
Real-time challenge balance in an RTS game using rtNEAT

Jacob Kaae Olesen, Georgios N. Yannakakis, Member, IEEE, and John Hallam

Abstract— This paper explores using the NEAT and rtNEAT
neuro-evolution methodologies to generate intelligent opponents
in real-time strategy (RTS) games. The main objective is to
adapt the challenge generated by the game opponents to match
the skill of a player in real-time, ultimately leading to a
higher entertainment value perceived by a human player of the
game. Results indicate the effectiveness of NEAT and rtNEAT
but demonstrate their limitations for use in real-time strategy
games.

I. INTRODUCTION

Computer game balance (or difficulty adjustment) is a
crucial aspect of commercial game development. Currently,
this is achieved either by predefined levels of game challenge
— the player then decides which of those levels she will play
against — or by techniques known as rubber-band artificial
intelligence (AI) [1], mainly used in racing games. The
first approach cannot incorporate the needs of all potential
players of the game while the latter approach generates
predictable behaviors which reduce the believability of the
non-player characters (NPCs). Furthermore, human players
enhance their skills while playing a game which necessitates
an adaptive mechanism that covers the player’s need for more
challenging NPCs during play (i.e. in real-time).

The work presented here is motivated by the current lack
of intelligent automated processes that adjust game challenge
according to individual player skills: an attempt dynamically
to adjust challenge generated by game opponents of real-
time strategy (RTS) games in real-time is introduced in this
paper. The first step is to identify factors that contribute to
the challenge experienced by a player in the RTS game under
investigation. Then, the Neuro-Evolution of Augmenting
Topologies (NEAT) [2] methodology is used to train off-line
artificial neural network (ANN) controlled agents that excel
in some of these factors, and the generated behavior is tested
to verify that it performs well against challenging opponents.
Next, an empirical challenge rating formula is designed based
on quantifications of all challenge factors. This challenge
metric is then used as a component of a fitness function
which promotes minimization of the difference between the
challenge metric value generated by the NEAT agent and
the one generated by its opponent. The ability of NEAT
to balance the challenge metric (i.e. minimizing the above-
mentioned difference) is first tested off-line. Results show

Jacob Kaae Olesen and John Hallam are with the Mærsk Mc-
Kinney Møller Institute, University of Southern Denmark, Cam-
pusvej 55, DK-5230, Odense (email: joles03@student.sdu.dk,
john@mmmi.sdu.dk). Georgios N. Yannakakis is with Center for Com-
puter Games Research, IT-University of Copenhagen, Rued Langgaards
Vej 7, DK-2300 Copenhagen (phone: +45-7218-5078; fax: +45-7218-5001;
email: yannakakis@itu.dk).

that NEAT is capable of matching the challenge of the AI
agent to the skill of a hard-coded player throughout the
whole evaluation gameplay period. Based on these positive
indications, the real-time NEAT (rtNEAT) methodology [3]
is used to adjust the challenge of ANN-controlled NPCs
according to the player’s challenge in real-time. Experimental
results indicate the efficiency of rtNEAT in the challenge-
balance task for the RTS game investigated and demonstrate
the limitations of the approach.

The work reported here is novel in demonstrating a way of
constructing a challenge metric for the RTS game used and
in applying NEAT and rtNEAT for dynamically adjusting
challenge in RTS games. The limitations of the proposed
methodology and its generic use as an efficient approach
for automating game balance in RTS games in real-time are
discussed.

II. RELATED WORK

Theoretical psychological studies based on computer game
players suggest that the appropriate level of challenge is an
important factor of an enjoyable game experience. Malone’s
analysis on principal entertainment factors [4], suggests
challenge as one of the three intrinsic qualitative factors that
contribute to engaging game play (curiosity and fantasy are
the other two). Challenge’s contribution to enjoyable game-
play experience is also derived from the well-know theory
of flow [5], since according to Csikszentmihalyi appropriate
level of challenge that matches player skill constitutes one of
the nine factors of flow generated during play [6]. Lazzaro’s
work on ‘fun’ clustering [7] derived from facial expressions
and data obtained from game surveys on players reveals
hard fun as one of the proposed entertainment factors which
corresponds to real-time game challenge. Yannakakis and
Hallam propose a human cross-verified interest metric for
prey/predator games that includes a quantified measure of
the appropriate level of challenge [8].

Based on the assumption that challenge is the only factor
that contributes to enjoyable gaming experience, several
machine learning approaches have been proposed for ad-
justing a game’s difficulty. Such approaches include applica-
tions of reinforcement learning [9], genetic algorithms [10],
probabilistic models [11] and dynamic scripting [12], [13].
However, human survey experiments that cross-verify the
assumptions of player satisfaction enhancement have not
been reported in any of those approaches. Using challenge
as a player interest factor, an adaptive (neuro-evolution)
learning mechanism has been proposed for increasing the
challenge-based interest value of prey/predator games. The



effectiveness and robustness of the mechanism has been
evaluated via human survey experiments [8].

Following the theoretical principles reported in [4], [14]
and [8], this paper is primarily focused on the contributions
of game opponents’ behavior to the real-time entertainment
value of the game through game challenge balance. Given
the successful application of the NEAT methodology [2] in
several complex problems and rtNEAT in evolving adaptive
NPC behaviors in real-time for the NERO game [3], we
investigate those algorithms’ ability to balance challenge in
real-time on a test-bed RTS game.

III. NEAT

NEAT is a method developed by Stanley and Miikkulainen
[2] used to construct artificial neural networks automatically
which is based on Topology and Weight Evolving Artificial
Neural Networks (TWEANNs). Evolution adjusts both the
connection weights and the topology of the network. This
allows NEAT to add and remove nodes and connections in
the ANN, as well as modify the values of the connection
weights [15]. Common neuro-evolution methods — that
use fixed ad-hoc topologies and only allow evolution of
connection weights — have previously been much faster
than TWEANNs, since the complexity introduced in the
evolutionary process by dynamic topology resulted in lower
performance. NEAT was developed in an effort to improve
TWEANNs’ performance and outperform neuro-evolution
methods using fixed topologies. It does so by addressing
three critical issues which are briefly presented below.

A. Simple and meaningful crossover between different
topologies

The apparently simple problem of performing crossover
between two ANNs in a population can become very dif-
ficult if their topologies are very different. NEAT uses a
linear encoding of all network connectivity in each genome,
resulting in a list of connection and node genes. Each
connection gene includes the codes of the input and output
nodes of the connection and its weight value. In addition, it
incorporates an enable/disable flag and an innovation number,
unique for each gene, which is used to keep track of when
this specific connection was introduced in the population.
During crossover, the genes (connections) with the same
innovation number are lined up against each other, and the
rest are either disjoint or excess genes, depending on whether
they are within or outside the range of the other parent’s
innovation numbers. The generated offspring will randomly
inherit matching genes from both parents, but excess or
disjoint genes only from the more fit parent.

Mutation in NEAT allows for change of both connection
weights and network structure. Structural mutations may
happen in two ways: by adding a connection gene between
two unconnected nodes or by adding a node gene, splitting
an old connection gene into two new, and disabling the old.
The reader may refer to [2] for further details on the genetic
operators used in NEAT.

B. Protection of structural innovation using speciation

Using NEAT, ANN topology is expanded by mutations
adding new connection or node genes to the genome.
However, adding complexity to a network structure usually
leads to an initial decrease of fitness, until the structure is
optimized after a number of generations. This can cause
newly generated and potentially fit genomes to be eliminated
during the evolutionary process. NEAT overcomes this by
speciation which allows the genomes to compete only against
similar genomes — i.e. genomes of the same species. In
speciation, all genomes are divided into species by clustering
using a compatibility distance measure which is calculated
as a linear function of the excess and disjoint genes between
two genomes. A compatibility distance threshold determines
the number of species clusters formed.

C. Minimizing dimensionality

NEAT performs fast because of an incrementally grow-
ing ANN structure evolutionary procedure. Where other
TWEANNs usually initialize populations of random topolo-
gies to gain topological diversity, NEAT starts out with a
uniform population of fully connected networks of minimal
size (i.e. no hidden nodes). Topology is then expanded
and diversified by mutation and speciation, but since the
initial topologies are as simple as possible, the search space
is structured so that, unlike other TWEANNs and fixed-
topology neuro-evolution systems, NEAT only expands on
topologies that have already survived evolution and proven
to be fit.

NEAT has been successfully used on traditional AI prob-
lems, such as the pole-balancing problem [2], [16] in which
it is able to surpass the performance of most evolutionary
methods and produce innovative ANNs able to solve highly
complex problems. A more detailed presentation of NEAT
can be found in [2]; unless otherwise stated, NEAT is
applied here using the default parameters as presented there.
Experiments for customizing specific parameters of NEAT
for this application are presented in Section VII. Further
details on the application of NEAT and rtNEAT in the
Globulation 2 RTS game can be found in [17].

IV. GLOBULATION 2

Globulation 2 (G2) [18] is an open-source RTS game,
implemented in C++ by a large group of independent game
developers. The game is currently in a beta stage, but is
robust enough for the purposes of this paper. The game is
based on the well known concept of resource harvesting and
base-building to create an army and defeat the opponent(s)
(see Fig. 1).

G2 incorporates some interesting features that set it apart
from most other RTS games. Where most RTS games require
a large amount of micro-management by the player to control
all buildings and units, G2 allows the player to concern
herself only with macro-management. This is achieved by
letting the units determine their tasks and roles based on
high level orders, rather than by player assignment. If, for



Fig. 1. Globulation 2 test-bed game: screenshot during a combat.

example, the player wishes to have three units harvesting
food, she simply specifies so in the building where food
is needed, and three worker units will automatically begin
delivering food to that building. Similarly, constructing new
buildings is done just by specifying where the new building
should be placed and how many workers should work on this
task. Units can be upgraded by certain kinds of building,
such as schools and racetracks, and enter those buildings
whenever they pass near them. The only decision the player
has to make is how many such upgrade buildings should be
made, and where to place them.

Finally, combat is also simplified, in that warriors will
automatically attack any enemy in their area of coverage. It is
also possible to mark an area to be guarded, and warriors will
automatically rally to that point when they are not otherwise
occupied. When performing an attack, the player simply
specifies a circle on the map to be attacked. The radius of
the circle can be adjusted, as well as the number of warriors
to attack the area. The circle can be made small enough to
specify a single building, or to encompass an entire enemy
base. Warriors will then move to the attack area and start
attacking any enemy within it, usually starting with enemy
warriors if any are present.

As with most RTS games, construction in G2 is based on
resources. To create buildings, resources such as wood, stone
and algae must be collected by workers. Furthermore, creat-
ing new units requires food to be harvested. Moreover, G2
also uses food to maintain units. This is done in inns which
both workers and warriors must visit at regular intervals to
feed. These inns must be supplied with food by workers, and
can only contain a limited number of simultaneously feeding
units. If no inns are available once a unit becomes hungry,
it will starve, eventually lose health and finally die. This
adds an extra strategic element to G2, as warriors attacking
a position far from an inn spend most of their time running
back and forth to the inn in order to feed, and very little time
fighting.

The focus on macro-management in G2 makes it an
excellent test-bed for AI development, since an AI agent
only has to make high level decisions to operate on the same
level as a human player. This makes an ANN-based AI much
simpler to develop for G2, as the search space (number of
available actions) is greatly reduced compared to other RTS
games.

V. CHALLENGE RATING

To adjust the challenge of the game to meet the player’s
skills, the notion of challenge must be quantified first: a met-
ric must be defined for G2, enabling continuous measurement
of challenge — both of the AI and the human player. This
metric is named the ‘challenge rating’ (CR) and is inspired
by previous studies in the field of entertainment modeling
[8] and dynamic game balancing [9].

First, in order to design a reliable CR for G2, it is
necessary to examine the specific game features (e.g. macro-
management) that differentiate G2 from other RTS games
(see Section IV). Based on knowledge of the RTS genre,
several forum posts and interviews with a number of experi-
enced computer gamers, the following elements are proposed
as the main contributors to challenge in G2.

• Number of warriors
• Aggressiveness
• Infrastructure
• Defense infrastructure
• Average training level of warriors
• Number of workers

(Following the principles of [8] these elements are only based
on NPC behavior. Thus, game features like map layout and
number of players are excluded from investigation.)

There is no guarantee that these proposed challenge factors
do actually contribute to challenge in the G2 game. The
contribution of each factor to challenge might also vary
widely. To determine the validity of each challenge factor,
and possibly also compute their quantitative contribution (e.g.
weighting factor) to the challenge metric, a number of AI
agents must be trained off-line, each focusing on maximizing
one or more challenge factors. A number of games must then
be played by human test subjects to cross-validate whether
each of the produced AI behaviors matches the human notion
of challenge [8]. Once these tests have been completed,
a definition of a total challenge rating can be derived by
using those challenge factors proven to generate challenging
games for humans. The generated CR metric — being an
approximator of challenge — must then be cross-validated
in the same way as the individual challenge factors. By
following the experimental methodology introduced in [8] a
number of NPCs must be evolved, reaching different levels
of challenge, according to the CR metric.

In the work presented here, off-line learning (via NEAT)
against standard AI agents that come with G2, is used to
verify whether the first two of the aforementioned challenge
factors (number of warriors and aggressiveness) do indeed
contribute to challenge (see Section VII). Our assumption



here is that the standard G2 agents offer a plethora of
effective playing behaviors which simulate human players
and are adequate to demonstrate whether a specific challenge
factor contributes to human challenge. Then, a challenge
rating formula is designed based upon all those six factors
(see Section VII). The ad-hoc formula designed provides
a good estimation of the challenge of the game based
on empirical tests. Although many alternative and more
successful challenge metrics could be designed, the one
proposed in Section VII-C serves the purpose of this paper
well by providing an objective function which demonstrates
the ability of machine learning to adapt the game in real-
time.

VI. AI DESIGN

The off-line development of the many different performing
NPCs described in Section V is achieved through NEAT in
this paper. Other machine learning approaches, such as fixed-
topology neuro-evolution or temporal difference learning,
could be used. However NEAT is the most sensible approach
for off-line learning due to compatibility purposes since it is
used for real-time adaptation of the game challenge.

This section presents the ANN structure used, the test-bed
game level designed for all learning experiments conducted
in G2 and the specifics of the evolutionary procedures of
NEAT and rtNEAT.

A. ANN structure

G2 comes with several scripted AI agents developed by
enthusiastic players of the game. It was decided to base our
AI implementation on an existing AI, rather than create it
from scratch, for several reasons. First, it is effort and cost
efficient since the methods and structure of the AI are already
implemented and tested. Second, a few of the AI agents that
come with the game already have a structure which supports
well the implementation of a neural network controller, in
that they use a number of statistical game data as input to
determine which actions to take, every given number of game
ticks. These AI approaches use simple hard-coded rules for
action selection. It is, therefore, a relatively trivial task to
replace this standard rule-base with an ANN, by feeding it
with the same input vector. Finally, building upon an existing
AI agent also provides a reliable baseline for comparison of
the generated behavior with the existing one.

After observing the behavior of each available standard
AI agent during game play and going through their rule-
base systems in detail, we chose the agent named Nicowar
to form the baseline NPC for our investigations. The selection
criteria include performance, documentation availability and
structure compatibility with an ANN. Following the input-
output vectors of the Nicowar agent, the initial ANN struc-
ture incorporates 8 inputs and 8 outputs presented in Table I
with no hidden layer. This results to 64 connections, plus 8
additional connections for the output bias.

Input is normalized into [0, 1]. Each output corresponds
to a macro-management decision that the agent might take.
Based on Nicowar, these decisions correspond to activating

different game phases with associated playing strategy. The
input is calculated every 100 game ticks and the output
is updated. Then the agent bases its decision on all active
output nodes since more than one output can be active
simultaneously. Further details on each of those game phases
can be found in [18].

TABLE I
ANN INPUT AND OUTPUT.

Input Output

Total number of units Growth
Number of warriors Skilled worker
Number of idle workers Upgrade 1
Number of rank 1 workers Upgrade 2
Number of rank 2 workers War preparation
Number of barracks War
Number of schools Starvation recovery
Starvation percentage No workers

B. Game Environment

The map used for all training experiments presented in this
paper is a modified version of an existing map named Muka.
This map is highly symmetrical providing fairness with re-
gards to the NPCs starting position. For our implementations
a Muka map is designed providing one warrior and one
worker development building as well as 9 warriors and 19
workers. This enhanced map allows the AI training a much
simpler platform, as it can only focus on the development of
units during the game.

C. Evolution through NEAT

The evolutionary procedure used follows the standard
NEAT procedure presented in [2]. First, a population of
ANN-controlled agents is created. Then, each member of
the population is placed in the game environment, evaluated
on a specific training task and assigned a corresponding
fitness value. Selection is the standard NEAT one. Finally,
the population is re-spawned with the probability of mutation
and crossover occurring in all agents.

D. Evolution through rtNEAT

Real time learning is based on the principles of rtNEAT
implemented for the NERO game [3] where the ANNs that
control the opponents are evolved in real-time. In NERO, a
large number (50) of agents are used to provide sufficient in-
teraction and the real-time replacement strategy occurs quite
often, which results in fast adaptation. In G2, however only
8 agents (players) can be active in a game simultaneously,
given the game environment and genre. Additionally, the
replacement strategy cannot be that frequent, as it takes quite
a while to obtain sufficient statistical data from an RTS game
in order to evaluate well the fitness of the generated behavior.
These constraints constitute challenges for the successful
implementation of rtNEAT to G2. However, rtNEAT has
relatively a fair amount of adaptation time available since



RTS games in general generate longer game play periods.
For instance, the average length of the G2 game played by
the authors lasts more that 20 minutes (roughly 30000 game
ticks) on a single level.

VII. OFF-LINE LEARNING

This section presents off-line learning experiments for
adjusting specific NEAT parameters (see Section VII-A),
experiments for generating NPCs that maximize two of the
challenge factors mentioned in Section V (see Section VII-
B) and experiments for evaluating the efficiency of NEAT
in minimizing the difference of a designed challenge met-
ric between the ANN-controlled NPC and the player (see
Section VII-C).

A. NEAT parameter value investigation

Initially a number of off-line learning trials were con-
ducted to determine three NEAT parameter values: the
compatibility threshold (ct), the population size and the
evaluation period. These three parameters were chosen for
their importance in any evolutionary procedure. NEAT allows
for a great amount of parameter adjustment, but testing all
of them would be a very tedious task (which, if necessary,
would argue against the applicability of NEAT itself). The
remaining NEAT parameters were left at their default values
[2].

This part of the off-line training procedure was performed
using a simple fitness evaluation based on the total number
of warrior units at the end of each evaluation period. This
fitness function was chosen to test the efficiency of NEAT in
simple problems and provide insight into potential problems
during training. The NEAT-controlled agents were evaluated
against the Nicowar agent [18] that comes with G2. The
NEAT and the Nicowar agents placed in G2 are allied in
this set of experiments.

The initial off-line training trials revealed that the learning
process was quite fast and efficient within a reasonable
range of the parameters under investigation. After several
parameter set values were tested it was observed that a
population size of 25 with a ct value of 3 and a evaluation
time of 10000 ticks generated the most effective agents in
10 trials. The main criterion used for defining effectiveness
is based on a compromise between the learning time and
the quality of the training result. Each one of the 10 trials
lasted 7 minutes running in an Intel Core 2 Duo — 2.2
GHz CPU (all experiments presented in this paper run on
that same machine). Moreover, during training, each game
tick corresponds to around 1ms, making an evaluation of
10000 ticks last 10 seconds approximately. Note that the
chosen evaluation period of 10000 ticks corresponds to
approximately 6.6 minutes of real-time play (a game tick
during play in G2 lasts for 40 ms) — much less than the
gameplay duration of an average skilled human player.

B. Training Experiments — Challenge Factors

After validating the effectiveness of NEAT in evolving
simple controllers, NPCs were trained to match the two

first challenge factors mentioned in Section V: number of
warriors and aggressiveness.

1) The MaxWar agent: The first NEAT training attempt is
built on the Nicowar standard agent and it is trained to play
against it. The purpose of the learning experiments presented
here is to determine if it is plausible to train an agent that
develops as many warriors as possible and investigate if
it is more challenging to play against that agent than an
agent which does not embed that behavior. Thus, the fitness
function used promotes the number of warriors built and
weighs warriors with combat training higher than warriors
without it.

The best trained agent, named Maxwar, was evaluated
against all six standard AI agents and an agent incorporating
a random action selection mechanism. The Maxwar agent re-
sulted in a draw against all the opponents within a time frame
of 25000 ticks. While this does not suggest the Maxwar is
incredibly hard to play against, it is still promising that it
does not lose to any of the standard AI agents — not even
Nicowar on which it was based. Taking into consideration
that Maxwar was not explicitly trained to win a game, but to
create many and well trained warriors, the results are more
than satisfactory at this stage and show that the number of
warriors contributes to a challenging game.

2) The WinFast agent: Aggressiveness, especially early
in the game, has been suggested by nearly all testers of G2
as one of the most important factors of challenge [18]. Thus,
the second NEAT training attempt focuses on winning games
as fast as possible generating an agent, namely Winfast, with
a very aggressive behavior. The fitness function that guides
the trained agent towards aggressive behavior is 104/tw
where tw ∈ [0, 20000] is the winning time in game ticks
— an evaluation period of 20000 is used in this experiment.
Moreover, fitness is set to 0 if the agent loses the game and
0.5 if there is a draw.

Experiments demonstrated that an agent with random
action-selection loses to Nicowar all games in 10 trials
within an average of 14500 game ticks. Thus, initializing the
machine learning procedure by playing against the Nicowar
agent would have resulted to very slow training. For this
purpose, we follow an incremental learning approach where
Winfast is trained against the random action-selection agent
and the Nicowar agent during the first and second phase of
the training respectively. We repeat this learning procedure
for 10 trials starting from different initial conditions. The best
performing Winfast agent picked out of the 10 trials wins
every game when playing against all standard AI agents that
come with G2. The winning times of Winfast, in game ticks,
can be seen in Table II.

By following the same approach more challenge factors
could have been investigated. However, the focus of the paper
is to dynamically adjust challenge using real-time learning.
To do this some (and not all) challenge factors needed to
be validated to guide the design of a challenge metric to be
used as an objective function for rtNEAT. But first, machine
learning experiments presented in the following subsection,



TABLE II
AVERAGE WINNING TIME OF Winfast BY PLAYING AGAINST STANDARD

AI AGENTS. AVERAGE VALUES ARE COMPUTED OVER 10 TRIALS.

AI agent Winning time (ticks)

Nicowar 9601
Random 10000
Warrush 10529
Numbi 12513

ReachToInfinity 13089
Castor 18913

were conducted to demonstrate whether the difference of the
challenge metric between the AI agent and the player could
be minimized off-line.

C. Training Experiments — Challenge Metric

The aim of the experiments presented in this section is to
examine how well an AI agent could be trained using NEAT
to match the challenge of its opponent. For this purpose, a
challenge rating (CR) metric that combines different chal-
lenge factors is designed. A linear correlation between the
factors and the CR metric is assumed here. The CR metric
is calculated for both the player and the AI agent (opponent)
and the fitness function constructed promotes a minimization
of the difference between the two CR metrics eventually
leading to challenge balance. The chosen CR metric (see
eq. (1)) is implemented as a weighted sum of statistical data
obtained from the game and embeds all six challenge factors
presented in Section V:

CR =
Wa

a
+

Wo

b
+

B

c
+

D

d
+

A

e
(1)

Wa is the fitness function used to train the MaxWar agent,
weighting trained warriors higher than untrained ones and
satisfying two out of the six challenge factors presented in
Section V: number and average training level of warriors.
Wo is a similar worker rating, giving trained workers more
weight than untrained workers, corresponding to the number
of workers challenge factor. B, D and A are, respectively, the
number of buildings, defense towers and attack flags owned
by the player. These last three parameters correspond to
the infrastructure, defense infrastructure and aggressiveness
challenge factors respectively. Finally, a, b, c, d and e are
parameter weights with fixed values of 15, 30, 3, 0.5 and 0.5,
respectively, which are determined through several gameplay
experiments.

The fitness of each AI agent is calculated using eq. (2),
where CRAI and CRo are the total challenge ratings of the
trained AI and the opponent player respectively. In cases
where the difference is very close to 0, the fitness is set to
105 to avoid overflow values at infinity.

f =
1

|CRAI − CRo|
(2)

By following the same experimental procedure described
in Section VII-A, 1/f reaches 0 in 10 generations in most

Fig. 2. Fixed evaluation period; Inverse fitness value (|CRAI − CRo|) of
three most fit agents during the last evaluation of the training procedure.

of the 10 learning trials attempted. We believe that the
inverse fitness 1/f values of the most fit member of the
population during the last generation offers more input than
the illustration of the fitness value over those 10 generations.
Fig. 2 shows the absolute difference between the challenge
rating of the AI and the Nicowar opponent (inverse fitness
value) throughout a 15000 tick game for three training trials.
The first 104 ticks correspond to the last evaluation of the
10th generation and the 5000 additional ticks are used to
evaluate the trained behavior.

It can be clearly observed (see Fig. 2) that the AI agents
learned the task of minimizing the CR metric difference
after 104 ticks (the evaluation point) and shows that NEAT
can balance the challenge of the AI agent with that of the
opponent at a specific time point. It is, however, obvious
that the CR difference is not kept low during the whole
evaluation period. This expected behavior is not entirely
desired, since low 1/f values are required during the whole
game play period. The testing phase of the experiment shows
the inability of NEAT to generalize when learning is turned
off.

The main training problem, which is evident from the
previous experiment, is that NEAT aims for minimal CR
difference only at the end of the evaluation period of 104

ticks. This is of course caused by fitness function calculation
only at that point. In order to achieve higher performance —
i.e. a lower 1/f value throughout the evaluation period —
we introduce dynamic and random time frames for the eval-
uation period. This was achieved using 5 different evaluation
periods ranging from 8000 to 12000 ticks, in increments of
1000. Three, instead of one, evaluation periods per agent are
selected randomly. Then, the fitness value of all three periods
is calculated, averaged and assigned to the agent. Those five
evaluation period values are chosen based on a compromise
between performance and estimated training time.

Repeating the experiment with dynamic evaluation period
results in the CR difference values illustrated in Fig. 3. It is



Fig. 3. Dynamic evaluation period; Inverse fitness value (|CRAI − CRo|)
of three most fit agents during the last evaluation of the training procedure.

now clear that NEAT attempts to minimize the CR difference
during the evaluation game period. Compared to the fixed
evaluation period experiment, the general shape of the curves
displayed indicates a lower CR difference throughout the
game, at least until around 11000 ticks. AI 1 and AI 2 agents
keep a CR difference lower than 3.5 within the first 9500
game ticks whereas AI 3 keeps the CR difference lower than
this threshold until 14000 game ticks are reached. In contrast,
fixed evaluation period results revealed a CR difference over
15 even within the first 5000 ticks (see Fig. 2). Moreover,
the AI 3 agent appears to perform significantly better than
the two other agents illustrated, generating a very smooth
curve and very low CR difference variance throughout both
the training and the testing phase. Even though the other
two agents keep the CR different low during the training
phase they fail to generalize when learning is turned off.
However, real-time learning via rtNEAT appears to overcome
this generalization problem as presented in Section VIII.

VIII. REAL-TIME LEARNING

Based on the results presented in Section VII-C, it is clear
that the neuro-controlled G2 agent must continuously evolve
in order to keep a low absolute CR difference value against an
unknown opponent during game play. This could be achieved
through real-time learning by the use of rtNEAT.

Real-time learning (RTL) experiments were held on an
eight player map scenario: 7 ANN-controlled agents against
the standard Nicowar agent. The fitness of the population
is evaluated every 300 game ticks (approx. 12 seconds of
play); this value was determined as a compromise between
accuracy of fitness approximation and speed of the RTL
mechanism. With a population size of 7, the ct value was
set to 1 and the game was played for 20000 ticks. A new
generation of agents is inserted into the game by replacing
existing ANN controlled players using the standard rtNEAT
real-time replacement methodology.

As in the NEAT parameter value investigation experiments

Fig. 4. RTL: Average absolute CR difference (1/f) evolution over
generations. Initial ANNs are randomly generated and values presented
constitute average values over 10 trials.

(see Section VII-A), all 8 players are allied preventing
anyone from getting eliminated. This does have the side
effect that attack flags (A) are not used in the game, and
as such, they do not have an impact on the CR calculation
(see eq. (1)). It is our intention to activate and investigate
attacking G2 agent behavior in future implementations of
RTL.

Fig. 4 shows the RTL curves for the entire population
based on this experimental setup. Agents playing following
random action-selection are also illustrated for comparison
purposes. Following the presentation of off-line learning
experiments, the absolute CR difference — rather than the
fitness — values are plotted in the graph for a better inter-
pretation. Compared to the baseline random action-selection
agents, it appears as if the learning process does diminish
the CR differences up to a degree. The difficulty of rtNEAT
in constructing efficient ANN controllers within the first 50
generations was expected. The challenging factors which
rtNEAT could not effectively overcome are the initial ran-
domly generated agent conditions and the lack of sufficient
interaction provided by only 7 agents in the game.

In order to improve RTL performance, the experimental
setup was repeated using a previously off-line trained agent:
the WinFast agent was used as the initial controller of all
seven agents playing against Nicowar. Again, the experiment
was held with RTL turned on and off for comparison
purposes. Results of this experiment are shown in Fig. 5.

It is evident that using a well off-line trained agent as a
starting point in the search space results in a much higher
rtNEAT performance. The performance improvement, albeit
rather small (see Fig. 5), is very consistent over 10 training
trials. Results indicate that RTL does indeed augment the
performance (challenge balance) of ANN controlled agents
and that rtNEAT is a reliable method for RTL in an RTS
game incorporating G2 features. Nevertheless, the dynamics
of the RTL-generated behaviors of G2 agents are not easily



Fig. 5. RTL: Average absolute CR difference (1/f) evolution over
generations. Initial agents are controlled by the Winfast ANN and values
presented constitute average values over 10 trials.

apparent when observing the game.

IX. CONCLUSIONS & DISCUSSION

This paper introduces the application of NEAT and rt-
NEAT to a real-time strategy game, Globulation 2 (G2),
for the purpose of dynamic game-challenge balancing. First,
we used NEAT to optimize the performance of G2 NPCs
and investigate two proposed challenge factors through off-
line experiments in G2. Results verified that the factors
of aggressiveness and number of warriors contribute to
challenge since obtained neuro-evolved agents were able to
outperform all standard AI NPCs available for playing the
game.

As a step further, a challenge rating formula was designed
incorporating six proposed challenge factors and rtNEAT was
used to minimize the difference of challenge rating between
the AI agent and its opponent in real-time. Results provide
evidence for the effectiveness of the real-time learning and
suggest that rtNEAT can be successfully applied for dynamic
game balancing in RTS games that share features with G2.

The successful application of rtNEAT in NERO was in a
game environment with sufficient interaction and fixed initial
conditions for the population. There are 50 soldiers (agents)
used as a population in the NERO game and all of them are
spawned at the same position. Offspring generated through
evolution re-spawn at that same position too. On the other
hand, due to G2 game design, there is a maximum of 7 agents
to interact with one opponent and offspring are placed in the
position of the eliminated members of the population and
inherit their game position and current state. This constitutes
a significant difficulty in using rtNEAT in a game such as
G2.

For future work, we believe that rtNEAT needs to be
tested on more complex levels in order to provide more
evidence for its generality, and the challenge rating measure
proposed needs to be cross-validated against human players.

Future rtNEAT implementations extend to off-line parallel
processing. Since training is 40 times faster than the speed
of the actual game play, several generations of a population
could be trained off-line for short periods while the game is
running and result to faster adaptation.

While rtNEAT is a great platform for real-time learning,
it is probably better suited to games embedding more inter-
action between the player and the opponents, such as first
person shooters, fighting games or 2D action games. For
RTS games, a relatively simple temporal difference (TD)
learning method like Q-learning could probably perform rea-
sonably well. However, using TD learning with a static ANN
structure could hinder advanced behaviors from emerging.
Additionally, determining the reward function could be a
tedious task in such games.

REFERENCES

[1] A. J. Champandard, AI Game Development. New Riders Publishing,
2004.

[2] K. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[3] K. Stanley, B. Bryant, and R. Miikkulainen, “Real-time evolution in
the NERO video game,” in Proceedings of the IEEE Symposium on
Computational Intelligence and Games, G. Kendall and S. M. Lucas,
Eds., Essex University, Colchester, UK, 4–6 April 2005, pp. 182–189.

[4] T. W. Malone, “What makes computer games fun?” Byte, vol. 6, pp.
258–277, 1981.

[5] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
New York: Harper & Row, 1990.

[6] ——, Beyond Boredom and Anxiety: Experiencing Flow in Work and
Play. San Francisco: Jossey-Bass, 2000.

[7] N. Lazzaro, “Why we play games: Four keys to more emotion without
story,” XEO Design Inc.,” Technical Report, 2004.

[8] G. N. Yannakakis and J. Hallam, “Towards Optimizing Entertainment
in Computer Games,” Applied Artificial Intelligence, vol. 21, pp. 933–
971, 2007.

[9] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Extending
reinforcement learning to provide dynamic game balancing,” in Pro-
ceedings of the Workshop on Reasoning, Representation, and Learning
in Computer Games, 19th International Joint Conference on Artificial
Intelligence (IJCAI), August 2005, pp. 7–12.

[10] M. A. Verma and P. W. McOwan, “An adaptive methodology for
synthesising Mobile Phone Games using Genetic Algorithms,” in
Congress on Evolutionary Computation (CEC-05), Edinburgh, UK,
September 2005, pp. 528–535.

[11] R. Hunicke and V. Chapman, “AI for Dynamic Difficulty Adjustment
in Games,” in Proceedings of the Challenges in Game AI Work-
shop, 19th Nineteenth National Conference on Artificial Intelligence
(AAAI’04), 2004.

[12] P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma, “Difficulty Scaling
of Game AI,” in Proceedings of the 5th International Conference on
Intelligent Games and Simulation (GAME-ON 2004), 2004, pp. 33–37.

[13] J. Ludwig and A. Farley, “A learning infrastructure for improving
agent performance and game balance,” in Proceedings of the AIIDE’07
Workshop on Optimizing Player Satisfaction, Technical Report WS-07-
01, G. N. Yannakakis and J. Hallam, Eds. AAAI Press, 2007, pp.
7–12.

[14] R. Koster, A Theory of Fun for Game Design. Paraglyph Press, 2005.
[15] X. Yao, “Evolving artificial neural networks,” in Proceedings of the

IEEE, vol. 87, no. 9, 1999, pp. 1423–1447.
[16] K. Stanley and R. Miikkulainen, “Efficient Reinforcement Learning

through Evolving Neural Network Topologies,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2002, pp. 569–
577.

[17] J. K. Olesen, “Optimizing game challenge using real-time adaptive ar-
tificial intelligence,” Master’s thesis, University of Southern Denmark,
2008.

[18] “Globulation 2,” Free software RTS game with a new take on micro-
management, 2008, available at http://www.globulation2.org/.

View publication statsView publication stats

https://www.researchgate.net/publication/224491326

