
Challenges faced when Forcing Malware Execution
down Hidden Paths

James Gatt, Mark Vella and Mark Micallef

University of Malta

1 Background

Dynamic Malware Analysis involves the observation of a malware sample at runtime,
usually inside a sandbox, whereby probes are used to detect different actions performed
by the malware in order to categorize its behaviour.

However, Dynamic Analysis is limited in that it can only observe a single run of the
malware at a time, and there is no way of telling whether the run demonstrated the com-
plete set of behaviours contained in the malware. Exploitation of this drawback is on
the increase by malware authors as the presence of hidden and trigger-based behaviours
has become more widespread1.

2 Unlocking Hidden Behaviour in Malware

Existing work on unlocking hidden behaviour takes an execution path exploration ap-
proach with the aim of maximizing precision by excluding infeasible paths and exe-
cuting paths under correct runtime values, while also keeping performance at scalable
levels. Symbolic execution in the form of concolic testing is one of the more popular
approaches, as it generates inputs to explore as many feasible paths in the program’s
execution tree as possible[1]. However, it is difficult to scale to real-world malware bi-
naries, as its use of SAT/SMT2 solvers for constraint solving is computationally expen-
sive, which downgrades performance[1]. Moreover, symbolic execution suffers from a
number of known shortcomings that malware authors can take advantage of.

An alternative is the use of forced sampled execution techniques such as flood emu-
lation, which explores a program’s execution tree in a depth-first fashion, enforcing ex-
ecution iteration limits on blocks of code, and forcing execution down paths that might
not normally be taken at runtime[2]. While sacrificing some precision, as analysis could
end up exploring infeasible paths[1][2], we have chosen this approach for our work as
it significantly improves the performance, and thus the scalability of analysis[1][2].

3 Challenges

While flood emulation is an effective analysis technique, in practice there are situations
where forcing code execution blindly down paths can lead to problems. Here we dis-

1 http://www.fireeye.com/resources/pdfs/fireeye-hot-knives-through-butter.pdf
2 Satisfiability/Satisfiability Modulo Theories

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


cuss a few such situations, while demonstrating how they can also be problematic for
concolic execution.

3.1 Jump Tables

Jump tables in a binary usually result from the use of switch statements in the source
code. A switch statement allows for the divergence of control flow into many possible
paths, based on the value of some variable. At a lower level, this results in the creation
of a jump table having an address entry for each possible path. Deducing the number
of possible destination addresses in a jump table is a problem in itself. Moreover, jump
tables generally use the switch variable as an index in order to calculate the address of
the path to be taken on the fly, with the final control flow transfer usually taking the
form of an unconditional jump to the destination address. This effectively flattens the
control flow of the program and both flood emulation and concolic execution will only
end up unlocking a single path, the one taken during a particular execution.

3.2 Blocking Behaviour

Any action that puts a program into a suspended state can be described as blocking
behaviour. An example is blocking calls, which include any call to a function that halts
program execution until the function returns, for example a network socket waiting for
data to return from a remote server. Other cases include malware that waits for a certain
number of user mouse clicks before continuing execution, or temporary suspension of
a thread using sleep functionality. In all the above cases, flood emulation and concolic
execution are stopped in their tracks until the malware resumes execution.

3.3 Program/System-wide State Corruption

Any non-adherence to the assumed state of a system or program at any point during
execution infers state corruption. This might affect the program-wide state, for example
trying to bind a network address to a socket that has not been created, or the system-wide
state, for example trying to access a file that does not exist. Such sections of code exhibit
path sequence sensitivity, and the order in which functions are executed is essential.
Thus, forcing code execution down such paths even if one of the steps fails, as done
during flood emulation, leads to executing infeasible paths, and does not reveal anything
as the entire code section will not work. In the case of concolic execution, which strictly
adheres to feasible paths, if any step fails, it will stop analysis from continuing further
down that particular path.

References
1. F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Ling, and Z. Su. X-force: force-executing binary

programs for security applications. In SEC’14 Proceedings of the 23rd USENIX conference

on Security Symposium, pages 829–844, 2014.
2. J. Wilhelm and T. cker Chiueh. A forced sampled execution approach to kernel rootkit identi-

fication. In RAID’07 Proceedings of the 10th international conference on Recent advances in

intrusion detection, pages 219–235, 2007.


