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Résumé
Il est impératif de mesurer les réponses microbiennes adaptées dues aux stress thermiques à
l’aide d’une méthodologie précise pour quantifier l’efficacité d’un processus de chaleur. Deux
modèles de réseaux de neurones artificiels (ANN) différents sont construits pour étudier l’induc-
tion croissante de la résistance thermique du Escherichia coli K12 sous un traitement de taux
de chauffage décroissants. Dans la première structure de modèle il y a deux vecteurs entrés,
le temps t et le taux de la température dT/dt, tandis qu’il est ajouté dans le deuxième cas un
troisième vecteur, la charge microbienne retardée d’une unité de temps Nk−1. Pour ces deux
modèles une minimalle complemente connectée ”feedforward” architecture est employée. Elle
se compose d’un neurone caché et d’un neurone sortie. Les résultats, basés sur les possibi-
lités de prévision des structures modèles, démontrent par comparaison l’avantage quand une
architecture d’ANN avec un retard dans ses entrées est utilisée. L’incorporation des événements
passés semble être une entrée essentielle pour prendre en compte la résistance thermique
microbienne induite observée.
Mots-clés : Microbiologie prévisionnelle, réseaux de neurones artificiels, résistance thermique
induite, destruction microbienne

Abstract
Quantifying microbial adapted responses due to thermal stresses by an accurate methodology
is imperative for assessing the efficacy of a heat process. Two different artificial neural network
(ANN) models are constructed for studying the increased induction of the heat resistance of
Escherichia coli K12 under a treatment of decreasing heating rates. In the first model structure
there are two input vectors, namely, time t and temperature rate dT/dt, whereas in the second
case is also added a third one, namely, the microbial load delayed with one time unit Nk−1.
For both models a minimal fully-connected feedforward architecture is used consisting of one
hidden neuron and one output neuron. Results as based on the prediction capability of the model
structures demonstrate the comparative advantage when an ANN architecture with a delay in its
inputs is employed. Incorporation of past events seems to be an essential input for taking into
account the observed induced microbial heat resistance.
Keywords : predictive microbiology, artificial neural networks, induced heat resistance, microbial
inactivation

1 Introduction

The microbial safety of thermally processed foods relies on the inactivation of pathogenic microorganisms
during heating. Possible induction of an increased microbial heat resistance due to a specific time-temperature
history (e.g., slowly increasing temperatures) may lead to unexpectedly unsafe food products (Juneja and Novak,
2003).

Previous studies have shown that the chosen temperature conditions before treatment or during the process
conditions could have a significant impact on the microbial viability. Different stresses could determine the nature
of the adaptive cell response (Marechal et al., 1999). According to Marechal et al. (1999) the microbial cell
may react actively (synthesis of intracellular molecules, commonly known as heat shock proteins or HSP’s) or
passively (membrane permeability changes) to any external perturbation, in order to prevent the denaturation of
the cell integrity or activity. Therefore, it is imperative that the response of bacteria to applications of this kind of
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sub-lethal stresses is further evaluated and quantified. Quantification of this phenomena can be performed within
the discipline of Predictive Microbiology.

When considering mathematical modelling applications in the field of predictive microbiology, in most cases a
suitable model has to be selected out of a pre-specified set of candidate models. This is due to the lack of gene-
rally applicable structure characterisation techniques for non-linear systems (Van Impe et al., 2001). The careful
examination of a priori microbiological knowledge may aid in choosing an appropriate mathematical expression.
The microbial kinetic models can be divided (with respect to their structural characteristics) as follows (see, e.g.,
Ljung (1999)):

1. White box or mechanistic (physical) models are constructed based on theory or underlying mechanisms
and are amenable to refinement as knowledge of the system increases (McMeekin et al., 2002).

2. Black box or data-driven models are purely based on experimental data (e.g., polynomial models, artificial
neural networks).

3. Grey box or hybrid models lay on the interface of white box and black box models, i.e., combining information
from both theory and data and having partly interpretable parameters.

The majority of the microbial inactivation models are lying in the second and third category due to the lack
of sufficient microbial/biochemical knowledge concerning the inactivation of microorganisms. This model division
as defined in relation to the data-theory richness can be visualised in Figure 1. Observe that in a situation that
gets sufficiently complex and there is high data richness, a black box (through learning) might be preferred than
performing a large amount of approximations to a white box model (Rumelhart et al., 1994).

Black  box

White  box

Grey  box

Data Richness

T
h
eo

ry
 R

ich
n
ess

FIG. 1 – Model division in relation to data and theory richness (adapted from Rumelhart et al. (1994); Basheer and Hajmeer
(2000)).

The non-linear technique of Artificial Neural Networks (ANN) lies in the black box modelling group. This tech-
nique has been used for describing accurately the interacting effect of extrinsic/intrinsic factors (e.g., Geeraerd et
al. (1998)) on the microbial growth kinetics. Limited studies have been performed for predicting the thermal inacti-
vation of bacteria. Lou and Nakai (2000) proposed an ANN for studying the effects of temperature, pH and aw on
the thermal inactivation rate of E. coli. The methodology generated accurate results when compared with other
secondary models (Lou and Nakai, 2000). Additionally, the use of ANNs as an integrated primary-secondary in-
activation model can contribute in an overall approach for modelling the microbial inactivation dynamics (a similar
example but for growth kinetics is the one of Cheroutre-Vialette and Lebert (2000)).

This work focuses on the quantification of the inactivation of Escherichia coli K12 under time-temperature
conditions responsible for inducing a microbial heat stress. A comparative study on the predictive capability of
two different artificial neural network models -differing on their ability to incorporate information from past events-
is assessed. Additionally, classical model predictions (using parameters derived from isothermal microbial stu-
dies) are also compared with the developed ANN methodologies. In the latter study thermal resistance of the
microorganism is quantified under different isothermal conditions by the use of a non-linear sigmoid-like model.
Predictions were then performed by assuming that the parameters of the dynamic microbial model describing the
microbial resistance remain valid in the studied dynamic environment (Valdramidis et al., 2006).
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2 Materials and Methods

2.1 Microbial data

Six different heating regimes of Escherichia coli K12 (a surrogate for the food-borne pathogen Escherichia
coli O157:H7) with heating rates dT/dt of 0.15◦C/min (exslowest), 0.20◦C/min (slowest), 0.40◦C/min (slower),
0.55◦C/min (slow), 0.82◦C/min (intermediate), and 1.64◦C/min (fast) were employed, while the initial and the final
temperatures were set to 30 and 55◦C for all heating rates (see Valdramidis et al. (2006) for full details on data
collection).
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FIG. 2 – Dynamic microbial inactivation experiments of E. coli K12 with corresponding standard deviation (for data
where duplicates are available) and temperature measurements. Left top plot: fast (1.65◦C/min), right top plot: interme-
diate (0.82◦C/min), left middle plot: slow (0.55◦C/min), right middle plot: slower (0.40◦C/min), left bottom plot: slowest
(0.20◦C/min), right bottom plot: exslowest (0.15◦C/min).

The heating rates were estimated by the use of a modified Dabes model, as it was described by Van Impe et
al., (1994) and discussed in Valdramidis et al. (2006).

T = To + Tdiff · (t + tcrit)−
√

(t + tcrit)2 − 4 · (tcrit −B) · t
2 · (tcrit −B)

(1)
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Parameter To [◦C] represents the initial temperature, Tdiff [◦C] is the difference between the initial and the
final temperature, tcrit [min] the time at which the final temperature is reached (i.e., the come-up time) and
finally B [min] refers to a parameter which should lie between 0 < B < tcrit and influences the smoothness of
the transition to the final temperature. The estimated heating rates (presented in Figure 2) were calculated as
follows : dT/dt = Tdiff/tcrit.

2.2 Neural Network Predictor

A fully-connected feedforward (FF) ANN architecture that consists of one hidden neuron and one output neu-
ron is used aiming at the minimisation of ANN structures capable of approximating non-linear functions (see
Figure 3). This is in accordance to Cheroutre-Vialette and Lebert (2000) who considered that one hidden layer
of neuron(s) seemed to be sufficient to approximate continuous non-linear functions. Additionally, networks with
more hidden layers or more neurones did not improve the accuracy of prediction (for this case study) any fur-
ther. The logistic-sigmoid and the linear transfer function are employed for the hidden and the output neuron,
respectively.

Two types of FF ANN are considered for these case studies:
– a standard FF architecture with an input vector that consists of time t and temperature rate dT/dt and an

output vector (it’s not a vector, it’s a single output value) of the microbial load Nk and,
– a FF architecture, named FFD, with an additional input (in comparison with the previous type of network),

namely the experimentally measured microbial load delayed with one time unit Nk−1 and the same output
vector Nk. Observe that when FFD is trained the Nk−1 represents the experimentally measured microbial
load delayed with one time unit. When the FFD is activated (with the test data), then the output error is
propagated through the input-output cycle of the network.

FIG. 3 – The Arificial Neural Network architecture.

All input values are linearly normalised into [0, 1] before they are entered into the network. Initial values that
lie within [-1, 1] are picked randomly from a uniform distribution for the ANN’s connection weights.

The early stopping methodology is used for overfitting-avoidance while Levenberg-Marquardt Hagan and Men-
haj (1994) backpropagation is used to train the ANNs. This algorithm appears to be the fastest method for training
moderate-sized feedforward ANNs and has given the highest performance training results among other training
algorithms employed. The algorithm is terminated either when it converges to a good training mean square error
value (MSE = 1/n

∑n
i=1(yi − ŷi)2), n denotes the number of samples (input-output pairs), yi is the observed

value and ŷi is the predicted value) or when the MSE on the test data set increases (i.e early stopping) or once
a predefined large number of epochs (e.g. 5000 epochs) is completed. Since the performance of the network
is highly dependent on the non-deterministic feature of the connection weight initialisation (i.e., random uniform
distribution), all backpropagation runs are repeated for 50 times and the run with the lowest MSE on the test set
is picked.

The microbial experimental sets are partitioned in training, validation and test sets before being processed
according to the suggested ANN structures. The training sets consist of four experimental sets in which the
exslowest and the fast heating regimes of the inactivation experiments (i.e., 0.15◦C/min, and 1.64◦C/min) are
always included. This choice is accomplished in order to test the prediction capability of the developed modelling
approaches only by interpolation. By choosing one experimental set for validating and one experimental set for
testing the ANN, a total combination of twelve case studies is constructed. The advantages for the selection of
the specific transfer functions and the use of early stopping are also investigated.
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2.3 Isothermal based modelling

The dynamic sigmoidal-like model of Geeraerd, Herremans and Van Impe (2000) (having characteristics of
a gray box model) was also used to describe the microbial inactivation of Escherichia coli K12 MG1655 (for the
studied heating regimes) as based on isothermal inactivation data (see Valdramidis et al. (2006)). The model has
two parameters (kmax and Nres) and two states (Cc and N ):

dN

dt
= −kmax ·

(
1

1 + Cc

)
·
(

1− Nres

N

)
·N (2)

dCc

dt
= −kmax · Cc (3)

Herein, N represents the microbial cell density [cfu/mL], Cc is related to the physiological state of cells
[units/cell], kmax denotes the specific inactivation rate [1/min] and Nres the residual population density [cfu/mL].

The description of kmax with respect to temperature is described with the Bigelow model (Bigelow, 1921) :

kmax(T ) =
ln 10

AsymD(T )
=

ln 10
AsymDref

· exp
(

ln 10
z

· (T − Tref )
)

(4)

Herein, AsymDref [1/min] denotes the asymptotic decimal reduction time at a reference temperature Tref

[◦C], and z [◦C], the thermal resistance constant, i.e., the number of degrees change of temperature required to
achieve a tenfold change in AsymD-value.

The estimated inactivation parameters that have been used for performing microbial predictions at the different
studied heating regimes are tabulated in Table 1.

AsymD56.3oC [min] ± SE z [◦C] ± SE log(Cc(0)) [-]± SE
5.67± 0.61 4.11 ± 0.16 0.82 ± 0.39

TAB. 1 – Estimated model parameters of the integrated model (Equations 2, 3 and 4).

For more details on the isothermal based modelling approach reference is made to Valdramidis et al. (2006).

2.4 Prediction capability

Various statistical indices are suggested in the literature in order to compare competing models. Among these
indices Jeyamkondan et al. (2001) referred to graphical plots, mean relative percentage residual, mean absolute
relative residual and root mean squared residual. Similarly, Ross (1996) suggested the use of the bias and
accuracy factors. In our case study the mean relative percentage residual (MRPR) is considered:

MRPR =
1
n∗
·
∑ (yi − ŷi)

yi
· 100 (5)

The MRPR can be used to derive a measure analogous to the accuracy factor described by Ross (1996). An
MPPR value of zero indicates that there is no bias in the predictions. Positive values indicate an under-prediction
and negative values an over-prediction (Jeyamkondan et al., 2001). For example if MRPR is −15%, it means that
on average, the predicted microbial load was 15% higher than the observed microbial load.

2.5 Software

Programs for simulation, optimization, and fitting were written in MatLabr Version 6.1 (The MathWorks, Inc.)
while Neural Networks Toolbox is also used. The routine e04ucf is used for the minimization of the nonlinear func-
tion presented in Section 2.3. This routine originates from the NAGr (Numerical Algorithms Group) Foundation
Toolbox for MatLab 6 (NAG Ltd., Oxford, UK).
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3 Results and discussion

The choice of the transfer functions in use as well as the advantage of using an early stopping methodology
was studied by evaluating the prediction capability of the ANN structures for all the cases that the test set was
the slowest.

Case 1 Transfer functions: Sigmoid - Linear
Experimental sets MRPR [%] MRPR [%]

test train validation FFD FF
slowest Exslowest, Slower, Slow, Fast Int -4.14 -7.07

Exslowest, Slower, Int, Fast Slow -0.83 -1.13
Exslowest, Slow, Int, Fast Slower 0.11 -8.82

Case 2 Transfer functions: Sigmoid - Sigmoid
Experimental sets MRPR [%] MRPR [%]

test train Validation FFD FF
slowest Exslowest, Slower Slow, Fast Int 3.72 -7.74

Exslowest, Slower, Int, Fast Slow 2.66 4.15
Exslowest, Slow, Int, Fast Slower -2.94 -5.79

Case 3 Transfer functions: Sigmoid - Linear
Experimental sets MRPR [%] MRPR [%]

test train No Validation FFD FF
slowest Exslowest, Slower Slow, Fast 6.33 11.43

Exslowest, Slower, Int, Fast 6.27 7.60
Exslowest, Slow, Int, Fast -1.20 8.32
All -3.07 12.81

TAB. 2 – Mean relative percentage residual (MRPR) comparison for a set of case studies of different transfer functions
and for the use of validation test.

The results show that early stopping contributes on a better predicting power of the developed ANN structure
than in cases that this technique is not used. Overfitting of the ANN is avoided since learning is stopped when the
MSE error on the validation set is increased between two training epochs. Additionally, the choice of a sigmoid
function followed by a linear transfer function is a justified choice for the experimental studies at hand (see values
of MRPR). Previous studies in the field are in line with the latest observation (see e.g., Lou and Nakai (2000);
Cheroutre-Vialette and Lebert (2000)).

Results, as calculated based on the prediction capability of the models in use show that FFD structure predicts
the microbial inactivation of E. coli better than the FF approach (Table 3). Moreover, the slower the heating rate of
the test data set, the better the FFD prediction in most cases. The comparative study also illustrates that microbial
predictions derived from isothermal experimental data resulted in lower prediction capability, i.e., higher MRPR,
than the ANNs and in continuous underestimation (MRPR > 0) of the microbial kinetics (see Table 3 and Figure
4).

Particularly, the isothermal modelling approach gave poor prediction accuracy for all the selected case studies.
As it was discussed in Valdramidis et al. (2006) this is due to the induced microbial heat resistance (changes of the
physiological state of the cells) which is imposed by the dynamic temperature processing conditions. Cheroutre-
Vialette and Lebert (2002) discussed about similar problems associated with variable conditions when differential
equations are employed. It is also apparent from these studies that transposition of results obtained from constant
conditions to variable conditions may require adjustment of the initial mathematical structures in use.

When the two studied ANN structures are compared with the isothermal based modelling study, an advantage
of the FFD methodology is observed for all cases but one. This indicates that the training approach of these
two structures seem to be more informative than previously studied approaches. The FFD approach resulted
in even more accurate predictions than the FF. Particularly, in the case of the slowest test set, when validation
on data originating from conditions inducing pronounced changes in the microbial physiology (i.e., slower set)
gave more information on the structure modelling approach (see MSPR for the validation set of slower). This
observation is more evident when the test set is the slowest and slower, i.e., sets at which induced resistance is
more pronounced (Valdramidis et al., 2006).
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Test set intermediate. Validation set from left to right: slow, slower, slowest.
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Test set slow. Validation set from left to right: intermediate, slower, slowest.
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Test set slower. Validation set from left to right: intermediate, slow, slowest.
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Test set slowest. Validation set from left to right: intermediate, slow, slower.
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FIG. 4 – Microbial inactivation experiments (’•’) of E. coli K12 with their standard deviation and corresponding temperature
profile (continuous line) at all the studied heating rates. Dotted lines: predictions with FF approach (’-.’), predictions with
FFD approach (’x’), and predictions with approach based on isothermal data (’- -’).

In general, FF architectures with a delay in one of the inputs appear to be more efficient predictors than the
FF or the microbial model based on isothermal data for this case study. A better prediction capability of the FFD
network than the FF and the isothermal based models, in all the twelve cases (but one), indicates that an input
incorporating past events, i.e., Nk−1, is sufficient to encompass the microbial stress adaptation of the examined
microbe due to the slowly increasing temperatures. This input delay can be considered as a dynamic a priori
microbiological knowledge suitable for extracting the information considered in the microbial experimental data.
Further experimental investigation of these adaptations may require studies focusing on the mechanisms influen-
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cing the microbial physiology.

Experimental sets FFD FF Previous study
Test Train Validation MRPR [%] MRPR [%] MRPR [%]
Slowest Exslowest,Slower,Slow,Fast Int -4.14 -7.07 14.69

Exslowest, Slower,Int,Fast Slow -0.85 -1.13 14.69
Exslowest,Slow,Int,Fast Slower 0.11 -8.82 14.69

Slower Exslowest,Slowest,Slow,Fast Int -0.12 -8.70 14.60
Exslowest,Slowest,Int,Fast Slow -2.22 -3.91 14.60
Exslowest,Slow,Int,Fast Slowest 3.19 -4.47 14.60

Slow Exslowest,Slowest,Slower,Fast Int -2.60 2.14 9.64
Exslowest,Slowest,Int,Fast Slower -2.18 -6.48 9.64
Exslowest,Slower,Int,Fast Slowest 5.99 -6.09 9.64

Int Exslowest,Slowest,Slower,Fast Slow -0.35 -5.31 6.45
Exslowest,Slowest,Slow,Fast Slower 3.56 -5.44 6.45
Exslowest,Slower,Slow,Fast Slowest 0.57 -7.57 6.45

TAB. 3 – Mean relative percentage residual (MRPR) comparison for the different modelling approaches (FFD, FF, iso-
thermal study). The bias weight for the hidden layer is included. Note that, for the FFD and FFNN methods the first data
point of the test set is not included in the calculation of the MRPR.

The outcome of this study shows that it is important to be taken into account the variations of environmental
factors, which can occur during a food processing and induce a stress situation for the microorganims. Recurrent
neural networks (RNN) as those developed by Cheroutre-Vialette and Lebert (2002) for describing the growth
of Listeria monocytogenes can be similarly used for the inactivation kinetics. Nevertheless, the proposed FFD
structure demonstrates that a single output delay of one-time unit, where the output error is propagated through
the input-output cycle of the network, is adequate for successfully describing the inactivation of E. coli. In other
words, it appears that the embedded memory of RNNs is not essential for performing the studied predictions.
Finally, this study had shown that microbial heat resistance should be further identified and quantified by incor-
porating available information into differential microbial modelling approaches. These adjustments by the use of
additional model building blocks will potentially permit reliable quantification (similar to that achieved by the tested
ANN structures) from the widely used in the field of Predictive Microbiology differential equations.
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