-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk
provided by OAR@UM

Distributed Protocols as Behaviours in Erlang

Darren Demicoli
CS, ICT
Univeristy of Malta
ddem0003@um.edu.mt

ABSTRACT

We investigate the implementation of standard algorithms
for three classes of Distributed Agreement problems in Er-
lang, an industry-strength language for programming fault-
tolerant distributed systems. We develop a framework to
bridge the gap between the assumptions of these standard
algorithm and the network abstraction provided by Erlang,
and structure our implementations as reusable behaviours
within this framework.

Keywords
Distributed Algorithms, Erlang, Fault-Tolerance

1. INTRODUCTION

Programming reliable distributed systems is hard due to
the additional complexities introduced by the decentralised
underlying architecture, such as multiple interleavings of dis-
tributed code, network asynchrony, i.e., no guarantees on
execution and communication times, and node and link fail-
ures. These aspects increase the potential for errors in the
code and make it hard to reproduce (and hence debug) er-
TOrs.

Various literature exists on how to program distributed
systems reliably[7, 6]. Most of these argue that distributed
programs can often be distilled into, and expressed as, a
collection of recurring distributed problems such as Atomic
Commit and Reliable Broadcast. Devising algorithms for
these problems is an active area of research and a number
of established algorithms exist that are know to correctly
implement a solution to these distributed problems.

In this paper we report on the implementation of a number
of these algorithms in Erlang [1], an industry-strength func-
tional language for programming fault-tolerant distributed
systems. We package these algorithm implementations as
modules offering suite of protocols (Erlang behaviours) which
follow the host language’s code practices such as those dic-
tated by the Erlang/OTP standards[8]. This structure of
code organisation is attractive for a number of reasons: it ab-
stracts the complexities of these algorithms underneath the
protocol interface, it standardises code and it also simplifies
the development and maintainability of Erlang distributed
applications through code reuse.

Although most of these algorithms are well-understood
and verified correct, their implementation poses problems
even in a domain specific language such as Erlang. Prob-
lems arise due to semantic incompatibilities i.e., when the
algorithms assume a model that has no direct mapping in

Adrian Francalanza
CS, ICT
Univeristy of Malta
adrian.francalanza@um.edu.mt

o
H
=
i

r

t.’me'

Figure 1: Node failure with an unreliable broadcast
algorithm

the host language and context adaptations i.e., additions
and modifications to the algorithm to satisfy additional re-
quirements imposed by the host language[10]. The paper
discusses such obstacles encountered and describes how we
addressed them in our implementation.

The paper is structured as follows. Sec. 2 introduces the
running example to be implemented in Erlang and Sec. 3
outlines the main obstacles encountered. Sec. 4 and Sec. 5
discuss our solution to these problems and Sec. 6 evaluates
our solution. Sec. 7 concludes with directions for future
work.

2. MOTIVATION

Consider a distributed system in which participant nodes
have the following operations:

e File Transfer: sending files to all other nodes, which is then
stored by the receivers.

e File Execution: executing files at all remote nodes.

In order to handle the complexities associated with dis-
tributed systems, both operations can be expressed in terms
of Reliable Broadcast, a distributed problem specifying func-
tionality for reliably sending messages to all nodes (broad-
cast) and receiving messages broadcast by other nodes. Im-
plementing an algorithm that solves Reliable Broadcast is
non-trivial. Fig. 1 outlines what may happen when the
sender crashes whilst broadcasting and only manages to send
the message to just P» before failing, leaving the system in
an inconsistent state since Ps; never gets the message.

Given the complezity of the algorithm required to solve
this problem (cf. Fig. 3) and its reuse in the implementation
of the two operations, it makes sense to abstract its imple-
mentation and package it as a reusable unit which can be
called through some specified interface, as shown in Fig. 2.
This code organisation carries obvious advantages because

https://core.ac.uk/display/132619566?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FILE TRAMSFER FILE EXECUTION

zznd_filz stors =xzr_filz =30

broadcast deliver

RELIABLE BROADCAST

Figure 2: Usage of a Reliable Broadcast module for
reliable file transfer and execution

it enables testing of the algorithm in isolation, standardises
implementation, reduces the risk of errors in the code and
expedites development.

In fact, Reliable Broadcast embodies just one class of
distributed algorithms known as Agreement Problems|7][6];
other classes include Distributed Consensus, where every
participants agree on some decision based on a proposal
given by the participants themselves and Atomic Commit,
where an action must be carried out by all participants or
none.

Descriptions of algorithms solving these problems follow
an asynchronous event based model, whereby event handlers
execute concurrently and in isolation, and may, in turn, trig-
ger other event handler by generating events themselves.
Moreover their presentation is often organised in terms of
module interfaces consisting of:

External events handled: These are events that can be
triggered by the user of this module. For example, Reg-
ular Reliable Broadcast, handles the broadcast event, to
send messages to all processes.

Callbacks Expected: These are event handlers that he
user of a module is expected to implement. For exam-
ple, the Regular Reliable Broadcast callbacks the de-
liver event, which should indicate that a message was
received from a process.

The host language chosen, Erlang, provides a level of ab-
straction that lends itself well to the implementation of algo-
rithms described in this manner. Erlang processes are an in-
tegral part of the language and are lightweight enough to be
used directly to model event handlers. Moreover, these pro-
cesses interact through message-passing which can, in turn,
be used to model in straightforward fashion asynchronous
events. Crucially though, Erlang allows one to structure
code as behaviours, modules that, apart from specifying the
signature of functions implemented by the module, specify
also signatures of functions that are expected to be imple-
mented by the used of the module. This allows one to closely
follow the algorithm specification expressed in terms of mod-
ule interfaces discussed above with external event handlers
and callbacks.

3. IMPLEMENTATION OBSTACLES

Despite these advantages, the implementation of these
agreement algorithms in Erlang still posed problems. In or-
der to facilitate our explanations, we first look in more detail

module regular relisble broadcast

uszes best_effort broadcast

uses perfect_failure detector
%% Event Handlers
upon event init () do

Delivered o,
Correct r

¥ rell - Fromie) 0.

upon event broadcast (Msg) do
trigger best_effort broadcast:broadcast({self(), Msg}).

upon event beb_deliver(Relay, {Sender, M=g}) do
({Sender, Msg! 4 Delivered)
Delivered Delivered U { {Sender, HMsg} }
callback rrk_deliver| Sender, Msg)

From[Relay] From[Relay] U { {Sender, Msg} }

Relay e Correct
trigger besc_effort_broadcast:broadcast ({Sender, Msg})
upon event crash(Who) do

Correct

V{Se:de:, M=g

oadcast :broadcast ({Sender, Msgl)
Figure 3: Regular Reliable Broadcast Algorithm

at the specification of Regular Reliable Broadcast from our
running example of Fig. 2. This will enable us to pinpoint
the issues involved and allow the reader to better appreciate
our approach.

3.1 Regular Reliable Broadcast

This specification is expressed in terms of the following
three properties:

Agreement: All correct participants deliver the same set
of broadcast messages.

Validity: If a correct participant p broadcasts message m,
this eventually gets delivered by all correct partici-
pants in the system.

Integrity: For any message m, every participant delivers m
at most once, and only if it was previously broadcast.

The algorithm solving the Regular Reliable Broadcast spec-
ification requires every participant to store all the messages
it delivers. Whenever its failure detector detects that some
participant crashed, it will relay all the messages it has re-
ceived from this crashed participant to the rest of the par-
ticipants, on the premise that this crashed participant could
have crashed without being able to successfully send the
message to all the participants. Since when a participant
crashes, multiple participants might attempt to relay this
message to other participants, every participant also needs
to keep a set of all the messages it delivered (Delivered), in
order to ensure that every message only gets delivered once.

Fig. 3 presents an algorithm for the Regular Reliable Broad-
cast, adapted from [6] following the asynchronous event-
based programming model discussed in Sec. 2. It contains
event handlers for the init, broadcast, beb_deliver and crash
events. The first two events are part of the interface of
the algorithm. The beb_deliver event is a callback of the
best_effort_broadcast module being used by this module (line
3). The best effort broadcast is a broadcast specification
which just sends the message to all processes, one after the
other (but provides no agreement guarantees if the sender

crashes). The beb_deliver callback indicates that a mes-
sage was received through the Best_effort_broadcast mod-
ule. Line 13 is an example where the broadcast event of the
best_effort_module is being triggered. The crash(Who) event
is a callback of the perfect_failure_detector module (line 4).
This indicates that the process whose PID is Who, crashed.
Note also that the algorithm uses a number of global vari-
ables: Delivered, Correct and From. The first two are sets,
whereas From is a mapping between PID’s and sets of mes-
sages.

The algorithm relies on an asynchronous system model
where no assumption is made on the delays of messages ex-
changed and on the execution times. It also assumes a crash-
failure model of failure: participants which fail are assumed
to remain in this failed state forever. Participants which
do not crash are said to be correct, whereas participants
which do crash are referred to as faulty. It also relies on
the concept of failure detectors [2], an abstraction providing
information about the state of participants (whether they
crashed or not). In particular it assumes a perfect failure de-
tector, guaranteeing completeness i.e., all failed participants
are detected, and accuracy i.e., all correct participants are
not detected to be failed.

3.2 Implementing Regular Reliable Broadcast

Implementing the algorithm in Fig. 3 in Erlang is not as
straightforward as one would expect. It poses the following
problems:

Immutable State: The algorithm makes use of global vari-
ables (such as the correct and delivered sets) and as-
sumes a shared memory programming model. How-
ever, Erlang functions have an immutable state and Er-
lang processes communicate exclusively through mes-
sage passing and not global variables.

Asynchronous Event Functionality: Although Erlang’s
message passing mechanism model is analogous to the
asynchronous event based model followed by the al-
gorithm, some work is required to implement predi-
cate triggered events - events which instead of being
triggered by an external module, are triggered when a
particular boolean predicate becomes true.

Process Communication: The algorithm in Fig. 3 com-
municate at a participant to participant level which re-
quires all senders to know the PID (or a globally unique
name) of the receiver. In our implementation, how-
ever, these participants are decoposed into processes
(one per event handler) and communication happens
at a process to process level. Moreover, these processes
are distributed across nodes (one node for every par-
ticipant) each of which has a globally unique name. It
would be more practical for processes to send messages
to a gateway process on every node which forwards the
messages to all the relevant process.

Perfect Failure Detector: The agreement algorithms, con-
sidered in this work, assume a perfect failure detector.
Erlang comes equipped with its own failure detector
which, however, does not guarantee strong accuracy.
In particular, the heartbeat mechanism used can erro-
neously suspect that a participant has died. In order to
implement these algorithms, further work is required

to come up with a failure detector which satisfies the
strong accuracy properties.

Unreliable Communication: Distributed process commu-
nicate by exchanging messages. Nevertheless, mes-
sages can be lost after being sent and never reach their
recipient. However, formal algorithms assume perfect
communication links meaning that messages sent will
eventually be delivered. Clearly, this can cause prob-
lems because messages might never reach their desti-
nation and hence a mechanism to guarantee delivery
is required.

4. ERLANG IMPLEMENTATION

4.1 Implementation Framework

The agreement algorithms implemlemented in this work
share a number of similarities. A common implementation
framework was devised so as to (i) provide a common struc-
ture to these algorithms (i¢) standardise the implementa-
tion of certain mechanisms common to all algorithms. This
framework provides a coherent way by which to implement
asynchronous event based algorithms on top Erlang’s mes-
sage passing model. It structures the implementation of ev-
ery algorithm as a sequence of responses to particular events.
During an execution of the algorithm, events are sent as mes-
sages and reside in the receiver process’ mailbox. Moreover,
the framwork standarises the encoding and access of the in-
ternal state of an algorithmy; it is maintained an Erlang tuple
! which is retrieved and updated by every event handler.

This framework also forces all algorithms to be imple-
mented as Erlang behaviours. Behaviours are an Erlang
construct by which strict interfaces for module composition
can be defined. As an example, the reliable broadcast mod-
ule can ensure that modules using it will implement the
rrb_deliver function which is triggered whenever a message is
reliably delivered. Through this code structuring construct,
the framework inherently allows for better module composi-
tion, which eases reusability when implementing agreement
algorithm descriptions which build on top of one another.

4.2 Bridging the System Model from theory
with Erlang’s programming model

The framework addresses the implementation obstacles
outlined in Sec. 3.2; since these obstacles are common to all
algorithms it made sense to package their solution into the
framework itself. Below, we discuss how we bridged the dis-
crepancies between the description in Fig. 3 and the Erlang
programming level of abstraction in our implementation.

Working with Immutable State: Internal states are main-
tained through recursive processes i.e., a function within
a process calling itself with the new state as an argu-
ment, every time the internal state changes. The inter-
nal state then changes as a result of messages passed
between one process and another. This implementa-
tion is coherent with the Erlang/OTP gen_server be-
haviour [1], which provides a standard and reusable
way for developing a generic server invoking a par-
ticular function for every type of message received.
More specifically, it provides a gen_server:cast/2 call to

'This is similar to a record data structure, but can be ac-
cessed through pattern matching

asynchronously send a request to a gen_server process
and also triggers the callback gen_server:handle_cast/2
within a gen_server process, to handle requests sent
(casted).

Providing Asynchronous Event Functionality: The us-
age of the gen_server also provides a straightforward
mapping between the algorithms and the actual Er-
lang implementation. Since every algorithm is being
handled by a gen_server process, event handlers are
implemented through handle_casts/2. Moreover, the
cast/2 call can be seen as triggering an event on the
process (since this will be handled in isolation and
asynchronously). Moreover, these cast calls can be ac-
cesses through wrappers which make their usage even
simpler.

Naive implementation for predicate triggered events
would require a polling mechanism that repeatedly
checks for the satisfaction of thus triggering condition.
Instead, in our implementation, this is checked at the
end of every event handler execution because the in-
ternal state can only change after an event handler is
executed.

Providing Simple Process Communication: Instead of
requiring that every process is given a unique global
name (through the use of the global module) we opted
for a cleaner approach where every node also hosts an-
other process which does not implement any agreement
algorithm, as all the other processes: the main pro-
cess. This process will have a globally registered name
whose name is taken directly from the name given to
start the Erlang shell 2.

This main process acts as a message gateway and for-
wards messages to the other processes in the node.
Processes only need to know the name of the main
processes at other nodes. Whenever a message is sent,
the name of the module which should deliver the mes-
sage, will also be included. This way, the main process
at the recipient node, will be able to forward the mes-
sage to the appropriate process.

Implementing a Perfect Failure Detector: We used the
existing Erlang failure detection mechanism and linked
main processes of each node with one another, setting
them to trap EXIT signals. Hence, if a node crashes,
the main processes in other nodes, will detect that the
failure of a main process and trigger the crash/1 event
on all local processes. Erlang failure detection how-
ever uses a heartbeat mechanism which only guaran-
tees strong completeness but only weak accuracy and
conditions such as network delays may cause a pro-
cess to think that another process crashed. In order
to tackle this problem, once a process is detected as
having crashed, it is sent a KILL message that forces
the process to truly crash (fail fast).

Working with Unreliable Communication: Once a mes-
sage is sent, the sender process progresses. Internally
however a sub process is spawned and keeps sending
this message (after some delay) until an acknowledge

2Given as a parameter to the sname or name command line
argument

riours implemented
r{gen server).
(perfect_failure_detector).

our (be_rk) .
%% Callbacks Implemented
—Ex t([crash/1]).
—2xX T [kbeb_deliwver 2]).
—export ([inic/l, handle call 3, handle cast 2,
handle info/2Z, terminate/Z, code_ change/3]).

[{rrb_deliver, 2}]:
undefined.

broadcast ({Module,Mag})

gen_server:cast (?MODULE, {broadcast, Module, Msgl).

bek deliver (From, {Sender, Msg })
gen_server:cast (?MCDULE, {deliver, From, Sender, Msg}l).

crash (Who)
gen server:cast (?MODULE, {crash, Who}).
%% gen_server handle casts callbacks
handle cast(init, _3State)
Correct sets: £ list|
[node_utils utils:get all peers()]),

Delivered

Figure 5: Event Handlers and handle_cast for init

is received. This overcomes the obstacles of lost mes-
sages in the network.

Fig. 4 presents the first part of the module implementing
the algorithm for regular reliable broadcast (called r_rb in
line 1). Note that this module uses a gen_server behaviour
(line 4) along with the perfect_failure_detector and best ef-
fort broadcast (be_rb on line 6). Lines 8-12 export functions
which serve as callbacks to the behaviours implemented call-
backs (note that the export on line 11 is for the gen_server
behaviour. The remaining code defines the interface to this
algorithm. The behaviour_info function indicates the call-
back functions called by this module.

Fig. 5 shows the event handlers wrapper functions. These
function are wrappers around the gen_server:cast function
calls, so as to provide asynchronous event like semantics.
Note that on line 28, the broadcast event takes a Module
argument. This specifies the module where the callback for
rrb_deliver is to be triggered®. Lines 39 onwards start giv-
ing the implementations of the handle_cast function. Each

3In practice, this is generally set to the ?MODULE macro
which automatically inserts the name of the current module

handle cast({deliver, Relay, Sender, Msg}, State)

{Correct, Delivered, From} State,
{Module, Data} Mag,
State_1 sets:is_element({Sender, Msg}, Delivered)
| element ({Sender, Msgl, Delivered),

er (Sender, Data), %% Callkack
pend (Relay, {S5ender, Msg}, From),

sets:is_element (Relay, Correct)
be_rb:broadcast ({?MODULE, {Sender, Msgi}):
ok
(
{Correct, Delivered 1, From 1};

{Correct, Delivered, From}
(
State 2 check predicates(State_1),
{noreply, State_2}:

Figure 6: handle_cast for beb_deliver

clause corresponds to an event handler in the theoretical al-
gorithm in figure 3. Here the definition of the init event
handler is given. Notice the usage of the Erlang/OTP sets
module and the dict module (for the From map). The Cor-
rect set should be initialized with all the PID’s of all par-
ticipants. This is through the use of function found in the
node_utils helper module. The initial state is defined as a
tuple of these three structures, and is returned.

Fig. 6 gives the handle_cast clause for the beb_deliver event
handler. First, all structures from the State variable are
read. As mentioned, the module where the deliver callback
resides, is broadcast together with the message - line 52 ex-
tracts the module and data which make up the message.
From this point onward, this function is very much in line
with the beb_deliver event handler given in the algorithm
from theory. Worth noticing is the callback call on line 57.
Here the rrb_deliver is called in the user Module.

Due to space restrictions, the implementation of the re-
maining event handlers will not be given here. However, in
principle this is identical to the ones given here.

5. USAGE
- [example) .
- our (r_rb) .
3% llback exports
- ro([rrb deliwer/2]).

send file (Hame)

{ok, Content} file:read file (Name),

r rk:broadcasc ({?HMODULE, {=store, Name, Content}l).
rrkb deliver(From, {store, Filename, Content})

file:write file(Filename, Content).

Figure 7: Implementation of reliable file transfer

We now reconsider the file transfer application given in
Sec. 2. Fig. 7 shows how the Regular Reliable Broadcast
behaviour implemented Sec. 4 can be used by the application
code for the file transfer application of Sec. 2. As can be
seen, the code required for the application, is now minimal.
This code abstracts all the complications associated with

correctly implementing the non-trivial algorithm outlined in
Sec. 3 and allows the programmer to focus on specifics of the
application code. This separation of concerns also improves
the intelligibility of the code. From Fig. 7 one can easily
understand that when a file is to be sent, its content is read
and is r_rb:broadcasted alongside the filename and an label
(atom) store. When a file is received, and the rrb_deliver
callback is invoked, its content will be stored locally.

rrb_deliver (From, {store, Filename, Contentl)
file:write file(Filename, Content):

rrb deliver (From, {exec, Path})
os:cmd (Path) .

exec file(Fath)
r rk:broadcasc ({?MCODULE, {exec, Pathll).

Figure 8: Two instances of the agreement protocol

Recall that the second operation exec of the file transfer
application in Sec. 2 also used reliable broadcast. Fig. 8
demonstrates how we require minimal code to implement
this second operation as well. Moreover, this new function-
ality follows the same structure as the previous functional-
ity. The rrb_deliver function is extended with another clause
(line 14), so that when rrb_function is now invoked, the cor-
rect clause will be chosen through pattern matching of the
message content.

6. RESULTS

Similar to the Regular Reliable Broadcast a number of
other agreement algorithms were implemented as part of a
framework, documented extensively in [4]. The algorithms
implemented include

e algorithms solving four variants of the broadcast problem,
namely Best Effort Broadcast, Uniform broadcast, Causal
Order broadcast and total order broadcast;

e algorithms solving consensus such as reqular flooding con-
sensus, regular hierarchical consensus, uniform consensus;

e algorithms solving atomic commit problems such as Two
Phase commit, Three Phase commit and Consensus Bases
Commit.

The framework extracted commonalities amongst all these
implementations and acted as a template when new algo-
rithms were implemented. The framework provided a natu-
ral mapping to the Erlang code with minimal external code.
In fact, the skeleton code for the framework itself only in-
troduced about 20 lines of code in every algorithm imple-
mented. Although sometimes, a simple formal construct
translated into multiple lines of code when implemented in
Erlang, these translations were handled by the framework
for the most part.

The framework also allowed us to reuse code across the
implemented algorithms themselves. For instance, Regular
reliable Broadcast relied on the implementation of an algo-
rithm implementing Best Effort Broadcast and was in turn
used to implement Causal Order Broadcast. Through our
framework, we were able build such protocols from existing

ones with relative ease. As a result of all of this, each algo-
rithm implementation only ranged between 50 to 200 lines
of code.

Of course, the framework was more about the structuring
of the code rather than about making the code as concise
as possible. However, at times, the framework introduced
additional context adaptations such as, for example, when
implementing predicate triggered events.

We tested the suite of protocols in two ways.

1. First we tested them individually as separate units us-
ing language specific testing tools such as Quickcheck|9]
and Pulse[3], whereby protocol specifications such as
that show in Sec. 3.1 guided the generation of our test
cases. We also worked in incremental fashion, whereby
we started from the basic algorithms that did not use
other algorithms e.g., the algorithm solving Best Effort
Broadcast, and then worked our way up the hierarchy
to the more complicated protocol. This structuring of
tests facilitated the discovery of bugs and also allowed
for reuse in our testing instrumentation.

2. We also implemented a Peer-to-peer file system that
used a number of these protocols in a manner already
outlined in Sec. 5. Here we also observed all the bene-
fits expected for separation of concerns obtained from
using the tested suite of distributed protocols such
code intelligibility, maintainability and correctness.

This testing process gave us reasonable confidence that the
suite of protocols was implemented correctly. The common
structure of the various algorithm implementation (induced
by the framework) made the task of testing even easier. Mo-
rover, through this common structure, test cases could often
be reused and applied to test the same correctness criteria
in different algorithms.

Through our Peer-to-Peer example, we can testify for the
suite’s amenability when developing reasonably complex dis-
tributed programs. The majority of the Peer-to-Peer code
dealt with interfacing with the operating system and retriev-
ing the filesystem actions being requested by the operating
system. This took about 70% of the code (approximately
800 lines). The other application specific code dealt with
identifying instances where a reliable algorithm needs to be
used and extracting or preparing the data which needs to
be sent. All these tasks take about 15% of the entire code
(or about 115 lines). All the remaining code dealt with call-
back handlers which either write or delete files and take ap-
proximately 15% of the code. Despite these values are very
much dependent on the application itself, one can easily see
that using the protocol suite saved on writing code. With-
out our protocol suite, most of the distributed computation
code would have had to be constructed form scratch by the
application developer and could easily have accounted for
about 50% of the entire Peer-to-Peer application code.

7. CONCLUSION AND FUTURE WORK

The implementation framework for agreement algorithms,
developed in this project, successfully meets the criteria
which were initially proposed. All algorithms are packaged
as reusable behaviours and hence can be easily utilized in
application code. Moreover, these make use of existing Er-
lang/OTP packages and follow code practices - hence are
relatively easy to maintain and extend. Finally, our method

of development gave us reassurances for the overall correct-
ness of these algorithms. Assuming that this is indeed true,
we believe that this work should help abstract the complex-
ities associated with reliable distributed programming, and
hence should help programmers produce cleaner and, more
importantly, correct code.

For future work we intend to use the protocol suite for
larger applications so as to better stress test the existing
implementations. In some cases, we also plan to optimise
existing algorithms so as to minimise the messages that need
to be send amongst the protocol participants; this will help
our protocol suite to scale better in applications where the
number of participants is considerable. Finally our setup
allows us formally verify, in modular fashion, the correctness
of our distributed protocol suite through more rigorous tools
such as Model Checkers for Erlang[5].

8. REFERENCES

[1] J. Armstrong. Programming Erlang - Software for a
Concurrent World. The Pragmatic Bookshelf, 2007.

[2] T. D. Chandra and S. Toueg. Unreliable failure
detectors for reliable distributed systems. J. ACM,
1996.

[3] K. Claessen, M. Palka, N. Smallbone, J. Hughes,
H. Svensson, T. Arts, and U. Wiger. Finding race
conditions in erlang with quickcheck and pulse. In
ICFP °09: Proceedings of the 14th ACM SIGPLAN
international conference on Functional programming,
New York, NY, USA, 2009. ACM.

[4] D. Demicoli. Distributed protocols as behaviours in
erlang. Technical report, University of Malta, 2010.

[5] L.-A. Fredlund. A Framework for Reasoning about
ERLANG code. PhD thesis, Royal Institute of
Technology,Stockholm, Sweden, 2001.

[6] Guerraoui and Rodrigues. Introduction to Reliable
Distributed Programming. Springer-Verlag Inc., 2006.

[7] N. A. Lynch. Distributed Algorithms. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
1996.

[8] E. M. Martin Logan and R. Carlsson. Erlang and
OTP in Action. Manning Publications, 2008.

[9] Quvig. Quickcheck.
http://www.cs.chalmers.se/ rjmh/QuickCheck/.

[10] H. Svensson. Verification of Distributed Erlang

Programs using Testing, Model Checking and Theorem
Proving. PhD thesis, Chalmers, University of
Gotenburg, 2008.

https://www.researchgate.net/publication/228583908

