
Event-Based Characterisation of Temporal Properties

over System States

Christian Colombo1, Gordon J. Pace1, and Justine Scicluna1

University of Malta

The design of runtime verification [3] (or monitoring) systems presents a myriad
of options — how to instrument properties, in which logic to specify properties, what
algorithms to use to implement the property checking, etc. One crucial issue is what
elements of the system one is interested in observing, and what points-of-interest one
must capture to be able to perform this monitoring. Many runtime verification tools
base their properties on the control flow of the system (e.g. [2]): method calls, ob-
ject creation, exception raising, etc. Especially in the domain of distributed systems,
one also finds communication-centric runtime monitoring, in which one focuses on the
communication taking place between nodes (e.g. see [1]). Finally, a minority of tools
take a data-centric approach, in which one can write properties about the values stored
in the system state. The choice of approach has a major influence on how monitor-
ing code can be instrumented in the system. Typically, control-centric approaches use
aspect-oriented programming (or similar) technologies to insert additional code identi-
fying the events of interest in the system. On the other hand, to monitor communication
in a distributed, message-passing system, one may create communication proxies (ac-
tual or local virtual ones) which capture and analyse the messages, i.e. the temporal
points-of-interest in such a system. In a data-centric approach, one typically captures
points of discontinuity in the values of variables — when they are assigned a value —
to be able to capture properties which talk about how the values of the system state
changes over time1.

In this brief presentation, we will present ongoing experiments on adding data-
oriented monitoring to the runtime verification tool LARVA [2], and in particular look-
ing at temporal values which change continuously over time, such as the average of the
value of a variable over time.

Real-Time System Behvaiour. The behaviour of a system can be characterised by the
values stored in variables, possibly changing over time. Let I be all possible inter-
pretations of variables Var ranging over values Val for a single instant of time (I =
Var ! Val). The temporal behaviour of such a system is characterised by a total func-
tion It 2 T ! I — where T is the time-domain, typically R+.

Practically Monitorable Points. In practice, monitors cannot keep track of the vari-
ables at each point on the real-time line, but typically, one would be able to mon-
itor (effectively) points in time when a variable has been assigned to a new value.

1 In the literature, one also finds work on the monitoring of analogue systems e.g. [4], in which
variables may change values in a continuous way over time. However, in this presentation,
we will focus on digital system which exhibit memory values which discretely change (in a
discontinuous manner) over time.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


This provides a discrete way of characterising the value of a variable over time in a
set of sequential time-stamped values identifying (all) points in time when the vari-
able changed its value. Thus, for example, two variables x and y both with initial
value 12 and whose value increasing by 7 and 9 (respectively) every 1.2 and 1.8 sec-
onds (respectively) would be represented as a prefix of the infinite time-stamped trace:
h(0, {x 7! 12, y 7! 12}, (1.2, {x 7! 19, y 7! 12}), (1.8, {x 7! 19, y 7! 21}), . . .i.
The set of finite timed traces Tr is thus equivalent to (T⇥ I)⇤. We will assume that our
variables do not exhibit Zeno-like behaviour (there can only be a finite number of value
changes over any finite time interval), which makes the trace models equally expressive
as the modelling of variables as a function over time.

Data-Oriented Monitoring. The time-stamped trace identifies the points in time which
one can easily capture at runtime. To identify which of these are of interest to our prop-
erties, we add two operators �e and �!e , which respectively give the value of expression
e just before and just after the moment of evaluation. For example, �x 6= �!x identifies
the points in time when the value of x has changed. We can then design monitors based
on these chosen events using any temporal logic to describe prohibited system traces.
For instance, one may use LTL to write the property that the number of downloads may
only increase until it is reset2: 2(

 �������
downloads  �������!downloads) U reset.

We have explored this approach of data-oriented point-of-interest identification into
the runtime verification tool LARVA [2], and applied it to a number of case studies, in-
cluding data modification intensive red-black tree implementation and an online shop-
ping system SoftSlate3.

New Points-of-Interest. Sometimes, we need to consider properties over values which
change in a continuous manner along time. A typical example of this is the average
value of a variable over time e.g. the event characterised when the average value of
variable x exceeds 20. Now, if x has held value 10 from time t = 0s till t = 100s
when it is assigned to 30, and if no other changes on x occurs, the average will exceed
20 at time t = 200s, despite the fact that the system would not have otherwise been
interrrupted at that point in time.

To enable identification of such temporal points of interest, we characterise them
using an aritmetic expression over the integral of system variables (written

R
v), going

above an upper limit (written @ "n (e)) or below a lower limit (written @ #n (e)).
For instance, the event which triggers when the average of x exceeds 20 would be

written as @ "20 (
R
x/

R
1). Since these integrals increase linearly over time, we can

calculate the implicit events when to interrupt the system with every system event. For
instance, in the average example, after the system has performed h(0s, {x 7! 10}), (100s, {x 7!
30})i, we can add a timer to cause an event at time 200s, which would be cancelled (or
rescheduled) if x changes its value again in the meantime.

Formally, we define a function earliest, which given a property (using the integral
over time of variables) and a prefix behaviour, will return the earliest time (if any)

2 Although different approaches are possible, we assume that the inequality is checked upon any
system event, including an assignment to any variable.

3 An open source system available from http://www.softslate.com.



when the property would be violated if no other events happen from the system side. It
turns out, that for linear and quadratic uses of the integral operator, this can be readily
computed.

Discussion and Future Work. We are currently finalising the formalisation of these
notions, and looking into extending the expressivity of the integral operator, by adding
two special cases: (i) [

R
x]n which takes the integral of x over the past n time units;

and (ii) [
R
x]e takes the integral of x since the last occurence of event e. It would be

interesting to investigate how these added operators abstract away complex calculations
and timer handling in our specification language.

References

1. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, M. Montali, S. Storari, and P. Tor-
roni. Computational logic for run-time verification of web services choreographies: Exploit-
ing the SOCS-SI tool. In Web Services and Formal Methods, Third International Workshop,
WS-FM 2006 Vienna, Austria, September 8-9, 2006, Proceedings, pages 58–72, 2006.

2. C. Colombo, G. J. Pace, and G. Schneider. Safe runtime verification of real-time properties.
In Formal Modeling and Analysis of Timed Systems, 7th International Conference, FORMATS
2009, Budapest, Hungary, September 14-16, 2009. Proceedings, pages 103–117, 2009.

3. M. Leucker and C. Schallhart. A brief account of runtime verification. J. Log. Algebr. Pro-
gram., 78(5):293–303, 2009.

4. O. Maler, D. Nickovic, and A. Pnueli. Checking temporal properties of discrete, timed and
continuous behaviors. In Pillars of Computer Science, Essays Dedicated to Boris (Boaz)
Trakhtenbrot on the Occasion of His 85th Birthday, pages 475–505, 2008.


