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Abstract— This paper introduces quantitative measure-
ments/metrics of qualitative entertainment features within inter-
active playgrounds inspired by computer games and proposes
artificial intelligence (AI) techniques for optimizing entertain-
ment in such interactive systems. For this purpose the innovative
Playware playground is presented and a quantitative approach
to entertainment modeling based on psychological studies in the
field of computer games is introduced. Evolving artificial neural
networks (ANNs) are used to model player satisfaction (interest)
in real-time and investigate quantitatively how the qualitative
factors of challenge and curiosity contribute to human enter-
tainment according to player reaction time with the game.
The limitations of the methodology and the extensibility of the
proposed approach to other genres of digital entertainment are
discussed.

Keywords: Entertainment modeling, intelligent interactive
playgrounds, neuro-evolution.

I. INTRODUCTION

Cognitive modeling within human-computer interactive
systems is a prominent area of research. Computer games,
as examples of such systems, provide an ideal environment
for research in AI, because they are based on simulations
of highly complex and dynamic multi-agent worlds [1], [2],
[3], and cognitive modeling since they embed rich forms
of interactivity between humans and non-player characters
(NPCs). Being able to model the level of user (gamer)
engagement or satisfaction in real-time can provide insights
to the appropriate AI methodology for enhancing the quality
of playing experience [4] and furthermore be used to adjust
digital entertainment environments according to individual
user preferences.

Features of computer games that keep children (among
others) engaged more than other digital media include their
high degree of interactivity and the freedom for the child
to develop and play a role within a fantasy world which
is created during play [5]. On the other hand, traditional
playgrounds offer the advantage of physical play, which
furthermore improves the child’s health condition, augment
children’s ability to engage in social and fantasy play [6], [7]
and provide the freedom for children to generate their own
rules on their own developed games. The ‘Playware’ [8] in-
telligent interactive physical playground attempts to combine
the aforementioned features of both worlds: computer games
and traditional playgrounds. This innovative platform will be
described comprehensively and experiments with children on
developed Playware games will be introduced in this paper.

Motivated by the lack of quantitative cognitive models of

entertainment, an endeavor on capturing player satisfaction
during gameplay (i.e. entertainment modeling) and providing
quantitative measurements of entertainment in real-time is
introduced in the work presented here. This is achieved
by following the theoretical principles of Malone’s intrinsic
qualitative factors for engaging gameplay [5], namely chal-
lenge (i.e. ‘provide a goal whose attainment is uncertain’),
curiosity (i.e. ‘what will happen next in the game?’) and
fantasy (i.e. ‘show or evoke images of physical objects or
social situations not actually present’) and driven by the
basic concepts of the theory of flow (‘flow is the mental state
in which players are so involved in the game that nothing
else matters’) [9]. Quantitative measures for challenge and
curiosity are inspired by previous work on entertainment
metrics [10] and extracted from corresponding game features
that emerge through the opponent behavior. A mapping
between the aforementioned factors and humans notion of
entertainment is derived using a game developed on the
Playware playground as a test-bed. Personalization is added
to the model through the player’s reaction (response) time
with the game environment.

A feedforward ANN is trained through artificial evolution
on gameplay experimental data to approximate the function
between the examined entertainment factors and player sat-
isfaction with and without the presence of individual player
characteristics. Results demonstrate that the ANN maps
a function whose qualitative features are consistent with
Malone’s corresponding entertainment factors in that non-
extreme levels of challenge and curiosity generate highly en-
tertaining games. Moreover, we show that player’s response
time has a positive impact on providing a more accurate
model of player satisfaction where children (classified by
their response time) project different requirements on the
levels of the examined entertainment factors for the game to
be entertaining. The generality of the proposed methodology
and its extensibility to other genres of digital entertainment
are discussed as well as its applicability as an efficient AI
tool for enhancing entertainment in real-time is outlined.

II. ENTERTAINMENT MODELING

The current state-of-the-art in machine learning in com-
puter games is mainly focused on generating human-like [1]
and intelligent characters (see [3], [11], [12] among others).
Even though complex opponent behaviors emerge through
various learning techniques, there is no further analysis of
whether these behaviors contribute to the satisfaction of



the player. In other words, researchers hypothesize that by
generating intelligent opponent behaviors they enable the
player to gain more satisfaction from the game. According
to Taatgen et al. [13], believability of computer game op-
ponents, which are generated through cognitive models, is
strongly correlated with enjoyable games. These hypotheses
may well be true; however, since no notion of interest or
enjoyment has been explicitly defined, there is no evidence
that a specific opponent behavior generates enjoyable games.
This statement is the core of Iida’s work on entertainment
metrics for variants of chess games [14].

Previous work in the field of entertainment modeling is
based on the hypothesis that the player-opponent interaction
— rather than the audiovisual features, the context or the
genre of the game — is the property that primarily con-
tributes the majority of the quality features of entertainment
in a computer game [10]. Based on this fundamental assump-
tion, a metric for measuring the real-time entertainment value
of predator/prey games was established as an efficient and
reliable entertainment (‘interest’) metric by validation against
human judgement [15], [16]. According to this approach, the
three qualitative criteria that collectively define entertainment
for any predator/prey game are: the appropriate level of chal-
lenge, the opponent behavior diversity and the opponents’
spatial diversity.

Currently there have been few attempts for adjusting the
game’s difficulty by reinforcement learning [17] in a fighting
game or by the use of genetic algorithms [18] in the ‘Snake’
game. However, these studies are based on the empirical
assumption that challenge is the only factor that contributes
to enjoyable gaming experiences.

Following the theoretical principles reported from Yan-
nakakis and Hallam [10], this paper is primarily focused on
the game opponents’ behavior contributions to the real-time
entertainment value of the game. However, instead of being
based on empirical observations on human entertainment,
the work presented here attempts to introduce quantitative
measures for Malone’s entertainment factors of challenge and
curiosity and extract the mapping between the two aforemen-
tioned factors and the human notion of entertainment based
on experimental data from a survey with children playing
with Playware playground (see Section III).

III. PLAYWARE PLAYGROUND

Children’s and youth’s play has seen major changes during
the last two decades. New emerging playing technologies,
such as computer games, have been more attractive to
children than traditional play partly because of the interac-
tivity and fantasy enhancement capabilities they offer. These
technologies have transformed the way children spend their
leisure time: from outdoor or street play to play sitting in
front of a screen [19]. This sedentary style of play may have
health implications.

A new generation of playgrounds that adopt technology
met in computer games may address this issue. More specif-
ically, intelligent interactive playgrounds with abilities of

Fig. 1. The tiles used in the Playware playground.

adapting the game according to each child’s personal pref-
erences provide properties that can keep children engaged
in entertaining physical activity. On that basis, adjusting the
game in order to increase a child’s entertainment can only
have positive effects on the child’s physical condition. The
Playware playground is built along these primary concepts.

A. Playware Technology

The Playware [8] prototype playground consists of several
building blocks (i.e. tangible tiles — see Fig. 1) that allow
for the game designer (e.g. the child) to develop a significant
number of different games within the same platform. For
instance, tiles can be placed on the floor or on the wall in
different topologies to create a new game [8]. The overall
technological concept of Playware is based on embodied AI
[20] where intelligent physical identities (tiles) incorporate
processing power, communication, input and output, focus-
ing on the role of the morphology-intelligence interplay in
developing game platforms.

1) Specifications: The Playware tile’s dimensions are
21 cm x 21 cm x 6 cm (width, height, depth) and each
incorporates a Atmel ATmega 128 microcontroller. To sup-
port a 4-way communication bus a Quad UART chip
(TL16C754BPN) is interfaced to the serial USART on the
microcontroller. The Quad UART is furthermore interfaced
to a multichannel line driver/receiver (MAX211) in order to
support RS-232 level connections between the tiles.

Visual interaction between the playground and children is
achieved through four light emitting diodes (LEDs) which
are connected to the microcontroller. In this prototype game
world, users are able to interact with the tiles through a
Force Sensing Resistor (FSR) sensor embedded in each tile.
A rubber shell is used to cover the hardware parts of the tile
and includes a “bump” indicating the location of the FSR
sensor (i.e. the interaction point) and a plexiglass window
for the LEDs (see Fig. 1).



B. Systems Related to Playware

The Smart Floor [21] and the KidsRoom [22] are among
the few systems that are related primarily to the conceptual
level of the Playware tiles. The first is developed for trans-
parent user identification and tracking based on a person’s
footstep force features and the latter is a perceptually-
based, multi-person, fully automated, interactive, narrative
play room that adjusts its behavior (story-line) by analyzing
the children’s behavior through computer vision. As far as
the concept of intelligent floors consisting of several building
blocks is concerned, the Z-tiles [23] are closely related to
Playware. However, the Z-tiles are mainly used as input
devices only whereas Playware comprises building blocks
that offer interactivity by incorporating both input and output
devices.

C. Bug-Smasher Game

The test-bed game used for the experiments presented
here is called ‘Bug-Smasher’. The game is developed on a
6 x 6 square tile topology (see Fig. 2). During the game,
different ‘bugs’ (colored lights) appear on the game surface
and disappear sequentially after a short period of time by
turning a tile’s light on and off respectively. A bug’s position
is picked within a radius of three tiles from the previous bug
and according to the predefined level of the bugs’ spatial
diversity (see Section IV). Spatial diversity is measured by
the entropy of the bug-visited tiles which is calculated and
normalized into [0, 1] via (1)

H =

[
− 1

log36

∑

i

vi

V
log

(vi

V

)]
(1)

where vi is the number of bug-visits to tile i and V is the
total number of visits to all visited tiles (i.e. V =

∑
i vi). If

the bug visits all tiles equally then vi = V/36 for all 36 tiles
and H will be 1; if the bug visits exactly one tile, H is zero.

The child’s goal is to smash as many bugs as possible
by stepping on the lighted tiles. Different sounds and colors
represent different bugs when appearing and when smashed
in order to increase the fantasy entertainment factor [5].
Moreover, feedback to the player, which is essential for a
successful game design [5], is provided through different
characteristic sounds that represent good or bad performance.

IV. EXPERIMENTAL DATA

The Bug-Smasher game has been used to acquire data of
human judgement on entertainment. Two states (‘Low’ and
‘High’) are used for each of the three entertainment factors
of challenge, curiosity and fantasy summing up to 8 different
game states. While the fantasy factor is also investigated
through this survey, the focus of this paper is on the opponent
(bug) contribution on entertainment and, therefore, only the
relation between challenge, curiosity and entertainment is
reported here.

We consider the speed (S — in sec−1) that the bugs appear
and disappear from the game and their spatial diversity (H)
on the game’s plane as appropriate measures to represent the

Fig. 2. A child playing the Bug-Smasher game.

level of challenge and the level of curiosity (unpredictability)
respectively [5] during gameplay. The former provides a
notion for a goal whose attainment is uncertain — the higher
the S value, the higher the goal uncertainty and furthermore
the higher the challenge — and the latter effectively portrays
a notion of unpredictability in the subsequent events of
the game — the higher the H value the higher the bug
appearance unpredictability and therefore the higher the
curiosity.

To that end, 28 children — C8
2 = 28 being the required

number of all combinations of 2 out of 8 game states since,
by experimental design, each subject plays against two of the
selected game states in all permutations of pairs — whose
age covered a range between 8 and 10 years participated in
an experiment. In this experiment, each subject plays two
games (A and B) — differing in the levels of one or more
entertainment factors of challenge, curiosity and fantasy —
for 90 seconds each. Each time a pair of games is finished,
the child is asked whether the first game was more interesting
than the second game i.e. whether A or B generated a more
interesting game. The child’s answers are used to guide the
training of an ANN model of entertainment (see Section V).
In order to minimize any potential order effects we let each
subject play the aforementioned games in the inverse order
too. Statistical analysis of the subjects’ answers shows that
the order effect on children judgement on entertainment is not
statistically significant (rc = −0.0714, p-value= 0.3444).

Since at the current implementation of the Playware the
only input to the system is through the FSR sensor, quan-
titative individual playing characteristics can only be based
on three measurable features: the state (position and LEDs
color) of a pressed tile, the time that a tile-press event took
place and the pressure force on a pressed tile.

Pressed tile events are recorded in real-time and a selection
of personalized playing features are calculated for each child.
These include the total numbers of smashed bugs P and
interactions with the game environment NI ; the average
response time E{rt}; the average distance between the
pressed tile and the bugs appearing on the game E{Db};
the average pressure recorded from the FSR sensor E{p};
and the entropy of the tiles that the child visited HC .



A. Statistical Analysis

The aim of the statistical analysis presented here is to
identify statistically significant correlations between human
notion of entertainment and any of the aforementioned indi-
vidual quantitative playing characteristics. For this purpose
the following null hypothesis is formed: The correlation
between observed human judgement of entertainment and
recorded individual playing characteristics, as far as the dif-
ferent game states are concerned, is a result of randomness.
The test statistic is obtained through c(−→z ) =

∑N
i=1{zi/N},

where N is the total number of game pairs played and zi = 1,
if the subject chooses as the more entertaining game the
one with the larger value of the examined characteristic and
zi = −1, if the subject chooses the other game in the game
pair i.

Table I presents the c(−→z ) values and their corresponding
p-values for all above-mentioned personal characteristics.
Average response time appears to be the only characteristic
examined that is significantly — significance equals 10%,
high significance equals 5% in this paper — correlated to
entertainment. The obtained effect of E{rt} appears to be
commonsensical since the Bug-Smasher game belongs to the
genre of action games where reaction time tends to have a
significant effect on the level of engagement of the user [24].

The first attempt to include subjectivity in entertainment
modeling, presented in this paper, will be through investi-
gating the impact of entertainment factors on entertainment
according to the average response time E{rt}. The choice
of this specific measure, instead of others examined, is
made due to its demonstrated statistically significant effect
to entertainment.

TABLE I
CORRELATION COEFFICIENTS BETWEEN ENTERTAINMENT AND

INDIVIDUAL GAMEPLAY QUANTITATIVE CHARACTERISTICS. P IS THE

TOTAL NUMBER OF SMASHED BUGS; NI IS THE TOTAL NUMBER OF

INTERACTIONS; E{rt} IS THE AVERAGE RESPONSE TIME; E{Db} IS

THE AVERAGE DISTANCE BETWEEN THE PRESSED TILE AND THE BUGS

APPEARING ON THE GAME; E{p} IS THE AVERAGE PRESSURE

RECORDED FROM THE FSR SENSOR AND HC IS THE ENTROPY OF THE

TILES THAT THE CHILD VISITED.

Characteristic c(−→z ) p-value

P -0.0384 0.4449

NI 0.1923 0.1058

HC -0.1153 0.2442

E{rt} -0.2307 0.0631

E{p} 0.0769 0.3389

E{Db} -0.0384 0.4449

V. EVOLVING ANN

A fully-connected feedforward ANN for learning the rela-
tion between the challenge and curiosity factors, the average
response time of children and the entertainment value of a
game has been used and is presented here. The assumption is

that the entertainment value y of a given game is an unknown
function of S and H (and perhaps E{rt}), which the ANN
will learn. The children’s expressed preferences constrain but
do not specify the values of y for individual games. Since, the
output error function is not differentiable, ANN training al-
gorithms such as back-propagation are inapplicable. Learning
is achieved through artificial evolution [25] and is described
in Section V-A.

The sigmoid function is employed at each neuron, the
connection weights take values from -5 to 5 and all input
values are normalized into [0, 1] before they are entered
into the ANN. In an attempt to minimize the controller’s
size, it was determined that single hidden-layered ANN
architectures, containing 10 hidden neurons, are capable of
successfully obtaining solutions of high fitness.

A. Genetic Algorithm

A generational genetic algorithm (GA) [26] is imple-
mented, which uses an “exogenous” evaluation function that
promotes the minimization of the difference in matching
the human judgement of entertainment. The ANN is itself
evolved. In the algorithm presented here, the ANN topology
is fixed and the GA chromosome is a vector of ANN
connection weights.

The evolutionary procedure used can be described as
follows. A population of N (N is 1000 in this paper) networks
is initialized randomly. Initial real values that lie within [-5,
5] for their connection weights are picked randomly from a
uniform distribution. Then, at each generation:

Step 1 Each member (neural network) of the population
gets two triples of (S, H , E{rt}) values one for
A and one for B and returns two output values,
namely yj,A (output of the game against opponent
A) and yj,B (output of the game against opponent
B) for each pair j of games played in the survey
(Ns = 56). When the yj,A, yj,B values are consis-
tent with the judgement of subject j then we state
that: ‘the values agree with the subject’ or that
there is ‘agreement’ with the subject throughout
this paper. In the opposite case, we state that:
‘the values disagree with the subject’ or there is
‘disagreement.’

Step 2 Each member i of the population is evaluated via
the fitness function fi:

fi =
Ns∑

j=1

{
g(dj , 30), if agreement;
g(dj , 5), if disagreement. (2)

where dj = yj,A − yj,B and g(dj , p) = 1/(1 +
e−pdj ) is the sigmoid function.

Step 3 A fitness-proportional scheme is used as the selec-
tion method.

Step 4 Selected parents clone an equal number of off-
spring so that the total population reaches N
members or reproduce offspring by crossover. The
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Fig. 3. Fittest ANN (f = 22.82) trained on absence of individual playing
characteristics.

Montana and Davis [27] crossover operator is
applied with a probability 0.4.

Step 5 Gaussian mutation occurs in each gene (connec-
tion weight) of each offspring’s genome with a
small probability pm = 1/n, where n is the
number of genes.

The algorithm is terminated when either a good solution
(i.e. fi > 54) is found or a large number of generations g is
completed (g = 10000).

VI. RESULTS

Results obtained from the ANN evolutionary approaches
are presented in this section. In order to diminish the non-
deterministic effect of the GA initialization phase, we repeat
the learning procedure ten times — we believe that this
number is adequate to illustrate a clear picture of the behavior
of the mechanism — with different random initial conditions.

A. Objective Entertainment Value

The experiment presented here tests the hypothesis of the
existence of an objective notion of entertainment given the
level of challenge and curiosity in a game. Thus, the aim
here is to extract a mapping between challenge, curiosity
and entertainment independently of player individual char-
acteristics (E{rt} values are not included in the ANN input
vector). Given the 30 pairs of games, where the games
have different levels of S and/or H , an ANN is evolved
by following the approach presented in Section V-A. The
fittest ANN found was able to correctly match only 20 out
of 30 children answers on entertainment. Such a poor fitness
indicates the difficulty of adjusting values of challenge and
curiosity for inferring entertainment values in an objective
manner (without the presence of individual characteristics).
The relation between bug speed (S), bug spatial diversity
(H) and the game’s entertainment value (y) is illustrated in
Fig. 3.

Despite the best solution’s poor fitness, the correlation
between entertainment, challenge and curiosity generated
through the evolved ANN (see Fig. 3) appears to follow
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S = 0.2 (Low), H= 0.51 (Low)
S = 0.2 (Low), H= 0.99 (High)
S = 0.7 (High), H= 0.51 (Low)
S = 0.7 (High), H= 0.99 (High)

Fig. 4. Fittest ANN (f = 52.68): Entertainment over average response
time for both states (Low, High) of each entertainment factor S and H .

the qualitative principles of Malone’s work [5]. According
to these, a game should maintain an appropriate level of
challenge and curiosity in order to be entertaining. In other
words, too difficult and/or too easy and/or too unpredictable
and/or too predictable opponents to play against make the
game uninteresting. As seen from Fig. 3, average levels of
challenge (0.5 < S < 0.8) and curiosity (0.3 < H < 0.9)
generate high entertainment values objectively. Moreover, it
appears that games of the lowest challenge level (S ≈ 0)
combined with the highest curiosity level (H ≈ 1) may yield
high entertainment values.

B. Response time

As previously presented in Fig. 3, extreme values of
challenge and curiosity appear to generally generate low
values of player satisfaction. However, what it still needs
to be extracted are the appropriate levels of challenge and
unpredictability required by individual players for a game to
be entertaining.

This section presents experiments where individual charac-
teristics are present in the evaluation of entertainment. Thus,
the average response time of the child is included in the
input vector of the ANN which is evolved by following the
approach presented in Section V-A. For space considerations,
only the fittest solution is presented in this paper. Note that,
the qualitative features of the lines and surfaces plotted in
Fig. 4 and Fig. 5 appeared in all ten learning attempts.

More specifically, Fig. 4 illustrates that challenge has a
higher impact on children’s notion of entertainment than
curiosity. In fact, low levels of curiosity appear to entertain
children more. This could be explained through the fact
that for the game experiments presented in this paper the
High value for H is the highest possible value of entropy
(H ≈ 1.0). This level of bugs entropy appears to generate
too unpredictable games for the majority of children and,
therefore, confusion during play and furthermore less sat-
isfaction. Fig. 4 also shows that highly entertaining games
are generated when challenge is Low and children are fast
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(b) E{rt} = 0.1
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(c) E{rt} = 0.356
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(d) E{rt} = 0.6
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(e) E{rt} = 1.0

Fig. 5. Fittest ANN (f = 52.68): ANN output y (entertainment) with
regards to S and H for 5 values of E{rt}. The shadowed area corresponds
to the surface within the Low and High states of the S and H values.

in their average response time (E{rt} < 0.3) and when
0.5 < E{rt} < 0.7. On the other hand, when children
are reacting slowly (0.7 < E{rt} < 1.0), high values of
entertainment y are generated when challenge is High in the
game. High challenge combined with Low curiosity has also
the most positive impact on entertainment in children whose
average response time lies between 0.3 and 0.4.

Fig. 5 illustrates the trained ANN output with regards to
challenge and curiosity for five characteristic E{rt} values:
the two boundaries (0 and 1), the median (0.356) and
two values (0.1 and 0.6) that determine the interval within
the 82.14% (92 values) of the average response times are
recorded. Values outside this interval correspond to a 8.93%
(10 values) of very fast (E{rt} ≤ 0.1) and a 8.93% (10
values) of very slow (E{rt} ≥ 0.6) children.

If we make the generic assumption that response time cor-



relates with perception time then one would expect that the
faster the perception ability of a child the higher its demand
for faster (more challenging) and more unpredictable (higher
curiosity) games. However, Fig. 5 illustrates the inverse
case since it appears that faster children have a preference
for games of lower challenge and curiosity (see Fig. 5(a))
whereas slower children appear to prefer games of high
challenge (see Fig. 5(e)). Therefore, this assumption seems
to be ruled out for this case study or the aforementioned
correlation is insignificant.

In order to demonstrate a clearer image of the child’s
behavior with regards to its recorded response time, we
calculate the correlation coefficients between E{rt} and the
measurable individual child characteristics previously men-
tioned in Section IV-A. As seen from Table II, the correlation
coefficient rc between E{rt} values and their corresponding
sample size (total number of interactions NI ) shows a statis-
tically high significant tendency for fast-reacting and slow-
reacting children to interact more and less frequently with
the game environment respectively. Moreover, E{rt} values
correlate significantly with the child’s spatial diversity on
the game surface (rc = 0.3305, p-value = 7.82·10−4) and the
average pressure on the tiles (rc = 0.2175, p-value = 0.0296)
as well as correlate inversely with the child’s performance
measure P (rc = −0.4058, p-value = 2.80·10−5). These
indicate that the faster the response time the less children
tend to move around on the game surface, the less their
pressure on the tiles and the higher their performance.

To summarize given the rc values on Table II, it can be
assumed that low E{rt} values correspond to a rather static
behavior of children pressing faster and more frequently
few tiles which results to higher performance, whereas high
E{rt} values correspond to children that move on larger and
decisive (and powerful) steps, covering much of the game
surface and taking their time for their next step which as a
strategy results to lower performance.

The aforementioned quantitative indications about chil-
dren behavior do also match the video-recorded playing
behavior. Thus, it can be derived that when E{rt} is low,
static children cannot easily cope with too challenging and
too unpredictable games. Therefore, it appears that such
games are not entertaining for children of this category (see
Fig. 5(a), Fig. 5(b)). On the other hand, when a child’s
E{rt} value is high, the child appears to prefer games of
low curiosity at a level of challenge higher than average (see
Fig. 5(e)). The reason for such a preference might be that too
unpredictable games require more motion from children in
the Bug-Smasher game and, therefore, these games become
very tiring for children that tend to cover uniformly the
game’s surface.

Finally, low levels of challenge combined with average
levels of curiosity or high levels of challenge combined with
low levels of curiosity appear to be the preferred game states
for children whose E{rt} values are between 0.1 and 0.6 (see
Fig. 5(c) and Fig. 5(d)).

TABLE II
CORRELATION COEFFICIENTS BETWEEN E{rt} AND OTHER

INDIVIDUAL GAMEPLAY QUANTITATIVE CHARACTERISTICS. P IS THE

TOTAL NUMBER OF SMASHED BUGS; NI IS THE TOTAL NUMBER OF

INTERACTIONS; E{rt} IS THE AVERAGE RESPONSE TIME; E{Db} IS

THE AVERAGE DISTANCE BETWEEN THE PRESSED TILE AND THE BUGS

APPEARING ON THE GAME; E{p} IS THE AVERAGE PRESSURE

RECORDED FROM THE FSR SENSOR AND HC IS THE ENTROPY OF THE

TILES THAT THE CHILD VISITED.

Characteristic rc p-value

P -0.4058 2.80·10−5

NI -0.4324 7.01·10−6

HC 0.3305 7.82·10−4

E{p} 0.2175 0.0296

E{Db} 0.0494 0.6249

VII. CONCLUSIONS & DISCUSSION

This paper introduced quantitative metrics for entertain-
ment primarily based on the qualitative principles of Mal-
one’s intrinsic factors for engaging gameplay [5] and individ-
ual game play features. More specifically, the quantitative im-
pact of the factors of challenge and curiosity and the average
response time on children’s entertainment were investigated
through the Bug-Smasher game played on the Playware
playground. Moreover, the advantages of play on interactive
intelligent playgrounds were stated and experiments within
the Playware platform were introduced in this paper.

The evolved ANN approach for modeling entertainment
in real-time examined demonstrates qualitative features that
share principles with Malone’s theory on efficient game
design [5]. The fittest ANN solution manages to map suc-
cessfully between the entertainment factors of challenge and
curiosity and the notion of human gameplay satisfaction on
the absence of individual player characteristics and demon-
strated that non-extreme values for the entertainment factors
generate highly entertaining games. In addition, the learned
mapping with regards to the children’s average response
times showed that fast responding children show a preference
for low challenge games of low curiosity whereas slow
responding children tend to prefer games of high challenge
and low curiosity.

The current work is limited by the number of participants
in the game survey we devised. Therefore, not all regions
of the challenge-curiosity search space were sampled by hu-
man play which therefore yielded poor ANN generalization
for these regions. Limited data also restricted the sensible
number of inputs to the learning system. More states for
the measurable metrics of challenge and curiosity need to
be obtained and other measures — e.g. average distance
between the bugs instead of speed for measuring challenge
— need to be investigated in a future study. The challenge
that arises here is that the number of subjects required
for experiments like the one reported here is factorial with
respect to the number of states chosen for the entertainment



factors and the total number of entertainment factors under
investigation. Moreover, Malone’s entertainment factor of
fantasy is omitted from the results in this paper since the
focus is on the contribution of the opponent behaviors to
the generation of entertainment; however, fantasy’s impact
on entertainment is planned to be reported in a forthcoming
analysis.

The entertainment modeling approach presented here
demonstrates generality over the majority of action games
created with Playware since the quantitative means of chal-
lenge and curiosity are estimated through the generic features
of speed and spatial diversity of the opponent on the game’s
surface. Thus, these or similar measures could be used to
adjust player satisfaction in any future game development
on the Playware tiles. However, each game demonstrates
individual entertainment features that might need to be
extracted and added on the proposed measures and therefore,
more games of the same and/or other genres need to be tested
to cross-validate this hypothesis. The proposed approach can
be used for adaptation of the game opponents (e.g. bugs)
according to the player’s individual playing style (reaction
time) and as far as the challenge and curiosity factors of
entertainment are concerned. Given the real-time average
response time of a child, the partial derivatives of ϑy/ϑS and
ϑy/ϑH can be used to appropriately adjust the speed and the
entropy of the opponent respectively for the entertainment
value y to be augmented.

Such a direction constitutes an example of future work
on Playware, computer and educational games. The level of
engagement or motivation of the user/player/gamer of such
interactive environments can be identified and increased by
the use of the presented approaches. Apart from providing
systems of richer interaction and qualitative entertainment
[4], such approaches can generate augmented motivation of
the user for deep learning in learning environments that use
games (i.e. edutainment).
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