
Access to Circuit Generators in

Embedded HDLs

Gordon J. Pace Christian Tabone
gordon.pace@um.edu.mt christian.tabone@um.edu.mt

University of Malta

Abstract

General purpose functional languages have been widely used as host lan-

guages for the embedding of domain specific languages, especially hard-

ware description languages. The embedding approach provides various

abstraction techniques, enabling the description of generators for whole

families of circuits, in particular parameterised regular circuits. The two-

stage language setting that is achieved by means of embedding, provides

a means to reason about the generated circuits as data objects within

the host language. Nonetheless, these circuit objects lack information

about their generators, or about the manner in which these where gen-

erated, which can be used for placement and analysis. In this paper, we

use reFLect as a functional language with reflection features, to enable us

not only to access the circuits, but also the circuit generators. Through

the use of code quotation and pattern matching, we propose a framework

through which we can access the structure of the circuit in terms of nested

blocks that map the generation flow that was followed by the generator.

1 Introduction

Designing and developing a new language for a specific domain, presents various
challenges. Not only does one need to identify the basic underlying domain-
specific constructs, but if the language will be used for writing substantial pro-
grams, one has to enhance the language with other programming features, such
as module definition and structures to handle loops, conditionals and composi-
tion. Furthermore, one has to define a syntax, and write a suite of tools for the
language — parsers, compilers, interpreters, etc — before it can be used. One al-
ternative technique that has been explored in the literature is that of embedding
the domain-specific language inside a general purpose language, borrowing its
syntax, tools and most of the programming operators. The embedded language
is usually developed simply as a library in the host language, thus effectively
inheriting all its features and infrastructure.

Functional programming languages have proved to be excellent vehicles for em-
bedding languages in a two-stage language approach. One domain in which this
approach has been extensively applied is hardware design. These embedded
hardware description languages enable access to the hardware descriptions, al-
though not to the host language code that creates the domain-specific objects.
Having access to the generators themselves may be useful since certain struc-
turing information inherited from the control structure of the code generating
the domain-specific program may be useful in the analysis of the resulting pro-
gram. Recently, the use of meta-programming techniques for the embedding of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132620235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HDLs has started to be explored [MO06, Tah06, O’D04]. A meta-programming
language enables the development of programs that are able to compose and
manipulate other programs or even themselves at runtime through the use re-
flection. Meta-programming techniques provides an opening not only to access
the circuits being generated, but even the generators that created these circuits.
Therefore, the reasoning about the structure of the circuit generators is made
possible, enabling to inspect and analyse the composition of circuits in terms
of nested blocks, thus achieving a higher level of abstraction. Furthermore, the
information that is provided through the nesting of these circuit blocks, should
provide placement hints for the circuits, that can be combined with other user
defined placement information.

In this paper, we explore the use of reFLect, a meta-programming language, to
embed an HDL in such a manner that we can not only access and manipulate
the circuit descriptions, but also the circuit generators themselves. We present
our approach to mark the boundary of circuit blocks, and illustrate its potential
by means of a couple of prefix circuit examples. We plan to use these features
to access and control the structure of the circuit generated. In particular, in the
future, we plan to use this to optimise circuits produced by hardware compilers,
maintaining a compositional view of the compiler, but at the same time having
access to information as to which parts of the circuits resulted from which
features of the compiled language.

2 Functional Meta-Programming in reFLect

reFLect [MO06] is a strongly-typed functional language with meta-programming
capabilities. reFLect was developed by Intel as the successor of FL, as part of
the Forte tool [SJO+05]; a hardware verification system used by Intel. reFLect

and Forte were purposely developed to aid the development of applications
in hardware design and verification, and are mostly used for model checking,
decision making algorithms and theorem provers for hardware analysis.

reFLect provides quotation and antiquotation constructs, allowing the compo-
sition and decomposition of unevaluated expressions, defined in terms of the
reFLect language itself. These meta-programming constructs provide a form of
reflection within a typed functional paradigm setting, enabling direct access to
the structure of programs as data objects. This is made possible by giving access
to the internal representation of the abstact syntax tree of the quoted expres-
sions. Traditional pattern matching can even be used on this representation,
allowing the structure of unevaluated expressions to be inspected and inter-
preted according to the developer’s requirements. Furthermore, by combining
the pattern matching mechanism with the quotation features, the developer is
able to modify or transform the quoted expression at runtime before evaluation.
A more in-depth overview of reFLect can be found in [GMO06].

2.1 A brief introduction to meta-programming in reFLect

Expressions in reFLect can be quoted by enclosing them between {| and |}.
Such expressions are typed as a term, denoting a representation for the abstract
syntax tree for the enclosed expression. For instance, consider the simple expres-

sion T AND F. Normal functional features would evaluate this expression result-
ing to be semantically equal to F. However, the application of quotation marks
around this expression, {| T AND F |}, delays the evaluation. Note that, the
expression {| T AND F |} is therefore semantically, and not just syntactically
different from {| F |}.

The antiquotation construct 8 raises its operand one level outside the quotation
marks. An antiquotation always appears within quotations, and has two main
applications — composition and decomposition of the type term. To compose
terms, an antiquotation acts as a splicing construct to join one abstract syntax
tree to another. For example, the function below constructs a new term, repre-
senting the logical conjunction of two sub-expressions, a and b. Note that these
sub-expressions are also quoted expressions.

let compose (a, b) = {| 8a AND 8b |};

A typical functional application of the above definition is given below, followed
by the resulting output.

: compose ({| T OR F |}, {| NOT F |});

{| (T OR F) AND (NOT F) |}

Antiquotations may be used to decompose a term type, by applying pattern
matching on the structure of the quoted expression. For example, the function
below decomposes the given term into the two operands applied to the AND

operator, binding the left sub-expression as a term to the variable x and the
right sub-expression as a term to the variable y.

let decompose {| 8x AND 8y |} = (x, y);

Consider the previously composed term, and how this can be decomposed back
to the original sub-expressions by means of pattern matching, where x is bound
to {| T OR F |} and y to {| NOT F |}.

: decompose {| (T OR F) AND (NOT F) |};

({| T OR F |}, {| NOT F |})

The antiquote is needed to extract the sub-expression as a term type. If the func-
tion had to be defined without antiquotes using the pattern {| x AND y |}, the
variables x and y would be non-binding, thus this would match the expression
{| x AND y |} literally.

The reFLect language offers a number of built-in evaluation functions, to allow
total control over the evaluation of the terms being constructed. The most
elementary is the eval function, which is used to evaluate the contents of a
given term, returning the result as a quotation. The value function is similar,
since it also evaluates the given term, but the result is type casted into the
specified type. A lift function is available, and it can be applied to any reFLect

expression. This works by first evaluating the given expression and then by
applying quotation marks around the resulting expression, conclusively lifting
the evaluated expression to a higher level of quotations.

2.2 Embedding Languages in reFLect

The reFLect language, together with the meta-functional features that it offers,
provides interesting grounds for the implementation of HDLs. Typically, when
embedding a language, a deep-embedding is required, since one would want not
only to generate programs, but allowing the possibility to give them different
interpretations as may be required, and have access to the underlying syntax of
the domain-specific language.

In a meta-programming language, one may quote all of the language constructs,
resulting in having access to the actual programs as data objects. In reFLect, the
possibility to pattern match over programs also gives the possibility to look at
the structure of an expression. Consequently, in a language like reFLect one can
build a deep embedding mechanism, simply by using quotations and antiquota-
tions to represent the embedded language using the term datatype. Term ma-
nipulation is easily achieved through the use of quotations and antiquotations.
The ability to directly control the abstract syntax tree of quoted expression, can
be applied to expressions representing elements within a circuit model.

Furthermore, using this style of embedding, one can mark blocks of code, effec-
tively giving structure to the generator of the domain-specific program, which
can be accessed and therefore reasoned about in terms of these blocks. This
enables the reasoning about the embedded language itself at a higher level of
abstraction.

3 Embedding a HDL in reFLect

Usually, in a language without reflection, to achieve a deep embedding of a
language, one has to handle descriptions as complex data objects. Through
the use of reflection, a shallow embedding approach suffices, since quotation
can be used to maintain the structure. Terms thus become the primary type
of embedded programs which, in our case, contain circuit descriptions with the
potential to evaluate to any structure of signals. We use phantom types are used
to keep track of the type of the quoted expression, thus enabling a strongly typed
embedded language, able to handle type checking over quoted expressions, and
distinguish between the different types of signal structures that a term can be
evaluated to.

lettype *a signal = Signal term;

The primitive gates ensure that the signals are of the correct structure and type,
whilst decomposing the structure within the type term into the appropriate
input signals. These signals or sub-expressions are hence used to compose the
required expression.

let inv (Signal {| 8a |}) = Signal {| NOT 8a |};

let and2 (Signal {| (8a, 8b) |}) = Signal {| 8a AND 8b |};

Other primitive gates are defined using functions similar to the above, which can
be presented to the end user to be used for other circuit descriptions. The con-
stant expressions high and low are defined for Signal {|T|} and Signal {|F|}

respectively. Additional constants and display functions are also defined to hide

the meta-programming constructs from the end user.

3.1 Representing Signals

A crucial design decision that is needed when developing a HDL is the way
circuits inputs and outputs are to be structured [CP07]. In Lava [BCSS98],
for example, signals used by the circuit descriptions are grouped together as a
structure of signals as opposed to a signal of structures as represented in Hawk
[LLC99].

Currently, we are using the signal of structures representation, primarily since
it simplifies language design (although not necessarily language usage). An
advantage of this representation is that all circuits defined in a language using
this representation will always have the same type — taking a single input
and producing a single output. This makes the design much cleaner, and the
interpretations work seamlessly even when describing complex circuits built from
smaller circuit descriptions. On the other hand, the user has to handle the
wrapping and unwrapping of the signal type whenever the inner vector values
are required. For this we provide functions to convert the signal structure back
and forth to the structure values.

// From signal values to signal structure

zipp :: (Signal {|bool|}, Signal {|bool|}) -> Signal {|(bool, bool)|}

// From signal structure to signal values

unzipp :: Signal {|(bool, bool)|} -> (Signal {|bool|}, Signal {|bool|})

Following this approach, circuit descriptions are require additional code to han-
dle the wrapping and unwrapping of signal. For instance a two-bit multiplexer
circuit would be defined as follows:

let mux s_ab =

val (s, ab) = unzipp s_ab in

val (a, b) = unzipp ab in

or2 (zipp (and2 (zipp (inv s, a)), and2 (zipp (s, b))));

Applying input values to our multiplexer definition, the function would return
the structure of an unevaluated program, which represents the circuit that has
been defined. Note that named variable inputs can also be applied.

: mux (zipp (low, zipp (low,high)));

Signal {| (low AND low) OR ((NOT low) AND high) |}

3.2 Marking Blocks in Circuits

In reFLect, as in most other HDLs, one views and defines circuits as functions.
As a circuit description is unfolded, all the internal structure (implicit in the
way the generators are invoked) is lost, and all that remains is a netlist of
interconnected gates. To enable marking such sub-components inside a circuit,
we enable marking blocks, which may be used at any stage in the description.

Such blocks are used in netlist generation, and are planned to be used also
in other non-functional features of circuits we plan to implement, including
modular verification, placement and local circuit optimisation. For example,
one may mark a half-adder definition as a block, and then use two instances of
this block to define a full-adder, which may itself be marked as a block (thus
containing two sub-blocks inside).

When the abstract circuit description corresponds to a good layout, or describes
together related components, preserving such information can be useful. Adding
block information to the whole structure of the circuit, adds a higher level of
abstraction over the circuit description, enabling not only the possibility to
reason about the structure in terms of primitive gates, but also in terms of
blocks. For instance, information gathering functions could be defined to count
full-adders or half-adders, or any other block. The placement of circuits will
also benefit, since this can be organised into blocks, hence decreasing the level
of complexity.

The function makeBlock composes the structure of a lambda expression of the
given circuit definition that is to be marked as a block. The function first
generates quoted variables to match the inputs of the circuit. Next, we apply
these variables to the function, which would return the program as a data object
using the generated variables. Hence, we compose a lambda expression by means
of the generated variables and the program structure. Finally, the output of the
makeBlock function, is yet another function, which has the same type of the
input circuit definition, where the input is placed to the rest of the structure as
the input of the composed lambda expression, effectively composing a functional
application within quotations.

let makeBlock circuit =

let vars = genInputVariables circuit in

let fnct = circuit vars in

\(Signal inp) . {| (\8(getTerm vars) . 8(getTerm fnct)) 8inp |}

The makeBlock function composes a term in which the functional application
is delayed by means of a quoted lambda expression. Since this function returns
another function of the same type, this can therefore be used seamlessly within
other circuit definitions. For instance, consider a second multiplexer function,
that is defined as a block of the previously defined multiplexer function.

let multiplexer = makeBlock mux;

By apply a set of inputs to the function multiplexer, the resulting structure is
a lambda expression representing the multiplexer circuit as a block or a com-
ponent. The inputs are separated from the rest of the structure, by means of
the delayed functional application. Note that by marking a circuit definition as
a block, the inputs are not folded within the internal structure of the circuit,
leaving a clear boundary which can be extracted by means of pattern matching.

: multiplexer (zipp (low, zipp (low, inv high)));

Signal {| (\ (v1,(v2,v3)) .

((v1 AND v3) OR ((NOT v1) AND v2)) (low,(low, NOT high)) |}

Adopting this approach does not affect the simulation of the program in any

Figure 1: A Sklansky parallel prefix circuit

way, since the only modifications that are made to the object program, are of a
syntactic and not semantic nature. The benefit for this program transformation
is that patterns matching lambda expressions within terms can be interpreted
as blocks or components.

3.3 An Illustrative Example: Parallel Prefix Circuits

In this section we present a some examples for the definitions of parallel prefix
circuits, namely the Sklansky network and the Slices network [She07]. Our
motivation is to show how to adopt the marking of nested blocks, thus enabling
to output a final description with added block details that map the generation
flow that was followed by the circuit generator.

The Sklansky network performs the parallel prefiex operation by dividing the
input bus into two recursively. The binary operator is applied to the last bit
of the first half over all of the second half of the bus. In implementing the
Sklansky prefix network circuit (see figure 1), we focus on how the marking
of blocks is handled within such descriptions. The recursive definition for the
Sklansky network is given as the auxiliary function skl’ marking blocks as
the recursive description unfolds. Any additional parameters, such as the bus
width and the operator, are eliminated leaving only the circuit signal as the
input. The makeBlock function is then used to mark all function calls to the
circuit description.

letrec skl n op inp =

let skl’ 1 op inps = inps

/\ skl’ n op inps =

val (lst,rst) = unzipp (splitSignalBus n inps) in

let ls2 = skl (busLength lst) op lst in

let rs2 = skl (busLength rst) op rst in

let carry = lastSignal ls2 in

let apply r = op (zipp (carry, r)) in

zipp (ls2 @ map apply rs2) in

makeBlock (skl’ n op) inp;

By means of input variables we can create term structures to any specified bus
width, hence the create structure is translated to a more readable format. List-
ing 1 gives the output for the Sklansky circuit for an 8-bit input bus. The
statement BLOCK(vars)... ENDBLOCK signifies a circuit block with the vari-
ables vars as inputs, and the final result as outputs. While if this is preceded

Listing 1: The generated output for the Sklansky description of 8 inputs

BLOCK (bus_0)

let (bus_1 ,bus_2) = ([bus_0 (1)... bus_0 (4)], [bus_0 (5)... bus_0 (8)]) in

let bus_3 =

INPUT (bus_1) IN

BLOCK (bus_4)

let (bus_5 ,bus_6) = ([bus_4 (1), bus_4 (2)],

[bus_4 (3), bus_4 (4)]) in

let bus_7 =

INPUT (bus_5) IN

BLOCK (bus_8)

let (bus_9 ,bus_10) = ([bus_8 (1)], [bus_8 (2)]) in

[bus_9 (1), AND2 (bus_9 (1), bus_10 (1))]

ENDBLOCK in

let bus_13 =

INPUT (bus_6) IN

BLOCK (bus_14) ... ENDBLOCK in

[bus_7 (1), bus_7 (2),

AND2 (bus_7 (2), bus_13 (1)), AND2 (bus_7 (2), bus_13 (2))]

ENDBLOCK in

let bus_19 =

INPUT (bus_2) IN

BLOCK (bus_20) ... ENDBLOCK in

[bus_3 (1) ... bus_3 (4),

AND2 (bus_3 (4), bus_19 (1)) ... AND2 (bus_3 (4), bus_19 (4))]

ENDBLOCK

by INPUT(signal) signifies that signal is supplied as the input to the block.
Notice how the block markings follow the pattern in which the circuit has been
generated.

To illustrate further the use of our embedded language, consider the following
description of the Slices parallel prefix circuit description [She07]. Following the
recursive decomposition of the circuit (see figure 2), the functions applyOnEvens
and applyOnOdds applies the operator op, at even and odd intervals of the bus
respectively:

let applyOnEvens n op inp =

let t = unzipp n inp in

zipp (evens op t);

let applyOnOdds n op inp =

val (a:as) = unzipp n inp in

zipp (a:(evens op as));

The function applyOnOddL makes use of the unriffL function to divide the bus
into two separate buses, grouping the odd signal occurrences into a single bus,
and the even signal occurrences into another bus. The parametrised function
is applied to the even signals, and the function riffL is used to reverse the
functionality of unriffL.

let applyOnOddL f n inp =

let as = unzipp n inp in

val (un_odds, un_evens) = unriffL as in

let f_un_evens = unzipp (n/2) (f (zipp un_evens)) in

zipp (riffL (un_odds, f_un_evens));

Figure 2: A Slices parallel prefix circuit

The definition for the Slices network is given below, where the functions pre-
sented previously are used to compose the prefix network for the general case.
At this stage, the circuit is encapsulated in a block, similar to the approach
used in the Sklansky definition.

letrec pslices n op as =

let pslices’ 1 op as = as

/\ pslices’ 2 op as = val (a:b:cs) = unzipp 2 as in

zipp [a, op (zipp (a,b))]

/\ pslices’ n op as =

let slices = applyOnEvens n op ->-

applyOnOddL (pslices (n/2) op) n ->-

applyOnOdds n op in

slices as in

makeBlock (pslices’ n op) as;

4 Related work

HDL implementations like Lava [BCSS98], Hydra [O’D06] and Hawk [LLC99],
differ from the work presented in this paper, since these have been developed us-
ing the deep embedding technique within the functional language Haskell, while
our approach is that of using reflection within reFLect as a replacement for deep
embedding. Deep embedding allows the developer to provide multiple seman-
tic interpretations of the defined circuits, which is clearly seen in Lava, Hydra
and Hawk. These HDLs provide several alternative interpretations of a circuit.
For example, an inverter gate can have alternative interpretations defined for
simulation, netlist creation and timing analysis. Unlike this approach, our im-
plementation uses quotations to capture the circuit structure as an unevaluated
expression. Note that, given a different setting, this expression would have been
used to simulate the circuit. However, by delaying the evaluation and by having
access to the abstract syntax tree of the expression, we are able to traverse this
structure and output additional semantical interpretations. The advantage is
that the different semantic interpretations operate on the same instance of the
quoted expression. However, this needs to be done in two separate stages, first

to compose the structure, and then to interpret the structure.

The meta-programming features found in reFLect, provides not only the possi-
bility to manipulate terms representing primitive gates, but also to manipulate
terms representing whole circuit definitions. Embedding a HDL using such fea-
tures can result in an advantage over other HDL embeddings, since the access
and manipulation of whole circuit definitions (the circuit generators), should
aid in the reasoning of non-functional aspects of circuits, such as the placement
of the primitive elements.

Pebble [LM98], a small language similar to structural VHDL, defines circuit
components in terms of blocks. The end-user can describe how the blocks are
positioned, meaning that a block can be defined to be placed above or beside
another allowing blocks to be placed either vertically or horizontally to each
other. In our implementation we adopted this idea of blocks, by means of the
meta-programming features provided by reFLect. However, the challenges are
different from those of Pebble, since Pebble is not an embedded language within
a function language. In Pebble, language constructs were developed to define
blocks and the placement of these blocks, while our implementation uses quo-
tation constructs to compose lambda expressions, thus delaying the functional
application to represent a block in a functional setting. We are currently adding
Pebble-style placement constructs to our language.

Wired [ACS05] is another embedded HDL, built upon the concept of connection
patterns, in a certain way extending Lava to enable reasoning about connection
of circuit blocks. The concepts behind Wired are mostly inspired by Ruby
[JS94], more precisely on the adoption of combinators for the placement of
circuits. We foresee to follow certain features of Wired, for instance to use
combinators at the abstract level of blocks.

Our work is based on similar work done in embedding a Lava-like HDL in reFLect

[MO06]. As in their case, we base our access to the structure of the circuit
descriptions on reflection features of the host language. One difference in our
approach is in the signal representation. One of the reasons for this variation
is that we try to conceal the use of quotation marks in the circuit descriptions,
hence making the reflection features used only in the underlying framework —
not forcing the end user to use these constructs. In our approach we emphasise
the use of marked blocks which we plan to extend for placement and circuit
analysis. We still have a number of features unimplemented — such as the lack
of implicit wrapping and unwrapping of structures of signals — which we plan
to develop in the near future.

5 Conclusions and Future Work

In this paper, we have presented a rudimentary HDL embedded in the functional
meta-programming language reFLect. Our main motivation behind the use of
reflection is to enable the creation of tagged blocks by looking at the structure
and control-flow of the circuit generator. By having access to the circuit gen-
erators, it is possible to map the structure of the generators to the structure of
the resulting circuits in terms of blocks. We plan to add placement constructs
similar to those found in Pebble [LM98], to provide a means to describe how
circuit blocks are to be placed in relation to each other. We plan to extend

this by adding circuit combinators, similar to the ones used in Ruby [JS94], and
thus use the control given to us into looking at the circuit generators to aid the
generation of placement hints.

The additional block information to the generated circuit, provides a higher
abstract level than the actual circuit, on which compositional model checking
techniques and verification can be applied. Furthermore, by analysing the struc-
ture of the generator itself, it should be possible to verify properties of a whole
family of circuits.

Another area we intend to explore is that of optimisation of circuits produced
by hardware compilers. The use of embedded HDLs for describing hardware
compilers has been explored [CP02]. Despite the concise, compositional de-
scriptions enabled through the use of embedded languages, the main drawback
is that the circuits lack optimisation. Furthermore, introducing this into the
compiler description breaks the compositional description, resulting with a po-
tential source of errors in the compilation process. If one still has access to the
recursive structure of the control flow followed by the compiler to produce the
final circuit, one can perform post-compilation optimisation, without having to
modify the actual compiler code. We plan to investigate this further through
the use of the features provided by reFLect.

References

[ACS05] Emil Axelsson, Koen Linström Claessen, and Mary Sheeran. Wired:
Wire-aware circuit design. In Proc. of Conference on Correct Hard-
ware Design and Verification Methods (CHARME), volume 3725 of
Lecture Notes in Computer Science. Springer Verlag, October 2005.

[BCSS98] Per Bjesse, Koen Linström Claessen, Mary Sheeran, and Satnam
Singh. Lava: Hardware design in Haskell. In Proc. of International
Conference on Functional Programming (ICFP). ACM SIGPLAN,
1998.

[CP02] Koen Claessen and Gordon J. Pace. An embedded language frame-
work for hardware compilation. In Designing Correct Circuits ’02,
Grenoble, France, April 2002.

[CP07] Koen Linström Claessen and Gordon J. Pace. Embedded hardware
description languages: Exploring the design space. In Hardware De-
sign and Functional Languages (HFL’07), Braga, Portugal, March
2007.

[GMO06] Jim Grundy, Tom Melham, and John O’Leary. A reflective func-
tional language for hardware design and theorem proving. Journal of
Functional Programming, 16(2):157–196, 2006.

[JS94] Geraint Jones and Mary Sheeran. Designing arithmetic circuits by
refinement in ruby. Sci. Comput. Program., 22(1-2):107–135, 1994.

[LLC99] John Launchbury, Jeffrey R. Lewis, and Byron Cook. On embedding
a microarchitectural design language within haskell. SIGPLAN Not.,
34(9):60–69, 1999.

[LM98] Wayne Luk and Steve McKeever. Pebble: A language for
parametrised and reconfigurable hardware design. In FPL ’98: Pro-
ceedings of the 8th International Workshop on Field-Programmable
Logic and Applications, From FPGAs to Computing Paradigm, pages
9–18, London, UK, 1998. Springer-Verlag.

[MO06] Tom Melham and John O’Leary. A functional HDL in reFLect. In
Mary Sheeran and Tom Melham, editors, Sixth International Work-
shop on Designing Correct Circuits: Vienna, 25–26 March 2006:
Participants’ Proceedings. ETAPS 2006, March 2006. A Satellite
Event of the ETAPS 2006 group of conferences.

[O’D04] John O’Donnell. Embedding a Hardware Description Language in
Template Haskell, chapter Embedding a Hardware Description Lan-
guage in Template Haskell, pages 143–164. Springer Verlag, 2004.

[O’D06] John O’Donnell. Overview of hydra: a concurrent language for syn-
chronous digital circuit design. International Journal of Information,
pages 249–264, 2006.

[She07] Mary Sheeran. Parallel prefix network generation: an application of
functional programming. In Hardware Design and Functional Lan-
guages (HFL’07), Braga, Portugal, 2007.

[SJO+05] Carl-Johan H. Seger, Robert B. Jones, John O’Leary, Tom Melham,
Mark D. Aagaard, Clark Barrett, and Don Syme. An industrially ef-
fective environment for formal hardware verification. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
24(9):1381–1405, September 2005.

[Tah06] Walid Taha. Two-level languages and circuit design and synthesis.
In Designing Correct Circuits, 2006.

View publication statsView publication stats

https://www.researchgate.net/publication/228612313

