
Making mutation testing a more feasible
proposition for the industry

Mark Micallef, Mark Anthony Cachia

Deptartment of Computer Science, University of Malta, Malta
mark.micallef@um.edu.mt, mcac0019@um.edu.mt

Software engineering firms find themselves developing systems for customers
whose need to compete often leads to situations whereby requirements are vague
and/or prone to change. One of the prevalent ways with which the industry deals
with this situation is through the adoption of so-called Agile development pro-
cesses. Such processes enable the evolutionary delivery of software systems in
small increments, frequent customer feedback, and, ultimately, software which
continuously adapts to changing requirements. In this fluid scenario, developers
rely on automated unit tests to gain confidence that any regressions resulting
from code changes will be detected. Consequently, trust in the software system
can only follow from the quality of the tests. Unfortunately, the industry tends
to rely on tools that calculate primitive measures such as statement coverage, a
measure which has been shown to provide a false sense of security [2].

Mutation testing [3] is an analysis technique based on the following idea: Given
a program P and a test suite T , if one judges T to adequately cover P , then
executing T against P ′ (where P ′ is an altered version of P ), should result in
at least one failing test. Therefore, from an original program P , a number of
modified programs P 1...Pn, called mutants, are produced by applying a number
of syntactic modifications to P . These modifications are carried out by muta-
tion operators which are designed to change P in a way that corresponds to a
fault which could be introduced by a developer. Mutants which are detected by
T are said to be killed. Undetected (unkilled) mutants require manual investi-
gation by developers, possibly resulting in improvements to T . In comparison
to techniques such as statement coverage analysis, mutation testing provides a
significantly more reliable measure of test suite thoroughness.

Despite its effectiveness, mutation testing suffers from three recognised prob-
lems. These are (1) the computational expense of generating mutants1, (2) the
time required to execute test suites against all mutants2, and (3) the equiva-
lent mutant problem. The latter refers to situations where syntactically different
mutants turn out to be semantically identical, thus wasting time and effort. Be-
sides the three cited problems with mutation testing, we also argue that there

1 The computational complexity of Mutation Testing is O(n2) where n is the number
of operations in the source code [1].

2 Executing all tests against each mutant renders mutation tools unacceptably slow
and only suitable for testing relatively small programs[4].

12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619648?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is a fourth problem, one concerned with the time and effort required to investi-
gate and address unkilled mutants. Each unkilled mutant requires a developer
to understand the mutant’s semantics, determine if a change to the test suite is
required and finally modify the test suite to kill the mutant. We argue that this
effort can be a deterrent to the wider uptake of mutation testing because the
time and cognitive effort required to carry out the task may not be perceived as
being worth the potential benefits gained.

Fig. 1. Comparing traditional mutation testing with localised mutation

In this talk, we will provide an overview of mutation testing and subsequently
discuss problems which prevent its wider uptake. We then discuss our research
activities in this area and present a technique which we term as localised muta-
tion. The technique leverages the iterative nature of Agile development such that
one only creates mutants from sections of the codebase which have changed since
the last mutation run. The hypothesis is that if mutation testing is carried out
in bite-sized chunks on code which has recently changed, then computational ex-
pense can be drastically reduced and developers should experience less cognitive
load during analysis. Consequently, the main hurdles of mutation testing adop-
tion in industry would be significantly reduced. Preliminary results from this
research will also be discussed and related to our ongoing research activities.

References

1. M. E. Delamaro, J. Maldonado, A. Pasquini, and A. P. Mathur. Interface mutation
test adequacy criterion: An empirical evaluation. Empirical Softw. Engg., 6(2):111–

13



142, June 2001.
2. S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. Inglis, and M. Utting. Jumble

java byte code to measure the effectiveness of unit tests. In Proceedings of the
Testing: Academic and Industrial Conference Practice and Research Techniques -
MUTATION, TAICPART-MUTATION ’07, pages 169–175, Washington, DC, USA,
2007. IEEE Computer Society.

3. H. M. Jia Y. An analysis and survey of the development of mutation testing. ACM
SIGSOFT Software Engineering Notes, 1993.

4. E. W. Krauser, A. P. Mathur, and V. J. Rego. High performance software testing
on simd machines. IEEE Trans. Softw. Eng., 17(5):403–423, May 1991.

14


