
 

INTERACTIVE OPPONENTS GENERATE INTERESTING GAMES 
 

Georgios N. Yannakakis and John Hallam 

The Maersk Institute for Production Technology 

University of Southern Denmark 

Campusvej 55,5230 Odense M, Denmark 

E-mail: {georgios;john}@mip.sdu.dk 
 

 

KEYWORDS 

On-line Learning in Computer Games, 

Prey/Predator, Interactive Opponents, Interest 

Emergence. 

 

ABSTRACT 

 

In this paper we present experiments on neuro-

evolution mechanisms applied to predator/prey 

multi-character computer games. Our test-bed is a 

computer game where the prey (i.e. player) has to 

avoid its predators by escaping through an exit 

without getting killed. By viewing the game from 

the predators’ (i.e. opponents’) perspective, we 

attempt off-line to evolve neural-controlled 

opponents, whose communication is based on 

partial implicit information, capable of playing 

effectively against computer-guided fixed strategy 

players. However, emergent near-optimal 

behaviors make the game less interesting to play. 

We therefore discuss the criteria that make a game 

interesting and, furthermore, we introduce a 

generic measure of this category of (i.e. 

predator/prey) computer games’ interest (i.e. 

player’s satisfaction from the game). Given this 

measure, we present an evolutionary mechanism 

for opponents that keep learning from a player 

while playing against it (i.e. on-line) and we 

demonstrate its efficiency and robustness in 

increasing and maintaining the game’s interest. 

Computer game opponents following this on-line 

learning approach show high adaptability to 

changing player strategies which provides 

evidence for the approach’s effectiveness against 

human players. 

 

INTRODUCTION 

 

In (Yannakakis et al. 2004), we introduced a 

predator/prey computer game named ‘Dead End’ 

for emerging complex and cooperative behaviors 

among agents through evolutionary procedures. In 

this game the prey (i.e. player) has to avoid its 

eight predators (i.e. Dogs) by escaping through an 

exit without getting killed. Since there are eight 

Dogs on the game field, they are designed to be 

slower than the Player so that the game is fairer to 

play. This game’s fundamental concepts are 

inspired from previous work of Yannakakis et al. 

(2003) where efficient cooperative behaviors, 

supported only by partial implicit communication, 

emerge amongst the agents of a complex multi-

agent environment. 

 

Similar to Luke’s and Spector’s (1996) work on 

the Serengeti world, we view Dead End from the 

predators’ perspective. Our first aim is to emerge 

effective complex teamwork behaviors by the use 

of an off-line training approach, based on 

evolutionary computation techniques, applied to 

homogeneous neural controlled agents (Yao 1999). 

Dogs have to demonstrate good cooperative 

strategies in order to kill the Player and/or to 

defend the Exit. Such behaviors can be aggressive, 

defensive, or a hybrid of the two. Given the 

specific game, we believe that 8 predators are 

enough for cooperative behaviors to emerge. 

 

However, playing a computer game like Dead End 

against well-playing opponents with fixed hunting 

behaviors cannot be regarded as interesting. The 

first stage of experiments on this test-bed, given an 

implicitly defined notion of interest, is presented in 

(Yannakakis et al. 2004). We believe that the 

interest of any computer game is directly related to 

the interest generated by the opponents’ behavior 

rather than to the graphics or even the player’s 

behavior. Thus, when ‘interesting game’ is 

mentioned we mainly refer to interesting 

opponents to play against. In (Yannakakis and 

Hallam 2004), we argue that the interest measure 

proposed (for the well-known Pac-Man game) 

defines a generic measure of any predator/prey 

game. Results obtained from Dead End and 
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presented here give evidence for this interest 

measure’s generality, which defines one of the 

goals of this work. 

 

We present a robust on-line neuro-evolution 

learning mechanism capable of increasing the 

game’s interest (starting from well performing 

behaviors trained off-line) as well as maintaining 

that interest at high levels as long as the game is 

being played. In our Dead End predator/prey 

computer game we require Dogs to keep learning 

and constantly adapting to the player’s strategy 

instead of being opponents with fixed strategies. In 

addition, we explore learning procedures that 

achieve good real-time performance (i.e. low 

computational effort while playing). 

 

Recently, there have been attempts to mimic 

human behavior off-line, from samples of human 

playing, in specific virtual environments. In 

(Thurau et al. 2004) among others, human-like 

opponent behaviors are emerged through 

supervised learning techniques in a first person 

shooter console game. Even though complex 

opponent behaviors are emerged, there is no 

further analysis on whether these behaviors 

contribute to the satisfaction of the player (i.e. 

interest of game). In other words, researchers 

hypothesize --- by looking at the vast number of 

multi-player on-line games played daily on the 

web --- that by generating human-like opponents 

the player gains more satisfaction from the game. 

This hypothesis might be true up to a point; 

however, since there is no explicit notion of 

interest defined, there is no evidence that a specific 

opponent behavior generates more or less 

interesting games. 

 

DEAD-END GAME 
 

Dead End is a two-dimensional, multi-agent, grid-

motion, predator/prey game. The game field (i.e. 

stage) is a two-dimensional square world that 

contains a white rectangular area named “Exit” 

(see Fig. 1) at the top. For the experiments 

presented in this paper we use the 16 X 16 cm 

stage presented in Fig. 1, which is divided into 

grid squares (of length 0.5 mm). The characters 

visualized in the Dead End game (as illustrated in 

Fig. 1) are a dark grey circle of radius 0.75 cm 

representing the Player and 8 light grey square (of 

dimension 1.5 cm) characters representing the 

Dogs. 

 

The relationship between the Dogs and the Player 

is mutually highly competitive. The aim of a 

Player is to reach the Exit, avoiding the Dogs. On 

the other hand, the aims of the Dogs are to defend 

the Exit and/or to catch the Player. In Dead End, if 

a Player succeeds in arriving at the Exit, this event 

is described as a win. Additionally, if a Dog 

manages to catch a Player, this event defines a kill. 

If there is neither a Player win nor a kill for a 

predetermined large period of time, then the 

outcome of the game is a win again. After either a 

win or a kill, a new game starts. 

 

The Player moves at four thirds the Dogs’ 

maximum speed and since there are no dead ends, 

it is impossible for a single Dog to complete the 

task of killing it. Since the Player moves faster 

than a Dog, the only effective way to kill the 

Player is for a group of Dogs to hunt 

cooperatively. 

 

The simulation procedure of the Dead End game is 

as follows. Player and Dogs are placed in the game 

field (initial positions) so that there is a suitably 

large distance between them. Then, the following 

occur at each simulation step. (a) Both Dogs and 

the Player gather information from their 

environment and take an individual movement 

decision, up, down, left or right. (b) If the game is 

Fig. 1. Snapshot of the Dead End game 



 

over (i.e. Player escapes through the Exit, Player is 

killed, or the simulation step is greater than a 

predetermined large number), then a new game 

starts from the same initial positions for the Dogs 

but from a different, randomly chosen, position at 

the bottom of the stage for the Player. 

 

The Player 

 

The difficulty of the Dead End game is directly 

affected by the intelligence of the Player. Its nature 

is significant because Dogs’ emergent behavior is 

strongly related to their competitive relationship 

against it. To develop more diverse agents’ 

behaviors, different playing strategies are required. 

We therefore chose three fixed Dog-avoidance 

and/or Exit-achieving strategies for the Player, 

differing in complexity and effectiveness. The 

non-deterministic initial position of the player is 

devised to provide Dogs with diverse examples of 

playing behaviors to learn from. 

 

Randomly-moving (RM) Player 

A Randomly-moving Player takes a movement 

decision by selecting a uniformly distributed 

random picked direction at each simulation step of 

the game. 

 

Exit-achieving (EA) Player 

An Exit-achieving Player moves directly towards 

the Exit. Its strategy is based on moving so as to 

reduce the greatest of its relative distances from 

the Exit. 

 

Cost-based path planning (CB) Player 

A cost-based path planning Player constitutes the 

most efficient Dog-avoiding and Exit-achieving 

strategy of the three different fixed-strategy types 

of Player. A discrete Artificial Potential Field 

(APF) (Khatib 1986), specially designed for the 

Dead End game, controls the CB Player’s motion. 

The overall APF causes a force to act on the Player 

which guides it along a Dog-avoidance Exit-

achievement path. For a more detailed presentation 

of the CB player, see (Yannakakis et al. 2004). 

 

Any motion strategy that guides a Player to arrive 

quickly at the Exit, avoiding any Dogs and keeping 

to the straightest and fastest possible trajectory, is 

definitely a “good” strategy in terms of the Dead 

End game. Hence, the CB Player presents a “good” 

behavior in this game and furthermore a reference 

case to compare to human playing behavior.  
 

Neural Controlled Dogs 

 

Artificial neural networks (ANNs) are a suitable 

host for emergent adaptive behaviors in complex 

multi-agent environments (Ackley and Littman 

1992). A feedforward neural controller is 

employed to manage the Dogs’ motion and is 

described in this subsection. 

 

Using their sensors, Dogs inspect the environment 

from their own point of view and decide their next 

action. Each Dog receives input information from 

its environment expressed in the ANN’s input 

array of dimension 6. The input array consists of 

the relative coordinates of (a) the Player, (b) the 

closest Dog and (c) the Exit. A Dog’s input 

includes information for only one neighbor Dog as 

this constitutes the minimal information for 

emerging teamwork cooperative behaviors. We 

deliberately exclude from consideration any global 

sensing, e.g. information about the dispersion of 

the Dogs as a whole, because we are interested 

specifically in the minimal sensing scenario. 

 

As previously mentioned, a multi-layered fully 

connected feedforward ANN has been used for the 

experiments presented here. The hyperbolic 

tangent sigmoid function is employed at each 

neuron. The ANN’s output is a two dimensional 

vector which represents the Dog’s chosen motion 

in X, Y coordinates. 

 

Fixed strategy Dogs 

 

Apart from the neural controlled Dogs, an 

additional fixed non-evolving strategy has been 

tested for controlling the Dogs’ motion. Dogs of 

this strategy are called ‘Followers’ and they are 

designed to follow the Player constantly by 

moving at half the Player’s speed (i.e. 1.0 

cm/simulation step). This strategy is used as a 

baseline behavior for comparison with any 

emergent neural controller behavior. 

 

INTERESTING OPPONENTS 

 

In order to find, as objective as possible, a measure 

of interest in the Dead End computer game we first 



 

need to define the criteria that make a game 

interesting. Then, second, we need to quantify and 

combine all these criteria in a mathematical 

formula. The game should then be tested by human 

players and have this formulation of interest cross 

validated against the interest the game produces in 

real conditions. This last part of our investigation 

constitutes a crucial phase of future work. 

 

In order to simplify this procedure we will ignore 

the graphics’ as well as the player’s contribution to 

the interest of the game and we will concentrate on 

the Dogs’ behavior that effects the game’s interest. 

That is because, we believe, the computer-guided 

opponent character contributes the vast majority of 

features that make a computer game interesting. 

 

By being as objective and generic as possible, we 

believe that the criteria that collectively define the 

interest of the Dead End game are as follows (see 

also (Yannakakis and Hallam 2004) for interest 

criteria definitions for the  Pac-Man game). 

 

• When the game is neither too hard nor too 

easy. In other words, the game is 

interesting when Dogs manage to kill the 

player sometimes but not always. In that 

sense, optimal behaviors are not interesting 

behaviors and vice versa. 

 

• When there is diversity in Dogs’ behavior 

over the games. That is, when Dogs are 

able to find different ways of hunting and 

killing the player in each game so that their 

strategy is less predictable. 

  

• When Dogs’ behavior is aggressive rather 

than static. That is, Dogs that move 

towards killing the player but meanwhile, 

move constantly all over the game field 

instead of simply following it. This 

behavior gives player the impression of an 

intelligent strategic Dogs’ plan which 

increases the game interest. 

 

In order to estimate and quantify each of the 

aforementioned criteria of the game’s interest, we 

follow the same procedure introduced in 

(Yannakakis and Hallam 2004). Thus, the metrics 

for the three criteria are given by T (difference 

between maximum and average player’s lifetime 

over N games --- N is 50 in this paper), S (standard 

deviation of player’s lifetime over N games) and 

}{ nHE  (stage grid-cell visit average entropy of 

the Dogs over N games) respectively. All three 

metrics are combined linearly (1) 
 

εδγ
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++
=
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I                    (1) 

 

where I is the interest value of the Dead End game; 

εδγ  and , are criterion weight parameters (for the 

experiments presented here 1,2,1 === εδγ ). 

 

The measure of the Dead End game’s interest 

introduced in (1) can be effectively applied to any 

predator/prey computer game (e.g. see 

(Yannakakis and Hallam 2004)) for a successful 

application on the Pac-Man game) because it is 

based on generic quantitative features of this 

category of games. These features include the time 

required to kill the prey as well as the predators’ 

entropy throughout the game field. We therefore 

believe that (1) --- or a similar measure of the 

same concepts --- constitutes a generic interest 

approximation of predator/prey computer games. 

In fact, the two first criteria correspond to any 

computer game whereas the third criterion 

corresponds only to predator/prey games. 
 

OFF-LINE LEARNING 
 

We use an off-line evolutionary learning approach 

in order to produce some ‘good’ (i.e. in terms of 

performance) initial behaviors for the on-line 

learning mechanism. The ANNs that determine the 

behavior of the Dogs are themselves evolved 

(evolutionary process is limited to the connection 

weights of the ANN). 

 

The evolutionary procedure is as follows. Each 

Dog has a genome that encodes the connection 

weights of its ANN. A population of 40 (we keep 

this number low because of the computational 

cost) ANNs (Dogs) is initialized randomly with 

initial uniformly distributed random connection 

weights that lie within [-5, 5]. Then, at each 

generation: (a) Each Dog in the population is 

cloned 8 times. These 8 clones are placed in the 

Dead End game field and play the game against a 

selected Player type for an evaluation period T 



 

(e.g. 125 simulation steps). The outcome of this 

game is to ascertain the total number of wins (W) 

and kills (K). (b) Each Dog is evaluated via (2) 
 

WKf βα −=                       (2) 

 

where K and W are the total numbers of kills and 

wins respectively; α  is the reward rate of a kill; β  

is the penalty rate of a win. (c) A pure elitism 

selection method is used where only the 20% 

fittest solutions are able to breed and, therefore, 

determine the members of the intermediate 

population. (d) Each parent clones an equal 

number of offspring in order to replace the non-

picked solutions from elitism. (e) Mutation occurs 

in each gene (connection weight) of each 

offspring’s genome with a small probability mp  

(e.g. 0.01). A uniform random distribution is used 

again to define the mutated value of the connection 

weight. 

 

The algorithm is terminated when a predetermined 

number of generations g is completed (e.g. g=300) 

and the fittest Dog’s connection weights are saved. 

 

ON-LINE LEARNING 

 

This evolutionary learning approach is based on 

the idea of Dogs that learn while they are playing 

against the Player. In other words, Dogs that are 

reactive to any player’s behavior and learn from its 

strategy instead of being predictable and, therefore, 

uninteresting characters for game playing. 

Furthermore, this approach’s additional objective 

is to keep the game’s interest at high levels as long 

as it is being played. 

 

Beginning from any initial off-line trained (OLT) 

group of homogeneous Dogs, the on-line learning 

(OLL) mechanism attempts to transform them into 

a group of heterogeneous Dogs that are interesting 

to play against. The OLL procedure is as follows. 

An OLT Dog is cloned 8 times and its clones are 

placed in the Dead End game field to play against 

a selected Player type. Then, at each generation: 

 

(a) Each Dog is evaluated every T (T is 25 here) 

simulation steps via (3), while the game is played 

(where ),( k
d

k
d
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p

k
p yx  are the cartesian 
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By using (3), we individually promote each Dog 

that attempts to stay as close as possible to the 

Player during an evaluation period. (b) If the 

average fitness of the population is greater than a 

fixed threshold value then, go to (a) else, continue. 

(c) A pure elitism selection method is used where 

only the fittest solution is able to breed. The fittest 

parent clones an offspring that replaces the worst-

fit member of the population. This offspring takes 

the worst-fit member’s position in the game field. 

(d) Mutation occurs in each gene (connection 

weight) of the offspring’s genome exactly as in the 

off-line learning algorithm. 

 

 

Fig. 2. The on-line learning mechanism 

 

The algorithm is terminated when a predetermined 

number of generations g is completed (e.g. 

g=5000) and all 8 Dogs’ connection weights are 

saved. Fig. (2) illustrates the main steps of the 

OLL algorithm. 

  

We mainly use small simulation periods (i.e. 

T=25) to evaluate Dogs during OLL. The aim of 

this high frequency of evaluations is to accelerate 

the on-line evolutionary process. However, the 

evaluation function (3) constitutes an 

approximation of the examined Dog’s overall 

performance for large simulation periods. Keeping 

the right balance between computational effort and 

performance approximation is one of the key 

features of this approach. We therefore use 



 

minimal evaluation periods capable of achieving 

good estimation of the Dogs’ performance. 
 

RESULTS 

 

Results obtained from experiments applied on the 

Dead End game are presented in this section. 

These include, off-line and on-line learning 

emergent behavior analysis as well as experiments 

for testing robustness and adaptability of the OLL 

mechanism proposed. 
 

Performance Measurement 
 

In order to evaluate the performance of a team of 

Dogs, we record the total number of both kills K 

and wins W of the examined team, against a 

specific Player, by placing these agents in Dead 

End and letting them play the game for 3
105.12 ⋅  

simulation steps. We believe that this is a long 

enough period for testing a playing-behavior of a 

team of Dogs in an efficient way. This evaluation 

is called a trial. We then calculate the value P = 

100[K/(K+W)]. This performance measurement 

(P) quantifies the Player-killing (K) percentage 

over the total number of games played (K+W). 
 

Off-line Learning Experiments 
 

The experiment presented in this subsection is 

focused on producing well-behaved Dogs in terms 

of the performance measure previously described. 

We train Dogs against all three fixed-strategy 

types of Player through the off-line learning 

mechanism. In this experiment we select 

1== βα  in fitness function (2) --- providing 

equal opportunities for promoting both Player-

hunting and Exit-defensive behaviors. The off-line 

learning experiment is described as follows. 
 

(a) Apply the off-line learning mechanism by 

playing against each type of Player separately. 

Repeat the learning attempt (run) 10 times --- we 

believe that this number is adequate to illustrate a 

clear picture of the emergent behavior --- with 

different initial conditions. (b) Evaluate each one 

of the 10 teams of OLT Dogs against all three 

types of Player. Their performance and interest 

measurement are given by the average values 

obtained over the 10 trials. (c) Evaluate non-

evolving randomly generated (i.e. untrained) as 

well as Player-follower Dogs (i.e. Followers) 

against every Player type (run 10 trials and 

calculate their average performance and interest). 

The outcome of this experiment is presented in 

Table I. 

 

Table I. The effect of off-line training on the Dogs’ average 

performance (E{P}) and interest (E{I}) over 10 learning 

attempts 

 Playing against 

 RM EA CB 

 E{P}    E{I} E{P} E{I} E{P} E{I} 

OLT/RM 91.27 0.728 24.36 0.682 3.82 0.243 

OLT/EA 62.55 0.555 96.01 0.661 51.27 0.486 

OLT/CB 93.09 0.628 55.09 0.681 72.98 0.425 

Followers 98.54 0.466 78.94 0.763 71.51 0.709 

Untrained 75.58 0.401 62.46 0.498 17.77 0.425 

 

As can be seen from Table I, there is a large 

performance improvement of the OLT Dogs in 

comparison to the untrained or even the Follower 

Dogs against all three types of Player. However, in 

most cases, OLT Dogs against a specific Player 

seem to get lower average performance values 

when playing against a Player other than the Player 

they have been off-line trained against. Dogs 

trained off-line against CB Players showed good 

overall performance against all types of Players. 

Therefore, among the three fixed-strategy Players, 

the CB Player provides the best off-line training 

for the opponent agents. This suggests that when 

Dogs learn from more complex and effective types 

of Players, they tend to generalize better. 

 

An increased interest value when Dogs are trained 

off-line is also noticeable in all cases (see Table I). 

However, these emergent behaviors fail to 

compete the interest generated by the Followers in 

the majority of cases (mainly against the EA and 

CB Players). 

 

The most typical emergent behaviors are pure 

Exit-defensive or pure Player-hunting behaviors 

but hybrids also occur frequently. The off-line 

learning mechanism, in the majority of cases, 

produces Dogs that defend the Exit and/or hunt the 

Player in a cooperative fashion. As stressed before, 

opponents in this game have to learn to cooperate 

in order to be successful (achieve a high 

performance value) against any playing strategy. 

 



 

On-line Learning Experiments 

 

The off-line learning procedure is a mechanism 

that attempts to produce near-optimal solutions to 

the problem of killing the Player and defending the 

Exit. These solutions will be the OLL 

mechanisms’ initial points in the search for more 

interesting games. The OLL experiment is 

described as follows. 
 

(a) Apply the OLL mechanism to all teams of OLT 

Dogs (see Off-line Learning Experiments section) 

playing against each type of Player separately. (b) 

Evaluate performance and interest values of each 

OLL attempt against each Player type. The 

outcome of this experiment is presented in Table II 

and Fig. 3. 

 

As seen from Table I and Table II, the OLL 

mechanism manages to find ways of increasing the 

interest of the game regardless of the initial OLT 

behavior or the player. Due to space considerations 

we present only 3 out of the 9 OLL experiments in 

detail here. Fig. 3 demonstrates the learning 

mechanism’s ability of producing games of higher 

than the initial interest as well as keeping that high 

interest for a long period. The mechanism 

demonstrated a similar adaptive behavior for all 9 

different OLL experiments. This suggests that the 

evolutionary approach proposed shows a behavior 

of high robustness which furthermore manages to 

generate opponents’ behaviors of much higher 

interest values. 

 

The OLL mechanism tends to be a highly 

disruptive procedure (via the mutation operation) 

for high-interest group behaviors towards 

individual rewards. Such disruptive mutations can 

cause undesired drops in the game’s interest 

generated by a team of Dogs. However, 

experiments show that Dogs trained by individual 

rewards (while playing) manage to maintain and 

even increase the game’s interest.  

 

Another important feature of the mechanism is its 

ability to quickly emerge interesting opponents to 

play against. It takes, in the worst case 

experienced, fewer than 500 OLL games for the 

mechanism to generate games of higher interest. 
 

Table II. Best average interest values achieved by applying 

on-line learning on Dogs trained off-line. The respective 

average performance values are also presented 

 Playing against – On-line learning 

 RM EA CB 

 E{P}    E{I} E{P} E{I} E{P} E{I} 

OLT/RM 86.73 0.758 36.45 0.762 43.09 0.721 

OLT/EA 95.64 0.707 84.18 0.701 20.91 0.617 

OLT/CB 97.09 0.685 53.64 0.745 60.92 0.610 

 

Fig. 3. Interest (averaging over 10 trials) evolution over the 

number of games played. . Initial behavior: OLT/RM (initial 

and best interest values are presented in the first row of Table 

I and Table II respectively. 

 

On the other hand (see Table I and Table II), in 

almost half cases, there is a decrease of the Dogs’ 

average performance values. In general, Dogs that 

achieve high-performance values do not generate 

interesting games. This illustrates the tradeoff 

between optimality and interest in any computer 

game. In Dead End, optimal killing behaviors 

cannot produce interesting games. 
 

CONCLUSIONS 
 

The Dead End predator/prey computer game is 

devised as an interesting test-bed for studying the 

emergence of multi-agent cooperative behaviors 

supported by partial implicit communication 

through evolutionary learning mechanisms. We 

introduced an off-line learning mechanism, from 

which effective cooperative predator behaviors 

have rapidly emerged. 

 

Predator strategies in predator/prey computer 

games are still nowadays based on simple rules 

which make the game quite predictable and, 

therefore, uninteresting --- by the time the player 



 

gains more experience and playing skills. A 

computer game becomes interesting primarily 

when there is an on-line interaction between the 

player and his opponents who demonstrate 

interesting behaviors. 

 

Given some objective criteria for defining interest 

in predator/prey games presented by Yannakakis 

and Hallam (2004) we introduced a method for 

explicitly measuring interest in the Dead End 

game. We saw that by using the proposed on-line 

learning mechanism (see also (Yannakakis et al. 

2004)), maximization of the individual simple 

distance measure (see (3)) coincides with 

maximization of the game’s interest. Apart from 

being robust, the proposed mechanism 

demonstrates fast adaptability to new types of 

player (i.e. playing strategies). Therefore, we 

believe that such a mechanism will be able to 

produce interesting interactive opponents (i.e. 

games) against even the most complex human 

playing strategy. 

 

We believe that the methods used need to be tested 

on more complex Dead-End stages (i.e less Dogs) 

in order to provide more evidence for their 

generality, and the interest measure proposed 

needs to be cross-validated against human players. 

In addition, investigation of the heterogeneity’s 

contribution on these results constitutes an 

important step for future work. 
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