
Using Symbolic Execution for Equivalent Mutant

Detection

Mark Anthony Cachia1 and Mark Micallef1

Department of Computer Science, University of Malta
{mark.a.cachia.09|mark.micalef@um.edu.mt}

Mutation Testing is a fault injection technique used to measure test adequacy
score by generating defects (mutations) in a program and checking if its test
suite is able to detect such a change. However, this technique suffers from the
Equivalent Mutant Problem [3].

Equivalent mutants are mutants which on mutation retain their semantics
[3]. Thus, although equivalent mutants are syntactically different, they remain
semantically equivalent to the original program [3]. An automated solution which
decides equivalence is impossible, as equivalence of non-trivial programs is un-
decidable [8, 3]. The fact that the Equivalent Mutant Problem is undecidable
usually means that human effort is required to decide equivalence [3]. Equiva-
lent mutants are the barrier keeping Mutation Testing from being widely adopted
[3]. Moreover, in one study by Irvine et al [2], the average time taken for each
manual mutant classification was fifteen minutes.

This work explores the application of Symbolic Execution to the Equivalent
Mutant Problem. Symbolic Execution is a technique which enumerates a pro-
gram’s paths and for each path outputs the conditions variables must satisfy
for execution to reside in the path called Path Conditions together with the
output of the program at that path called Effects. The combination of Path
Conditionsand Effects are known as the Path Condition ad Effect pair or PCE.
A Path Condition is an expression made up of symbolic values representing the
conditions the variables must satisfy for execution to reside in a particular path
[6, ?]. If at some point of execution the Path Condition resolves to false, i.e. a
path condition whose expression cannot be satisfied, the Path Condition is con-
sidered to be infeasible as it is mathematically impossible for execution to reach
the path. Such PCEs are eliminated on the basis that it is impossible for the
program to reach these paths [6].

Symbolic Execution can be used to approximate equivalence. This can be
achieved by performing Symbolic Execution on versions of the same program and
equating the outputted PCE pairs. The two most applicable variants of Symbolic
Execution Differential Symbolic Execution[4] and Directed Incremental Symbolic
Execution [5] were analysed however they were deemed to be not efficient enough
for the Equivalent Mutant Problem. Hence, an algorithm called SEEM which is
both efficient and effective to detect equivalent mutants was to be developed.
SEEM works as follows. Initially the PCE pairs of the original version of the
method being mutated are generated. The main reason why only the mutated
method’s summary is generated is that as the code executed before the mutation
has not been changed. Assuming there is no interleaving, determinism states that

CSAW'13 pg 10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Mark Anthony Cachia1 and Mark Micallef1

both the original program and the mutated program will execute identically until
before the mutated method is called.

After the summary of the original method has been generated, the muta-
tion is performed and the PCE pairs of the mutated method is then generated.
However, this process is done intelligently in order to improve efficiency. This
is achieved by retracing the coverage of the original program on the mutant.
That is, if a mutation is performed on the then branch of an if statement, only
the paths passing through the if statement is explored. If the PCE pairs of the
original program passing through the if statement are equal to the PCEs of the
mutant, the mutant is considered to be equivalent. A proof of concept tool was
implemented which makes use of the Microsoft Z3 constraint solver [1] used to
determine feasibility and simplify Path Conditions.

Three separate investigations were performed to evaluate the Effectiveness,
Efficiency and the extent to which the tool handles different levels of com-
plexities in the Path-Explosion Problem. Various scenarios leading to equiv-
alent mutants were encountered in the course of the work in which SEEM
was able to correctly classify all but one. SEEM was compared to the state
of the art tool Javalanche which performs Equivalent Mutant Detection by in-
variant violations [7]. When SEEM was used to classify the same mutants as
Javalanche, SEEM was 89% accurate whilst Javalanche was only 65% accu-
rate. The theoretical efficiency of SEEM was also studied. It was determined
that the time and space saved by employing SEEM instead of traditional is
SEEM time savings = O(n

P
program branches �

P
method branches). The final

experiment was conducted in order to obtain typical running times of SEEM.
Several experiments were performed. The highest running time recorded was
that of just over nine seconds in a mutant which had over a thousand paths to
explore.

From the results achieved, it was concluded that SEEM is a suitable technique
to be used in the reduction of the Equivalent Mutant Problem.

References

1. Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proceed-
ings of the Theory and practice of software, 14th international conference on Tools
and algorithms for the construction and analysis of systems, TACAS’08/ETAPS’08,
pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

2. Sean A. Irvine, Tin Pavlinic, Leonard Trigg, John G. Cleary, Stuart Inglis, and
Mark Utting. Jumble java byte code to measure the effectiveness of unit tests.
In Proceedings of the Testing: Academic and Industrial Conference Practice and
Research Techniques - MUTATION, TAICPART-MUTATION ’07, pages 169–175,
Washington, DC, USA, 2007. IEEE Computer Society.

3. Harman M Jia Y. An analysis and survey of the development of mutation testing.
ACM SIGSOFT Software Engineering Notes, 1993.

4. Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu.
Differential symbolic execution. In Proceedings of the 16th ACM SIGSOFT Interna-
tional Symposium on Foundations of software engineering, SIGSOFT ’08/FSE-16,
pages 226–237, New York, NY, USA, 2008. ACM.

CSAW'13 pg 11

Using Symbolic Execution for Equivalent Mutant Detection 3

5. Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. Directed incre-
mental symbolic execution. In Proceedings of the 32nd ACM SIGPLAN conference
on Programming language design and implementation, PLDI ’11, pages 504–515,
New York, NY, USA, 2011. ACM.

6. Corina S. Pǎsǎreanu and Willem Visser. A survey of new trends in symbolic ex-
ecution for software testing and analysis. Int. J. Softw. Tools Technol. Transf.,
11(4):339–353, October 2009.

7. David Schuler, Valentin Dallmeier, and Andreas Zeller. Efficient mutation testing
by checking invariant violations. In ISSTA ’09: Proceedings of the 18th International
Symposium on Software Testing and Analysis, pages 69–80, July 2009.

8. Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine
for c. SIGSOFT Softw. Eng. Notes, 30(5):263–272, September 2005.

CSAW'13 pg 12

