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Abstract. Object invariants define the consistency of objects. They
have subtle semantics, mainly because of call-backs, multi-object invari-
ants, and subclassing.
Several verification techniques for object invariants have been proposed.
It is difficult to compare these techniques, and to ascertain their sound-
ness, because of their differences in restrictions on programs and invari-
ants, in the use of advanced type systems (e.g., ownership types), in the
meaning of invariants, and in proof obligations.
We develop a unified framework for such techniques. We distil seven pa-
rameters that characterise a verification technique, and identify sufficient
conditions on these parameters which guarantee soundness. We instanti-
ate our framework with three verification techniques from the literature,
and use it to assess soundness and compare expressiveness.

1 Introduction

Object invariants play a crucial role in the verification of object-oriented pro-
grams, and have been an integral part of all major contract languages such as
Eiffel [25], the Java Modeling Language JML [17], and Spec# [2]. Object in-
variants express consistency criteria for objects, ranging from simple properties
of single objects (for instance, that a field is non-null) to complex properties of
whole object structures (for instance, the sorting of a tree).

While the basic idea of object invariants is simple, verification techniques for
practical OO-programs face challenges. These challenges are made more daunting
by the common expectation that classes should be verified without knowledge
of their clients and subclasses:

Call-backs: Methods that are called while the invariant of an object o is tem-
porarily broken might call back into o and find o in an inconsistent state.

Multi-object invariants: When the invariant of an object p depends on the
state of another object o, modifications of o potentially break the invariant
of p. In particular, when verifying o, the invariant of p may not be known
and (if not) cannot be expected to be preserved.

Subclassing: When the invariant of a subclass D refers to fields declared in a
superclass C then methods of C can break D’s invariant by assigning to these
fields. In particular, when verifying a class, its subclass invariants are not
known in general, and so cannot be expected to be preserved.
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Several verification techniques address some or all of these challenges [1, 3, 14,
16, 18, 23, 26, 27, 31]. They share many commonalities, but differ in the following
important aspects:

1. Invariant semantics: Which invariants are expected to hold when?
2. Invariant restrictions: Which objects may invariants depend on?
3. Proof obligations: What proofs are required, and where?
4. Program restrictions: Which objects’ methods/fields may be called/updated?
5. Type systems: What syntactic information is used for reasoning?
6. Specification languages: What syntax is used to express invariants?
7. Verification logics: How are invariants proved?

These differences, together with the fact that most verification techniques
are not formally specified, complicate the comparison of verification techniques,
and hinder the understanding of why these techniques satisfy claimed properties
such as soundness. For these reasons, it is hard to decide which technique to
adopt, or to develop new, sound techniques.

In this paper, we present a unified framework for verification techniques for
object invariants. This framework formalises verification techniques, abstracts
away from differences pertaining to language features (type system, specification
language, and logics) and highlights characteristics intrinsic to the techniques,
thereby aiding comparisons. We concentrate on techniques that require invari-
ants to hold in the pre-state and post-state of a method execution (often referred
to as visible states [27]) while temporary violations between visible states are per-
mitted. These techniques constitute the vast majority of those described in the
literature.

Contributions. The contributions of this paper are:

1. We present a unified formalism for object invariant verification techniques.
2. We identify conditions on the framework that guarantee soundness of a ver-

ification technique.
3. We separate type system concerns from verification strategy concerns.
4. We show how our framework describes some advanced verification techniques

for visible state invariants.
5. We prove soundness for a number of techniques, and, guided by our frame-

work, discover an unsoundness in one technique.

Outline. Sec. 2 gives an overview of our work, explaining the important con-
cepts. Sec. 3 formalises program and invariant semantics. Sec. 4 describes our
framework and defines soundness. Sec. 5 instantiates our framework with exist-
ing verification techniques. Sec. 6 presents sufficient conditions for a verification
technique to be sound, and states a general soundness theorem. Sec. 7 discusses
related work. Proofs and more details are in the companion report [7]. This paper
follows our FOOL paper [8], but provides more explanantions and examples.
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2 Example and Approach

Example. Consider a scenario, in which a Person holds an Account, and has a
salary . An Account has a balance, an interestRate and an associated DebitCard.
This example will be used throughout the paper, both to illustrate the con-
cepts of our formalism and to make comparisons between existing verification
techniques. We give the code for our example in Fig. 1.

class Account {
Person holder ;
DebitCard card;
int balance, interestRate ;

// invariant I1 : balance < 0 ==>
interestRate == 0;

// invariant I2 : card.acc == this;

void withdraw(int amount) {
balance −= amount;
if (balance < 0) {

interestRate = 0;
this .sendReport();

}
}

void sendReport()
{ holder . notify () ; }

}

class SavingsAccount
extends Account {

// invariant I3 : balance >= 0;
}

class Person {
Account account;
int salary ;

// invariant I4 :
// account.balance + salary > 0;

void spend(int amount)
{ account.withdraw(amount); }

void notify ()
{ ... }

}

class DebitCard {
Account acc;
int dailyCharges ;

// invariant I5 :
// dailyCharges <= acc.balance;

}

Fig. 1. An account example illustrating the main challenges for the verification of
object invariants. We assume that fields hold non-null values.

Account’s interestRate is required to be zero when the balance is negative (I1).
A further invariant (the two can be read as conjuncts of the full invariant for
the class) ensures that the DebitCard associated with an account has a consistent
reference back to the account (I2). A SavingsAccount is a special kind of Account,
whose balance must be positive (I3). Person’s invariant (I4) requires that the
sum of salary and account’s balance is positive. Finally, DebitCard’s invariant
(I5) requires dailyCharges not to exceed the balance of the associated account.
Thus, I2, I4, and I5 are multi-object invariants.

To illustrate the challenges faced by verification techniques, suppose that p
is an object of class Person, which holds the Account a with DebitCard d:
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Call-backs: When p executes its method spend(), this results in a call of withdraw
on a, which (via a call to sendReport) eventually calls back notify on p; the
call notify might reach p in a state where I4 does not currently hold.

Multi-object invariants: When a executes its method withdraw, it may tem-
porarily break its invariant I1, since its balance is debited before any corre-
sponding change is made to its interestRate . This violation is not important
according to the visible state semantics; the if statement immediately af-
terwards ensures that the invariant is restored before the next visible state.
However, by making an unrestricted reduction of the account balance, the
method potentially breaks the invariants of other objects as well. In partic-
ular, p’s invariant I4, and d’s invariant I5 may be broken.

Subclassing: Further to the previous point, if a is a SavingsAccount, then call-
ing the method withdraw may break the invariant I3, which was not neces-
sarily known during the verification of class Account.

These points are addressed in the literature by striking various trade-offs between
the differing aspects listed in the introduction.

Approach. Our framework uses seven parameters to capture the first four aspects
in which verification techniques differ. To describe these parameters we use two
abstract notions, which we call regions and properties. A region is an element of
our formalism which (when interpreted semantically) describes a set of objects
(e.g., those on which a method may be called), while a property describes a set
of invariants (e.g., the invariants that have to be proven before a method call).
We deal with the aspects identified in the previous section as follows:

1. Invariant semantics: The property X describes the invariants expected to
hold in visible states. The property V describes the invariants vulnerable to
a given method, i.e., those which may be broken while the method executes.

2. Invariant restrictions: The property D describes the invariants that may
depend on a given heap location. This also characterises indirectly the loca-
tions an invariant may depend on.

3. Proof obligations: The properties B and E describe the invariants that must
be proven to hold before a method call and at the end of a method body,
respectively.

4. Program restrictions: The regions U and C describe the permitted receivers
for field updates and method calls, respectively.

5. Type systems: We parameterise our framework by the type system. We state
requirements on the type system, but leave abstract its concrete definition.
We require that types are formed of a region-class pair such that we can
handle types that express heap topologies (such as ownership types).

6. Specification languages: Rather than describing invariants concretely, we as-
sume a judgement that expresses that an object satisfies the invariant of a
class in a heap.

7. Verification logics: We express proof obligations via a special construct prvp,
which throws an exception if the invariants in property p cannot be proven,
and has an empty effect otherwise. We leave abstract how the actual proofs
are constructed and checked.
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Fig. 2 illustrates the parameters of our framework by annotating the body of
the method withdraw. X may be assumed to hold in the pre- and post-state of the
method. Between these visible states, some object invariants may be broken (so
long as they fall within V), but X \ V is known to hold throughout the method
body. Field updates and method calls are allowed if the receiver object (here,
this) is in U and C, respectively. Before a method call, B must be proven. At
the end of the method body, E must be proven. Finally, D (not shown in Fig. 2)
constrains the effects of field updates on invariants. Thus, assignments to balance
and interestRate affect at most D.

void withdraw(int amount) {

balance −= amount;

if (balance < 0) {

interestRate = 0;

this .sendReport();
}

}

assume X�

check this in U�

check this in U�

check this in C�
prove B

prove E�

assume X�

X \ V holds

?
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Fig. 2. Role of framework parameters for method withdraw from Fig. 1.

It might seem surprising that we need as many as seven parameters. This
number is justified by the variety of concepts used by modern verification tech-
niques, such as accessibility of fields, purity, helper methods, ownership, and
effect specifications. For instance, V would be redundant if all methods were to
re-establish the invariants they break; in such a setting, a method could break
invariants only through field updates, and V could be derived from U and D.
However, in general, methods may break but not re-establish invariants.

3 Invariant Semantics

We formalise invariant semantics through an operational semantics, defining at
which execution points invariants are expected to hold. In order to cater for
the different techniques, the semantics is parameterised by properties to express
proof obligations and what invariants are expected to hold. In this section, we fo-
cus on the main ideas of our semantics and relegate the less interesting definitions
to App. A. We assume sets of identifiers for class names Cls, field names Fld,
and method names Mthd, and use variables c ∈ Cls, f ∈ Fld and m ∈ Mthd.

Runtime Structures. A runtime structure is a tuple consisting of sets of heaps
Hp, addresses Adr, and values Val = Adr ∪ {null}, using variables h ∈ Hp,
ι ∈ Adr, and v ∈ Val. A runtime structure provides the following operations.
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e ::= this (this) | x (variable) | null (null)
| new t (new object) | e.f (access) | e.f = e (assignment)
| e.m(e) (method call) | e prvp (proof annotat.)

er ::= . . . (as source exprs.) | v (value) | verfExc (verif exc.)
| fatalExc (fatal exc.) | σ ·er (nested call) | call er (launch)
| ret er (return)

Fig. 3. Source and runtime expression syntax.

dom(h) represents the domain of the heap. cls(h, ι) yields the class of the object
at address ι. The operation fld(h, ι, f) yields the value of a field f of the object
at address ι. Finally, upd(h, ι, f, v) yields the new heap after a field update, and
new(h, ι, t) yields the heap and address resulting from the creation of an object.
We leave abstract how these operations work, but require properties about their
behaviour, for instance that upd only modifies the corresponding field of the
object at the given address, and leaves the remaining heap unmodified. See
Def. 9 in App. A for details.

A stack frame σ ∈ Stk = Adr×Adr×Mthd×Cls is a tuple of a receiver
address, an argument address, a method identifier, and a class. The latter two
indicate the method currently being executed and the class where it is defined.

Regions, Properties and Types. A region r ∈ R is a syntactic representation
for a set of objects; a property p ∈ P is a syntactic representation for a set of
assertions about particular objects. It is crucial that our syntax is parametric
with the specific regions and properties; we use different regions and properties
to model different verification techniques.1

We define a type t ∈ Typ, as a pair of a region and a class. The region allows
us to cater for types that express the topology of the heap, without being specific
about the underlying type system.

Expressions. In Fig. 3, we define source expressions e ∈ Expr. In order to
simplify our presentation (but without loss of generality), we restrict methods
to always have exactly one argument. Besides the usual basic object-oriented
constructs, we include proof annotations e prvp. As we will see later, such a
proof annotation executes the expression e and then imposes a proof obligation
for the invariants characterised by the property p. To maintain generality, we
avoid being precise about the actual syntax and checking of proofs.

In Fig. 3, we also define runtime expressions er ∈ RExpr. A runtime ex-
pression is a source expression, a value, a nested call with its stack frame σ, an
exception, or a decorated runtime expression. A verification exception verfExc
indicates that a proof obligation failed. A fatal exception fatalExc indicates that
an expected invariant does not hold. Runtime expressions can be decorated with
call er and ret er to mark the beginning and end of a method call, respectively.

1 For example, in Universe types, rep and peer are regions, while in ownership types,
ownership parameters such as X, and also this , are regions (more in Sec. 5).
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In Def. 10 (App. A), we define evaluation contexts, E[·], which describe con-
texts within one activation record and extend these to runtime contexts, F [·],
which also describe nested calls.

Programming Languages. We define a programming language as a tuple consist-
ing of a set Prg of programs, a runtime structure, a set of regions, and a set of
properties (see Def. 11 in App. A). Each Π ∈ Prg comes equipped with the fol-
lowing operations. F (c, f) yields the type of field f in class c as well as the class
in which f is declared (c or a superclass of c). M (c,m) yields the type signature
of method m in class c. B(c,m) yields the expression constituting the body of
method m in class c as well as the class in which m is declared. Moreover, there
are operators to denote subclasses and subtypes (<:), inclusion of regions (v),
and interpretation ([[·]]) of regions and properties.

The interpretation of a region produces a set of objects. We characterise each
invariant by an object-class pair, with the intended meaning that the invariant
specified in the class holds for the object.2 Therefore, the interpretation of a
property produces a set of object-class pairs, specifying all the invariants of
interest. Regions and properties are interpreted w.r.t. a heap, and from the
viewpoint of a “current object”; therefore, their definitions depend on heap and
address parameters: [[. . .]]h,ι.

Each program also comes with typing judgements Γ ` e : t and h ` er : t
for source and runtime expressions, respectively. An environment Γ ∈ Env is a
tuple of the class containing the current method, the method identifier, and the
type of the sole argument.

Finally, the judgement h |= ι, c expresses that in heap h, the object at address
ι satisfies the invariant declared in class c. We define that the judgement trivially
holds if the object is not allocated (ι 6∈ dom(h)) or is not an instance of c
(cls(h, ι) 6<: c). We say that the property p is valid in heap h w.r.t. address ι if
all invariants in [[p]]h,ι are satisfied. We denote validity of properties by h |= p, ι:

h |= p, ι ⇔ ∀(ι′, c) ∈ [[p]]h,ι. h |= ι′, c

Operational Semantics. The operational semantics uses the framework parame-
ter X to describe what invariants are expected to hold at visible states. Given a
program Π and a property Xc,m characterising the property that needs to hold
at the beginning and end of a method m of class c, the runtime semantics is the
relation −→ ⊆ (RExpr×Hp)× (RExpr×Hp) defined in Fig. 4.

The first seven rules are standard for object-oriented languages. Note that
in rNew, a new object is created using the function new, which takes a type as
parameter rather than a class, thereby making the semantics parametric w.r.t.
the type system: different type systems may use different regions and definitions
of new to describe heap-topological information. Similarly, upd and fld do not
fix a particular heap representation. Rule rCall describes method calls; it stores
the class in which the method body is defined, in the new stack frame σ, and
introduces the “marker” call er at the beginning of the method body.

2 An object may have different invariants for each of the classes it belongs to [18].
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(rVarThis)
σ = (ι, v, , )

σ ·this, h −→ σ ·ι, h
σ ·x, h −→ σ ·v, h

(rNew)
σ = (ι, , , )
h′, ι′ = new(h, ι, t)

σ ·new t, h −→ σ ·ι′, h′

(rDer)
v = fld(h, ι, f)

ι.f, h −→ v, h

(rAss)
h′ = upd(h, ι, f, v)

ι.f = v, h −→ v, h′

(rCall)
B(m, cls(h, ι)) = e, c σ = (ι, v, c, m)

ι.m(v), h −→ σ ·call e, h

(rCxtEval)
σ ·er, h −→ σ ·e′r, h′

σ ·E[er], h −→ σ ·E[e′r], h′

(rCxtFrame)
er, h −→ e′r, h′

σ ·er, h −→ σ ·e′r, h′

(rLaunch)
σ=(ι, , c, m)
h |=Xc,m, ι

σ ·call e, h −→ σ ·ret e, h

(rLaunchExc)
σ=(ι, , c, m)
h 6|=Xc,m, ι

σ ·call e, h −→ σ ·fatalExc, h

(rFrame)
σ=(ι, , c, m)
h |=Xc,m, ι

σ ·ret v, h −→ v, h

(rFrameExc)
σ=(ι, , c, m)
h 6|=Xc,m, ι

σ ·ret v, h −→ fatalExc, h

(rPrf)
σ = (ι, , , ) h |= p, ι

σ ·v prvp, h −→ σ ·v, h

(rPrfExc)
σ = (ι, , , ) h 6|= p, ι

σ ·v prvp, h −→ σ ·verfExc, h

Fig. 4. Reduction rules of operational semantics.

Our reduction rules abstract away from program verification and describe
only its effect. Thus, rLaunch, rLaunchExc, rFrame, and rFrameExc check whether
Xc,m is valid at the beginning and end of any execution of a method m defined in
class c, and generate a fatal exception, fatalExc, if the check fails. This represents
the visible state semantics discussed in the introduction. Proof obligations e prvp
are verified once e reduces to a value (rPrf and rPrfExc); if p is not found to be
valid, a verification exception verfExc is generated.

Verification using visible state semantics amounts to showing all proof obli-
gations in some program logic, based on the assumption that expected invariants
hold in visible states. A specific verification technique described in our frame-
work is therefore sound if it guarantees that a fatalExc is never encountered.
Verification technique soundness does allow verfExc to be generated, but this
will never happen in a correctly verified program.

This semantics allows us to be parametric w.r.t. the syntax of invariants and
the logic of proofs. We also define properties that permit us to be parametric
w.r.t. a sound type system (cf. Def. 15 in App. A). Thus, we can concentrate
entirely on verification concerns.

4 Verification Techniques

A verification technique is essentially a 7-tuple, where the components of the
tuple provide instantiations for the seven parameters of our framework. These
instantiations are expressed in terms of the regions and properties provided by
the programming language. To allow the instantiations to refer to the program
(for instance, to look up field declarations), we define a verification technique as
a mapping from programs to 7-tuples.
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Definition 1 A verification technique V for a programming language is a map-
ping from programs into a tuple:

V : Prg → eXp×Vul×Dep×Pre×End×Upd×Cll

where

X ∈ eXp = Cls×Mthd → P V ∈ Vul = Cls×Mthd → P
D ∈ Dep = Cls → P B ∈ Pre = Cls×Mthd×R → P
E ∈ End = Cls×Mthd → P C ∈ Cll = Cls×Mthd×Cls → R
U ∈ Upd = Cls×Mthd×Cls×Mthd → R

To describe a verification technique applied to a program, we write the applica-
tion of the components to class, method names, etc., as Xc,m, Vc,m, Dc, Bc,m,r,
Ec,m, Uc,m,c′ , Cc,m,c′,m′ . The meaning of these components is:

Xc,m: the property expected to be valid at the beginning and end of the body of
method m in class c. The parameters c and m allow a verification technique
to expect different invariants in the visible states of different methods. For
instance, JML’s helper methods [17] do not expect any invariants to hold.

Vc,m: the property vulnerable to method m of class c, that is, the property
whose validity may be broken while control is inside m. The parameters c
and m allow a verification technique to require that invariants of certain
classes (for instance, c’s subclasses) are not vulnerable.

Dc: the property that may depend on fields declared in class c. The parameter
c can be used, for instance, to prevent invariants from depending on fields
declared in c’s superclasses [16, 27].

Bc,m,r: the property whose validity has to be proven before calling a method
on a receiver in region r from the execution of a method m in class c. The
parameters allow proof obligations to depend on the calling method and the
ownership relation between the caller and the callee.

Ec,m: the property whose validity has to be proven at the end of method m
in class c. The parameters allow a technique to require different proofs for
different methods, e.g., to exclude subclass invariants.

Uc,m,c′ : the region of allowed receivers for an update of a field in class c′, within
the body of method m in class c. The parameters allow a technique, for
instance, to prevent field updates within pure methods.

Cc,m,c′,m′ : the region of allowed receivers for a call to method m′ of class c′,
within the body of method m of class c. The parameters allow a technique
to permit calls depending on attributes (e.g., purity or effect specifications)
of the caller and the callee.

The class and method identifiers used as parameters to our components can
be extracted from an environment Γ or a stack frame σ in the obvious way.
Thus, for Γ = c,m, or for σ =(ι, , c, m), we use XΓ and Xσ as shorthands for
Xc,m; we also use BΓ,r and Bσ,r as shorthands for Bc,m,r.
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(vs-null)

Γ V̀ null

(vs-Var)

Γ V̀ x

(vs-this)

Γ V̀ this

(vs-new)

Γ V̀ new t

(vs-fld)
Γ V̀ e

Γ V̀ e.f

(vs-ass)
Γ ` e : r c′ F (c′, f) = , c
r v UΓ,c Γ V̀ e Γ V̀ e′

Γ V̀ e.f = e′

(vs-call)
Γ ` e : r c′ B(c′, m) = , c
r v CΓ,c,m Γ V̀ e Γ V̀ e′

Γ V̀ e.m(e′ prv BΓ,r)

(vs-class)

B(c, m) = e, c
M (c, m) = t, t′

ff
⇒

(
e = e′ prv Ec,m

c, m, t V̀ e′

V̀ c

Fig. 5. Well-verified source expressions and classes.

Well-Verified Programs. The judgement Γ V̀ e expresses that expression e is
well-verified according to verification technique V . It is defined in Fig. 5.

The first five rules express that literals, variable lookup, object creation, and
field read do not require proofs. The receiver of a field update must fall into U
(vs-ass). The receiver of a call must fall into C (vs-call). Moreover, we require the
proof of B before a call. Finally, a class is well-verified if the body of each of its
methods is well-verified and ends with a proof obligation for E (vs-class). Note
that we use the type judgement Γ ` e : t without defining it; the definition is
given by the underlying programming language, not by our framework.

Fig. 9 in App. A defines the judgement h V̀ er for verified runtime expres-
sions. The rules correspond to those from Fig. 5, with the addition of rules for
values and nested calls.

A program Π is well-verified w.r.t. V , denoted as V̀ Π, iff (1) all classes
are well-verified and (2) all class invariants respect the dependency restrictions
dictated by D. That is, the invariant of an object ι′ declared in a class c′ will be
preserved by an update of a field of a class c if it is not within Dc.

Definition 2 V̀ Π ⇔

(1) ∀c ∈ Π. V̀ c

(2) F (cls(h, ι), f) = , c, (ι′, c′) 6∈ [[Dc]]h,ι, h |= ι′, c′ ⇒ upd(h, ι, f, v) |= ι′, c′

Valid States. The properties X and X \ V characterise the invariants that are
expected to hold in the visible states and between visible states of the current
method execution, respectively. That is, they reflect the local knowledge of the
current method, but do not describe globally all the invariants that need to hold
in a given state.

For any state with heap h and execution stack σ, the function vi(σ, h) yields
the set of valid invariants, that is, invariants that are expected to hold :

vi(σ, h) =

(
∅ if σ = ε

(vi(σ1, h) ∪ [[Xσ]]h,σ)\[[Vσ]]h,σ if σ = σ1 ·σ
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The call stack is empty at the beginning of program execution, at which point
we expect the heap to be empty. For each additional stack frame σ, the corre-
sponding method m may assume Xσ at the beginning of the call, and may break
Vσ during the call. Therefore, we add [[Xσ]]h,σ\[[Vσ]]h,σ to the valid invariants.

A state with heap h and stack σ is valid iff:

(1) σ is a valid stack, denoted by h V̀ σ (Def. 12 in App. A), and meaning that
the receivers of consecutive method calls are within the respective C regions.

(2) The valid invariants vi(σ, h) hold.
(3) If execution is in a visible state with σ as the topmost frame of σ, then the

expected invariants Xσ hold additionally.

These properties are formalised in Def. 3. A state is determined by a heap h
and a runtime expression er; the stack is extracted from er using function stack,
given by Def. 13 in App. A.

Definition 3 A state with heap h and runtime expression er is valid for a ver-
ification technique V , er |=V h, iff:

(1) h V̀ stack(er) (2) h |= vi(stack(er), h)

(3) er =F [σ ·call e] or er =F [σ ·ret v] ⇒ h |= Xσ, σ

Soundness. A verification technique is sound if verified programs only produce
valid states and do not throw fatal exceptions. More precisely, a verification
technique V is sound for a programming language PL iff for all well-formed
and verified programs Π ∈ PL, any well-typed and verified runtime expression
er executed in a valid state reduces to another verified expression e′r with a
resulting valid state. Note that a verified e′r contains no fatalExc (see Fig. 9).

Well-formedness of program Π is denoted by ẁf Π (Def. 14, App. A). Well-
typedness of runtime expression er is denoted by h ` er : t and required as part
of a sound type system in Def. 11, App. A. These requirement permits separation
of concerns, whereby we can formally define verification technique soundness in
isolation, assuming program well-formedness and a sound type system.

Definition 4 A verification technique V is sound for a programming language
PL iff for all programs Π ∈ PL:

ẁf Π, h ` er : , V̀ Π, er |=V h,
h V̀ er, er, h −→ e′r, h′

ff
⇒ e′r |=V h′, h′ V̀ e′r

5 Instantiations

In our earlier paper [8], we discuss six verification techniques from the literature
in terms of our framework, namely those by Poetzsch-Heffter [31], Huizing &
Kuiper [14], Leavens & Müller [16], Müller et al. [27], and Lu et al. [23]. In
this paper we concentrate on the techniques based on heap topologies [27, 23],
because those benefit most from the formalisation in our framework.

Müller et al. [27] present two techniques for multi-object invariants, called
ownership technique and visibility technique (OT and VT for short), which use
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the hierarchic heap topology enforced by Universe types [6]. Their distinctive fea-
tures are: (1) Expected and vulnerable invariants are specified per class(2) Invari-
ant restrictions take into account subclassing (thereby addressing the subclass
challenge). (3) Proof obligations are required before calls (thereby addressing
the call-back challenge) and at the end of calls. (4) Program restrictions are
uniform for all methods3, and are based on the relative object placement in the
hierarchy.

Lu et al. [23] define Oval, a verification technique based on ownership types,
which support owner parameters for classes [5], thus permitting a more precise
description of the heap topology. The distinctive features of Oval are: (1) Ex-
pected and vulnerable invariants are specific to every method in every class
through the notion of contracts. (2) Invariant restrictions do not take subclass-
ing into account. (3) Proof obligations are only imposed at the end of calls.
(4) To address the call-back challenge, calls are subject to “subcontracting”, a
requirement that guarantees that the expected and vulnerable invariants of the
callee are within those of the caller.

OT, VT, and Oval are discussed in more detail in our companion report [7].
In the remainder of this section, we introduce these techniques and summarise
them in Fig. 6. To sharpen our discussion w.r.t. structured heaps, we will be
adding annotations to the example from Fig. 1, to obtain a topology where the
Person p owns the Account a and the DebitCard d.

Müller et al. (OT) Müller et al. (VT) Lu et al.(Oval)

Xc,m own ; rep+ own ; rep+ I ; rep∗

Vc,m super〈c〉 t own+ peer〈c〉 t own+ E ; own∗

Dc self〈c〉 t own+ peer〈c〉 t own+ self ; own∗

Bc,m,r
super〈c〉 if r=peer
emp otherwise

peer〈c〉 if r=peer
emp otherwise

emp

Ec,m super〈c〉 peer〈c〉 self if I=E
emp otherwise

Uc,m,c′ self peer
self if I=E
emp otherwise

Cc,m,c′,m′ rep〈c〉 t peer rep〈c〉 t peer
F
r, with SC(I,E,I′,E′,Or,c) r

Fig. 6. Components of verification techniques. For Oval, Or,c is the owner of r; we use
shorthands I = I(c, m), and E = E(c, m), and I′ = r ; I(c′, m′), and E′ = r ; E(c′, m′).

5.1 Instantiation for OT and VT

Universe types associate reference types with Universe modifiers, which specify
ownership relative to the current object. The modifier rep expresses that an
object is owned by the current object; peer expresses that an object has the
same owner as the current object; any expresses that an object may have any
3 However, both OT and VT have special rules for pure (side-effect free) methods.

We ignore pure methods here, but refer the interested reader to [8].
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owner. Fig. 7 shows the Universe modifiers for our example from Fig. 1, which
allow one to apply OT and VT.

class Account {
peer DebitCard card;
any Person holder ;
...

}

class Person {
rep Account account;
...

}

class DebitCard {
peer Account acc;
...

}

Fig. 7. Universe modifiers for the Account example from Fig. 1.

To address the subclass challenge, OT and VT both forbid rep fields f and
g declared in different classes cf and cg of the same object o to reference the
same object. This subclass separation can be formalised in an ownership model
where each object is owned by an object-class pair (see [18] for details).

Regions and Properties. For OT and VT, we define the sets of regions and
properties to be:

r ∈ R ::= emp | self | rep〈c〉 | peer | any | r t r

p ∈ P ::= emp | self〈c〉 | super〈c〉 | peer〈c〉 | rep | own | rep+| own+|p t p|p;p

In our framework, Universe modifiers intuitively correspond to regions, since they
describe areas of the heap. For example, peer describes all objects which share
the owner (object-class pair) with the current object. However, because of the
subclass separation described above, it is useful to employ richer regions of the
form rep〈c〉, describing all objects owned by the current object and class c. For
regions (and properties) we also include the “union” of two regions (properties).

For properties, self〈c〉 represents the singleton set containing a pair of the
current object with the class c. The property super〈c〉 represents the set of pairs
of the current object with all its classes that are superclasses of c. The prop-
erty peer〈c〉 represents all the objects (paired with their classes) that share the
owner with the current object, provided their class is visible in c. There are also
properties to describe the invariants of an object’s owned objects, its owner, its
transitively owned objects, and its transitive owners. A property of the form
p1;p2 denotes a composition of properties, which behaves similarly to function
composition when interpreted. The formal definitions of the interpretations of
these regions and properties can be found in App. B.

Ownership Technique. As shown in Fig. 6, OT requires that in visible states, all
objects owned by the owner of this must satisfy their invariants (X).

Invariants are allowed to depend on fields of the object itself (at the current
class), as in I1 in Fig. 1, and all its rep objects, as in I2. Other client invariants
such as I4 and I5) and subclass invariants that depend on inherited fields (such as
I3) are not permitted. Therefore, a field update potentially affects the invariants
of the modified object and of all its (transitive) owners (D).
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A method may update fields of this (U). Since an updated field is declared
in the enclosing class or a superclass, the invariants potentially affected by the
update are those of this (for the enclosing class and its superclasses, which
addresses the subclass challenge) as well as the invariants of the (transitive)
owners of this (V).

OT handles multi-object invariants by allowing invariants to depend on fields
of owned objects (D). Therefore, methods may break the invariants of the tran-
sitive owners of this (V). For example, the invariant I2 of Person (Fig. 1) is legal
only because account is a rep field (Fig. 7). Account’s method withdraw need not
preserve Person’s invariant. This is reflected by the definition of E: only the in-
variants of this are proven at the end of the method, while those of the transitive
owners may remain broken; it is the responsibility of the owners to re-establish
them, which addresses the multi-object challenge. As an example, the method
spend has to re-establish Person’s invariant after the call to account.withdraw.

Since the invariants of the owners of this might not hold, OT disallows calls
on references other than rep and peer references (C). For instance, the call
holder . notify () in method sendReport is not permitted because holder is in an
ancestor ownership context.

The proof obligations for method calls (B) must cover those invariants ex-
pected by the callee that are vulnerable to the caller. This intersection contains
the invariant of the caller, if the caller and the callee are peers because the callee
might call back; it is otherwise empty (reps cannot callback their owners).

Visibility Technique. VT relaxes the restrictions of OT in two ways. First, it
permits invariants of a class c to depend on fields of peer objects, provided
that these invariants are visible in c (D). Thus, VT can handle multi-object
structures that are not organised hierarchically. For instance, in addition to
the invariants permitted by OT, VT permits invariants I4 and I5 in Fig. 1.
Visibility is transitive, thus, the invariant must also be visible wherever fields of
c are updated. Second, VT permits field updates on peers of this (U).

These relaxations make more invariants vulnerable. Therefore, V includes
additionally the invariants of the peers of this. This addition is also reflected in
the proof obligations before peer calls (B) and before the end of a method (E).
For instance, method withdraw must be proven to preserve the invariant of the
associated DebitCard, which does not in general succeed in our example.

5.2 Instantiation for Oval

Fig. 8 shows our example in Oval using ownership parameters [5] to describe heap
topologies. The ownership parameter o denotes the owner of the current object;
p denotes the owner of o and specifies the position of holder in the hierarchy,
more precisely than the any modifier in Universe types.

Method Contracts. Ownership parameters are also used to describe expected and
vulnerable invariants, which are specific to each method. Every Oval program
extends method signatures with a contract 〈I,E〉: the expected invariants at



15

class Account[o,p] {
DebitCard〈o〉 card;
Person〈p〉 holder;
...
void withdraw(int amount)〈this,this〉
{ ... }

void sendReport()〈bot,p〉
{ ... }

}

class Person[o] {
Account〈this〉 account;
...
void spend(int amount)〈this,this〉
{ account.withdraw(amount); }

void notify ()〈bot,top〉
{ ... }

}

Fig. 8. Ownership parameters and method contracts in Oval.

visible states (X) are the invariants of the object characterised by I and all objects
transitively owned by this object; the vulnerable invariants (V) are the object
at E and its transitive owners. These properties are syntactically characterised
by Ls in the code (and Ks in typing rules), where:

L ::= top | bot | this |X K ::= L |K ; rep

and where X stands for the class’ owner parameters.4

In class Account (Fig. 8), withdraw() expects the current object and the ob-
jects it transitively owns to be valid (I=this) and, during execution, this method
may invalidate the current object and its transitive owners (E=this). The con-
tract of sendReport() does not expect any objects to be valid at visible states
(I=bot) but may violate object p and its transitive owners (E=p).

Subcontracting. Call-backs are handled via subcontracting, which is defined using
the order L � L′, which expresses that at runtime the object denoted by L
will be transitively owned by the object denoted by L′. To interpret Oval’s
subcontracting in our framework, we use SC(I,E, I′,E′,K), which holds iff:

I ≺ E ⇒ I′ � I I = E ⇒ I′ ≺ I I′ ≺ E′ ⇒ E � E′ I = E = this ⇒ E � K

where I, E characterise the caller, I′, E′ characterise the callee, and K stands for
the callee’s owner. The first two requirements ensure that the caller guarantees
the invariant expected by the callee. The other two conditions ensure that the
invariants vulnerable to the callee are also vulnerable to the caller. For instance,
the call holder . notify () in method sendReport satisfies subcontracting because
caller and callee do not expect any invariants, and the callee has no vulnerable
invariants. In particular, the receiver of a call may be owned by any of the owners
of the current receiver, provided that subcontracting is respected (C).

4 We discuss a slightly simplified version of Oval, where we omit the existential owner
parameter ’∗’, and non-rep fields, a refinement whereby only the current object’s
owners depend on such fields. Both enhance the expressiveness of the language, but
are not central to our analysis.
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Regions and Properties. To express Oval in our framework, we define regions
and properties as follows (see App. B for their interpretations):

r ∈ R ::= emp | self | c〈K〉 | r t r p ∈ P ::= emp | self | K | K ; rep∗ | K ; own∗

As already stated, expected and vulnerable properties depend on the contract
of the method and express X as I ; rep∗ and V as E ; own∗ (see Fig. 6). Similarly
to OT, invariant dependencies are restricted to an object and the objects it
transitively owns (D). Therefore, I1 and I4 are legal, as well as I3, which depends
on an inherited field. Oval imposes a restriction on contracts that the expected
and vulnerable invariants of every method intersect at most at this. Consequently,
at the end of a method, one has to prove the invariant of the current receiver,
if I = E = this, and nothing otherwise (E). In the former case, the method is
allowed to update fields of its receiver; no updates are allowed otherwise (U).
Therefore, spend and withdraw are the only methods in our example that are
allowed to make field updates. Oval does not impose proof obligations on method
calls (B is empty), but addresses the call-back challenge through subcontracting.
Therefore, call-backs are safe because the callee cannot expect invariants that are
temporarily broken. With the existing contracts in Fig. 8, subcontracting permits
spend to call account.withdraw(), and withdraw to call this .sendReport(), and also
sendReport to call holder . notify (). The last two subcalls may potentially lead
to callbacks, but are safe because the contracts of sendReport and notify do not
expect the receiver to be in a valid state (I=bot).

Subclassing and Subcontracting. Oval also requires subcontracting between a
superclass method and an overriding subclass method. As we discuss later, this
is too weak to guarantee soundness [22], and we have found a counterexample
(cf. Sec. 6). Therefore, we use the following stronger requirement for methods
m of a class c and its subclass c′, which ensures that a subclass method expects
at most the invariants expected by the superclass method, and vice versa for
vulnerable invariants:

I(c′, m) � I(c, m) � E(c, m) � E(c′, m)

This requirement guarantees (S5) from Def. 5 in the next section. We refer to
the verification technique with this stronger requirement as Oval’.

5.3 Summary

Having shown how to instantiate these three techniques in our framework, and
applied the instantiations to our example, we summarise here the commonalities
and differences that are apparent in the results.

1. Invariant semantics: In OT and VT, the invariants expected at the begin-
ning of withdraw are I1, I2, and I3 for the receiver, as well as I5 for the
associated DebitCard (which is a peer). For withdraw in Oval, I = this,
therefore the expected invariants are I1, I2, and I3 for the receiver.
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2. Invariant restrictions: Invariants I2 and I5 are illegal in OT and Oval, while
they are legal in VT (which allows invariants to depend on the fields of
peers). Conversely, I3 is illegal in OT and VT (it mentions a field from a
superclass), while it is legal in Oval.

3. Proof obligations: In OT, before the call to this .sendReport() and at the end
of the body of withdraw, we have to establish I1 and I2 for the receiver. In
addition to these, in VT we have to establish I5 for the debit card. In Oval,
the same invariants as for OT have to be proven, but only at the end of the
method because call-backs are handled through subcontracting. In addition,
I3 is required.5 In all three techniques, withdraw is permitted to leave the
invariant I4 of the owning Person object broken. It has to be re-established
by the calling Person method.

4. Program restrictions: OT and VT forbid the call holder . notify () (reps can-
not call their owners), while Oval allows it. On the other hand, if method
sendReport required an invariant of its receiver (for instance, to ensure that
holder is non-null), then Oval would prevent method withdraw from calling
it, even though the invariants of the receiver might hold at the time of the
call. The proof obligations before calls in OT and VT would make such a
call legal.

6 Well-Structured Verification Techniques

We now identify conditions on the components of a verification technique that are
sufficient for soundness, state a general soundness theorem, and discuss sound-
ness of the techniques presented in Sec. 5.

Definition 5 A verification technique is well-structured if, for all programs in
the programming language:

(S1) r v Cc,m,c′m′ ⇒ (r . Xc′,m′) \ (Xc,m \ Vc,m) ⊆ Bc,m,r

(S2) Vc,m ∩ Xc,m ⊆ Ec,m

(S3) Cc,m,c′,m′ . (Vc′,m′ \ Xc′,m′) ⊆ Vc,m

(S4) Uc,m,c′ . Dc′ ⊆ Vc,m

(S5) c <: c′ ⇒ Xc,m ⊆ Xc′,m ∧ Vc,m\Xc,m ⊆ Vc′,m \ Xc′,m

In the above, the set theoretic symbols have the obvious interpretation in the
domain of properties. For example (S2) is short for ∀h, ι : [[Vc,m]]h,ι∩([[Xc]]h,ι ⊆
[[Ec,m]]h,ι. We use viewpoint adaptation r . p, defined as:

[[r . p]]h,ι =
⋃

ι′∈[[r]]h,ι
[[p]]h,ι′

meaning that the interpretation of a viewpoint-adapted property r .p w.r.t. an
address ι is equal to the union of the interpretations of p w.r.t. each object in
the interpretation of r
5 This means that verification of a class requires knowledge of a subclass. The Oval

developers plan to solve this modularity problem by requiring that any inherited
method has to be re-verified in the subclass [22].
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The first two conditions relate proof obligations with expected invariants.
(S1) ensures for a call within the permitted region that the expected invariants
of the callee (r . Xc′,m′) minus the invariants that hold throughout the calling
method (Xc,m \ Vc,m) are included in the proof obligation for the call (Bc,m,r).
(S2) ensures that the invariants that were broken during the execution of a
method, but which are required to hold again at the end of the method (Vc,m ∩
Xc,m) are included in the proof obligation at the end of the method (Ec,m).

The third and fourth condition ensure that invariants that are broken by a
method m of class c are actually in its vulnerable set. Condition (S3) deals with
calls and therefore uses viewpoint adaptation for call regions (Cc,m,c′,m′ . . . .).
It restricts the invariants that may be broken by the callee method m′, but are
not re-established by the callee through E. These invariants must be included in
the vulnerable invariants of the caller. Condition (S4) ensures for field updates
within the permitted region that the invariants broken by updating a field of
class c′ are included in the vulnerable invariants of the enclosing method, m.

Finally, (S5) establishes conditions for subclasses. An overriding method m
in a subclass c may expect fewer invariants than the overridden m in superclass
c′. Moreover, the subclass method must leave less invariants broken than the
superclass method.

Soundness Results. The five conditions from Def. 5 guarantee soundness of a
verification technique (Def. 4), provided that the programming language has a
sound type system (see Def. 15 in App. A).

Theorem 6 A well-structured verification technique, built on top of a program-
ming language with a sound type system, is sound.

This theorem is one of our main results. It reduces the complex task of proving
soundness of a verification technique to checking five fairly simple conditions.

Unsoundness of Oval. The original Oval proposal [23] is unsound because it
requires subcontracting for method overriding, which gives, in our terminol-
ogy Vc,m\Xc,m v Vc′,m, which is weaker than our (S5). We were alerted by
this discrepancy, and using the X and V components (no type system proper-
ties, nor any other component), we constructed the following counterexample.

class D[o] {
C1<this> c = new C2<this>();
void m() <this,o> { c.mm() }

}

class C1[o]{
void mm() <this,this> {...}

}
class C2[o] extends C2<o> {

void mm() <bot,this> {...}
}

The call c.mm() is checked using the contract of mm from C1; it expects the callee
to re-establish the invariant of the receiver (c), and is type correct. However,
the body of mm in C2 may break the receiver’s invariants, but has no proof
obligations (Ec2,mm = emp). Thus, the call c.mm() might break the invariants
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of c, thus breaking the contract of m. The reason for this problem is, that the—
initially appealing—parallel between subcontracting and method overriding does
not hold. We communicated the example to the authors, who confirmed our
findings [22].

Soundness of the Remaining Techniques. We proved soundness of six verification
techniques [7], including the three presented in Sec. 5.

Theorem 7 The verification techniques by Poetzsch-Heffter, by Huizing & Kuiper,
by Leavens & Müller, OT, VT, and Oval’ are well-structured.

Corollary 8 The verification techniques by Poetzsch-Heffter, by Huizing & Kuiper,
by Leavens & Müller, OT, VT, and Oval’ are sound.

Our proof of Corollary 8 confirmed soundness claims from the literature. We
found that the semi-formal arguments supporting the original soundness claims
at times missed crucial steps. For instance, the soundness proofs for OT and VT
[27] do not mention any condition relating to (S3) of Def. 5; in our formal proof,
(S3) was vital to determine what invariants still hold after a method returns.
We relegate proofs of the theorems to the companion report [7].

7 Related Work

Object invariants trace back to Hoare’s implementation invariants [12] and mon-
itor invariants [13]. They were popularised in object-oriented programming by
Meyer [24]. Their work, as well as other early work on object invariants [20, 21]
did not address the three challenges described in the introduction. Since they
were not formalised, it is difficult to understand the exact requirements and
soundness arguments (see [27] for a discussion). However, once the requirements
are clear, a formalisation within our framework seems straightforward.

The idea of regions and properties is inspired from type and effects sys-
tems[33], which have been extremely widely applied, e.g., to support race-free
programs and atomicity [10].

The verification techniques based on the Boogie methodology [1, 3, 18, 19] do
not use a visible state semantics. Instead, each method specifies in its precondi-
tion which invariants it requires. Extending our framework to Spec# requires two
changes. First, even though Spec# permits methods to specify explicitly which
invariants they require, the default is to require the invariants of its arguments
and all their peer objects. These defaults can be modelled in our framework by
allowing method-specific properties X. Second, Spec# checks invariants at the
end of expose blocks instead of the end of method bodies. Expose blocks can
easily be added to our formalism.

In separation logic [15, 32], object invariants are generally not as important
as in other verification techniques. Instead, verifiers are encouraged to write
predicates to express consistency criteria [28]. Abstract predicate families [29]
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allow one to do so without violating abstraction and information hiding. Parkin-
son and Bierman [30] show how to address the subclass challenge with abstract
predicates. Their work as well as Chin et al.’s [4] allow programmers to specify
which invariants a method expects and preserves, and do not require subclasses
to maintain inherited invariants. The general predicates of separation logic pro-
vide more flexibility than can be expressed by our framework.

We know of only one technique based on visible states that cannot be ex-
pressed in our framework: Middelkoop et al. [26] use proof obligations that refer
to the heap of the pre-state of a method execution. To formalise this technique,
we have to generalise our proof obligations to take two properties; one for the
pre-state heap and one for the post-state heap. Since this generality is not needed
for any of the other techniques, we omitted a formal treatment in this paper.

Some verification techniques exclude the pre- and post-states of so-called
helper methods from the visible states [16, 17]. Helper methods can easily be
expressed in our framework by choosing different parameters for helper and
non-helper methods. For instance in JML, X, B, and E are empty for helper
methods, because they neither assume nor have to preserve any invariants.

Once established, strong invariants [11] hold throughout program execution.
They are especially useful to reason about concurrency and security properties.
Our framework can model strong invariants, essentially by preventing them from
occurring in V.

Existing techniques for visible state invariants have only limited support for
object initialisation. Constructors are prevented from calling methods because
the callee method in general requires all invariants to hold, but the invariant of
the new object is not yet established. Fähndrich and Xia developed delayed types
[9] to control call-backs into objects that are being initialised. Delayed types
support strong invariants. Modelling these in our framework is future work.

8 Conclusions

We presented a framework that describes verification techniques for object in-
variants in terms of seven parameters and separates verification concerns from
those of the underlying type system. Our formalism is parametric w.r.t. the
type system of the programming language and the language used to describe
and to prove assumptions. We illustrated the generality of our framework by
instantiating it to describe three existing verification techniques. We identified
sufficient conditions on the framework parameters that guarantee soundness,
and we proved a universal soundness theorem. Our unified framework offers the
following important advantages:

1. It allows a simpler understanding of the verification concerns. In particular,
most of the aspects in which verification techniques differ are distilled in
terms of the parameters of our framework.

2. It facilitates comparisons since relationships between parameters can be ex-
pressed at an abstract level (e.g., criteria for well-structuredness in Def. 5),
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and the interpretations of regions and properties as sets allow formal com-
parisons of techniques in terms of set operations.

3. It expedites the soundness analysis of verification techniques, since checking
the soundness conditions of Def. 5 is significantly simpler than developing
soundness proofs from scratch.

4. It captures the design space of sound visible states based verification tech-
niques.

We plan to use our framework for the development of further, more flexible,
verification techniques.
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A Appendix—The Framework

Definition 9 A runtime structure is a tuple
RStruct = (Hp,Adr,',�, dom, cls, fld, upd, new)

where Hp, and Adr are sets, and where
' ⊆ Hp×Hp � ⊆ Hp×Hp dom : Hp → P(Adr)
cls : Hp×Adr ⇀ Cls fld : Hp×Adr× Fld ⇀ Val
upd : Hp×Adr× Fld×Val → Hp new : Hp×Adr×Typ → Hp×Adr

where Val=Adr ∪ {null} for some element null 6∈ Adr. For all h ∈ Hp, ι, ι′ ∈
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Adr, v ∈ Val, we require:

(H1) ι ∈ dom(h) ⇒ ∃c.cls(h, ι) = c

(H2) h ' h′ ⇒ dom(h) = dom(h′), cls(h, ι) = cls(h′, ι)

(H3) h � h′ ⇒ dom(h) ⊆ dom(h′), ∀ι ∈ dom(h).cls(h, ι) = cls(h′, ι)

(H4) upd(h, ι, f, v) = h′ ⇒

(
h ' h′ fld(h′, ι, f) = v,

ι 6= ι′ or f 6= f ′ ⇒ fld(h′, ι′, f ′) = fld(h, ι′, f ′)

(H5) new(h, ι, t) = h′, ι′ ⇒ h � h′, ι′ ∈ dom(h′)\dom(h)

Definition 10 E[·] and F [·] are defined as follows:
E[·] ::= [·] | E[·].f | E[·].f = e | ι.f = E[·] | E[·].m(e) | ι.m(E[·]) | E[·] prvp | ret E[·]
F [·] ::= [·] | F [·].f | F [·].f = e | ι.f = F [·] | F [·].m(e) | ι.m(F [·]) | F [·] prvp | σ ·F [·]

| call F [·] | ret F [·]

Definition 11 A programming language is a tuple
PL = (Prg,RStruct,R,P)

where R and P are sets, and Prg is a set where every Π ∈ Prg is a tuple

Π =

„
F , M , B, <: (class definitions) v, [[·]] (inclusion and interpretations)
|=,` (invariant and type satisfaction)

«
with signatures:
F : Cls× Fld ⇀ Typ×Cls M : Cls×Mthd ⇀ Typ×Typ
B : Cls×Mthd ⇀ Expr×Cls
<: ⊆ Cls×Cls ∪ Typ×Typ v ⊆ R×R
[[·]] : R×Hp×Adr → P(Adr) [[·]] : P×Hp×Adr → P(Adr×Cls)
|= ⊆ Hp×Adr×Cls ` ⊆ (Env× Expr ∪ Hp×RExpr)×Typ
where every Π ∈ Prg must satisfy the constraints:
(P1) F (c, f) = t, c′ ⇒ c <: c′ (P2) B(c, m) = e, c′ ⇒ c <: c′

(P3) F (cls(h, ι), f) = t, ⇒ ∃v.fld(h, ι, f) = v (P4) r1 v r2 ⇒ [[r1]]h,ι ⊆ [[r2]]h,ι

(P5) [[r]]h,ι ⊆ dom(h) (P6) h � h′ ⇒ [[p]]h,ι ⊆ [[p]]h′,ι

(P7) r c <: r′ c′ ⇒ r v r
′, c <: c′

Definition 12 Stack σ is valid w.r.t. heap h in a verification technique V , de-
noted by h V̀ σ, iff:

σ=σ1 ·σ ·σ′ ·σ2 ⇒ σ′ = (ι, , c′, m), h, σ ` ι : r , c′ <: c, r v Cσ,c,m

Definition 13 The function stack : RExpr → Stk∗ yields the stack of a run-
time expression:

stack(E[er]) =

(
σ ·stack(e′r) if er = σ ·e′r
ε otherwise

Definition 14 For every program, the judgement:
ẁf : (Hp× Stk× Stk×R) ∪ (Env×Hp× Stk) ∪ Prg is defined as:

– ẁf Π ⇔

8>>><>>>:
(F1) M (c, m) = t, t′ ⇒ ∃e. B(c, m) = e, , c, m, t ` e : t′

(F2) c <: c′, F (c′, f) = t, c′′ ⇒ F (c, f) = t′, c′′, t′ = t

(F3) c <: c′, M (c, m) = t, t′, M (c′, m) = t′′, t′′′ ⇒ t = t′′, t′ = t′′′′

(F4) c <: c′, B(c′, m) = e′, c′′ ⇒ ∃c′′′. B(c, m) = e, c′′′, c′′′ <: c′′
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(ad-null)

h V̀ σ ·null

(ad-addr)
ι ∈ dom(h)

h V̀ σ ·ι

(ad-new)

h V̀ σ ·new t

(ad-Var)

h V̀ σ ·x

(ad-this)

h V̀ σ ·this

(ad-verEx)

h V̀ F [verfExc]

(ad-ass)
h, σ ` er : r c′

F (c′, f) = , c
r v Uσ,c

h V̀ σ ·er

h V̀ σ ·e′r
h V̀ σ ·er.f = e′r

(ad-fld)
h V̀ σ ·er

h V̀ σ ·er.f

(ad-end)
h V̀ σ′ ·v

h V̀ σ ·σ′ ·ret v

(ad-call)
h, σ ` er : r c′

B(c′, m) = , c
r v Cσ,c,m

h V̀ σ ·er

h V̀ σ ·e′r
h V̀ σ ·er.m(e′r prv Bσ,r)

(ad-call-2)
h, σ ` v : r c′

B(c′, m) = , c
h |= Bσ,r, σ
r v Cσ,c,m

h V̀ σ ·v
h V̀ σ ·v′
h V̀ σ ·v.m(v′)

(ad-start)
h V̀ σ′ ·e

h V̀ σ ·σ′ ·call e prv Eσ′

(ad-frame)
h V̀ σ′ ·er

h V̀ σ ·σ′ ·ret er prv Eσ′

Fig. 9. Well-verified runtime expressions.

– h, σ ẁf σ′ : r ⇔ σ′ = (ι, , , ), h, σ ` ι : r

– Γ ẁf h, σ ⇔

(
∃c, m, t, ι, v. Γ = c, m, t, σ = (ι, v, c, m),

cls(h, ι) <: c, h, σ ` v : t

Definition 15 A programming language PL has a sound type system if all
programs Π ∈ PL satisfy the constraints:

(T1) Γ ` e : t, t <: t′ ⇒ Γ ` e : t′ (T2) h ` er : t, t <: t′ ⇒ h ` er : t′

(T3) h ` er : t, h ' h′ ⇒ h′ ` er : t (T4) h ` σ ·ι : c ⇒ cls(h, ι) <: c
(T5) h ` σ ·ι.m(v) : t ⇒ h ` σ ·ι : r c M (c, m) = t′, t, h ` σ ·v : t′

(T6) σ = (ι, , , ), h ` σ ·ι′ : r ⇒ ι′ ∈ [[r]]h,ι

(T7) Γ ` e : r c, Γ ` h, σ ⇒ h ` σ ·e : r c
(T8) ẁf Π, h, σ ` er : t er, h −→ e′r, h′ ⇒ h′, σ ` e′r : t

B Appendix—The Instantiations

Müller et al. We assume an additional heap operation, which gives an object’s
owner: own : Hp×Adr → Adr×Cls.

Regions are interpreted as follows:

[[self]]h,ι = {ι} [[any]]h,ι = dom(h)

[[rep〈c〉]]h,ι =
˘
ι′ | own(h, ι′) = ι c

¯
[[emp]]h,ι = ∅

[[peer]]h,ι =
˘
ι′ | own(h, ι′) = own(h, ι)

¯
[[r1 t r2]]h,ι = [[r2]]h,ι ∪ [[r2]]h,ι

Properties are interpreted as follows:
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[[self〈c〉]]h,ι = {(ι, c) | cls(h, ι) <: c} [[emp]]h,ι = ∅ [[super〈c〉]]h,ι =
˘
(ι, c′) | c <: c′

¯
[[peer〈c〉]]h,ι =

˘
(ι′, c′) | own(h, ι′)=own(h, ι) ∧ vis(c′, c)

¯
[[p1;p2]]h,ι =

S
(ι′,c)∈[[p1]]h,ι

[[p2]]h,ι′

[[rep]]h,ι =
˘
(ι′, c′) | own(h, ι′)= ι

¯
[[rep+]]h,ι = [[rep]]h,ι ∪ [[rep; rep+]]h,ι

[[own]]h,ι ={own(h, ι)} [[own+]]h,ι = [[own]]h,ι ∪ [[own; own+]]h,ι

Lu et al. We interpret regions as follows:

[[emp]]h,ι =∅ [[self]]h,ι ={ι} [[r t r
′]]h,ι =[[r]]h,ι ∪ [[r′]]h,ι

[[c〈K〉]]h,ι =
˘
ι′ | h ` ι′ : c〈ι〉, ∀i. ιi ∈ [{Ki}]h,ι

¯
As usual in ownership systems, h ` ι : c〈ι〉 describes that ι points to an object of
a subclass of c〈ι〉, while h ` ι′ � ι expresses that ι′ is owned by ι, and h ` ι′ �∗ ι
is the transitive closure. We interpret properties as follows:

[[emp]]h,ι = [[top]]h,ι = [[bot]]h,ι = ∅ [[self]]h,ι = {(ι, c) | ...}
[[K]]h,ι =

˘
(ι′, c) | ι′ ∈ [{K}]h.ι, cls(h, ι′) <: c

¯
[[K;p]]h,ι =

(
all(h) K= top,p= rep∗ ∨K=bot,p=own∗S

(ι′,c)∈[[K]]h,ι
[[p]]h,ι′ p ∈ {rep∗, own∗}

[[rep∗]]h,ι =
˘
ι′ | h ` ι′ �∗ ι

¯
[[own∗]]h,ι =

˘
ι′ | h ` ι �∗ ι′

¯
[{X}]h,ι =

˘
ιi | h ` ι : c〈ι〉, c has formal parameters X̄, X = Xi

¯
The owner extraction function O is defined as:

Or,c =

8><>:
K1, if r = c〈K〉
X1, if r = self, class c has formal parameters X̄.

⊥ otherwise
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