Language Extension Proposals for Cloud-Based
Computing

Adrian Francalanza
adrian.francalanza@um.edu.mt, and Tyron Zerafa
tzer0001Qum.edu.mt

University of Malta

1 Synopsis

Cloud computing can be described as the homogenisation of resources distributed
across computing nodes, so as to facilitate their sharing by a number of programs.
In some sense, the use of virtual machines in languages such as Java and Erlang,
are a first step towards to this idea of cloud computing, by providing a common
layer of abstraction over nodes with different characteristic. This has fostered
various forms of distributed computing mechanisms such as web services based
on remote procedure calls (RPCs) and code on demand (COD) applets executing
in sandboxed environment.

Erlang is an actor-based programming language that lends itself well to the
construction of distributed programming through a combination of language
features such as message-passing and error-handling mechanisms. It also offers
mechanisms for dynamically spawning processes (actors, to be more precise) on
remote nodes, for reasons ranging from load balancing to the maximisation of
computation proximity vis-a-vis the resources that it uses. Although the mech-
anism work well, it relies on a rather strong assumption when programming for
the cloud, namely that the source-code at every node is homogeneous.

The first aim of our study is to create a layer of abstraction that automates
the necessary migration of source-code so as to allow seamless spawning of pro-
cesses across nodes “on the cloud”. The challenge here is to migrate the least
amount of code, at the least amount of cost/effort, so as to allow the remote
computation to be carried out. The solutions we explore range from those that
rely on code dependency static analyses to ”lazy” dynamic methods that migrate
source code only when needed by the host node. There are also issues relating
to source-name clashes and versioning.

The second aim of the study is to enhance the security of resources advertised
on the cloud, by delineating their expected use. Our approach will rely on the
mechanism of having a policy file per node, describing the restrictions imposed
on resource usage. We plan to explore feasibility of code migration mechanisms
that take into consideration these policy restrictions imposed by the receiving
nodes. We shall also explore various ways how to enforce these policies.

The third aim of the study is to analyse mechanisms for tolerating network
errors such as node disconnections; this is particularly relevant to distributed

21



computations spanning over more that two nodes. Again, we plan to use the
policy-file approach to automate decisions that need to be taken to seamlessly
carry out distributed computation in the eventuality of such failures; the policy
files may also be used to specify redundancy mechanisms that should, in turn,
enable better tolerance to such faults.

22



