
Improving Android Security through Real-time Policy

Enforcement

Luke Chircop ?1, Christian Colombo2 and Gordon J. Pace3

University of Malta

The use of the Android operating system has become a very popular option with a
vast variety of mobile devices. This popularity means that companies and other users
are more likely to consider using android devices. Naturally there will be users and
companies concerned with how their Android devices are used. Therefore, some sort of
device management is required.

Let us consider a coffee distribution company that has employees visiting its cus-
tomers to showcase new products and take orders. Such a company would need to pro-
vide its employees with portable devices containing sensitive data about their products
and customers. Therefore, the company would want to limit access to such data to only
authorized applications or users. It could also want to disable the android market or
not allow untrusted applications from running on the mobile device. Another possible
scenario could be that of having parents concerned with how their children use their
mobile devices. It is well known that children love to play games, therefore a parent
might want to control the amount of hours per day that they could spend playing on
their mobile device. They could also want to make sure that the browsers that their chil-
dren use, filter out bad websites. Parents could also want to control how many messages
and phone calls their children make.

Unfortunately such checks or control over mobile devices cannot be achieved with
the stock versions of Android. Instead techniques such as runtime verification can be
used. This technique consists of introducing a runtime monitor that observes the be-
haviour of an executing process to be able to determine if it violates any predefined
properties.

One common approach that has been implemented by various tools such as Weave
Droid [1], RV-Droid [2] and Aurasium [3] focus on application-based monitoring. This
approach consists of instrumenting applications that are usually downloaded from the
android market with monitoring code before they are installed on the device. The in-
strumented monitoring code will then be able to observe the applications’ behaviour
while executing and report any property violations that it encounters. Therefore with
this approach, parents could write properties to raise warnings for situations such as
when a browser allows its user to request a URL which could potentially be harmful to
the user or device. Properties could also be introduced to limit the file/folder access for
applications running on the device to safeguard against any attempts to leak sensitive

? The research work disclosed in this publication is partially funded by the Master it! Scholar-
ship Scheme (Malta)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619796?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


data (useful for company mobile devices).

Although it is able to provide a good monitoring framework, it has some limita-
tions. One of which is the fact that a user could easily remove an instrumented applica-
tion from the device and install an un-instrumented version to be able to bypass all the
checks. For companies that provide its employees with devices containing sensitive data
this is highly unwanted since the un-instrumented applications could then gain access
to sensitive data. Further more, there are some properties that cannot be checked by this
approach. For example, let us consider a parent that does not want her children to send
more then 100 messages per hour. Such a property cannot always be correctly checked
since application-centric monitors observe the behaviour of applications independently
of each other. Therefore, in cases where more than one application capable of sending
messages is installed on the device, the user would be able to send more than 100 mes-
sages per hour without having a property violation being reported.

In our proposal, we are exploring a different approach to runtime verification. In-
stead of monitoring the applications separately, we are going to be introducing a device-
centric approach. This will allow us to observe events at a system-wide level hence al-
lowing us to monitor user behaviour, communication between applications, application
installations, etc. To achieve this goal, a tool is going to be developed that will generate
a loadable kernel module and event handling code which will be instrumented inside the
dalvik virtual machine as shown in figure 1. The instrumented operating system would
then need to be installed on the device that requires runtime monitoring.

Fig. 1. Instrumented Android OS

The loadable module will be loaded by the
Android kernel and act as an oracle to determine
if a property has been violated or not. Therefore,
to be able to check for a property violation such
as not allowing a user to send more than 100 mes-
sages per hour, it would be required to instrument
the send message function inside the dalvik vir-
tual machine. Here for each event fired, the in-
strumented code would inform the loadable ker-
nel module which would then determine if that action violates the property.

To be able to evaluate the proposed solution, we are first going to identify a number
of scenarios that can be expressed as device-centric properties. These properties will
then be passed on to our developed tool which will automatically generate and instru-
ment a stock Android operating system. The operating system will then be installed
on a corresponding device. Once the instrumented operating system is installed on the
device, a number of actions will be carried out to be able to determine if the monitoring
introduced does observe and detect any property violations whilst allowing good be-
haviour. Using this approach, we hope to provide the mobile device users with an extra
layer of device management helping them have more control of their own device.



References

1. Y. Falcone and S. Currea. Weave droid: aspect-oriented programming on android devices:
fully embedded or in the cloud. In M. Goedicke, T. Menzies, and M. Saeki, editors, ASE,
pages 350–353. ACM, 2012.

2. Y. Falcone, S. Currea, and M. Jaber. Runtime verification and enforcement for android appli-
cations with rv-droid. In S. Qadeer and S. Tasiran, editors, Runtime Verification, volume 7687
of Lecture Notes in Computer Science, pages 88–95. Springer Berlin Heidelberg, 2013.

3. R. Xu, H. Saïdi, and R. Anderson. Aurasium: Practical policy enforcement for android appli-
cations. In Proceedings of the 21st USENIX Conference on Security Symposium, Security’12,
pages 27–27, Berkeley, CA, USA, 2012. USENIX Association.


