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ABSTRACT
Temporal data from multimodal interaction such as speech
and bio-signals cannot be easily analysed without a prepro-
cessing phase through which some key characteristics of the
signals are extracted. Typically, standard statistical sig-
nal features such as average values are calculated prior to
the analysis and, subsequently, are presented either to a
multimodal fusion mechanism or a computational model of
the interaction. This paper proposes a feature extraction
methodology which is based on frequent sequence mining
within and across multiple modalities of user input. The
proposed method is applied for the fusion of physiological
signals and gameplay information in a game survey dataset.
The obtained sequences are analysed and used as predictors
of user affect resulting in computational models of equal or
higher accuracy compared to the models built on standard
statistical features.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
Human factors; I.2.1 [Artificial Intelligence]: Applica-
tions and Expert Systems—Games

General Terms
Algorithms, Experimentation, Human Factors

Keywords
sequence pattern mining, sequence classification, preference
learning, heart rate variability, skin conductance, game events

1. INTRODUCTION
Most of the modalities available for the analysis and mod-

eling of interaction with computers such as speech, gestures,
physiology and key presses (among others) are temporal by
nature. However, multimodal signal fusion and modeling
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methods require the transformation of those streams of data
into a fixed-sized vector of scalar features that describe dif-
ferent characteristics of the signals; such features are given in
a format suitable for empirical analysis and computational
modeling. This process, namely feature extraction, generally
involves a domain expert who chooses a set of statistical fea-
tures (e.g. average values) based on the available data in an
attempt to capture all the relevant qualitative characteris-
tics of the signals.

This paper applies frequent sequence mining [1] techniques
to automatically extract sequential features which capture
a range of signal characteristics and potentially reveal im-
portant interaction factors hindered by traditional feature
extraction. Sequential features can be used to analyse the
temporal trends within and across modalities but also pro-
vide appropriate input vectors for classification or prediction
models which are built in multimodal input spaces. Frequent
sequence mining has been applied before to sequence clas-
sification in different tasks including protein classification
and plan monitoring [4, 8]; however, this is the first time —
to the best of the authors’ knowledge — that has been ap-
plied to mine data streams across multiple user input modal-
ities. With this approach, the different sources of informa-
tion are combined before building a model (data-level fusion
[14]) achieving deeper fusion than feature-level or decision-
level fusion that facilitates a low level interpretation of the
interrelation between modalities and its effect on the tar-
get user output. Even though there exist machine learning
approaches that stream input data (e.g. Recurrent Neural
Networks, Hidden Markov Models and Dynamic Bayesian
Networks), the extraction of sequential features makes time-
related information available for and generic across any other
non-temporal based technique. Furthermore, the analysis of
dynamic models is often far from trivial due to recurrent
connections or complex state transitions.

We evaluate the proposed method in a game survey dataset
that includes gameplay logs and physiological recordings of
players. The Generalized Sequential Patterns (GSP) [18]
sequence mining algorithm is utilized to find sequential pat-
terns among the gameplay metrics and two physiological
signals — skin conductance (SC) and blood volume pulse
(BVP) — from the players. The sequences are analysed and
compared to a set of statistical features as inputs to Artificial
Neural Network (ANN) models trained to predict players’ af-
fective states reported as pairwise preferences. The results
of this initial study show that sequential features yield mod-
els of affect that are equally or significantly more accurate
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than the models built on simple statistical features for all
affective states examined.

2. RELATED WORK
This work applies sequence mining to fuse physiological

signals and gameplay information to generate an input vec-
tor for the prediction of player emotional preferences. This
section reviews earlier work on physiology and game-context
fusion and studies in which sequential patterns have been
used for prediction and classification tasks.

2.1 Fusion of Physiological Signals and Game
Context Information

In the interaction between a user and a system, the user’s
inputs — both low level (e.g. moving the mouse) and high
level (e.g. dragging an icon) — and their consequences on
the system (e.g. cursor and icon moved) determine a key
component of user experience. Fusing such information with
other modalities can yield user experience models that are
not only more accurate but also more informative since con-
text is added to the model [20].

Within game-player interaction studies, McQuiggan et al.
[13] created predictors of self-efficacy reports that rely on
statistical features extracted from several heart rate and
skin conductance signal intervals in conjunction with play-
ers’ self-reports and information about the visited positions
of the avatar and the cursor in a 3D learning environment. In
that study, the sequential information from the bio-signals
is transformed into a vector of features representing the av-
erage of the signals over different intervals. The gameplay
data, in turn, is reduced to a set of spatio-temporal features
such as the time spent on a task or a list of locations visited.
On the same basis, Martinez et al. [12, 20] trained predic-
tors of self-reported preferences in a 3D prey/predator game
on statistical features derived from heart rate, skin conduc-
tance, blood volume pulse and different game events. In
that study, the physiological statistical features (e.g. aver-
age, standard deviation and first and second absolute differ-
ences) are extracted from the full length of the game experi-
ence (i.e. 90 seconds) while the gameplay features consist of
statistical information such as distance to enemies or pellets
and performance measures such as the final score and the
fraction of the map explored.

While there exist several studies in player experience re-
search that use game context information and bio-signal in-
formation for the analysis and modeling of experience (e.g.
[9, 10, 3] among others) none has fused the time-series data
of these modalities by considering sequential patterns across
modalities.

2.2 Sequence Classification using Frequent Pat-
terns

Frequent sequential patterns are typically mined to detect
interesting common trends in the data and discover associ-
ation rules, correlations and other relationships [7] but they
can be applied also to the classification and clustering of
sequences.

Protein homology detection and classification is one of
the most popular sequence mining tasks. In [2], a set of
relevant subsequences (motifs) are predefined and each pro-
tein is represented as a vector of attributes; each attribute
represents the number of occurrences of a motif in the rep-

resented protein (generally, each motif will either occur once
or not occur).

In [4] a Näıve Bayes Classifier identifies the most probable
family to which a protein belongs to using as inputs the num-
ber and average length of the frequent subsequences shared
within each of the protein families.

One of the many differences between the task of classifying
proteins and processing multimodal signals is the temporal
nature of the signals: in a protein string every pair of con-
secutive elements has a distance of 1 unit while in a signal
the time distance between two elements is derived by the
sampling rate. This difference has an impact on the struc-
ture of sequences (e.g. in multiple time-series sequences two
events might occur simultaneously), the matching conditions
of sequential patterns and the procedure to match sequen-
tial patterns (e.g. in non-temporal sequences the number
of gaps between elements can be constrained whereas in a
temporal sequence the time between elements is constrained
instead).

Lesh et al. [8] define an effective method to mine features
for sequence classification. This method consists of mining
all sequential frequent patterns and prune those that are ei-
ther not distinctive of one of the target classes or correlated
with a pattern already selected. This pruning stage is neces-
sary since frequent mining can produce an enormous amount
of features that cannot be efficiently handled by a classifier.
In this paper, a similar approach to [8] is used but the set of
frequent sequential patterns is reduced by automatic feature
selection which searches for the combinations of sequences
that are more relevant for predicting a target output (i.e.
affective state in the case study presented).

3. FREQUENT SEQUENCE MINING
In this study we focus on the extraction of sequences that

combine events across different user input modalities col-
lected during the interaction with a system. We expect these
sequences to be critical for the analysis of the interaction in
terms of the interplay among different modalities of user in-
put. We also anticipate that frequent sequences across mul-
timodal signals can improve the detection accuracy of user
affect over other approaches that involve the reduction of
the signals through standard feature extraction. In this sec-
tion we formalize the problem of mining frequent sequences
and describe the algorithm applied to the case study.

Given a dataset in which each sample is a sequence of
events, namely data-sequence, a sequential pattern defined
as a subsequence of events is a frequent sequence if it occurs
in the samples of the dataset regularly. In general, the events
that form the sequences correspond to relevant changes on
the observed signal or system and are associated with a time
stamp (discrete moment on time when the event occurs)
and an identification (type of event). An event could be for
example an increase on heart rate, a key pressed or an action
unit activation in a facial expression task [15].

More formally, a sequential pattern is an ordered list of
elements — denoted as 〈e0e1 . . . en〉; ei is the ith element of
the sequence — each containing a non-empty (unordered)
set of m simultaneous events — denoted as (x0, x1, . . . , xm);
xi is an event. For example, an element could be two keys
pressed simultaneously, several action units executed at the
same time or an increase on heart rate (an element with
only one event). A frequent sequence can be defined as a
sequential pattern that is supported by, at least, a minimum



Algorithm 1 Generalized Sequential Patterns.

Input: a dataset of data-sequences, Smin, Gmax and Wmax

Output: the set of sequence patterns that are supported
by more than Smin data-sequences.
01: procedure GSP(data, Smin, Gmax, Wmax)
02: Count the number of data-sequences in which each

different event is contained (support count).
03: Insert the events with a support count greater than Smin

into the set of frequent 1-sequences (L1).
04: k = 1
05: while Lk is not empty
06: Generate the set of candidate (k + 1)-sequences

(Ck+1). See Algorithm 2 for more details.
07: Determine the support count of the sequences

contained in Ck+1.
08: Create the set of frequent (k + 1)-sequences (Lk+1)

with the sequences in Ck+1 that present a support
count greater than Smin.

09: k = k +1
10: return L1 ∪ L2 ∪ · · · ∪ Lk−1

amount of data-sequences as determined by the minimum
support (Smin) value. A data-sequence supports a sequential
pattern if and only if it contains all the events present in the
pattern in the same order. Note that this definition does
not restrict that events in consecutive positions within the
pattern must be strictly consecutive in the data-sequence.
For example, the data-sequence 〈x0x1x2x3x4x5〉 supports
the pattern 〈e0e5〉 with e0 = (x0) and e5 = (x5) if further
constrains are not specified. The amount of data-sequences
that support a sequential pattern is referred as the support
count.

In this paper we extent the basic definition of frequent
sequence with two of the generalizations proposed in [18]
which are as follows:

• Sliding window: given an element ei containing two or
more simultaneous events (x0, x1...xm), a data-sequence
contains ei if and only if all events occur in the data-
sequence within a given time window Wmax. In other
words, two or more events that occur in less than Wmax

may be considered to occur simultaneously.

• Time constrain: given two consecutive elements in a
pattern, eiei+1, a data-sequence may support the pat-
tern only if both elements occur in the specified order
and the time difference between their occurrences is
lower than a specified time threshold, maximum gap
(Gmax).

3.1 GSP algorithm
The Generalized Sequential Patterns algorithm [18] is used

for mining the frequent sequences in this study. GSP is a
candidate generation and test algorithm which supports the
constrains mentioned above. It first finds the frequent se-
quences with one single event, namely 1-sequences. That set
of sequences is self-joined to generate all 2-sequence candi-
dates for which we calculate their support count. Those se-
quences that are frequent (i.e. their support count is greater
than a threshold value Smin) are self-joined to generate the
set of 3-sequence candidates. The algorithm is iterational in-
creasing the length of the sequences in each algorithmic step,

Algorithm 2 Candidate generation in GSP.

Input: a set of (k − 1)-sequences Lk−1.
Output: the set of candidate k-sequences Ck.
01: procedure generateCandidates(Lk−1)
02: for each pair of sequences sx, sy ∈ Lk−1 with

sx = 〈ex1ex2 . . . exn〉 and sy = 〈ey1e
y
2 . . . e

y
n〉

03: if the two sequences obtained by dropping the first
event of sx and the last event of sy are identical

04: if eyn has only one event eyn = (y1)
05: Generate the candidate sequence sxy by

inserting y1 as last event of exn:
sxy = 〈ex1ex2 . . . exn−1(exn, y1)〉

06: else
07: Generate the candidate sequence sxy by

replacing exn with eyn: sxy = 〈ex1ex2 . . . exn−1e
y
n〉.

08: if all contiguous subsequences of sxy are
contained in Lk−1

09: Insert sxy into Ck.
10: return Ck

until the next set of candidates is empty. The basic principle
of the algorithm is that if a sequential pattern is frequent,
then its contiguous subsequences are also frequent. Given
two sequences sx and sy, sy is a contiguous subsequence of
sx if either: 1) sy is obtained by dropping the first or last
event of sx; or 2) sy is obtained by dropping an event from
an element of sx with two or more events; or 3) there exists
a sequence sz such that sz is a contiguous subsequence of sx
and sy is a contiguous subsequence of sz.

By self-joining a set of frequent sequences of length k, the
algorithm obtains only the (k+ 1)-sequences whose contigu-
ous subsequences are frequent, thereby, reducing the number
of sequential patterns for which support counts have to be
determined. The reader is referred to Algorithm 1 and Al-
gorithm 2 for a more detailed presentation of the basic steps
of the GSP algorithm.

4. USER EXPERIENCE MODELING
The dataset used in this paper contains sequences labeled

with pairwise preferences of affect (see Section 5). Neuroevo-
lutionary preference learning is applied to model those pref-
erences relying on a subset of the available features selected
automatically through Genetic Feature Selection. The two
algorithms are briefly described in the following subsections.

4.1 Genetic Feature Selection
Feature selection (FS) is essential in scenarios where the

available features do not have a clear relationship and, thus,
impact to the prediction of a target output (i.e. it is not easy
to decide a priori which features are useful and which are
irrelevant for the prediction). Moreover the computational
cost of testing all available feature sets is combinatorial and
exhaustive search might not be computationally feasible in
large feature sets. Under these conditions, FS is critical for
finding an appropriate set of model input features that can
yield highly accurate predictors [20].

Genetic feature selection (GFS) [12] is a global search FS
algorithm guided by a genetic search. The fitness function
is calculated as the average cross validation performance on
unseen folds of classification data. The search starts by eval-
uating the fitness of several subsets with one feature; in sub-
sequent iterations combinations of the fittest subsets from



the previous iterations are evaluated. The algorithm stops
after a fixed number of iterations or when highly fit feature
subsets are found. More details about GSF can be found
in [12].

4.2 Neuroevolutionary Preference Learning
We apply preference learning [5] to build affective models

that predict users’ self-reported emotional preferences based
on the subsets of features selected by the GFS algorithm.
In this study, the models are implemented as single layer
perceptrons (SLPs) that are trained via neuroevolutionary
preference learning (as in [19, 20]) to map the selected fea-
tures to a predictor of the reported pairwise emotional pref-
erences. The expressivity of SLPs allows us to analyse the
impact of each one of the selected features to the reported
affective preferences. For instance, when a feature with a
corresponding high connection weight value increases from
one game to another, the magnitude of the predicted pref-
erence is increased or decreased depending on the sign of
the weight value. On the other hand, weight connections
with low values have a small impact on the prediction of
preferences.

Note that the pairwise preference relationship of the train-
ing data is known (e.g. game A is preferred to game B) but
the value of the target output is not (i.e. the magnitude of
the preference is unknown). Thus, any gradient-based opti-
mization algorithm is inapplicable to the training problem
since the error function under optimization is not differen-
tiable.

5. DATA COLLECTION
The dataset used in this paper was gathered during an

experimental game survey in which 36 participants played
four pairs of different variants of the same video-game. The
test-bed game named Maze-Ball is a 3D prey/predator game
that features a ball inside a maze controlled by the arrow
keys. The goal of the player is to maximize her score in
90 seconds by collecting the pellets scattered in the maze
while avoiding the red enemies that wander around. The
eight available variants of the game differ only on the virtual
camera profile used which determines how the virtual world
is presented on screen.

Blood volume pulse and skin conductance were recorded
at 32Hz during the session; heart rate (HR) is inferred from
the BVP signal every 5 seconds. Moreover, both gameplay
information and user keystrokes are logged. The players
filled in a 4-alternative forced choice questionnaire after com-
pleting a pair of variants reporting whether the first or the
second game of the pair felt more anxious, challenging, ex-
citing, frustrating, fun and relaxing, or whether both felt
equally, or none of them did. The details of the Maze-Ball
game design and the experimental protocol followed can be
found in [20, 12].

5.1 Sequential Features
A data-sequence is created from the logs of each game, 224

in total, by concatenating all the events logged in temporal
order. The following list describes the events we have chosen
for this initial study:

• Performance Events

– Player collects a pellet ($): 10 identical pellets
are placed in different areas of the maze enforc-

ing a difference of at least few seconds between
two pellets. This event is picked as it is expected
to have an impact on reported challenge and fun
(among other reported user states).

– Enemy hits the player (E): 14 enemies follow pre-
defined paths guarding a pellet causing this event
to occur very close in time with the $ events fre-
quently. Enemy hits are selected as events since
enemies are critical to player experience in a prey/
predator game.

– Countdown starts (t10): when entering the last 10
seconds of the game the timer changes its color
rushing up the player. This event occurs exactly
once in each game, thus it does not provide suf-
ficient information about the experience per se.
However, sequences combining this event with phys-
iological events or other gameplay events are ex-
pected to have a direct impact to reported anxiety
and excitement.

• Navigation Events

– Moving to a new area of the maze (m0, . . . ,m7):
although there are not explicit boundaries be-
tween areas of the maze, 8 different sectors can be
distinguished based on the different wall layout,
placement of the pellets and movement of the en-
emies which, in turn, represent different degrees
of difficulty. These events are expected to have a
direct impact on the challenge reports.

– Press an arrow key (N,H,J,I): pressing the right
and left arrows make the ball turn if it is located
in a corner; the down key forces the ball to turn
180o and the up arrow has no effect. Each single
one of these events most likely holds a tiny piece
of information about user experience; however,
sequences combining many of these events may
point to more complex navigation patterns with
a potential impact on experience.

– Inactivity for more than 1 second (Stop): the
player avatar is moving forward at any time unless
it hits a wall. In that case, the ball will only con-
tinue moving if the player turns. When the ball is
stopped for 1 second, the event is logged. It could
indicate that the player is planning a strategy or
waiting for an enemy to move away from a pellet.
Thus, this event is relevant for the identification
of a player’s behavioral patterns and, indirectly,
for affect detection.

• Physiological Events

– Difference between two inter-beat intervals (RR
intervals) is greater than 50 ms (r+50, r−50): the
heart beats are detected from the BVP signal and
when two consecutive inter-beat intervals differ
for more than 50 ms, an event is logged. The
threshold of 50 ms is commonly used in affec-
tive and medical studies [6, 20] as an indicator
of arousal which in turn is one of potential iden-
tifiers of the affective states examined.

– SC increase/decrease (s⇑, s⇓): sudden changes in
the SC signal are detected and logged as events.



They are normally detected in pairs: after s⇑ the
SC will increase for a while and s⇓ will be logged
when it starts decreasing. These SC signal events
are picked because they suggest changes in sym-
pathetic activity and, thereby, may relate to re-
ported user experience.

This list of events is far from being inclusive of all relevant
events available such as those derived from heart rate vari-
ability indexes. We consider the study of more sequential
features out of the scope of this initial study which focuses
on the efficacy of frequent sequence mining across modalities
of user input for affect detection.

After the frequent sequences have been found in the full
dataset, each data-sequence is transformed into a vector of
sequential features. Each feature corresponds to the num-
ber of occurrences of a frequent sequence within the data-
sequence that is been transformed. An alternative represen-
tation transforms each feature into a boolean value which is
0 when there are no occurrences of the associated sequential
pattern in the data-sequence and 1 otherwise.

5.2 Statistical Features
A total of 42 statistical physiological features are extracted

from the three physiological signals (BVP, SC and HR) in-
cluding, for example, average and standard deviation of the
three signals and heart rate variability measures such as
standard deviation of the inter-beat time intervals. In addi-
tion, a total of 41 statistical gameplay features are extracted
from the game metrics logged such as average and standard
deviation of the distance to the closest pellet and enemy,
and final score. For a full description of the statistical fea-
tures extracted from both modalities of input, the reader is
referred to [20, 11].

6. EXPERIMENTS
The first part of this section focuses on the process of

mining and the analysis of multimodal frequent patterns ob-
tained in the dataset examined. In the second part, sequence
patterns are tested as inputs of computational models of af-
fect.

6.1 Sequence Mining
In this section we first discuss the effects of the different

GSP parameters in the task of mining sequences from mul-
timodal datasets and later analyse the frequent sequences
found in the Maze-Ball dataset.

6.1.1 Parameter Tuning
We set up the Smin to 100 sequences which forces a se-

quence pattern to occur in at least 44.64% of the samples
(224 samples in total) to be considered frequent. We choose
this high threshold because of the low specificity of the events
that yields a high frequency of each event within the data-
sequences. For example, consider the event of picking any
of the ten available pellets ($) and ten different events as-
sociated to a specific pellet in the game {$0, . . . , $9}. The
support count for each $x is expected to be lower than the
support count of $ as different players will most likely pick
different pellets. Consequently a lower minimum support
would be required to consider sequence patterns containing
the 10 specific $x events frequent.

The Wmax is chosen as a trade off between the frequency
of the events within and across signals. On one hand, we
require a low window to not consider simultaneous events
that within the same signal are clearly not occurring at the
same time (e.g. in a 90 second-long game, two gameplay
events of more than a few seconds apart should not be pro-
cessed as two simultaneous events). On the other hand, we
need to allow a certain window to consider events from dif-
ferent asynchronous signals to occur at the same moment in
time. For example, a variation on the RR signal is linked to
the time interval between two heart beats; a gameplay event
happening during this interval should be considered simul-
taneous to the RR variation even though the time stamps
of both events are not identical. In all experiments reported
in this paper Wmax is 1 second.

The Gmax parameter has a direct effect on the number of
events that can be concatenated in a sequence and the sup-
port count of those sequences. Note that the definition of a
sequence pattern does not require two consecutive events to
occur immediately one after the other in the data-sequences.
Consequently when Gmax is much larger than the frequency
of events in one modality, a high number of events can be
skipped when matching a pattern with a data-sequence. For
example, if we select a Gmax of 5 seconds and we consider the
sequence (I)(I), the number of data-sequences containing
those two events in a 5 second interval is very high (arrow
keys are pressed every 1-3 seconds) even though none of the
players pressed the right arrow key twice in a row. This
effect is enhanced by the fact that we are searching for se-
quences from different modalities. For instance, if we find
the pattern (I)(s⇑)(I) with a 5 second Gmax, this sequence
is supported by any data-sequence in which a player pressed
the right key in a 5 second interval before and after his SC
raised — independently of other keys being pressed before
and after s⇑ or other events such as $ and E occurring.
This has not only an effect on the informative value of the
sequences but also increases greatly the number of frequent
patterns (see Table 1). On the other hand, a large Gmax

may allow higher level sequences — i.e. sequences of high
level events that do not occur very frequently — to emerge
such as ($)($)($). Thus, when setting up this parameter,
it is necessary to take into account the frequency of each
event and the desired target sequences. In this initial study
we decided to focus on the relationship between gameplay
events and physiological responses and set up a Gmax of 1.5
and 3 seconds which are both close to the frequency of the
key presses (the most frequent event in the dataset). The
two selected Gmax values also approximate the physiologi-
cal time responses to game events reported in several studies
[16, 17].

6.1.2 Sequence Analysis
A large amount of frequent sequences were found in the

dataset; specifically, looking at the 3 and 5 second Gmax val-
ues (see Table 1) one may observe the exponential increase of
frequent sequential patterns with regards to the number of
events considered. The large amount of patterns is caused,
in part, by the right and left key press events which are
so frequent in the data-sequences that result in almost wild
card events (i.e. between any two events is very likely that
either the right or the left key are pressed).

The more restrictive Gmax of 1.5 seconds did not pro-
duce any frequent sequence combining the sector events with



Table 1: Amount of frequent sequential patterns for
different values of Gmax.

# events
Gmax

1.5 3 5
1 19 19 19
2 161 188 232
3 785 1650 2113
4 505 8387 18259
5 28 18985 118192
6 0 21704 545667
7 0 11251 NaN
8 0 1954 NaN
9 0 36 NaN

Table 2: Support counts of a subset of frequent se-
quences containing key board events.

Sequences
Gmax

1.5 3

(s⇑)(s⇓)(I)(J)(J)(I)(I)(J)(J) < 100 108
(J)(I)(I)(I)(J)(J)(I)(I)(J) < 100 108
(J)(s⇑)(s⇓)(s⇑)(s⇓)(I)(I)(J)(J) < 100 101
(I)(J)(J)(I)(I)(J)(J)($) < 100 104
(J)(J)(I)(I)(J)(J)($)(J) < 100 104
(J)(J)(I)(I)(J)($) < 100 149
(I)(J)(m7)(I)(I)(J) < 100 105
(J)(J)(I)(I)(J)(E) < 100 104
(J)(I)(I)(E)(I)(J) < 100 102
(J)(s⇑)(s⇓)(I)(E)(J) < 100 101
(J)(J)(I)(I)(J) 115 202
(I)(s⇑)(I)(s⇓)(J) 106 192
(s⇑)(I)(s⇓)(I)(J) 101 187

the key presses making more difficult, if not impossible, to
map a sequence of key presses to an area in the maze (e.g.
(J)(I)(I)(J)(J)). Even though specific paths can not be
inferred from the key presses, some interesting results can be
observed. For 1.5 and 3 second Gmax values the sequences of
maximum length found consist only of the events {J, I, s⇑,
s⇓}; neither other gameplay events nor RR variations are in-
cluded in the most frequent sequences (see Table 2). These
sequences suggest that the combination of key press pat-
terns in the Maze-Ball game and SC variation are frequent
and should be considered in the analysis of player experi-
ence. Furthermore, in the longest sequences that combine
key presses with the events {E, $} (see Table 2), the latter
always appear in the last position of the sequences suggest-
ing that players follow similar strategies to approach pellets
and enemies but more dissimilar behaviours are presented
after picking a pellet or being hit by an enemy.

Table 3 shows some of the most frequent 2-sequences and
3-sequences that combine the main performance events, $
and E, with physiological events. With the more restrictive
value for Gmax (1.5 second), all the frequent 3-sequences
contain the subsequence ( s⇑ )( s⇓ ) with the event $ or E
in any position, being the most frequent sequence in which
the gameplay event occurs simultaneously with an increase
of SC, followed by a decrease of SC. The 3 second Gmax on
the other hand, produced almost any combination of two
physiological events with one of the gameplay events. This
might indicate that the threshold is too large and does not
capture a meaningful fusion of the modalities.

Table 3: Support counts of a subset of the most fre-
quent sequences including physiological and perfor-
mance events. Events enclosed in the same paren-
theses occur simultaneously (in any order within an
interval of 1 second).

3-sequences
Gmax 2-sequences

Gmax

1.5 3 1.5 3

($ s⇑)(s⇓) 141 168 ($ s⇑) 184 184
(E s⇑)(s⇓) 131 163 ($ r−50) 178 178
(s⇑)($)(s⇓) 123 164 (E s⇑) 175 175
(s⇑)(E)(s⇓) 116 164 (E s⇓) 174 174
(s⇑)(s⇓)($) 112 181 (E r+50) 174 174
(E)(s⇑)(s⇓) 109 175 ($ s⇓) 170 170
(s⇑)(s⇓)(E) 106 180 (s⇑)($) 166 194
($)(s⇑)(s⇓) 105 186
(s⇑)($ s⇓) 105 158
(s⇑ s⇓)($) 102 139

The frequent 2-sequences correspond to all possible com-
binations of one of the gameplay events with one physiolog-
ical event showing more occurrences when combined in the
same element. Note that the count support indicates only
the number of data-sequences in which the sequence pat-
tern appears and not the number of occurrences within each
data-sequence. Opposite to long sequences, these short pat-
terns are expected to occur more than once in each sequence.
Therefore, the number of occurrences of the patterns within
each data-sequence is required for a full analysis of the phys-
iological responses to game events. This study, however, is
out of the scope of this paper and will be examined in future
work.

It is worth mentioning that none of the other high level
game play events occur frequently with the physiological re-
sponses. While this is not entirely surprising for the sector
events — given that there is no visual or audio feedback
when changing sectors in the maze — one would expect that
the count down event would trigger a change on the player
that would have been reflected on her physiology. However,
such a relationship is not observed frequently via event se-
quences.

6.2 Preference Learning
For the preference learning experiments reported here we

chose to use only the frequent sequences found using Gmax =
1.5, Smin = 100 and Wmax = 1 that did not contain the key
board and Stop events. This last constrain reduces substan-
tially the number of frequent patterns from 1498 to 140 in
an effort to lower the dimensionality of space and the com-
putational cost of training. Preliminary studies showed that
using the full set of frequent patterns did not improve the
prediction accuracy of the user preference models.

In this section we first test two approaches to transform
the sequence patterns into feature vectors as those were men-
tioned in Section 5 and we then built and compare computa-
tional models of affect which are based on either sequential
or statistical features, or both. In all tests GFS is applied
to select the inputs of the computational models. The accu-
racy of the models is calculated as the average 3-fold cross-
validation accuracy on predicting unseen pairwise preference
data.
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Figure 1: Average accuracy (3-fold cross-validation)
and standard error of 10 runs of GFS in sequen-
tial multimodal features using the count of occur-
rences (count) or the existence to a data-sequence
(boolean) as representation.

6.2.1 Sequences as User Preference Model Input
Figure 1 shows the average accuracy of 10 user prefer-

ence ANN models built on one of the two different repre-
sentations of the frequent pattern: each frequent sequence
is represented as its corresponding number of occurrences in
each data-sequence (count) or alternatively represented as a
boolean feature that is 0 when the frequent sequence does
not occur in the data-sequence and 1 otherwise (boolean).

For the case study dataset examined, in which the fre-
quent patterns are short and expected to occur a variant
number of times across samples, the count representation is
expected to yield higher accuracies since the boolean rep-
resentation is far less informative. Results show that this
hypothesis is valid for all affective states but anxiety. Ap-
parently, the boolean representation provides sufficient in-
formation for predicting the reports of anxiety whereas it
proves to be insufficient for the remaining of the user states
examined.

6.2.2 Comparison Between Sequential and Statisti-
cal Features

Figure 2 depicts the average accuracies of ten ANN mod-
els built on subsets of features selected by GFS from a set
of statistical features, a set of sequential features and a set
combining both feature sets. Results show that the accura-
cies of models built on sequential patterns are comparable to
models trained on statistical features and even significantly
higher on fun — 1.48% higher accuracy (p− value < 0.1)—
and challenge — 6.48% higher accuracy (p − value < 0.01)
— showing that information about short intervals of the
user experience across modalities is as valuable as informa-
tion about the overall user experience for the prediction of
affective self-reports.

Some of the information gathered by sequential patterns
overlap with the information contained in statistical features
(e.g. the final score of the player can be inferred from the 1-
sequences ($) and (E)); however, most features are specific
to one of the feature extraction approaches and provide com-
plementary information about the multimodal interaction.
Thus, it is surprising that models that can combine both
sources of information cannot, in general, outperform mod-
els built on one of the sets of features only. Figure 2 shows
that only in frustration and anxiety such models present a
slightly higher average accuracy, which is not statistically
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Figure 2: Average accuracy (3-fold cross validation)
and standard error of 10 runs of GFS in statistical
and sequential multimodal features.

significant in either dataset. This could indicate that in this
particular dataset — as already reported in [20] — it might
be impossible to find a subset that yields a higher performing
predictor with a simple model such as a single layer percep-
tron. Additionally, the search space for automatic feature
selection is increased substantially when joining the two sets
of features, complicating the task of effectively finding the
optimal subset of ANN inputs through genetic search. This
is, in part, supported by the lower accuracy of the excite-
ment, fun and relaxation models trained on both input sets
than only trained on each one of them.

Table 4 depicts the best models trained for challenge and
fun on sequential features. The challenge model combines
sequences of physiological responses with only two game-
play sequences and no multimodal sequences. The sequence
(s⇓)(s⇑) associated with a negative weight suggests that re-
peated changes on SC — typically a decrease follows an
increase — contribute to a lower challenge value. This re-
lationship is consistent with results reported in [20] where
higher SC variance is linked to lower challenge values. How-
ever, the effect on challenge is inverse when the sequence
is preceded by a positive change in the RR intervals —
(r+50)(s⇓)(s⇑) — suggesting that sudden changes in sym-
pathetic arousal indicated by both HR and SC variability
lead to higher challenge values. A somewhat surprising re-
sult is that the predicted challenge is lower when pellets are
picked and simultaneously an enemy hits the player. This
could be a sign that some players do not try to get around
the enemies to pick the pellets (which is a difficult and time
consuming task) and instead prefer to pick a pellet as quickly
as possible and run towards the next one even if an enemy
is next to it. This further suggests that the negative re-
ward scheme for enemies should to be increased for a more
balanced game design.

Observing the best-performing ANN model of fun (see Ta-
ble 4) it seems that the total number of pellets picked ($)
has a positive impact on reported fun as well as when a sud-
den peak in SC is generated just before or just after picking
a pellet — (s⇑)(s⇓)($) and ($ s⇑)(s⇓) — which could be re-
lated to a heightened arousal state when the player is about
to pick a pellet. Sudden increases on the RR intervals length
(r+50 r+50) have also a positive impact on reported fun. On
the other hand, enemy hits accompanied by a sudden de-
crease on SC (E s⇓), not surprisingly, seem to decrease the
level of fun. Note, that a single event E would not neces-
sarily have a negative effect on fun as it is a fundamental



Table 4: Input features and corresponding connec-
tion weights for the highest performing ANN models
for challenge and fun

Challenge Fun

(s⇑ s⇓)(r−50) 5.00 ($) 4.80
(s⇑ r+50)(r−50)(s⇓) -5.00 (r+50 r+50) 4.69
(s⇓)(s⇑) -4.82 (E s⇓) -4.56
($ E) -3.61 (s⇓ r−50)(r+50) -3.49
(r−50)(s⇓) -2.22 (s⇑)(s⇓)($) 3.06
(r+50)(s⇓)(s⇑) 2.21 ($ s⇑)(s⇓) 2.50
(s⇓ r+50 r−50) 1.67 ($ m6) -1.19
(r−50) 1.52 (s⇑)(r−50)(r+50) 0.67
($ m6) -0.05 (r+50)(r−50)(s⇓) 0.09

(s⇑ r+50)(s⇓ r−50) -0.18

part of the game; however, a decrease on SC might indicate
a lowered level of the player’s arousal as consequence of the
game event.

7. CONCLUSIONS
In this paper we propose sequential pattern mining as a

method to explore the relationship between asynchronous
signals from different modalities for the discovery of fre-
quent event sequences across modalities. We applied the
GSP sequence pattern mining algorithm to a game dataset
that includes physiological signals (blood volume pulse and
skin conductance), context-based game metrics (e.g. key
board presses) and self-reported affective preferences. This
study served as a starting point to highlight the main ad-
vantages, limitations and practical considerations of this ap-
proach when applied to the analysis of multimodal interac-
tions.

Additionally, as an alternative to standard statistical fea-
tures, the frequent sequences mined are presented as inputs
of affect detectors assisting the process of finding more ac-
curate models of user affect and experience. The resulting
affective models are analysed and compared against mod-
els trained on statistical features. The analysis of the af-
fective models trained on the sequences found in the game
dataset reveals relationships between sudden arousal level
changes across physiological signals, critical game events and
reported affect. Sequences outperform statistical features in
two (fun and challenge) out of the six affective states exam-
ined in this study when used as inputs of affect detectors; the
sequential features yield similar performances to standard
statistical features in the other four affective states: anxi-
ety, excitement, frustration and relaxation. Future work will
aim to validate the proposed method in dissimilar datasets,
including different modalities of user input, and explore a
richer set of multimodal events for sequence mining.
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