
Formal Reasoning with Verilog HDLGordon J. Pace1 and Jifeng He21 University of Malta, Msida MSD 06, Malta2 University of Oxford, Parks Road, Oxford, UKAbstract. Most hardware veri�cation techniques tend to fall under oneof two broad, yet separate caps: simulation or formal veri�cation. Thispaper briey presents a framework in which formal veri�cation plays acrucial role within the standard approach currently used by the hard-ware industry. As a basis for this, the formal semantics of Verilog HDLare de�ned, and properties about synchronization and mutual exclusionalgorithms are proved.1 IntroductionHardware veri�cation tends to be viewed by people from di�erent backgroundsas being either exclusively simulation or formal veri�cation. Combining the twotogether can provide a very powerful working environment, which provides boththe exibility and concept grasping of simulators and the rigorous backgroundof formal methods [3].Simulation allows faster development of design and cheaper and easier de-bugging during the design stage than if formal veri�cation is used. The pro-liferation of standard hardware description languages (HDLs) made standardlibraries of hardware components widely available and has made simulation ap-proaches even more attractive. However, the loosely de�ned semantics of theseHDLs makes formal veri�cation (on their basis) impossible. Simulation on itsown is not viable since it can only show the presence of errors, not their absence.Furthermore, the semantics of HDLs are usually much more involved than in-dustry standard sequential software languages. Issues like parallel compositionand non-determinism, play an important role in HDLs, and simulator runs donot do justice to these more complex concepts. For example, non-determinismin choosing which parallel thread to follow (from a number of enabled ones) issometimes resolved in a simulator by taking the �rst one available. This maymean that no matter how many times a design is simulated, the result will in-variably be the same, whereas the HDL semantics would allow an alternativesequence of execution which could end up with a di�erent result.Formal methods cannot however, replace existent methods of hardware de-sign overnight. Figure 1 proposes one possible framework to gradually introduceformal methods in hardware design. The approach is completely built upon for-mal techniques but includes simulation for design visualization and development.Formal laws helping hardware engineers to correctly transform speci�cations intothe implementation language are used to develop implementations guaranteed to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132620267?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

be correct. These laws would not cover all possible case, but a simulator (guar-anteed to have the same semantics as the interpretation given to the implemen-tation language), can be used to develop implementations from the remainingspeci�cation portions, before they can be formally proved to be correct. The re-sult is more reliability within an environment which does not require a completerevolution over the current trends.This paper presents only one small part of this framework. The formal se-mantics of Verilog are de�ned as a formal basis for the whole strategy. Thesemantics are then used to prove properties of two small case studies involvingsynchronization and mutual exclusion issues.
Simulation

simulation process
Formally defined

Design Rules
Implementation

to behavioural semantics
Simulation semantics equivalent

Formally verified algebraic laws Formal semantics for
industry standard HDLspecification language

Formal semantics for

SpecificationFig. 1. Simulation and veri�cation: a uni�ed approach2 VHDL and VerilogUntil now, most work done in the formalization of industry standard hardwaresimulation languages has almost exclusively dealt with VHDL[1, 2, 4, 5, 9, 11].The main problem is that all of this research refers back to the original informalsemantics description in the o�cial documentation, leading to possible discrep-ancies. In comparison, until quite recently, much less work has been done onformal methods used with Verilog. The experience gained with VHDL shouldhelp this research to be more directed and to yield better results than wouldotherwise be expected. Hopefully, this will also reduce the diversity of methodsused by di�erent research groups and thus increase the rate at which informationis built up. In [6], M.J.C. Gordon presented a semi-informal description of thesemantics of Verilog preceding most major work on the language. This may helpto provide a common stepping-stone out of the informal documentation whichresearchers may choose to make use of. Most importantly, however, one mustrealise that experience gained in either of the languages can usually be appliedto the other. Thus, we believe that the main emphasis should be placed on theapplication of the formal semantics of these languages and techniques based onthis kind of approach.

3 The Semantics of Verilog3.1 Speci�cation Organizationmodule NOT_beh (in, out); module NOT_struc (in, out);input in; output out; input in; output out; wire p,g;forever @in out = ~in; POWER P1 (p);endmodule GROUND G1 (g);PTRANS PT1 (p,in,out);NTRANS NT1 (g,in,out);endmoduleFig. 2. Behavioural and structural description of a negation gateA Verilog speci�cation is a closed system made up of a number of modules all ofwhich run in parallel. Verilog allows both behavioural and structural descriptionsof modules. Behavioural information, describing the behaviour of the outputs ofa module, is what we will be mainly concerned with. Rather than de�ne thebehaviour, a structural description shows how the module is organised into sub-components. This approach is much more physically oriented. Figure 2 contrastsa behavioural with a structural description of a negation gate.3.2 Approach TakenThe semantics of Verilog are described using a variant of Discrete DurationCalculus[14,12, 8]. Rather than using the normal chop operator we de�ne analternative sequential composition operator which takes into consideration non-stable states. The resulting Relational Duration Calculus is similar to [13] and[10].Duration Calculus. Only a brief overview of Duration Calculus (DC) will begiven here. Readers interested in fuller accounts of the calculus may refer to [7].Boolean States and Expressions: DC is a temporal logic allowing one tostate properties pertaining to time in a straightforward and natural fashion.The basic building blocks of the calculus are state variables, functions fromtime to the boolean values 1 and 0. Time is assumed to be represented bythe non-negative real numbers. 1 and 0 are de�ned to be the constant statefunctions: always true and always false respectively.State variables can be combined together using standard boolean connectivesto form state expressions. The interpretation of such expressions is simplyto take the boolean operator pointwise on the operands. Thus, for example,at any time t: (P ^Q)(t) def= P (t) ^Q(t)

Duration Formulae: However, as the name of the calculus suggests, DC dealswith interval (or state duration) reasoning, rather than remaining at thepointwise reasoning level. Reasoning is thus promoted to functions from timeintervals (of the form [s; f]) to the boolean values. Such functions are calledduration formulae.If P is a state expression:(R P = n)[s; f] def= R fs P (t)dt = nD;E, where ; is the chop (or sequential composition) operator, states thatthe time interval can be split into two consecutive ones such that D holdsover the �rst interval and E over the second:(D;E)[s; f] def= 9m 2 [s; f] �D[s;m] ^E[m; f]Again, the boolean operators are overloaded to act over duration formulaeusing a similar de�nition as before. Hence,for any time interval [s; f]:(D ^E)[s; f] def= D[s; f] ^E[s; f]From these basic operators, a variety of other useful operators can be de�ned:� For a state expression P , dP e holds whenever P is true over the whole,non-empty interval:dP e[s; f] def= R P = f � s ^ f > s� de is true only for empty intervals:de def= :d1e� true and false, the two constant duration formulae, can now be de�ned as(de _ d1e) and (:false) respectively.� The length of the interval l can be de�ned as:l = n def= R 1 = nNote that l � n can be de�ned as l = n; true. From these, l < n, l > n andl � n can then be de�ned.� The standard temporal logic operators 2 and 3 can also be easily de�ned.3D, read as `sometimes D' is true over an interval [s; f], provided thatduration formulaD holds over some sub-interval of the one in question. 2D,read as `always D' is true provided that D holds over all sub-intervals.3D def= true;D; true2D def= :3:DdP e� has the same meaning as dP e but also allows for the possibility of anempty interval. dP e� def= de _ dP eDiscrete Duration Calculus. Discrete Duration Calculus is simply a re-stricted version of the continuous one. The restrictions are:� Any discontinuities in the boolean states belong to IN

� Duration formulae act on intervals [b; e], where both b and e are in INNote that in Discrete DC, the shortest non-zero interval is of length 1. Thisencourages the de�nition of another operator:ddP ee def= dP e ^ l = 1Relational Duration Calculus. Three new operators are described below:Pre-value of a state variable: �P is a temporal formula giving the value ofP just before the start of the interval.(�v = x)[b; e] def= (false if b = 0limt! b� v(t) is equal to x otherwisePost-value of a state variable: �!v is the `dual' of �v . It is de�ned as the rightlimit of v at the end point of the interval:(�!v = x)[b; e] def= limt! e+ v(t) is equal to xRelational Chop: D Wo9 E is the sequential chop operator which behaves justlike the normal sequential composition, but with the extra restriction that thepre-values of state variables W in E are the same as their post-values in D.D Wo9 E def=9W 0 : B� � 9WD;WE �(D[WD=W]^ ^v2W (v0 = �!vD ^ �vD = �v ^ dv , vDe�));(E[WE=W] ^ ^v2W (�vE = v0 ^ dv , vEe� ^�!v = �!vE)Most of the algebraic laws for the normal chop operator still hold for thisrelational chop. Despite the apparent complexity of the de�nition, we foundthat manipulation of expressions using relational chop is not more complex thanusing the normal chop operator, mainly thanks to the algebraic laws which wehave derived. This is, however, beyond the scope of this paper, and will not beinvestigated further here.3.3 ModulesWe assume that each module P has a number of output wires OP to which noother module may write. Also, the assignments to the outputs of a module must

take some time. All modules are allowed to read the output variables of othermodules, but reading and writing to and from the same global wires at the sametime is not permitted to avoid non-determinism.The assumption that module outputs are disjoint gives us the opportunityto de�ne parallel composition as:[[P k Q]] def= [[P]] ^ [[Q]]Continuous assignment: assign v=e forces v to the value of expression e:[[assign v=e]] def= dv = ee�where dP e� = dP e _ de (either P is true over the interval, or it is an emptyinterval).Procedural behaviour: initial P behaves like the sequential program P:[[initial P]] def= [[P]]OP(Const(OP))[[P]]W (D) describes the behaviour of an individual program module P whoseoutput wires are given in set W and which will, upon termination, behave asdescribed by the duration formula D. Const(W) is de�ned as follows:Const(W) def= 8w 2W � 9b � (�w = b) ^ (�!w = b) ^ dw = be�3.4 Imperative Programming StatementsVerilog statements can be split into two sets: imperative programming-like con-structs which take no simulation time, and timing control instructions, whichare closer to hardware concepts and may take simulation time to execute.Assignments: [[v=e]]W (D) def= (�!v = �e ^Const(W � fvg) ^ de) Wo9 DConditionals: [[if b then P else Q]]W (D) def= [[P]]W (D) / �b . [[Q]]W (D)Sequential composition: [[P;Q]]W (D) def= [[P]]W ([[Q]]W (D))Loops: [[while b do P]]W (D) def= �X � ([[P]]W (X) / �b . D)To avoid problems with programs such as while true do skip, we insistthat bodies of loops must take time to terminate. A simple syntactic check isusually su�cient to ensure this.The semantics of forever loops, case statements, etc can be speci�ed in termsof these constructs.3.5 Timing Control InstructionsBlocking Assignments. Assignments can be delayed by using guards, whichblock time until a certain condition is satis�ed. The assignment v=guard e readsthe value of expression e and assigns it to v as soon as the guard is lowered:[[v=guard e]]W (D) def= 9� � [[�=e ; guard ; v=�]]W[f�g(D)The assignment guard v=e waits until the guard is lowered, reads the valueof expression e and assigns it to v:[[guard v=e]]W (D) def= [[guard ; v=e]]W (D)

Guards. Guards control the ow of time by blocking further execution un-til they are lowered. Two types of guards are treated here: time delay guardsand level triggered guards. Other types of guards can be described in a similarmanner.#n blocks the execution of a module by n time units:[[#n]]W (D) def= (l < n ^Const(W))_(l = n ^Const(W)) Wo9 Dwait v blocks execution until v carries the value 1.[[wait v]]W (D) def= (d:ve� ^ :�!v ^Const(W))_(d:ve� ^ �!v ^Const(W)) Wo9 DSpikes on communication variables are considered to be undesirable be-haviour and are not captured by wait statements. A syntactic check usuallysu�ces to ensure that no spikes will appear on a global variable in the system.4 Two Case StudiesTo demonstrate the use of these semantics, we take two standard examples ofprograms using variables for synchronization or mutual exclusion.4.1 Program Control VariablesTo prove properties pertaining to synchronization and mutual exclusion, it isnecessary to be able to discuss where control in a program resides. This can bedone by using auxiliary variables. If the program in question is P , we de�ne twoauxiliary variables sP and fP representing `started P ' and `�nished P '. Bothvariables are initialized to 0 and the program portion P is enclosed within twoassignments: sP = 1;P ; fP = 1Thus, for example, P is active over a time interval if dsP ^:fP e. We assumethat P does not occur inside a loop.An alternative is to use only one variable which speci�es whether P is activeor not. However, synchronization properties can be more easily expressed in thenotation we choose. Furthermore, in the alternative notation, most propertiesbecome impossible to specify for point programs (which do not take physicaltime to execute), since they appear to be permanently inactive.The following laws about start and termination control variables will be founduseful in later proofs:Once started, always started: 2(dsP e; true) dsP e)Not started, never started: 2(true; d:sP e) d:sP e)Once �nished, always �nished: 2(dfP e; true) dfP e)Not �nished, never �nished: 2(true; d:fP e) d:fP e)Start before termination: d:(:sP ^ fP)e�

4.2 Speci�cation LanguageWhen certain speci�cation properties occur frequently, it is more e�ective tode�ne a speci�cation language to express the properties more concisely. Alge-braic laws of the speci�cation language can then be e�ective engineering toolsin proofs.Non-overlapping Processes. Given two program portions, P and Q, theyare said to be non-overlapping if they do not share any common execution time.This will be written as P non-overlap Q and is de�ned as:P non-overlap Q def= d:sP _ fP _ :sQ _ fQe�Disjoint Processes. Two overlapping processes may have a common executionpoint if at the moment when the �rst �nishes, the other starts. This may notalways be desirable, for instance in the case when the second process reads aregister that the previous process has just written to. A short delay between theexecution of the processes ensures that the values written by the �rst programhave stabilized and thus there is no concurrent read and write.Two programs P and Q are said to be disjoint, written as P disjoint Q, ifthere is a delay between the termination of one and the commencement of theother: P disjoint Q def= P non-overlap Q ^� 3dfP e_3dfQe�) � 3dfP ^ :sQe_3dfQ ^ :sP e�Synchronization. Three types of synchronization are considered:� Synchronized start: P synchroL Q is true if P and Q start at the same time.P synchroL Q def= dsP = sQe�� Synchronized �nish: P synchroR Q is true if P and Q terminate at the sametime. P synchroR Q def= dfP = fQe�� Fully synchronized: P synchro Q is true if P and Q start and terminatetogether. P synchro Q def= P synchroL Q ^ P synchroR Q

Two laws about synchronization will be used. The �rst states that all ini-tial programs start concurrently, and the second relates synchronization withsequential composition.� If [[initial P]] and [[initial Q]], then:P synchroL Q� If [[initial P ; Q]] and [[initial R ; S]], then:P synchroR R = Q synchroL S4.3 Case Study: Synchronizing HandshakeThe �rst example involves two processes using two variables to synchronize twoportions of program running in parallel.Each process has a variable which it sets to true once it is ready to executethe synchronized part. It then waits for the other program's variable to becometrue. Note that these variables are always initialized to zero.HS(x,y) def= x=#1 1; wait y; x=#1 0;Now consider two parallel programs which use this synchronizing portion:COMM def= (initial x=0; P1; HS(x,y); P2)k (initial y=0; Q1; HS(y,x); Q2)where variables x and y are not free in programs P1, P2, Q1 and Q2.Mutual Exclusion. The synchronization mechanism ensures that P1 and Q2do not interfere (similarly Q1 and P2) and do not share any common executiontime. We �rst prove that P1 non-overlap Q2 and then use this result to show thatP1 disjoint Q2. The similar result for Q1 and P2 follows immediately by symmetry.Lemma 1. x starts o� false and remains so for some time even after P1 hasterminated: d:fP1 ^ :xe�_d:fP1 ^ :xe�; dfP1 ^ :xe; dfP1e�Proof. The proof follows from the de�nition of the semantics and DC reasoning:

[[COMM]]) f semantics of parallel composition g[[initial x,sP1; sP2; fP1; fP2=0,0,0,0,0;sP1=1; P1; fP1=1; HS(x,y); sP2=1; P2; fP2=1]]) (�!x = 0 ^ �!f P1 = 0 ^ de) Wo9[[sP1=1; P1; fP1=1; HS(x,y); sP2=1; P2; fP2=1]]W (Const(W))) f P1 does not write to x or fP1 g(�!x = 0 ^ �!f P1 = 0 ^ de) Wo9 Const(fx; fP1g) Wo9 (�!x = �x ^ �!f P1 = 1 ^ de) Wo9[[HS(x,y); sP2=1; P2; fP2=1]]W (Const(W))) (d:x ^ :fP1e� ^�!x = 0 ^ �!f P1 = 1) Wo9[[#1 x=1; wait y x=#1 0; sP2=1; P2; fP2=1]]W (Const(W))) (d:x ^ :fP1e� ^�!x = 0 ^ �!f P1 = 1) Wo9(l < 1 _ ((l = 1 ^Const(fx; fP1g) Wo9 true))) f l < 1 equivalent to de in Discrete DC gd:x ^:fP1e�_d:x ^:fP1e�; d:x ^ fP1e; true) f once �nished, always �nished gd:x ^:fP1e�_d:x ^:fP1e�; d:x ^ fP1e; dfP1e� utLemma 2. If Q2 has started, x must have been true for some time.d:sQ2e�_d:sQ2e; dxe; trueProof. The proof is similar to the previous one:[[COMM]]) f semantics of parallel composition g[[initial y,sQ1; sQ2; fQ1; fQ2=0,0,0,0,0;sQ1=1; Q1; fQ1=1; HS(y,x); sQ2=1; Q2; fQ2=1]]) (�!s Q2 = 0 ^ de) Vo9 Const(fsQ2g) Vo9[[#1 y=1; wait x; : : :]]V (Const(V))) (�!s Q2 = 0 ^ de) Vo9 Const(fsQ2g) Vo9(l < 1 _ ((l = 1 ^Const(fsQ2g)) Vo9 [[y=1; wait x; : : :]]V (Const(V))))) d:sQ2e�_(d:sQ2e ^ �!s Q2 = 0) Vo9 [[wait x; : : :]]V (Const(V))) d:sQ2e�_d:sQ2e; dxe; true utAs can be surmised from the two lemmas just proved, these basic results canbe quite easily, albeit tediously, proved. Proofs of the remaining lemmata in thepaper will be omitted since they follow the same routine used in the proofs oflemmata 1 and 2.

Theorem 1. P1 non-overlap Q2Proof. The proof follows from Lemmata 1 and 2:Lemma 1, Lemma 2 and (A _B) ^ (C _D)) A _C _ (B ^D)) d:sQ2e� _ d:fP1e�_(d:sQ2e; dxe; true ^ (d:fP1 ^ :xe�; dfP1 ^ :xe; true)) f DC reasoning gd:sQ2e� _ d:fP1e�_d:sQ2e; dfP1e) d:sQ2 _ fP1e�) d:sP1 _ fP1 _ :sQ2 _ fQ2e�= P non-overlap Q utTheorem 2. P1 disjoint Q2Proof. The proof is split into two parts:Part I:3dfP1e= true; dfP1e; true) f lemma 1 g((d:fP1e�; dfP1e) ^ d:xe); true))) f lemma 2 g((d:fP1e�; dfP1e) ^ d:sQ2e); true))) true; dfP1 ^ :sQ2e; true= 3dfP1 ^:sQ2ePart II:3dfQ2e) true; dfQ2e; true) f start before �nish gtrue; dsQ2e; true) f lemma 2 and DC reasoning gtrue; dxe; true) f lemma 1 and DC reasoning gtrue; dfP1e; true= 3dfP1eFrom Theorem 1 and parts I and II we can conclude that P disjoint Q. utSynchronization. Still considering the same parallel program, we would like toshow some synchronization properties of its components. There are two interest-ing results we can show: that P1;HS(x,y) is fully synchronized with Q1;HS(y,x)and that P2 and Q2 have a synchronized start.

Lemma 3. (x^y) must be true for exactly one time unit just before P1;HS(x,y)terminates. d:fP1;HS(x;y) ^ :(x ^ y)e�_(d:fP1;HS(x;y)e ^ (d:(x ^ y)e; ddx ^ yee)); dfP1;HS(x;y)e�Lemma 4. (P1;HS(x,y)) synchroL (Q1;HS(y,x))Proof. Immediately true from the law about initial program segments. utLemma 5. (P1;HS(x,y)) synchroR (Q1;HS(y,x))Proof. The proof uses Lemma 3:Lemma 3 applied to both processes) d:(x ^ y) ^ :fP1;HS(x;y) ^ :fQ1;HS(y;x)e�_(d:fP1;HS(x;y)e ^ (d:(x ^ y)e; ddx ^ yee)); dfP1;HS(x;y)e�^(d:fQ1;HS(y;x)e ^ (d:(x ^ y)e; ddx ^ yee)); dfQ1;HS(y;y)e�) d:fP1;HS(x;y) ^ :fQ1;HS(y;x)e�_d:fP1;HS(x;y) ^ :fQ1;HS(y;x)e; dfP1;HS(x;y) ^ fQ1;HS(y;x)e) dfP1;HS(x;y) = fQ1;HS(y;x)e�= (P1;HS(x,y)) synchroR (Q1;HS(y,x)) utTheorem 3. (P1;HS(x,y)) synchro (Q1;HS(y,x))Proof. Follows immediately from Lemmata 4 and 5. utTheorem 4. (P2) synchroL (Q2)Proof. Follows from Lemma 5 and law about synchronization and sequentialcomposition. ut4.4 Case Study: Mutual ExclusionThe second example involves two processes competing for a valuable resourcewhich can only be used by one process at a time.Each client process has a variable which it sets to true once it needs to usethe resource. It then waits until another variable denoting the availability of theresource to be used by the process itself becomes true. A queue handler processloops forever giving control to the �rst process to ask for the resource. In thecase of a tie, the �rst process is given priority.QH = u1, u2 = 0, 0; CL1 = g1 = 0;forever begin P1;wait (g1 or g2); g1 = #1 1;#1 u1, u2 = g1, g2 and not g1; wait (u1);if (u1) then wait (not g1); Q1;else wait (not g2); g1 = #1 0;#1 u1, u2 = 0, 0;end;

CL2 is de�ned similarly to CL1 but using variables g2 and u2 rather than g1and u1 respectively. Processes P1, Q1, P2 and Q2 do not use the control variables.Lemma 6. u1 must be true when Q1 terminates.d:sQ1e�_d:sQ1e�; d:fQ1 ^ u1e_d:sQ1e�; (du1e ^ true; dfQ1e); dfQ1e�The symmetrical result for Q2 will be referred to as Lemma 6+.Lemma 7. d:(u1 ^ u2)e�Theorem 5. Q1 non-overlap Q2Proof. The proof follows from Lemma 6 and its symmetric result.Lemma 6 and lemma 6+) d(sQ1 ^:fQ1)) u1e�^d(sQ2 ^:fQ2)) u2e�) f lemma 7 gd:sQ1 _ fQ1 _ :sQ2 _ fQ2e�= Q1 non-overlap Q2 utTheorem 6. Q1 disjoint Q2Proof. The following result will be used later in the proof:3dfQ1e) f lemma 6 and law about termination variables gd:sQ1e�; ((true; dfQ1e) ^ du1e); trueAlso from lemma 6+: d:sQ2e�_d:sQ2e�; d:fQ2 ^ u2e_d:sQ2e�; (du2e ^ true; dfQ2e); dfQ2e�Considering the three possible duration formulae:Case i:d:sQ2e�) f from previous result gtrue; dfQ1 ^ :sQ2e; true= 3dfQ1 ^ :sQ2eCase ii:d:sQ2e�; d:fQ2 ^ u2e) d:sQ2e�; du2e) f lemma 3.2 gd:sQ2e�; d:u1e) f from previous result gtrue; dfQ1 ^ :sQ2e; true= 3dfQ1 ^ :sQ2e

Case iii:d:sQ2e�; (du2e ^ true; dfQ2e); dfQ2e�) f previous reasoning and lemma 3.2 gd:sQ2e�; (du2e ^ true; dfQ2e); dfQ2e�^d:sQ1e�; ((true; dfQ1e) ^ d:u2e); true) f DC reasoningg(d:sQ2e� ^ (true; dfQ1e; true)); true _(d:sQ1e� ^ (true; dfQ2e; true)); true) true; dfQ1 ^ :sQ2e; true _true; dfQ2 ^ :sQ1e; true= 3dfQ1 ^ :sQ2e_3dfQ2 ^ :sQ1eSymmetrical reasoning holds for the case when3dfQ2e. Hence, it has been provedthat: � 3dfQ1e_3dfQ2e�) � 3dfQ1 ^ :sQ2e_3dfQ2 ^ :sQ1e�This result, together with Theorem 3.1 shows that Q1 disjoint Q2. ut5 Conclusions and Future WorkBoth case studies presented here would bene�t from further generalization. Usinginduction, both algorithms can be readily extended to work with more than twoprocesses. In the �rst case study, generalizing to processes which use more than asingle occurrence of the handshake code is also desirable. Finally, proving fairnessin the second case study is also an interesting challenge. It is desirable to showthat as long as all code inside crucial sections terminates, asking for the resourceguarantees that it is eventually made available. Intuitively, the delays used inthe assignment of g1 and g2 should ensure this property.This paper attempts to show the advantages (and disadvantages) of using atemporal logic to reason about timed parallelism by presenting examples whichillustrate how properties of such systems can be derived. This work is just onepart of integrating formal hardware veri�cation into the simulation approachto hardware design. The whole framework described in the �rst section has tobe based upon a formal interpretation of the HDL in question, as is given inthis paper. Work is underway to prove that the semantics presented here areconsistent with a simpli�cation of a Verilog simulator. Also, some techniquesenabling the interpretation of a speci�cation language as hardware have beendeveloped. Hopefully, all this work will eventually tie up into a demonstrationof how standard industry techniques can be reinforced by formal methods toprovide a more exible and robust set of tools.

References1. E. B�orger, U. Gl�asser, and W. M�uller. Formal de�nition of an abstract VHDL '93simulator by EA-machines. In C. Delgado Kloos and P.T. Breuer, editors, FormalSemantics for VHDL. Kluwer Academic Press Boston/London/Dordrecht, 1995.2. P.T. Breuer, L. S�anchez, and C. Delgado Kloos. Clean formal semantics for VHDL.In European Design and Test Conference, Paris. IEEE Computer Society Press,1993.3. Albert Camilleri. Simulating hardware speci�cations within a theorem provingenvironment. International Journal of Computer Aided VLSI design, (2):315{337,1990.4. K.C. Davis. A denotational de�nition of the VHDL simulation kernel. In P. Agnew,L. Claesen, and R. Camposano, editors, Proceedings of the 11th IFIP WG 10.2International Conference on Computer Hardware Description Languages and theirapplications CHDL '93, 1993.5. Ivan V. Filippenko. VHDL veri�cation in the State Delta Veri�cation System(SDVS). In P.A. Subrahmanyam, editor, Proceedings of the 1991 InternationalWorkshop on Formal Methods in VLSI design, Berlin. Springer-Verlag, 1991.6. Mike Gordon. The semantic challenge of Verilog HDL. In Proceedings of the tenthannual IEEE symposium on Logic in Computer Science (LICS '95) San Diego,California, June 1995.7. Jifeng He and S.M. Brien. Z description of duration calculus. Technical report,Oxford University Computing Laboratory (PRG), 1993.8. Jifeng He and Ernst-R�udiger Olderog. From real-time speci�cation to clockedcircuit. ProCoS document, Department of Computer Science, Technical Universityof Denmark, DK-2800, Lyngby, Denmark, 1994.9. Carlo Delgado Kloos and Peter T. Breuer. Formal Semantics for VHDL. Number307 in The Kluwer International Series in Engineering and Computer Science.Kluwer Academic Publishers, 1995.10. Xu Qiwen. Semantics and veri�cation of extended phase transition systems induration calculus. Research UNU/IIST Report No. 72, The United Nations Uni-versity, International Institute for Software Technology, P.O. Box 3058, Macau,June 1996.11. John Peter Van Tassel. A formalization of the VHDL simulation cycle. TechnicalReport 249, University of Cambridge Computer Laboratory, March 1992.12. Chaochen Zhou. Duration calculi: An overview. In Dines Bj�rner, Manfred Broy,and Igor V. Pottosin, editors, Formal Methods in Programming and their Applica-tions, LNCS 735. Springer-Verlag, 1993.13. Chaochen Zhou and Michael R. Hansen. Chopping a point. Technical report,Department of Information Technology, Technical University of Denmark, March1996.14. Chaochen Zhou, C.A.R. Hoare, and Anders P. Ravn. A calculus of durations.Information Processing Letters, 40(5):269{276, 1991.
View publication statsView publication stats

https://www.researchgate.net/publication/2370013

