
Reasoning about Explicit Resource Management∗ (Abstract)
Edsko de Vries

Trinity College Dublin, Ireland
devriee@cs.tcd.ie

Adrian Francalanza
University of Malta
afra1@um.edu.mt

Matthew Hennessy
Trinity College Dublin, Ireland
Matthew.Hennessy@cs.tcd.ie

1 Introduction

We investigate the behaviour and efficiency of concurrent processes with explicit resource management.
Our study is based on a π-calculus variant called Rπ [4] where the only resources available are channels,
which must be explicitly allocated before they can be used and can be deallocated when no longer
required. A substructural type system guarantees the safe allocation and deallocation of channels, as well
as safe channel reuse through strong updates. In this paper we use this type system to give compositional
proof techniques for reasoning about the behaviour and efficiency of Rπ processes.

Suppose two servers listen on channels srv1 and srv2 to receive a channel which they will use once
to send a reply back to the client. Consider the following clients:

C0 , recX.alloc x1.alloc x2.srv1!x1. x1?y.srv2!x2. x2?z.c!(y,z).X

C1 , recX.alloc x.srv1!x. x?y.srv2!x. x?z.c!(y,z).X

C2 , recX.alloc x.srv1!x. x?y.srv2!x. x?z.free x.c!(y,z).X

C0 is an idiomatic π-calculus client. It creates one private “reply” channel to communicate with srv1 and
another to communicate with srv2. C1 is more efficient and reuses the same channel for both servers. C2
is more efficient still and deallocates the channel before recursing. Using our theory we can prove that
these clients are equivalent, with C2 being more efficient than C1 and C1 being more efficient than C0.

We rely on type information to prove this. When C1 allocates channel x, no other process knows
x: from a typing perspective, x is unique to C1. C1 then sends x on srv1 at an affine type, which
(by definition) limits the server to use x at most once. At this point c is unique-after-1 to C1: after
one communication step, C1 is once again the only process that knows about x (x once again becomes
unique). This means that C1 can reuse x, possibly for values of a different type (strong update), because
the type system guarantees that a unique channel is indistinguishable from a freshly allocated channel.

Uniqueness thus records the “positive” information (the guarantee) at one end of a channel corre-
sponding to the “negative” information of an affine permission (a restriction) at the other. Our theory
tracks permission transfer: in the above example, this manifests itself both as the explicit transfer of an
affine permission when Ci sends its channel to the server, as well as the implicit transfer of this permission
back from the server to the client after the communication, allowing us to recover channel uniqueness.

Our contributions are : (1) a compositional coinductive proof method for comparing the behaviour
and efficiency of Rπ processes that are well-behaved wrt. a uniqueness type system ensuring safe deal-
locations and strong updates. (2) the definition of a typed, costed, amortized efficiency preorder relation,
which embodies the permission transfer discussed above, and a proof that the coinductive proof method
is sound and complete with respect to this preorder.

2 Language

Fig. 1 shows the syntax and semantics of Rπ. It has the standard π-calculus constructs with the exception
of scoping, which is replaced with primitives for explicit channel allocation and deallocation. The syntax
∗Supported by SFI project SFI 06 IN.1 1898.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619606?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
devriee@cs.tcd.ie
afra1@um.edu.mt
Matthew.Hennessy@cs.tcd.ie

Reasoning about Explicit Resource Management de Vries, Francalanza and Hennessy

Syntax

P,Q ::= u!~v.P (output) | u?~x.P (input) | if u = v then P else Q (match)
| nil (nil) | recX.P (recursion) | X (proc. variable)
| P ‖ Q (parallel) | alloc x.P (allocate) | freeu.P (deallocate)

Reduction Rules

rCom
M,c :> . c!~d.P ‖ c?~x.Q →0 M,c :> .P ‖ Q{~d/~x}

rThen
M,c :> .if c = c then P else Q →0 M,c :> .P

rElse
M,c :>,d :> .if c = d then P else Q →0 M,c :>,d :> .Q

rRec
M .recX.P →0 M .P{recX.P/X}

P ≡ P′ M .P′ →k M .Q′ Q′ ≡ Q
rStr

M .P →k M .Q

rAll
M,c :⊥ .alloc x.P →+1 M,c :> .P{c/x}

rFree
M,c :> .freec.P →−1 M,c :⊥ .P

Figure 1: Rπ Syntax and Reduction Semantics

assumes two separate denumerable sets of channel names c, d and variables x, y, and lets identifiers u, v
range over both. The input and channel allocation constructs are binders. The syntax also assumes a
denumerable set of process variables X,Y , bound by the recursion construct; we use k, l as metavariables
to range over costs. Rπ processes run in a resource environment M represented as a function from
resource names to {>,⊥}, recording whether channels are allocated (>) or deallocated (⊥). We refer to a
pair M .P of a resource environment and a process as a system.

In order to measure resource usage, we annotate the reduction semantics with a cost k: allocation has
a cost of +1, deallocation has a cost of −1, and the other reductions carry no cost. We define the reflexive
transitive closure R∗ of a costed relation R as follows:

P R∗0 P

P Rl P′ P′ R∗k P′′

P R∗l+k P′′

Example 1. Resource mismanagement in Rπ may result in unexpected behaviour:

M,c :> .freec.(c!1 ‖ c?x.P) ‖ allocy.(y!42 ‖ y?z.Q) (1)

→−1 M,c :⊥ . c!1 ‖ c?x.P ‖ allocy.(y!42 ‖ y?z.Q) →+1 M,c :> . c!1 ‖ c?x.P ‖ c!42 ‖ c?z.Q (2)

In this example premature deallocation of channel c (1) allows c to be reallocated by the right process (2).
This leads to unintended behaviour through interferences when communicating on c: these interferences
are unintended because, intuitively, allocation should yield “fresh” channels. �

In [4] we defined a type system with judgements Γ ` P and Γ ` M precluding such unwanted be-
haviour; the type syntax and the typing rules for processes are shown in Fig. 2. Channel types are
denoted as [~T]a, where type attributes a range over “1” for affine, “(•, i)” for unique-after-i (i ∈ N), and
“ω” for unrestricted channels (no usage restrictions or guarantees). The type system is substructural,

2

Reasoning about Explicit Resource Management de Vries, Francalanza and Hennessy

Types and Type Attributes

T ::= [~T]a (channel type)
| proc (process)

a ::= 1 (affine)
| ω (unrestricted)
| (•, i) (unique after i steps, i ∈ N)

Logical rules

Γ,u : [~T]a−1 ` P
tOut

Γ,u : [~T]a,
−−→
v :T ` u!~v.P

Γ,u : [~T]a−1,
−−−→
x :T ` P

tIn
Γ,u : [~T]a ` u?~x.P

Γ1 ` P Γ2 ` Q
tPar

Γ1,Γ2 ` P ‖ Q

u,v ∈ Γ Γ ` P Γ ` Q
tIf

Γ ` if u = v then P else Q

Γω,X :proc ` P
tRec

Γω ` recX.P
tVar

X :proc ` X

Γ ` P
tFree

Γ,u : [~T]• ` freeu.P

Γ, x : [~T]• ` P
tAll

Γ ` alloc x.P
tNil

∅ ` nil

Γ′ ` P Γ � Γ′

tStr
Γ ` P

where Γω can only contain unrestricted assumptions and all bound variables are fresh.

Structural rules (�) is the least reflexive transitive relation satisfying

T = T1 ◦T2
tCon

Γ,u :T � Γ,u :T1,u :T2

T = T1 ◦T2
tJoin

Γ,u :T1,u :T2 � Γ,u :T

tWeak
Γ,u :T � Γ

T1 ≺s T2
tSub

Γ,u :T1 � Γ,u :T2
tRev

Γ,u : [~T1]• � Γ,u : [~T2]•

Counting channel usage

Γ,c : [~T]a−1 def
=

Γ if a = 1
Γ,c : [~T]ω if a = ω

Γ,c : [~T](•,i) if a = (•, i + 1)

Type splitting

pUnr
[~T]ω = [~T]ω ◦ [~T]ω

pProc
proc = proc◦proc

pUnq
[~T](•,i) = [~T]1 ◦ [~T](•,i+1)

Subtyping

sIndx
(•, i) ≺s (•, i + 1)

sUnq
(•, i) ≺s ω

sAff
ω ≺s 1

a1 ≺s a2
sTyp

[~T]a1 ≺s [~T]a2

Figure 2: Typing processes

3

Reasoning about Explicit Resource Management de Vries, Francalanza and Hennessy

Γ ` P Γ ` M Γ is consistent
tSys

Γ ` M .P

∀c ∈ dom(Γ).M(c) = >

Γ ` M

Figure 3: Typing systems

so that typing assumptions can be interpreted as permissions. This is especially evident in the rule for
parallel composition (tPar) where a permission can be used by either the left process or the right, but
not by both. Some permissions can be split, however, using contraction (tStr, tCon). For example, an
assumption c : [~T](•,i) can be split as c : [~T]1 and c : [~T](•,i+1) (pUnq). Dually, c : [~T]1 and c : [~T](•,i+1) can
be consolidated again into c : [~T](•,i) (tJoin). Permission splitting and merging plays a major role in the
behaviour equivalences we study in Sections 3 and 4.

The type system guarantees that when a process is typed wrt. a unique assumption for a channel,
[~T](•,0), no other process has access to that channel. This means that deallocation and strong update
(changing the object type of a channel) are safe for unique channels. In this paper we take advantage of
this type system to provide a behavioural theory for Rπ.

3 Labelled Transition System

We introduce a labelled transition system (LTS) dealing with permission ownership and transfer to enable
compositional reasoning about resource management in Rπ processes. The LTS is defined over triples of
the form Γ /M .P, where Γ is the typing environment that types the observer. Γ /M .P is a configuration
if there is a global set of permissions Γglobal which can be distributed as the permission Γ of the observer
and some (existentially quantified) permissions ∆ of the process. Both the observer and the process can
only have typing assumptions for channels which have been allocated.

The LTS is defined in Fig. 4. Consider rule lOut, describing process output to the observer, which
captures the two forms of permission transfer discussed in the introduction. First we have the explicit
transfer where the observer, characterized by the type environment Γ,c : [~T]a, gains the permissions ~d : ~T
for the channels received from the process; the process loses these permissions, although this is implicit
in the rule (it follows from the typing of the output process). Second, implicit transfer occurs in one of
two ways. If the observer has a unique-after-i permission for c, it gets one step closer to recovering full
permission on c after the communication, since the process will have lost the corresponding (necessarily
affine) permission. Dually, if the observer has an affine permission, this permission is transferred in the
opposite direction. In the extreme case where this affine permission is the only one in Γ, the observer
loses all knowledge of channel c. This is formalized by the operation Γ,c : [~T]a−1 (a , •), given in Fig. 2.

Rule lStr allows the observer to apply structural operations to its permissions, such as splitting a
unique permission into a unique-after-1 and an affine permission; see Fig. 2 for the definition of (�).

4 Costed Bisimulation and Characterization

We define an amortized bisimulation [6] to compare the efficiency and behaviour of systems M .P and
N .Q at some credit n, where M . P and N .Q exhibit the same behaviour but M . P is more efficient;
the credit allows M .P to do a more expensive action than N .Q as long as the credit can make up for
the difference. The amortized bisimulation is typed wrt. to an environment Γ characterizing the observer
[5]. Novel in the definition of this bisimulation is that we explicitly allow local bijective renamings σΓ

4

Reasoning about Explicit Resource Management de Vries, Francalanza and Hennessy

Process moves

lOut

Γ,c : [~T]a / M . c!~d.P
c!~d
−−→0 Γ,c : [~T]a−1, ~d : ~T / M . P

lRec
Γ /M .recX.P

τ
−→0 Γ /M .P{recX.P/X}

lIn

Γ,c : [~T]a, ~d : ~T / M . c?~x.P
c?~d
−−→0 Γ,c : [~T]a−1 / M . P{~d/~x}

Γ1 /M .P
c!~d
−−→0 Γ′1 /M .P′ Γ2 /M .Q

c?~d
−−→0 Γ′2 /M .Q′

lCom-L
Γ /M .P ‖ Q

τ
−→0 Γ /M .P′ ‖ Q′

Γ /M .P
µ
−→k Γ′ /M′ .P′

lPar-L
Γ /M .P ‖ Q

µ
−→k Γ′ /M′ .P′ ‖ Q

lThen
Γ /M .if c = c then P else Q

τ
−→0 Γ /M .P

lElse
Γ /M .if c = d then P else Q

τ
−→0 Γ /M .Q

lAll
Γ /M,c :⊥ .alloc x.P

τ
−→+1 Γ /M,c :> .P{c/x}

lFree
Γ /M,c :> .freec.P

τ
−→−1 Γ /M,c :⊥ .P

Environment moves

lAllE
Γ /M,c :⊥ .P

alloc
−−−−−→+1 Γ,c : [~T]• /M,c :> .P

lFreeE
Γ,c : [T]• /M,c :> .P

freec
−−−−−→−1 Γ /M,c :⊥ .P

Γ � Γ′

lStr
Γ /M .P

env
−−−→0 Γ′ /M .P

Figure 4: LTS Process Moves

of names that are not known to the observer (that is, we must have c ∈ dom(Γ) implies cσΓ = cσ−1
Γ

=

c). Bijective renamings are comparable to alpha-renaming of scoped bound names in the standard π-
calculus. In our calculus however, processes may regain uniqueness of a channel after “extruding” it, as
illustrated in the next example.

Example 2. Consider clients C0 and C1 from the introduction and an observer characterized by Γ =

srv1 : [[Bool]1]ω,srv2 : [[Int]1]ω. Since these two clients have different memory behaviour, they need to
be typed under different typing environments. The bisimulation relation handles this by relating config-
urations, which existentially quantify over process type environments.

When the clients interact with Γ on srv1, they both send channels that are not known to Γ (the
channel allocations for x1 and x respectively) and bijective renamings allow us to match these actions.
More importantly however, the same situation repeats itself when the clients interact with the observer
on srv2. C0 sends the yet unused channel allocated for x2 whereas C1 reuses the channel allocated
for x. From the point of view of the observer, however, the situation is indistinguishable from the first
interaction on srv1, as the server will have lost all permissions for the channel it received from the client
(x or x1) after using it to send a reply. Our LTS allows us to track these permission consumptions and,
once again, bijective renamings allow us to match these actions.

It is important that these renamings are locally bijective: we rename x to x1 during the first interac-
tion, and x to x2 in the second. �

Definition 1 (Amortised Typed Bisimulation). An amortized type-indexed relation over processes R is a
bisimulation at Γ with credit n if, whenever Γ � (M .P)Rn (N .Q),

• If Γ /M .P
µ
−−→k Γ′ /M′ .P′ then there exist σΓ,N′ and Q′ such that

5

Reasoning about Explicit Resource Management de Vries, Francalanza and Hennessy

Γ / (N .Q)σΓ

µ̂
=⇒l Γ′ .N′ .Q′ where Γ′ � (M′ .P′)Rn+l−k (N′ .Q′)

• If Γ /N .Q
µ
−−→l Γ′ /N′ .Q′ then there exist σΓ,M′ and P′ such that

Γ / (M .P)σΓ

µ̂
=⇒k Γ′ .M′ .P′ where Γ′ � (M′ .P′)Rn+l−k (N′ .Q′)

where
µ̂
=⇒l is

τ
−→
∗
l if µ = τ and

τ
−→
∗
l1
µ
−→l2

τ
−→
∗
l3 (l = l1 + l2 + l3) otherwise. Bisimilarity at Γ with credit n, denoted

Γ � M .P @∼n
bis N .Q, is the largest amortized typed bisimulation at Γ with credit n.

Example 3. For an observer characterized by Γ = srv1 : [[Bool]1]ω,srv2 : [[Int]1]ω, we can prove
Γ � (M .C1) @∼0

bis (N .C0) and Γ � (M .C2) @∼0
bis (N .C1). We however can neither prove that Γ � (M .

C0) @∼n
bis (N .C1) nor that Γ � (M .C1) @∼n

bis (N .C2) for any n.

An important theoretical result is that our amortized bisimulation admits compositional analysis.

Theorem 1 (Compositionality). If Γ,Γ′ � (M .P) @∼n
bis (N .Q) and Γ′ ` R then

Γ � (M .P ‖ R) @∼n
bis (N .Q ‖ R) and Γ � (M .R ‖ P) @∼n

bis (N .R ‖ Q)

This theorem allows us to abstract away from common code when exhibiting bisimulations by ex-
tending the observer environment with the permission environment that characterizes this code.

We also give a sound and complete characterization of our amortized bisimulation in terms of our
reduction semantics through a costed version of reduction closed barbed congruence which takes into
account the transfer of permissions. This congruence relies on a novel definition of contextuality, which
tracks permission transfer in a similar way to Theorem 1.

Definition 2 (Contextuality). An amortized type-indexed relation R is contextual at environment Γ iff
whenever Γ � (M .P1) Rn (N .P2):

1. If M = M′,c :⊥ and N = N′,c :⊥ then Γ,c : [~T]• � (M′,c :> .P1) Rn (N′,c :> .P2)

2. If Γ � Γ1,Γ2 where Γ2 ` Q then Γ1 � (M .P1 ‖ Q) Rn (N .P2 ‖ Q)

Definition 3 (Cost Improving). An amortized type-indexed relation R is cost improving at credit n iff
whenever Γ � (M .P) Rn (N .Q) and

1. if M .P→k M′ .P′ then N .Q→∗l N′ .Q′ such that Γ � (M′ .P′) Rn+l−k (N′ .Q′);

2. if N .Q→l N′ .Q′ then M .P→∗k M′ .P′ such that Γ � (M′ .P′) Rn+l−k (N′ .Q′).

Definition 4 (Barb). (Γ /M .P) ⇓barb
c

def
= c ∈ dom(Γ) and (M .P)→∗k≡ (M′ .P′ ‖ c!~d).

Definition 5 (Barb Preservation). A typed relation R is barb preserving if and only if

Γ � M .P R N .Q implies
(
Γ /M .P ⇓barb

c iff Γ /N .Q ⇓barb
c

)
.

Definition 6 (Behavioral Contextual Preorder). -Γ,n
beh is the largest family of amortized typed relations

that is barb preserving, cost improving at credit n and contextual at environment Γ.

Theorem 2 (Full Abstraction). Γ � (M .P) @∼n
bis (N .Q) iff Γ � (M .P) -n

beh (N .Q).

Example 4. For any observer characterized by Γ = srv1 : [[Bool]1]ω,srv2 : [[Int]1]ω, we can choose
an appropriate context to show that, for any n, we cannot have Γ � (M .C0) -n

beh (N .C1) or Γ �
(M .C1) -n

beh (N .C2). Despite the quantification over all possible contexts in Definition 6, we can also
show that Γ � (M .C1) -0

beh (N .C0) and Γ � (M .C2) -0
beh (N .C1) following Example 3 and Theorem 2.

6

Reasoning about Explicit Resource Management de Vries, Francalanza and Hennessy

5 Conclusions and Related Work

We outlined how to take advantage of uniqueness information to construct compositional proof tech-
niques for comparing behaviour and amortized resource usage efficiency in Rπ. We gave a sound and
complete characterization of the proof method in terms of a costed preorder based on the reduction
semantics, which relies essentially on a novel definition of contextuality that takes care of permission
transfer.

Kobayashi et al. [7] introduce an affine type system for the π-calculus and a definition of reduction
closed barbed congruence, but no compositional proof methods. Yoshida et al. [9] define a linear type
system for a calculus based on πI in which dynamic sharing is controlled dynamically, limiting channel
reuse. They give compositional proof techniques for their behavioural equivalence, but no complete
characterization.

Our unique-after-i type is related to fractional permissions, introduced in [3] and used in settings such
as separation logic for shared-state concurrency [2]. A detailed survey of this field is however beyond
the scope of this paper.

Pym and Tofts [8] give a behavioural theory for SCCS with resources based on separation of permis-
sions. They define a bisimulation relation, and show that it can be characterized by a modal logic. A
comparison between their untyped approach and our typed approach would be worthwhile.

The use of substitutions in our bisimulation is reminiscent of the name-bijections used in spi [1].
In the spi calculus however these bijections are carried through the bisimulation, whereas we use local
renamings (one per action). This is essential to enable more channel reuse.

References
[1] Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Proof techniques for cryptographic processes. SIAM

J. Comput., 31(3):947–986, 2001.
[2] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. Permission accounting in sepa-

ration logic. SIGPLAN Not., 40(1):259–270, 2005.
[3] John Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static Analysis: 10th

International Symposium, volume 2694 of LNCS, pages 55–72. Springer, 2003.
[4] Edsko de Vries, Adrian Francalanza, and Matthew Hennessy. Uniqueness typing for resource management in

message-passing concurrency. CoRR, abs/1003.5513, 2010.
[5] Matthew Hennessy and Julian Rathke. Typed behavioural equivalences for processes in the presence of sub-

typing. Mathematical Structures in Computer Science, 14:651–684, 2004.
[6] Astrid Kiehn and S. Arun-Kumar. Amortised bisimulations. In FORTE 2005, volume 3731 of LNCS, pages

320–334, 2005.
[7] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus. ACM Trans.

Program. Lang. Syst., 21(5):914–947, 1999.
[8] David Pym and Chris Tofts. A calculus and logic of resources and processes. Form. Asp. Comput., 18(4):495–

517, 2006.
[9] Nobuko Yoshida, Kohei Honda, and Martin Berger. Linearity and bisimulation. Journal of Logic and Algebraic

Programming, 72(2):207 – 238, 2007.

7

View publication statsView publication stats

https://www.researchgate.net/publication/262601177

	Introduction
	Language
	Labelled Transition System
	Costed Bisimulation and Characterization
	Conclusions and Related Work

