View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by OAR@UM

Formal Reasoning with Verilog HDL

Gordon J. Pace! and Jifeng He?

! University of Malta, Msida MSD 06, Malta
2 University of Oxford, Parks Road, Oxford, UK

Abstract. Most hardware verification techniques tend to fall under one
of two broad, yet separate caps: simulation or formal verification. This
paper briefly presents a framework in which formal verification plays a
crucial role within the standard approach currently used by the hard-
ware industry. As a basis for this, the formal semantics of Verilog HDL
are defined, and properties about synchronization and mutual exclusion
algorithms are proved.

1 Introduction

Hardware verification tends to be viewed by people from different backgrounds
as being either exclusively simulation or formal verification. Combining the two
together can provide a very powerful working environment, which provides both
the flexibility and concept grasping of simulators and the rigorous background
of formal methods [3].

Simulation allows faster development of design and cheaper and easier de-
bugging during the design stage than if formal verification is used. The pro-
liferation of standard hardware description languages (HDLs) made standard
libraries of hardware components widely available and has made simulation ap-
proaches even more attractive. However, the loosely defined semantics of these
HDLs makes formal verification (on their basis) impossible. Simulation on its
own is not viable since it can only show the presence of errors, not their absence.
Furthermore, the semantics of HDLs are usually much more involved than in-
dustry standard sequential software languages. Issues like parallel composition
and non-determinism, play an important role in HDLs, and simulator runs do
not do justice to these more complex concepts. For example, non-determinism
in choosing which parallel thread to follow (from a number of enabled ones) is
sometimes resolved in a simulator by taking the first one available. This may
mean that no matter how many times a design is simulated, the result will in-
variably be the same, whereas the HDL semantics would allow an alternative
sequence of execution which could end up with a different result.

Formal methods cannot however, replace existent methods of hardware de-
sign overnight. Figure 1 proposes one possible framework to gradually introduce
formal methods in hardware design. The approach i1s completely built upon for-
mal techniques but includes simulation for design visualization and development.
Formal laws helping hardware engineers to correctly transform specifications into
the implementation language are used to develop implementations guaranteed to

https://core.ac.uk/display/132620267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be correct. These laws would not cover all possible case, but a simulator (guar-
anteed to have the same semantics as the interpretation given to the implemen-
tation language), can be used to develop implementations from the remaining
specification portions, before they can be formally proved to be correct. The re-
sult is more reliability within an environment which does not require a complete
revolution over the current trends.

This paper presents only one small part of this framework. The formal se-
mantics of Verilog are defined as a formal basis for the whole strategy. The
semantics are then used to prove properties of two small case studies involving
synchronization and mutual exclusion issues.

Formally verified algebraic laws

Formal semantics for Formal semantics for

specification language . industry standard HDL
- Design Rules .
Secification Implementation
Simulation semantics equivalent
to behavioural semantics

Formally defined
simulation process

Fig. 1. Simulation and verification: a unified approach

2 VHDL and Verilog

Until now, most work done in the formalization of industry standard hardware
simulation languages has almost exclusively dealt with VHDL[1,2,4,5,9 11].
The main problem is that all of this research refers back to the original informal
semantics description in the official documentation, leading to possible discrep-
ancies. In comparison, until quite recently, much less work has been done on
formal methods used with Verilog. The experience gained with VHDL should
help this research to be more directed and to yield better results than would
otherwise be expected. Hopefully, this will also reduce the diversity of methods
used by different research groups and thus increase the rate at which information
is built up. In [6], M.J.C. Gordon presented a semi-informal description of the
semantics of Verilog preceding most major work on the language. This may help
to provide a common stepping-stone out of the informal documentation which
researchers may choose to make use of. Most importantly, however, one must
realise that experience gained in either of the languages can usually be applied
to the other. Thus, we believe that the main emphasis should be placed on the
application of the formal semantics of these languages and techniques based on
this kind of approach.

3 The Semantics of Verilog

3.1 Specification Organization

module NOT_beh (in, out); module NOT_struc (in, out);

input in; output out; input in; output out; wire p,g;
forever @in out = “in; POWER P1 (p);

endmodule GROUND G1 (g);

PTRANS PT1 (p,in,out);
NTRANS NT1 (g,in,out);
endmodule

Fig. 2. Behavioural and structural description of a negation gate

A Verilog specification is a closed system made up of a number of modules all of
which run in parallel. Verilog allows both behavioural and structural descriptions
of modules. Behavioural information, describing the behaviour of the outputs of
a module, is what we will be mainly concerned with. Rather than define the
behaviour, a structural description shows how the module is organised into sub-
components. This approach is much more physically oriented. Figure 2 contrasts
a behavioural with a structural description of a negation gate.

3.2 Approach Taken

The semantics of Verilog are described using a variant of Discrete Duration
Calculus[14,12,8]. Rather than using the normal chop operator we define an
alternative sequential composition operator which takes into consideration non-
stable states. The resulting Relational Duration Calculus is similar to [13] and

[10].

Duration Calculus. Only a brief overview of Duration Calculus (DC) will be
given here. Readers interested in fuller accounts of the calculus may refer to [7].

Boolean States and Expressions: DC is a temporal logic allowing one to

state properties pertaining to time in a straightforward and natural fashion.
The basic building blocks of the calculus are state variables, functions from
time to the boolean values 1 and 0. Time is assumed to be represented by
the non-negative real numbers. 1 and 0 are defined to be the constant state
functions: always true and always false respectively.
State variables can be combined together using standard boolean connectives
to form state expressions. The interpretation of such expressions is simply
to take the boolean operator pointwise on the operands. Thus, for example,
at any time t:

(PAQ)) E Pty A Q)

Duration Formulae: However, as the name of the calculus suggests, DC deals

with interval (or state duration) reasoning, rather than remaining at the
pointwise reasoning level. Reasoning is thus promoted to functions from time
intervals (of the form [s, f]) to the boolean values. Such functions are called
duration formulae.
If P is a state expression:
(JP=n)s] [/ P@)dt=n

D; E, where ; is the chop (or sequential composition) operator, states that
the time interval can be split into two consecutive ones such that D holds
over the first interval and F over the second:

(D:). f1 € 3m € [s, f]- D[s,m] A E[m, f]
Again, the boolean operators are overloaded to act over duration formulae
using a similar definition as before. Hence for any time interval [s, f]:

(DA E)s, /1Y D[s, f] A E[s, f]

From these basic operators, a variety of other useful operators can be defined:

For a state expression P, [P] holds whenever P is true over the whole,
non-empty interval:
def
[Plls,f] = [P=f—s AN [f>s

[1 is true only for empty intervals:

def

(1= =1

true and false, the two constant duration formulae, can now be defined as
([1V [1]) and (—false) respectively.

The length of the interval [can be defined as:

l:ndéf fl:n

Note that [> n can be defined as [= n; true. From these, | < n, [> n and
[< n can then be defined.

The standard temporal logic operators O and < can also be easily defined.
OD, read as ‘sometimes D’ is true over an interval [s, f], provided that
duration formula D holds over some sub-interval of the one in question. 0D,
read as ‘always [’ is true provided that D holds over all sub-intervals.

I

op “
op “ —o-D

true; D; true

[P]* has the same meaning as [P] but also allows for the possibility of an

empty interval.

Discrete Duration Calculus. Discrete Duration Calculus is simply a re-
stricted version of the continuous one. The restrictions are:

Any discontinuities in the boolean states belong to IN

e Duration formulae act on intervals [b, ¢], where both b and e are in IN

Note that in Discrete DC, the shortest non-zero interval is of length 1. This
encourages the definition of another operator:

TPT Z [PIAl=1

Relational Duration Calculus. Three new operators are described below:

Pre-value of a state variable: P is a temporal formula giving the value of
P just before the start of the interval.

— ey | false ifb=0
(v =a)b,e] = lim . ,
+ — p— v(t) is equal to z otherwise

Post-value of a state variable: @ is the ‘dual’ of v . It is defined as the right
limit of v at the end point of the interval:

(v = z)[b, €] def lm + v(t) is equal to »

t—e
Relational Chop: D ¢ E is the sequential chop operator which behaves just
like the normal sequential composition, but with the extra restriction that the
pre-values of state variables W in E are the same as their post-values in D.

p% p
AW’ - AW, Wg -
(DWp/WIA \ (V' =Tp ATp =T Alv e up]™));
veEW
(EWe/WIA N\ (Te =0 Afve ol AT = T5)
veEW

Most of the algebraic laws for the normal chop operator still hold for this
relational chop. Despite the apparent complexity of the definition, we found
that manipulation of expressions using relational chop is not more complex than
using the normal chop operator, mainly thanks to the algebraic laws which we
have derived. This is, however, beyond the scope of this paper, and will not be
investigated further here.

3.3 Modules

We assume that each module P has a number of output wires Op to which no
other module may write. Also, the assignments to the outputs of a module must

take some time. All modules are allowed to read the output variables of other
modules, but reading and writing to and from the same global wires at the same
time is not permitted to avoid non-determinism.

The assumption that module outputs are disjoint gives us the opportunity
to define parallel composition as:

[[6] < [7] A [a]
Continuous assignment: assign v=e forces v to the value of expression e:
. def
[assign v=e]] = [v=¢]*

where [P]* = [P] V [] (either P is true over the interval, or it is an empty
interval).
Procedural behaviour: initial P behaves like the sequential program P:

[initial P] 2 [Po,(Const(Op))
[Plw (D) describes the behaviour of an individual program module P whose

output wires are given in set W and which will, upon termination, behave as
described by the duration formula D. Const(W) is defined as follows:

Const(W) Y Ywe W 3b-(w = b) A (W = b) A [w = b]*
3.4 TImperative Programming Statements
Verilog statements can be split into two sets: imperative programming-like con-

structs which take no simulation time, and timing control instructions, which
are closer to hardware concepts and may take simulation time to execute.

Assignments: [v=elw (D) Z (¥ = € A Const(W — {v}) A []) ng D
Conditionals: [if b then P else QJw (D) ¥ [Plw (D)< b o [Q]w (D)
Sequential composition: [P;Q]w (D) = [PTw ([Q]w (D))

Loops: [vhile b do Plw (D) & uX - ([PIw(X)< b v D)

To avoid problems with programs such as while true do skip, we insist
that bodies of loops must take time to terminate. A simple syntactic check is
usually sufficient to ensure this.

The semantics of forever loops, case statements, etc can be specified in terms
of these constructs.

3.5 Timing Control Instructions

Blocking Assignments. Assignments can be delayed by using guards, which
block time until a certain condition is satisfied. The assignment v=guard e reads
the value of expression e and assigns it to v as soon as the guard is lowered:
[v=guard e]lw(D) © 3. [a=e ; guard ; v=a]wu{a}(D)
The assignment guard v=e waits until the guard is lowered, reads the value
of expression e and assigns it to v:

[guard v=elw (D) 24 [guard ; v=e]w (D)

Guards. Guards control the flow of time by blocking further execution un-
til they are lowered. Two types of guards are treated here: time delay guards
and level triggered guards. Other types of guards can be described in a similar
manner.

#n blocks the execution of a module by n time units:

[n]w (D) 2 (1 < n A Const(W))v
(I = n A Const(V)) ng D

wait v blocks execution until v carries the value 1.
[wait vIw (D) Z ([=v]* A=T A Const(W))V
([~v]* AT A Const(W)) 5 D
Spikes on communication variables are considered to be undesirable be-
haviour and are not captured by wait statements. A syntactic check usually
suffices to ensure that no spikes will appear on a global variable in the system.

4 Two Case Studies

To demonstrate the use of these semantics, we take two standard examples of
programs using variables for synchronization or mutual exclusion.

4.1 Program Control Variables

To prove properties pertaining to synchronization and mutual exclusion, it is
necessary to be able to discuss where control in a program resides. This can be
done by using auxiliary variables. If the program in question is P, we define two
auxiliary variables sp and fp representing ‘started P’ and ‘finished P’. Both
variables are initialized to 0 and the program portion P is enclosed within two
assignments:

sp=1P;fp=1

Thus, for example, P is active over a time interval if [sp A= fp]. We assume
that P does not occur inside a loop.

An alternative is to use only one variable which specifies whether P is active
or not. However, synchronization properties can be more easily expressed in the
notation we choose. Furthermore, in the alternative notation, most properties
become impossible to specify for point programs (which do not take physical
time to execute), since they appear to be permanently inactive.

The following laws about start and termination control variables will be found
useful in later proofs:

Once started, always started: O([sp]; true = [sp])
Not started, never started: O(true; [—sp| = [-sp])
Once finished, always finished: O([fp] true = [fp])
Not finished, never finished: O(true; [-fp| = [~fp])
Start before termination: —(=sp A fp)]*

A~ -+

4.2 Specification Language

When certain specification properties occur frequently, 1t 1s more effective to
define a specification language to express the properties more concisely. Alge-
braic laws of the specification language can then be effective engineering tools
in proofs.

Non-overlapping Processes. Given two program portions, P and @, they
are said to be non-overlapping if they do not share any common execution time.
This will be written as P non-overlap () and is defined as:

P non-overlap @ def [-sp V fpV —sg V fol”

Disjoint Processes. Two overlapping processes may have a common execution
point if at the moment when the first finishes, the other starts. This may not
always be desirable, for instance in the case when the second process reads a
register that the previous process has just written to. A short delay between the
execution of the processes ensures that the values written by the first program
have stabilized and thus there is no concurrent read and write.

Two programs P and @ are said to be disjoint, written as P disjoint @, if
there 1s a delay between the termination of one and the commencement of the
other:

P disjoint @) “op non-overlap ¢ A
(<>|_fP—|) N (Slfp Aﬁsqﬂ)
VOlfql VO[fq Aspl
Synchronization. Three types of synchronization are considered:

e Synchronized start: P synchror @ is true if P and () start at the same time.

P synchror, @ = [sp =sgl”

e Synchronized finish: P synchrog @) is true if P and () terminate at the same
time.

de *
P synchrog @ f [fr = fo]

e Fully synchronized: P synchro @) 1s true if P and () start and terminate
together.

P synchro @) “hp synchror @ A P synchrog @

Two laws about synchronization will be used. The first states that all ini-
tial programs start concurrently, and the second relates synchronization with
sequential composition.

e If [initial P]] and [initial Q, then:
P synchror @
e If [initial P ; Q] and [initial R ; SJ|, then:
P synchrog R = @) synchrog S

4.3 Case Study: Synchronizing Handshake

The first example involves two processes using two variables to synchronize two
portions of program running in parallel.

Each process has a variable which it sets to true once 1t is ready to execute
the synchronized part. It then waits for the other program’s variable to become

true. Note that these variables are always initialized to zero.

def .
HS(x,y) = x=#1 1; wait y; x=#1 0;

Now consider two parallel programs which use this synchronizing portion:

d
comd Y (initial x=0; P1; HS(x,y); P2)

[| (initial y=0; Q1; HS(y,x); Q2)

where variables x and y are not free in programs P1, P2, Q1 and Q2.

Mutual Exclusion. The synchronization mechanism ensures that P1 and Q2
do not interfere (similarly Q1 and P2) and do not share any common execution
time. We first prove that P1 non-overlap Q2 and then use this result to show that
P1 disjoint Q2. The similar result for Q1 and P2 follows immediately by symmetry.

Lemma 1. x starts off false and remains so for some time even after P1 has

terminated:
|——|fP1 A —|l‘-|*\/
[—fp1 A—x]*; [fp1r A—x]; [fri]*

Proof. The proof follows from the definition of the semantics and DC reasoning:

[comm]
= { semantics of parallel composition }
[initial x,spi,sp2, fp1, fP2=0,0,0,0,0;
sp1=1; P1; fp1=1; HS(x,y); sp2=1; P2; [ps=1]
— W
= (T =0A Fp=0AT]) 3
[sp1=1; P1; fp1=1; HS(x,y); sp2=1; P2; fpa=1]lw(Const(W))
= { P1 does not write to x or fpy }
(F =0ATpi =0A[]) s Const({r.fp1)) 5 (F =
[HS(x,y); sp2=1; P2; fpa=1]lw(Const(W))
= ([~ A=fpi]” AT =0Afp = 1) Ig/
[#1 x=1; wait y x=#1 0; sp2=1; P2; fp2=1]w(Const(1V))
= ([~e A= " AT =0A T p =1
(1< 1V ((I=1AConst({z,fp1}) s true))
= { { < 1 equivalent to [] in Discrete DC }
[~z A= fp1]*V
[~ A fpr 17 [A fr]: brue
= { once finished, always finished }
[~z A= fp1]*V
[~z A=fpi]™; [z A fei]; [fri]*

TATp=1AM Y

Lemma 2. If Q2 has started, x must have been true for some time.
[=5q2]"V
[-sg2]; [«]; true
Proof. The proof 1s similar to the previous one:
[comm]
= { semantics of parallel composition }
[initial y,sg1,sQ2, fo1, fg2=0,0,0,0,0;
sg1=1; Q1; fo1=1; HS(y,x); sg2=1; Q2; fg2=1]
14 v
= (5 g2=0A[]) 3 Const({sq2}) s
[#1 y=1; wait x; ...Jlv(Const(V))
)

v
‘g/ [v=1; wait x; ...Jv(Const(1))))

1

o

O
2,
*
<

[sg2] A T2 = 0) 3 [wait x; ..Jv(Const(V))

ad

As can be surmised from the two lemmas just proved, these basic results can
be quite easily, albeit tediously, proved. Proofs of the remaining lemmata in the
paper will be omitted since they follow the same routine used in the proofs of
lemmata 1 and 2.

Theorem 1. P1 non-overlap Q2

Proof. The proof follows from Lemmata 1 and 2:

Lemma 1, Lemma 2 and (AV B)A(CV D)= AVCV(BAD)
= [2sQ2]" V [~ fp]"V
([sg2]; [];true A ([=fp1 A—z]*; [fp1 A -] true)
= { DC reasoning }
[msQ2]" V [=fpi]"V
[=sqQ21; [fp1]
= [7s@2 V fp1]*
= [7sp1 V fP1 V 1sQ2 V foz]”
= P non-overlap @)

Theorem 2. P1 disjoint Q2

Proof. The proof 1s split into two parts:

Part I:

Sl el
= true; [fp1]; true
= {lemmal }

((I=fpi 1™ [fP1]) A [2z]); true))
= { lemma 2 }

(([=fpo]"5 Tfp1]) A [25Q2]); true))
= true; [fp1 A —sg2]; true
= Ol fp1 A —sga]

Part II:
Ol fqz]

= true; [fgo]; true

= { start before finish }
true; [sgs|; true

= { lemma 2 and DC reasoning }
true; [z]; true

= { lemma 1 and DC reasoning }
true; [fp1]; true

= Olfr]

From Theorem 1 and parts I and II we can conclude that P disjoint ().

Synchronization. Still considering the same parallel program, we would like to
show some synchronization properties of its components. There are two interest-
ing results we can show: that P1;HS(x,y) is fully synchronized with Q1;HS(y,x)
and that P2 and Q2 have a synchronized start.

Lemma 3. (zAy) must be true for exactly one time unit just before P1;HS(x,y)
terminates.

~—

1"V
)); [fPl;HS(x,y)]*

[—fPLHs@y) Ao(T Ay
(|__'fP1;HS(x,y)-| A (|—_'($ A y)-|; |_|_l‘ Ny

Lemma 4. (P1;HS(x,y)) synchror (Q1;HS(y,x))

=
p—

Proof. Immediately true from the law about initial program segments. a
Lemma 5. (P1;HS(x,y)) synchror (Q1;HS(y,x))

Proof. The proof uses Lemma 3:

Lemma 3 applied to both processes
= 2@ Ay) A= frimsey) N foumsyn]V
([=fpPiasey] A= Ay e AylD); [fpim sy]™A
([~fouase] A= Ay [Tz Ayll))
fPl;HS(x,y) A _'le;HS(y,x)]*\/

fPl;HS(x,y) A _'le;HS(y,x)]a [fPl;HS(x,y) A le;HS(y,x)]

) [le;HS(y,y)]*
= |

[
[
[

= fPl;HS(x,y) = le;HS(y,x)]*
= (P1;HS(x,y)) synchror (Q1;HS(y,x))
O
Theorem 3. (P1;HS(x,y)) synchro (Q1;HS(y,x))
Proof. Follows immediately from Lemmata 4 and 5. O

Theorem 4. (P2) synchror (Q2)

Proof. Follows from Lemma 5 and law about synchronization and sequential
composition. a

4.4 Case Study: Mutual Exclusion

The second example involves two processes competing for a valuable resource
which can only be used by one process at a time.

Each client process has a variable which it sets to true once it needs to use
the resource. It then waits until another variable denoting the availability of the
resource to be used by the process itself becomes true. A queue handler process
loops forever giving control to the first process to ask for the resource. In the
case of a tie, the first process is given priority.

QH = ul, u2 = 0, 0; CL1 = g1 = 0;
forever begin P1;
wait (gl or g2); gl = #1 1;
#1 ul, u2 = gi1, g2 and not gi; wait (ul);
if (ul) then wait (not gi); Q1;
else wait (not g2); gl = #1 0;

#1 ul, u2 = 0, 0;
end;

CL2 is defined similarly to CL1 but using variables g2 and u2 rather than gi
and ul respectively. Processes P1, Q1, P2 and Q2 do not use the control variables.

Lemma 6. ul must be true when Q1 terminates.
[ms@i]™V
[m5Q1]"; [for Aul]V
[=5Q1]"; (Tul] A true; [fo11); [forl”

The symmetrical result for Q2 will be referred to as Lemma 6+.
Lemma 7. [—(ul A u2)]*
Theorem 5. Q1 non-overlap Q2

Proof. The proof follows from Lemma 6 and its symmetric result.

Lemma 6 and lemma 6+
= |—(5Q1 /\—|le) = u1-|*/\

[(sQ2 A fg2) = u2]”
= {lemma 7 }

[msQ1 V fo1 V52 V fo2]*
= Q1 non-overlap Q2

Theorem 6. Q1 disjoint Q2

Proof. The following result will be used later in the proof:
Olfqrl

= { lemma 6 and law about termination variables }
[7s01]"; ((true; [fo1]) A [ul]); true

Also from lemma 6+:
[ms@a]™V
[=sQ2]"; [~ fg2 A u2]V
sga]: ([u2] A true; [fgs]): [fo2]"

Considering the three possible duration formulae:

Case 1:
[—sqa]”
= { from previous result }
true; [fg1 A —sg2]; true
= Offo1 A=sqr]
Case ii:
[sqa]"™5 [~ fq2 A u?]
= [75q2]"; [u2]
= { lemma 3.2 }
[~sqa]*; [u]
= { from previous result }
true; [fg1 A —sg2]; true

= Ol fqQ1 A —sq2]

Case 1il:
[Fasqa®; (Tu2] A brues [fas1); [fos]"
= { previous reasoning and lemma 3.2 }
[~sqa]*; ([u2] A trues [fos1); [fas] A
[sqi1% ((brue; [fguT) A [~u2]); brue
= { DC reasoning}
([7sg2]* A (true; [fo1]; true)); true V
([7sg1]* A (true; [fg2]; true)); true
= true; [fo1 A 7sg2]; true V
true; [fg2 A —s01]; true
= Offq1 N osqa]V
Olfqa A =sqil

Symmetrical reasoning holds for the case when [foo]. Hence, it has been proved
that:

(Sfa) = (Vehenze)

This result, together with Theorem 3.1 shows that Q1 disjoint Q2.

5 Conclusions and Future Work

Both case studies presented here would benefit from further generalization. Using
induction, both algorithms can be readily extended to work with more than two
processes. In the first case study, generalizing to processes which use more than a
single occurrence of the handshake code is also desirable. Finally, proving fairness
in the second case study is also an interesting challenge. It is desirable to show
that as long as all code inside crucial sections terminates, asking for the resource
guarantees that it is eventually made available. Intuitively, the delays used in
the assignment of g1 and g2 should ensure this property.

This paper attempts to show the advantages (and disadvantages) of using a
temporal logic to reason about timed parallelism by presenting examples which
illustrate how properties of such systems can be derived. This work is just one
part of integrating formal hardware verification into the simulation approach
to hardware design. The whole framework described in the first section has to
be based upon a formal interpretation of the HDL in question, as is given in
this paper. Work 1s underway to prove that the semantics presented here are
consistent with a simplification of a Verilog simulator. Also, some techniques
enabling the interpretation of a specification language as hardware have been
developed. Hopefully, all this work will eventually tie up into a demonstration
of how standard industry techniques can be reinforced by formal methods to
provide a more flexible and robust set of tools.

References

1.

10.

11.

12.

13.

14.

E. Borger, U. Glasser, and W. Miller. Formal definition of an abstract VHDL 93
simulator by EA-machines. In C. Delgado Kloos and P.T. Breuer, editors, Formal
Semantics for VADL. Kluwer Academic Press Boston/London/Dordrecht, 1995.
P.T. Breuer, L. Sanchez, and C. Delgado Kloos. Clean formal semantics for VHDL.
In Furopean Design and Test Conference, Paris. IEEE Computer Society Press,
1993.

Albert Camilleri. Simulating hardware specifications within a theorem proving
environment. International Journal of Computer Aided VLSI design, (2):315-337,
1990.

. K.C. Davis. A denotational definition of the VHDL simulation kernel. In P. Agnew,

L. Claesen, and R. Camposano, editors, Proceedings of the 11th IFIP WG 10.2
International Conference on Computer Hardware Description Languages and their
applications CHDL 93, 1993.

Ivan V. Filippenko. VHDL verification in the State Delta Verification System
(SDVS). In P.A. Subrahmanyam, editor, Proceedings of the 1991 International
Workshop on Formal Methods in VLSI design, Berlin. Springer-Verlag, 1991.
Mike Gordon. The semantic challenge of Verilog HDL. In Proceedings of the tenth
annual IEEE symposium on Logic in Computer Science (LICS '95) San Diego,
California, June 1995.

. Jifeng He and S.M. Brien. 7 description of duration calculus. Technical report,

Oxford University Computing Laboratory (PRG), 1993.

Jifeng He and Ernst-Rudiger Olderog. From real-time specification to clocked
circuit. ProCoS document, Department of Computer Science, Technical University
of Denmark, DK-2800, Lyngby, Denmark, 1994.

Carlo Delgado Kloos and Peter T. Breuer. Formal Semantics for VHDL. Number
307 in The Kluwer International Series in Engineering and Computer Science.
Kluwer Academic Publishers, 1995.

Xu Qiwen. Semantics and verification of extended phase transition systems in
duration calculus. Research UNU/IIST Report No. 72, The United Nations Uni-
versity, International Institute for Software Technology, P.O. Box 3058, Macau,
June 1996.

John Peter Van Tassel. A formalization of the VHDL simulation cycle. Technical
Report 249, University of Cambridge Computer Laboratory, March 1992.
Chaochen Zhou. Duration calculi: An overview. In Dines Bjgrner, Manfred Broy,
and Igor V. Pottosin, editors, Formal Methods in Programming and their Applica-
tions, LNCS 735. Springer-Verlag, 1993.

Chaochen Zhou and Michael R. Hansen. Chopping a point. Technical report,
Department of Information Technology, Technical University of Denmark, March
1996.

Chaochen Zhou, C.A.R. Hoare, and Anders P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269-276, 1991.

https://www.researchgate.net/publication/2370013

