
Using dynamic binary analysis for tracking pointer data

John Galea⇤ and Mark Vella

University of Malta
Department of Computer Science

1 Introduction

The examination and monitoring of binaries during runtime, referred to as dynamic
binary analysis, is a widely adopted approach, especially in the field of security and
software vulnerabilities. Fundamentally, it provides one with a means to understand
and reason about binary executions. There are various applications of dynamic binary
analysis, including vulnerability analysis, malware analysis, and Web security.

One technique typically employed to perform dynamic analysis is taint analysis,
which revolves around inspecting interesting information flows [3]. In this approach,
taint marks are associated with values that are (1) introduced via defined sources and
(2) propagated to other values to keep track of information flow. Marks may also be
removed (untainted) once a defined sink has been reached. In addition, taint checking
is also carried out in order to determine whether or not certain runtime behaviours of
the program occur. The properties describing how taint analysis is performed, i.e taint
introduction, propagation and checking, are specified by a set of rules referred to as
a taint policy. One convenient way to define taint rules is in the form of operational
semantics rules, as it avoids ambiguity issues. Rule 1 specifies the general form of a
taint rule used in this paper. Given the current machine context of the program 4 and a
statement, the rule specifies the end result, after the computation has been carried out.

computation
h4ihtaintstateiinstruction ; htaintstate’i

Rule 1: General Rule

2 A taint policy for UAF vulnerability detection

The main aim of the overall research is to detect Use-After-Free (UAF) vulnerabilities,
which are caused by dereferences of dangling pointers (pointers that point to freed
memory). Based on the work carried out by J. Caballero et al. [2], this work focuses on
using taint analysis to monitor flows that introduce, move and delete pointers referring
to heap memory. Ongoing contributions include defining a clear taint policy for tracking
heap pointers and implementing an online prototype for detecting UAF vulnerabilities.

As an example, consider the taint introduction rule (rule 2). It defines the taint source
as calls to heap memory allocation functions. The pointer m, which stores the returned
⇤ The research work disclosed in this publication is partially funded by the Master it! Scholar-

ship Scheme (Malta).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


value v of the function call, is associated with a taint label structure t2 that holds infor-
mation about the allocated memory. The link between the pointer and the taint label are
established by making use of two global maps, namely a forward map ⌧ and a reverse
map ⇡. More specifically, ⌧ is responsible for mapping pointers to their respective taint
labels, whilst ⇡ maps taint labels to a list of shared pointers, which refer to the same
memory block. The benefit of the latter map is that a list of pointers associated with the
same taint label can be efficiently retrieved without the need to iterate over the forward
map.

4, ⌧ ` ret + hm, t1i ⇡

00 = ⇡[t1 ,! m]
t2=hPtr,v,4(pc)i ⌧

0=⌧ [m t2] ⇡

0=⇡

00[t2 -m]
4, ⌧, ⇡, alloc_call(dst,v,ret) ; ⌧

0
, ⇡

0

Rule 2 - Pointer Introduction Rule

Taint labels propagate upon the execution of mov instructions, as defined in the rule
3. The computation of the rule mainly involves associating the taint label t2 mapped by
the source address m2 with the destination address m1.

4, ⌧ ` dst + hm1, t1i ⇡

00 = ⇡[t1 ,! m1]
4,⌧ ` src + hm2,t2i ⌧

0=⌧ [m1 t2] ⇡

0=⇡

00[t2 -m1]
4, ⌧, ⇡, mov(dst,src) ; ⌧

0
, ⇡

0

Rule 3 - Move Propagation Rule

3 Implementation using Dynamic Binary Translation

A prototype that implements the taint policy for pointer tracking has been built as a
client using the DynamoRIO tool [1]. Since instrumentation on binary instructions is re-
quired to carry out taint analysis during runtime, the DynamoRIO tool [1] was found to
be ideal, as it allows one to monitor, as well as manipulate, executed binary instructions
without the need to modify the code of the application under examination. In essence,
the DynamoRIO client acts as an intermediary and is placed between the application
and the underlying operation system. By copying an application’s original instructions
to a code cache one block at a time, changes to instructions can be easily conducted.
The DynamoRIO prototype monitors for calls to memory allocation and deallocation
functions. Moreover, instructions such as mov and push are also examined in order to
carry out taint propagation as described in rule 3.

References

1. Dynamorio - dynamic instrumentation tool platform. http://dynamorio.org. [Online; accessed
3-Oct-2014].

2. J. Caballero, G. Grieco, M. Marron, and A. Nappa. Undangle: Early detection of dangling
pointers in use-after-free and double-free vulnerabilities. In Proceedings of the 2012 Interna-

tional Symposium on Software Testing and Analysis, 2012.
3. T. A. Edward J. Schwartz and D. Brumley. All you ever wanted to know about dynamic

taint analysis and forward symbolic execution (but might have been afraid to ask). In IEEE

Symposium on Security and Privacy (SP ’10), 2010.


