
Contract Automata with Reparations1

Shaun AZZOPARDI a Gordon J. PACE a Fernando SCHAPACHNIK b

a {shaun.azzopardi.10,gordon.pace}@um.edu.mt
University of Malta, Malta
b fschapachnik@dc.uba.ar

Departamento de Computación, FCEyN,
Universidad de Buenos Aires, Buenos Aires, Argentina

Abstract. Although contract reparations have been extensively studied in the con-
text of deontic logics, there is not much literature using reparations in automata-
based deontic approaches. Contract automata is a recent approach to modelling the
notion of contract-based interaction between different parties using synchronous
composition. However, it lacks the notion of reparations for contract violations. In
this article we look into, and contrast different ways reparation can be added to an
automaton- and state-based contract approach, extending contract automata with
two forms of such clauses: catch-all reparations for violation and reparations for
specific violations.

Keywords. Deontic Logic, Normative Systems, Interactive Systems, Contracts

1. Introduction

Contracts are agreements between two or more parties that regulate their behaviour by
specifying what each party should or can do at each step of some process. An essential
element of any contract specification logic is thus the notion of reparation — what should
be done in the case of a violation of a part of the contract. In particular, in the context of
deontic logics, the notion of contrary-to-duty (CTD) dealing with what happens when an
obligation clause is violated has been extensively studied in the literature [4].

Compared to logic-based approaches, automata-based ones typically provide a less
structured, yet more operational mechanisms for specification and analysis. In this paper
we look into different ways of adding reparations to graph-based contract representations
focusing, in particular, on contract automata [6]. We identify two different approaches
to adding reparations: (i) by partitioning transitions into those which can be taken when
the contract is respected and others which are taken upon a violation; and (ii) by tagging
transitions identifying which norms have to be respected and/or violated for the transition
to be enabled.

The approaches are illustrated using an airline check-in desk case study extended
from [3]. Due to lack of space, we only outline the formalisation of the different se-
mantics, giving just sufficient details to enable the comparison of approaches from the
perspective of tractability of verification.

1Partially supported by UBACyT 20020130200032BA.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132620304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Background

Due to space reasons, we will only give a brief overview of contract automata — full
details can be found in [6]. The behaviour of parties in contract automata is modelled by
multi-action automata, which are synchronously composed to model interaction.

Definition 1. A multi-action automaton is a tuple S = 〈Σ,Q, q0,→〉, where Σ is the
alphabet of actions, Q is the set of states, q0 ∈ Q is the initial state and→ ⊆ Q×2Σ×Q
is the transition relation. We will write q A−→ q′ for (q,A, q′) ∈→, and acts(q) to be the
set of all action sets on the outgoing transitions from q, defined to be {A | ∃q′ · q A−→ q′}.

For two automata Si = 〈Σi,Qi, q0i ,→i〉, i ∈ {1, 2}, their synchronous composi-
tion, over alphabet G, is written S1‖GS2 ≡ 〈Q1 × Q2, (q01 , q02),→〉, where → is the
classical synchronous composition relation defined below:

(q1
A−→1 q′1)

(q1, q2)
A−→ (q′1, q2)

A ∩ G = ∅
(q2

A−→2 q′2)

(q1, q2)
A−→ (q1, q

′
2)

A ∩ G = ∅

(q1
A−→1 q′1), (q2

B−→2 q′2)

(q1, q2)
A∪B−−→ (q′1, q

′
2)

A ∩ G = B ∩ G 6= ∅

Contract automata are then multi-action2 automata with states tagged with sets of
clauses ranging over obligations and permissions to perform or not an action:Op(a) is the
obligation on party p to perform action a, while Op(!a) is the obligation not to perform
a (hence a prohibition). Permission is similarly written as Pp(x). The type Clause thus
contains terms of the form Op(x) or Pp(x), where x is a possibly negated action a or !a.

Definition 2. A contract automaton is a total and deterministic multi-action automaton
S = 〈Σ,Q, q0,→〉, together with a total function contract ∈ Q→ 2Clause.→ is a subset
of Q× 2Σ × Q and is total i.e. ∀q ∈ Q,A ∈ 2Σ · ∃q′ ∈ Q s.t. q A−→ q′.

Below is a contract automaton3 modelling the clause: “When the passenger arrives
at the gate he must present his boarding pass. After that he can board at any time. He is
allowed one piece of hand luggage.”

start Op(boardingPass) Pp(boardPlane),
Pp(handLuggage)

{atGate} {boardingPass} {boardPlane}

{boardPlane, handLuggage}

Contract automata are closed under synchronous composition, which acts as a form
of conjunction. The overall behaviour of a regulated system consists of the behaviour
of the parties synchronously composed with a contract automaton, which allows for a
contract satisfaction predicate to be defined at each state.

Definition 3. A regulated two-party system synchronizing over the set of actions G is a
tuple R = 〈S1, S2〉AG , where Si = (Σi,Qi, q0i ,→i) is a multi-action automaton specify-

2Otherwise concurrent obligations can never be satisfied [6].
3Throughout the paper, we leave out transitions going to a sink state used to make the automata shown total

as required.

ing the behaviour of party i, and A is a contract automaton. The behaviour of a regu-
lated two-party system R, written [[R]], is defined to be the automaton (S1‖GS2)‖ΣA .

An action set A is said to be viable for party p in state qA of contract automaton A ,
written viablep(qA ,A), if it contains all the obliged actions but no forbidden ones. Based
on this, we can define contract satisfaction as follows4:

• An obligation for party p to do an action a is satisfied by p by a transition, written
satOp (q

A−→ q′), if it includes a in all of the outgoing transitions of p. However, the
other party, noted p, must also allow a to be performed.

• A party p always respects its own permission to do an action. However, the permis-
sion for a party p to perform a can be violated by p if it does not provide a viable
transition that includes a. A party satisfies the permissions at a state (q1, q2, qA)
of the regulated two-party system, written as satPp ((q1, q2, qA)), if it respects all
the permissions of shared actions of the other party, by providing a viable action
set.

We can extend the operational semantics of contract automata by tagging transitions
with the compliance state of each party: A−−−−→

(ψ, ψ′)
where ψ and ψ′ are one of X, × and

R indicating satisfaction, violation without the possibility of reparation and violation but
going to a reparation state respectively5.

Definition 4. A state of a regulated system and action set pair (q, A) is said to be violat-
ing for party p, written violp(q, A) if the state or the transition do not satisfy the active

contract clauses: ¬(satPp (q) ∧ satOp (q) ∧ ∀q′ · satOp (q
A−→ q′)). We write viol (q,A) to

denote that either party has violated the contract: violp(q, A) ∨ violp(q, A). We define
δψψ′(p, q, A) to be ψ′ if violp(q, A), and ψ otherwise. The extended operational semantics

for a transition q A−→ q′ tagged with violation information is q A−−−−−−−−−−−−−−→
(δX× (1,q,A), δX× (2,q,A))

q′.

3. Handling Reparations in Contract Automata

Since the semantics of contract automata continue enforcing a contract even after vio-
lation, they can simulate reparations in a limited way — consider the contrary-to-duty
clause: “The passenger is obliged to show a means of identification when presenting the
ticket, and would otherwise be prohibited from boarding”. This can be partially emulated
using the contract automaton shown below.

Op(proveIdentity)start

Op(!boardPlane)

{showTicket, proveIdentity}

{showTicket}

4Formal definitions of these notions can be found in [6]. To build an intuition it can be considered that
obligation for a requires a to be in every outgoing transition, while permission requires it to be in at least some
of them. In both cases the action set that contains a cannot include forbidden actions.

5Although we have no notion of reparation yet, we introduce this state to be used in the following section.

However, using this approach does not distinguish between whether the passenger
chose not to present a means of identification (and hence the airline can apply the repara-
tion) or whether the airline never even gave the option to the passenger to show the means
of identification (by not providing a synchronising action). We thus (i) have no notion of
which transitions are violating ones, and (ii) cannot express a reparation of a permission
in this manner. These limitations indicate the need for reparation to be provided as a first
class notion in contract automata.

Reparation Automata Reparations are transitions conditionally taken upon contract vi-
olation which can only be detected upon combining the system behaviours. Our first ex-
tension to contract automata hinges on this distinction, providing means of specifying
two types of transitions — reparation ones which are taken if a violation has taken place
and is to be repaired, and normal ones which are otherwise taken.

Consider a contract which states that: (i) The passenger is obliged to present his
boarding pass or would otherwise be obliged to go back to the check-in desk; after which
(ii) he is permitted to board the plane with hand-luggage but if stopped from doing so, the
airline company is obliged to put his hand-luggage in the hold and allow him to board.
The reparation automaton for this agreement is given in the figure below — red dashed
edges are used to identify reparation transitions:6

start Op(boardingPass)

Op(goToCheckInDesk)

Pp(boardPlane),
Pp(handLuggage)

Oc(inHold)

{atGate}

*

{boardingPass} {boardPlane}

{boardPlane, handLuggage}

*

{inHold}

Definition 5. A reparation automaton is a contract automaton with two transition rela-
tions→N (normal) and→R (reparation), each a subset of Q×2Σ×Q. While the normal
relation is to be total and deterministic as in the case of contract automata, the repara-
tion one needs not to be total but must be deterministic. We will write hasRep(q, A) if for

some state q′ there is a reparation transition q A−→R q
′.

We can now define the tagged operational semantics of a regulated two party system
using the following rules (we write q and q′ to denote the combined states (q1, q2, q3A)
and (q′1, q

′
2, q

′
3A

) respectively):

(q1, q2)
A−→ (q′1, q

′
2), q3A

A−→N q′3A

q
A−−−−→

(X,X)
q′

¬viol (q,A)

(q1, q2)
A−→ (q′1, q

′
2), q3A

A−→R q′3A

q
A−−−−−−−−−−−−−−−→

(δXR (1,q,A), δXR (2,q,A))
q′

viol (q,A)

6An asterisk ∗ on a transition is used to denote that any action set not matching any other outgoing transition
from the source state would follow this transition. Formally, it would be a set of transitions, one for each
uncatered for action set.

(q1, q2)
A−→ (q′1, q

′
2), q3A

A−→N q′3A

q
A−−−−−−−−−−−−−−−→

(δX× (1,q,A), δX× (2,q,A))
q′

viol (q,A) ∧ ¬hasRep(q,A)

Unlike contract automata, reparation automata are not closed under synchronous
composition, since composition may lead to non-determinism. This happens when a state
has more than one active clause since it is impossible to distinguish which of these has
been violated. Extended reparation automata, address this issue.

Extended Reparation Automata Sometimes one must identify which of the clauses
were violated, as each may be repaired in a different way. For instance, if the passen-
ger is (i) permitted to have one piece of hand luggage, but if not allowed on board, the
crew is obliged to send it in the hold; and (ii) he is also permitted to have a coat, but if
not allowed on board, he may report the issue. To be able to identify which clauses the
reparation is related to, one can tag reparation transitions with the contract clauses the
reparation addresses.

The solution we adopt is to have transitions tagged not only with an action set, but
also with an expression specifying which clauses were violated (or not) by a party p
(Vp(c) and ¬Vp(c)):

VExp ::= VParty(Clause) | ¬VExp | VExp ∧ VExp
Recall the reparation automaton given in the example discussed earlier — in which

we could only define one reparation transition for the action boardPlane, even though
violation may happen in multiple ways (the passenger was not allowed the hand luggage,
or the coat, or both). This can be modelled using extended reparation automata:7

Pp(boardPlane)
Pp(handLuggage)
Pp(coat)

Pp(report)

Oc(inHold) Pp(report),
Oc(inHold)

Op(switchOffDevices)
Vc(Pp(coat)) . {boardPlane} ok . {boardPlane}

Vc(Pp(handLuggage)) . {boardPlane} Vc(Pp(coat)) ∧ Vc(Pp(handLuggage)) . {boardPlane}

Definition 6. An extended reparation automaton is a contract automaton where the
transition relation is augmented with a boolean expression over clause violation:→⊆
Q× VExp× 2Σ × Q. Totality and determinism of the transition relation is still required
— for any action set A, the disjunction of the violation expressions on transitions tagged
by A must be a tautology and any two such expressions must be mutually exclusive.

The tagged semantics of extended reparation automata is defined as follows8:

(q1, q2)
A−→ (q′1, q

′
2), q3A

ok . A−−−→ q′3A

q
A−−−−→

(X,X)
q′

(q,A) ` ok

(q1, q2)
A−→ (q′1, q

′
2), q3A

V . A−−−→ q′3A

q
A−−−−−−−−−−−−−−−→

(δXR (1,q,A), δXR (2,q,A))
q′

V 6= ok, (q,A) ` V

7The expression ok is used to denote that no clauses in the source state are violated by either party.
8We write (q,A) ` V to denote that V ∈ VExp is satisfied when action set A is taken from state q.

The totality of the transition relation means that no transitions are unmitigatable
violating ones. We can address this by having a violation state, in which violations with
no reparation are sent to, or by modifying the semantics of extended reparation automata
to allow for partial transitions and treat missing transitions or the transition (ok, A) as a
catch-all when A takes place and no other transition is activated. The semantics adopted,
however, are more compositional and thus preferred. The ability to differentiate whether
or not a norm is violated, ensures closure under synchronous composition.

4. Discussion and Related Work

We have presented two approaches to adding reparations to contract automata. Repa-
ration automata provide rudimentary means of enabling branching upon a violation as
part of a contract. For reasonably sophisticated reparations, however, one needs stronger
means to be able to identify which clauses have been violated and by which party, which
can be done using extended reparation automata which allow branching on conditions
identifying which clauses have been violated. Of the two approaches, extended reparation
automata handle better the case study. Extended reparation automata can deal with states
with multiple clauses effectively, but employing this increases the size of the automata
and makes the representation of larger contracts difficult to generate and understand.

Reparations, although generally well understood on more structured logical ap-
proaches e.g. [4, 5] are generally more challenging in graph-based approaches. For is-
ntance, C-O diagrams [2] are a graphical contract visualization framework that although
being able to cope with violations, cannot consider what action set was responsibly for
the violation (similar to our reparation automata). Taking a more pragmatic approach,
contract automata for service contracts presented in [1] detect violations at runtime, but
do not have a formalisation that allows reasoning about them.

References

[1] Davide Basile, Pierpaolo Degano, and Gian-Luigi Ferrari. Automata for service
contracts. In Hot Issues in Security Principles and Trust 2014, 2014.

[2] Gregorio Dı́az, Marı́a Emilia Cambronero, Enrique Martı́nez, and Gerardo Schnei-
der. Specification and Verification of Normative Texts using C-O Diagrams. IEEE
Transactions on Software Engineering, 99:1, 2013.

[3] Stephen Fenech, Gordon J. Pace, and Gerardo Schneider. Automatic Conflict Detec-
tion on Contracts. In Proceedings of the 6th International Colloquium on Theoreti-
cal Aspects of Computing (ICTAC’09), volume 5684 of Lecture Notes in Computer
Science. Springer Verlag, 2009.

[4] Guido Governatori and Antonino Rotolo. Logic of Violations: A Gentzen System
for Reasoning with Contrary-To-Duty Obligations. In The Australasian Journal of
Logic, volume 4, pages 193–215, 2006.

[5] Jaap Hage. Contrary to Duty Obligations — A Study in Legal Ontology. In Legal
Knowledge and Information Systems (JURIX 2001), December 2001.

[6] Gordon J. Pace and Fernando Schapachnik. Contracts for Interacting Two-Party
Systems. In Proceedings of Sixth Workshop on Formal Languages and Analysis of
Contract-Oriented Software (FLACOS’12), volume 94 of Electronic Proceedings in
Theoretical Computer Science, 2012.

View publication statsView publication stats

https://www.researchgate.net/publication/309479716

