
Detecting web server take-over attacks through

objective verification actions

Mark Vella1 and Sotirios Terzis2

1 University of Malta
2 University of Strathclyde, Glasgow

Attacks targeting web servers pose a major security threat. Typically prone
to a mix of infrastructure and application-level security vulnerabilities, they
serve as the lowest hanging fruit for intruders wanting to gain unauthorized
access to the entire host network. This is specifically the case for ‘server take-
over’ attacks, whose immediate objective is to gain unauthorized remote access
to the host server, for example through shell-spawning, backdoor-ing or botnet
joining3.

From attack/malware to exploit detection. The most common option to detect
such attacks consists of recognizing attack packets or malicious binaries at the
network and host levels. However, these detectors make use of misuse detec-
tion rules that can be easily evaded through obfuscation/polymorphism and are
highly limited in matching attacks exploiting zero-day vulnerabilities. Recently,
the research domain is witnessing a shift from this malware/attack-centered ap-
proach to one that focuses on the targeted application. Specifically, these what
we call exploit detectors, operate by dynamically monitoring the execution of the
potentially vulnerable application/platform for indications of successful exploits.

Analysis of runtime information either follows the classic misuse/anomaly
detection dichotomy, such as recognizing known malicious system call sequences
of parasitic malware [4] or detecting jump targets/control sequences considered
tainted [5], as compared to recognizing anomalous HTTP-backend tra�c pair-
ings caused by SQL injection attacks [2], or goes one step further and outright
change the execution environment to block successful exploit execution [3]. Over-
all, these detectors leverage the higher quality information obtained through dy-
namic analysis to generalize beyond exploits instances to an entire exploit cate-
gory, and are also resilient to content obfuscation resulting in increased detection
e↵ectiveness. Furthermore, the dynamic verification of successful exploitation
avoids false positives (FP) however at the cost of invasive instrumentation and
high monitoring overheads. An aggregation of such detectors would be an ob-
vious method to e↵ectively protect from take-over attacks, though performance
overheads and compatibility issues abound.

Problem definition. We aim for a dynamic analysis-based method that gener-
alizes from known attacks over the objective dimension in order to detect web
server take-overs. Specifically, the proposed solution is required to: 1) Combine

3 http://www.symantec.com/security response/publications/threatreport.jsp

CSAW'13 pg 20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

multiple relevant exploit categories in its detection scope; 2) Translate the high-
level objective description to a low-level one in terms of events associated with
the execution of the vulnerable web application; 3) Retain the polymorphic/zero-
day attack resilience and low FP properties of dynamic analysis detectors; and
4) Not increase overheads beyond that of individual exploit detectors.

Proposition. We propose a solution that: focuses on attack rather than normal
content to avoid FP; combines known exploit categories from an attack objec-
tive dimension into a single solution through causal relations; is verification-
based as per existing exploit detectors; relies on externally observable dynamic
analysis events so as not to impose intrusive instrumentation; and uses modi-
fied LAMBDA [1] to translate between a high-level detection heuristic and its
low-level counterpart for the take-over objective. The result is an objective ver-
ification approach that verifies the objective’s success based on its pre-/post-
conditions expressed in terms of dynamic analysis events, where: the precondi-
tions are defined on process input, post-conditions are defined over events re-
sulting from input processing associated with objective’s attainment, whilst the
verification actions confirm the causal relation between the input and the events.
We modify the LAMBDA language to fit this approach so that it reflects the
single-step attacks and objective focus, where pre- and post-conditions describe
the monitored process’s state, and verification and detection actions are fused
together. The high-level detection heuristic “Attack input needs to inject code to
setup the take-over and then either connects to a remote listening port, or start
listening on a (newly-opened/reused) web port” gets the low-level translation:

objective WWW take-over(HTTPReq, Platform, WebApp Interpreter List,
Interpreter List, WWWProcTree)

pre: injectable netcode(HTTPReq, [Platform : Interpreter List])_
codebase extending script(HTTPReq,WebApp Interpreter List)
post: net start listen(WWWProcTree, (Local IP, Local Port))_
net connect(WWWProcTree, (Remote IP,Remote Port))_
((create(File) _modify(File)) ^ interpretable(File,WebApp Interpreter List))
verification/detection: G1

where: action(G1) = ((Local IP, Local Port) 2 ipport pairs(Injectable netcode)_
(Remote IP,Remote Port) 2 ipport pairs(Injectable netcode))_
contains(File, codebase script blocks(Codebase extending script))

The post-condition events can be used for the immediate recovery of a sub-
verted system, whilst the HTTP request implicated in the precondition can be
used to track the exploited vulnerability for long term recovery. The implemen-
tation relies on network/memory/disk forensic probes to supply the required
events, and a purposely-built emulator to identify and extract information from
potential instances of Injectable netcode and Codebase extending script. On-
going work concerns the implementation of an experimentation test-bed that
provides real-world tra�c and a range of successfully executing attacks that are
representative of the take-over objective.

CSAW'13 pg 21

3

References

1. Cuppens, F., Ortalo, R.: Lambda: A language to model a database for detection of
attacks. In: Recent advances in intrusion detection. pp. 197–216. Springer (2000)

2. Le, M., Stavrou, A., Kang, B.: Doubleguard: Detecting intrusions in multitier web
applications. vol. 9, pp. 512–525. IEEE (2012)

3. Locasto, M.E., Wang, K., Keromytis, A.D., Stolfo, S.J.: Flips: Hybrid adaptive in-
trusion prevention. In: Recent Advances in Intrusion Detection. pp. 82–101. Springer
(2006)

4. Srivastava, A., Gi�n, J.: Automatic discovery of parasitic malware. In: Recent Ad-
vances in Intrusion Detection. pp. 97–117. Springer (2010)

5. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks. In: Proceedings of the 15th USENIX
Security Symposium. pp. 121–136 (2006)

CSAW'13 pg 22

