
Equivalence Proofs for Erlang Refactoring

Erica Tanti and Adrian Francalanza

Department of Computer Science, University of Malta
{erica.tanti.09 | adrian.francalanza}@um.edu.mt

Erlang [1, 2] is an actor-based programming language used extensively for
building concurrent, reactive systems that are highlighly available and suffer
minimum downtime. Such systems are often mission critical, making system
correctness vital.

In industrial-scale systems, correctness is usually ascertained through testing,
a lightweight verification technique trading analysis completeness for scalability.
In such cases, a system is deemed correct whenever it “passes” a suite of tests,
each checking for the correct functionality of a particular aspect of a system.
This is also true for large Erlang systems: even when correctness specifications
are provided, it is commonplace for Erlang developers to use testing tools, au-
tomating test-case generation from these specifications [6, 9].

Testing for concurrent systems is an arduous task. Since a concurrent system
may have multiple execution paths—due to different thread interleavings—it is
often the case that test runs fail to detect errors, only for them to crop up once
the system is deployed. Because of this aspect, Erlang tests are often executed
multiple times using tools that induce different interleavings [3], in the hope that
enough execution paths are covered so as to be able to conclude (with a rea-
sonable degree of certainty) that the error tested for is absent. To make matters
worse, every time a system needs to be altered—because of either code main-
tenance, bug fixes or functionality enhancements—the entire testing proceedure
needs to be carried out again from scratch.

In most cases, the a code update is often expected to pass the same test suite
that the previous code had originally passed (possibly extended by additional
tests). This is particularly the case for refactoring, code restructuring that does
not necessarily change functionality, but instead makes the code more readable,
compliant to certain code paractices, or more efficient. There are numerous tools
assist or automate the refactoring process in Erlang systems [7, 8, 10]. However,
none of these tools comes equipped with a guarantee that the substitute code
preserves the behaviour of the code it is substituting, which can potentially
violate correctness.

In this work, we strive towards a solution for this problem. We study a testing

preorder [5, 4] for Erlang programs P,Q and Erlang tests T . We limit our study
to safety testing suites, i.e., suites of tests ensuring that nothing bad happens.
Our safety testing preorder, P safe Q, denotes that P is as safe as Q, and is
formally defined as:

P test
safe Q iff for all T

⇣�
P fails T

�
implies

�
Q fails T

�⌘

CSAW'13 pg 17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 E. Tanti and A. Francalanza

Note that, by the contrapositive, our testing preorder ensures that whenever Q
passes a test T , P also passes that test.

This preorder may be used as the semantic basis for the aforementioned Er-
lang refactoring tools. More specifically, in a setting where correctness means
passing a suite of safety tests, a refactoring tool would be considered safe when-
ever it substitute a program Q with another program P that can be shown to
be as safe as Q, i.e., P test

safe Q.
Unfortunately, reasoning about the preoder test

safe, even when limited to safety
tests, is generally non-trivial because its definition relies on a universal quan-

tification over all possible (safety) tests. We therefore investigate a theory that
facilitates reasoning about our testing preorder. In particular, we develop an
alternative trace-based preorder [5, 4] for Erlang programs; it relies on program
traces s, instead of tests, and would normally take the following general format:

P trace
safe Q iff For all s

⇣�
Q produces s

�
implies

�
P produces s

�⌘

A trace based preorder is simpler to reason about because (1) interactions with
a number of tests may be described using a single trace; (2) traces are somehow
connected to the capabilities of the programs P,Q being analysed, whereas tests
may not. The main result of our work would then be to prove a correspondence
between the testing preorder, test

safe, and the trace based preorder, trace
safe .

However, the technical development does not follow directly from the work
on testing preorders by Hennessy et al. [5, 4], and certain characteristics pertain-
ing to actor systems complicate the development of our trace-based preorders.
For instance, actors often interact through asynchronous communication, which
reduces the tests’ power of observation. Put differently, asynchrony increases
the number of trace executions that may lead a test to fail, thus making the
above trace-based preorder too rigid. Another characteristic is actor persistence,
meaning that once an actor is spawned, it is receptive to an infinite number
of messages; this yields an infinite number of traces even for the simplest of
programs, making trace-based analysis unwieldy.

Through a series of examples, our talk will explain the problems encountered
when developing our testing theory for Erlang programs and discuss the potential
solutions being investigated.

References

1. Armstrong, J.: Programming Erlang - Software for a Concurrent World. The Prag-
matic Bookshelf (2007)

2. Cesarini, F., Thompson, S.: ERLANG Programming. O’Reilly (2009)
3. Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T., Wiger,

U.: Finding race conditions in Erlang with Quickcheck and Pulse. In: ICFP. pp.
149–160. ACM, New York, NY, USA (2009)

4. De Nicola, R., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical
Computer Science 34(1-2), 83–133 (1984)

CSAW'13 pg 18

Testing Preorders for Erlang Refactoring 3

5. Hennessy, M.: Algebraic Theory of Processes. Foundations of Computing, MIT
Press (1988)

6. Hughes, J.: Quickcheck testing for fun and profit. In: PADL ’07. pp. 1–32. Springer-
Verlag, Berlin, Heidelberg (2007)

7. Li, H., Thompson, S.: Testing Erlang Refactorings with QuickCheck. In: IFL ’07.
Freiburg, Germany (September 2007)

8. Lövei, L., Hoch, C., Köllö, H., Nagy, T., Nagyné Víg, A., Horpácsi, D., Kitlei, R.,
Király, R.: Refactoring module structure. In: ERLANG’08. pp. 83–89. ACM, New
York, NY, USA (2008)

9. Papadakis, M., Sagonas, K.: A PropEr integration of types and function specifi-
cations with property-based testing. In: Erlang ’11. pp. 39–50. ACM Press, New
York, NY (Sep 2011)

10. Sagonas, K., Avgerinos, T.: Automatic refactoring of Erlang programs. In: PPDP
’09. p. 13. ACM Press, New York, New York, USA (2009)

CSAW'13 pg 19

