidden from throwing a banana at John. In
such a logic we would ideally allow for different variable
names, allowing us to unify different actors in a statement,
but for the sake of a more direct mapping to and from the
CNL, we assume that the instances of * all refer to different
variables.

The contract is modelled as a function from the natural
numbers to clauses, and is interpreted as the conjunction of
all clauses. The clauses can be

(i) deontic statements over action expressions

(ii) temporal operators — �[b, e]C says that from time b
to time e clause C will always be enforced and ♦[b, e]C
says that at some time between time b and e, clause C
will hold

(iii) choice operators — C1 + C2 says that one of C1 and
C2 must hold and C1 // q ..C2 checks whether query q
holds (queries are boolean expressions over the state of
the game — how many bananas each player has, the
height in the tree where each player can be found, etc)

(iv) a consequence operator C1/DE.C2 which checks for
the existence of deontic clause DE and enacts clause
C1 or C2 accordingly

(v) the conjunction of two clauses C1 ∧ C2

The syntax of the logic is as follows:

ActionExp ::= Action | ActionExp;ActionExp

| ActionExp + ActionExp

DeonticExp ::= O(ActionExp) | F(ActionExp) | P(ActionExp)

Clause ::= Ok | Fail | DeonticExp

| Clause ∧ Clause | Clause + Clause

| Clause //Query ..Clause

| Clause/DeonticExp.Clause

| � [Time,Time]Clause

| ♦ [Time,Time]Clause

Two of the basic actions which can be used in action ex-
pressions are enact and abolish, which refer to a particular
player enacting or abolishing an existing clause. When used
in conjunction with the deontic operators, one can express
clauses about power e.g. F(enact(John, ∗, ∗)) says that John
is not allowed to enact any clause anywhere in the contract.
Using the logic defined above, a few example contracts and
their natural language readings are given in table 1.

4. BANAL, A CNL FOR BANANOMIC
USER INPUT

We have developed BanaL — a CNL for BanaNomic, desi-
gned as an application-specific method of natural language
representation based on the syntax of the logic. This has
the effect of making the conversion from contract logic to
natural language and back (linearisation and analysis, res-
pectively) very simple and deterministic. The Grammatical
Framework (GF) was adopted for the guided-input methods
it facilitates (see below), and its support for sophisticated
forms of language generation — thus future-proofing the
design so that subsequent versions of BanaL could easily
be extended to include more intelligent choice of words and
phrases.

GF is a specialised functional language for defining gram-
mars, having separate abstract/concrete syntax rules, a strong
type system, and inherent support for multilingual gram-
mars. GF grammars are declarative in nature, with a pri-
mary focus on the linearisation of syntax trees. By writing
an abstract GF grammar and defining how it should be ex-
pressed in one or more natural languages (concrete gram-
mars), GF is able to derive both a generator and a parser
for each of those languages [3].

Given the declarative nature of GF grammars, the abs-
tract syntax of BanaNomic could very easily be implemen-
ted from its formal logic. For example, the abstract GF
equivalent for the definition of the Clause category would
be as follows:

cat
DeoExp ; Time ; Clause ;

fun
C_Deontic : DeoExp -> Clause ;
C_Always : Time -> Time -> Clause -> Clause ;
C_Cond : DeoExp -> Clause -> Clause -> Clause ;
...

For the design of the concrete grammar, each of the func-
tions from the abstract syntax is given a template-like linea-
risation. While suitable for many cases, certain constructs
required a better approach in order to produce phrases which

Player Rule enacted

1. George F(pickBanana(Paul))
Paul is forbidden to pick a banana

2. Paul ♦ [0, 9] O(throwBanana(φ,George))
At some point before time 9 every player is obliged to throw a banana at
George

3. George F(abolish(Paul , ∗) /P(enact(George, ∗, ∗)) .Ok
If George is permitted to enact a rule then Paul is forbidden to abolish
any rule

4. Paul � [0,∞] F(enact(George, ∗, ∗))
At all times George is forbidden to enact a rule

Table 1: Example of the rules enacted during a four-turn sequence of BanaNomic, showing rule clauses in
formal notation along with their natural language linearisations. Other turn actions are omitted.

still sound natural. Nested phrases were particularly proble-
matic to express unambiguously (‘Paul is allowed to pick a
banana and climb the tree or climb down the tree’), and the
use of pronouns was avoided altogether.

A major part of GF is its partial evaluation algorithm (or
incremental parser), which gives rise to interesting guided-
input possibilities. By presenting the user with a list of
possible words which may come next in a partial sentence,
they are able to construct grammatical sentences in an auto-
complete fashion. This is highly useful as it ensures that only
syntactically-correct phrases are entered first-time round,
and will avoid user frustration of trying to construct par-
seable sentences in free-text. The guided input methods
developed for BanaNomic are based on the drop-down sug-
gestions (figure 1) and the “fridge magnets” (figure 2) —
developed by the GF team. These input methods are of
particular interest to the area of CNLs, as they help avoid
the problem of users having to know what is grammatical in
a particular CNL.

Figure 1: ‘Suggest panel’ guided input method

Figure 2: ‘Fridge magnets’ guided input method

5. CONCLUSIONS
One of the primary challenges we have found when sup-

porting reasoning through the use of a CNL is the domain
to which the language is applied — controlling the structure
of the sub-language ensures that a mapping to and from

the operators of the formal underlying representation is pos-
sible. On the other hand, if the domain of the basic terms
is not carefully controlled, the reasoning one can perform is
strictly limited. In this paper we have investigated the use
of a controlled domain of application for BanaL, a CNL to
specify contract clauses as input to the game BanaNomic, in
which the basic actions and state queries are limited. The
CNL has been used as a front end input to a web-based ver-
sion of BanaNomic, with players taking turns to change the
constitution and take actions — as regulated by the current
contract. We are currently looking into ways to extend the
syntactic and semantic domain of the logic whilst keeping a
hold on the natural language aspect.

6. REFERENCES
[1] G. J. Pace and M. Rosner. A Controlled Language for

the Specification of Contracts, volume 5972 of LNAI.
2010.

[2] M. E. Phair and A. Bliss. PerlNomic: Rule Making and
Enforcement in Digital Shared Spaces. In Online
Deliberation 2005 / DIAC-2005, Stanford, CA, USA,
2005.

[3] A. Ranta. Grammatical Framework: A
Type-Theoretical Grammar Formalism. Journal of
Functional Programming, 14(02):145–189, 2004.

[4] P. Suber. Nomic: A Game of Self-Amendment. Peter
Lang Publishing, 1990.

View publication statsView publication stats

https://www.researchgate.net/publication/268252995

