
µLarvaScript: Rethinking the Larva Scripting
Language

Adrian Francalanza
adrian.francalanza@um.edu.mt

University of Malta

1 Synopsis

polyLarva, the latest incarnation of the Larva runtime-verification (RV) tool suite,
experienced a major redesign to its scripting language (used for specifying the
monitors that carry out the RV.) As opposed to previous versions, where the
programmer specified the monitoring automata describing the RV procedure,
in pLarvaScript (the scripting language for polyLarva) the programmer specifies
monitoring as a sequence of (guarded) rules of the form

p, c −→ a

where p denotes an event pattern, c denotes a condition and a stands for a mon-
itor action. A monitor sythesised from this sequence of rules would then listen
to a stream of events: for each event e, it attempts to match an event pattern
of the list of rules; when this happens, the monitor evaluates the corresponding
condition of the rule and, if successful, the respective rule action is triggered.

By and large, the new version of LarvaScript has so far been developed organ-
ically, motivated more by the pragmatic concerns of the applications considered
rather than by language design issues. Also, because of backward-compatibility
concerns, a number of design decisions were inherited, carried over from its
percursors. Although effective and pragmatic, this method of development has
hampered a full understanding of the resulting language: at present, the only
formal semantics available is the polyLarva compiler itself which is not ideal for
a number of reasons (i) an understanding of the langauge constructs requires a
detailed understanding of the compiler; (ii) we have no way how to determine
whether the compiler implementation is correct; and (iii) concurrency often in-
troduces subtle semantic and language design issues that are best studied at a
higher level of abstraction.

In this talk, I will discuss preliminary investigations regarding the analysis of
the pLarvaScript language from a foundational perspective. For instance, we con-
sider inherited constructs such as foreach for defining sub-monitors together
with associated design decisions, such as the hierarchic organisation of these
submonitors, and reasses them again from first principles. We do not not have
any conclusive results, and thus far our guiding principles have been simplicity,
elegance (admittedly both subjective measures) and a potential concurrent im-
plemenation of the tool. I will therefore be seeking feedback from the audience

17

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


during the talk, which should help us hone our present positions regarding the
understanding of the language.

18


