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Abstract. A common practice in modeling affect from physiological signals
consists of reducing the signals to a set of statistical features that feed predic-
tors of self-reported emotions. This paper analyses the impact of various time-
windows, used for the extraction of physiological features, to the accuracy of
affective models of players in a simple 3D game. Results show that the signals
recorded in the central part of a short gaming experience contain more relevant
information to the prediction of positive affective states than the starting and end-
ing parts while the relevant information to predict anxiety and frustration appear
not to be localized in a specific time interval but rather dependent on particular
game stimuli.
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1 Introduction

Video games, even the most simple ones, have the potential of providing engaging
episodes in which the player might experience a plethora of psychological states from
fear and frustration to excitement and fun. A game able to recognize those psychological
states could offer tailored and optimized experiences to each different player according
to her preferences and motivations to play without the need of asking directly [1, 2].

A predictor of affect can be trained on data gathered across several game sessions in
which players report their experience during or after the game ([3–5] among others) re-
sulting in a computational model that receives as inputs the objective (measurable) part
of the experience (e.g. achievements on the game, buttons pressed on the game pad,
heart rate and facial expression) and outputs a value estimating the subjective part (e.g.
valence and arousal or frustration). Typically, the inputs of the model consist of statisti-
cal features (e.g. score, keys pressed per second and average heart rate) calculated on a
time interval before the player responds to online (i.e. during play) or post-experience
questionnaire [6, 7]. According to some theories, when humans report past emotional
experiences, they have to retrieve specific thoughts, event-specific details or beliefs [8]
that relate to the past experience. Consequently, we expect that certain parts of the ex-
perience are more relevant than others to predict self-reported affect. To the best of our
knowledge there exists no study that suggests an optimal time interval that maximizes
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the predictability of computational models for recognition of affect. The common prac-
tice followed is to either choose an arbitrary time window (e.g. the complete game [5])
or run preliminary experiments to determine the most appropriate one for the task at
hand [9].

This paper examines the relevance of different experience time windows with re-
spect to the prediction accuracy of seven self-reported affective/cognitive preferences
— players report after a pair of games whether the first or the second felt more anxious,
boring, challenging, exciting, frustrating, fun and relaxing — in a short (90 seconds)
3D prey/predator game. Features calculated on different time intervals of three physio-
logical signals, namely heart rate (HR), skin conductance (SC) and blood volume pulse
(BVP), are compared as inputs to artificial neural network (ANN) models of affect.

The rest of the paper is organized as follows: Section 2 reviews the literature in
psychophysiology, games and affect, Section 3 and 4 , respectively, present the dataset
and the methodology followed in this study and Section 5 and 6 discuss the results and
conclusions of the study.

2 Related Work

Research in game psychophysiology has gained interest in recent years [10] result-
ing in studies exploring different modalities, emotions and affective states of players.
Some affective gaming researchers attempt to draw the mappings between physiology
and affect by analysing the correlations between statistical features extracted from the
physiological signals of participants while playing and their affective post-experience
self-reports. For example, Nacke and Lindley [11] investigate the correlations between
flow, boredom and immersion, and the cumulative averages of jaw electromyography
(EMG) and SC over the complete playing time in a first person shooter while Rani et
al. [12] explore the correlations between anxiety, engagement, boredom and frustra-
tion self-reports after playing Pong and various statistical features extracted from the
physiological signals (HR and SC among others) recorded during the entire game.

Another approach to the same problem consists of training computational mod-
els that predict self-reports of affect relying on features of the physiological signals.
Kapoor et al. [9] implement different computational predictors of frustration based on
the average value over 150 seconds of 14 features extracted from a SC sensor, a pres-
sure mouse, a posture sensor and a face tracker. The time window is calculated just
before the participant reports to be frustrated or 225 seconds after the game has started
if the participant does not report frustration during the experience. McQuiggan et al. [4]
aim to maximize the time for a correct early detection of frustration based on BVP and
SC features (among other modalities). The best models reported predict the frustration
self-reports 35 seconds before they are introduced by the user. Mandryk et al. [13] use
fuzzy rules to map HR, SC, respiration and EMG of the jaw muscles continuously (i.e.
every physiological recording is transformed) to an arousal-valence space and further
to levels of fun, boredom, challenge, excitement and frustration during a hockey com-
puter game. This model is validated by analysing the correlation between the average
value of the predicted psychological states along the entire game session and the post-
experience emotional ratings of the players. Yannakakis et al. [14, 15] model the fun



pairwise preferences of children playing physical interactive games from an extensive
set of statistical features extracted from HR and SC recorded during the 90-second long
games using neuroevolutionary preference learning. On the same basis, Martinez et al.
[16, 5] trained predictors of seven self-reported affective states in a 3D prey/predator
game using statistical features of HR, BVP and SC recorded during 90-second long
games. Tognetti et al. [17] apply Linear Discriminant Analysis to map a large number
of features calculated on the last minute recordings of HR, BVP, respiration and SC to
player preferences in a racing game.

In the aforementioned studies, either the complete signals over the full length of a
game or an interval selected after preliminary — not reported — studies are used to cal-
culate the statistical features. On the contrary, McQuiggan et al. [18] explore different
time window lengths and positions in HR and SC signals to calculate the statistical fea-
tures that feed a predictor of self-efficacy in a 3D learning environment. A large number
of features are calculated covering overlapping parts of the experience. Unfortunately,
the relevance of each feature for the prediction is not analysed. Broekens et al. [19]
present a brief analysis of five window lengths in eye-gaze data. That analysis shows
that features calculated in shorter windows (1, 2, 4 and 6 seconds) prior a player ac-
tion predict more accurately the type of action than longer time windows (10 seconds).
That study differs from this paper both in the signals analysed and more importantly the
prediction target.

It is worth mentioning other psycho-physiological studies in games with a focus on
short signal intervals associated to game events. Conati and Maclaren [20] propose a
probabilistic model of joy and distress of students and their admiration and reproach to-
wards an agent based on Dynamic Decision Networks. For each game event, the model
takes as input the difference between the average EMG signal in the corrugator mus-
cle over the whole experience (30 minutes) and the average EMG in the four seconds
following the event. Hazlett [21] studies the correlations between positive and negative
events and the mean value of corrugator and zygomaticus muscles EMG during those
events and one second following the event. Ravaja et al. [22] examine the effect of game
events on zygomatic and orbicularis oculi EMG, SC and HR by analysing statistically
the changes on the mean value of the signals in eight 1-second windows (2 before the
event and 6 after). On these studies, the time windows are selected to allow enough time
to detect a physiological response while minimizing overlapping windows among sub-
sequent events. This paper does not explore event-associated time windows and instead
focuses on models of post-experience affective reports that are based on physiological
signals gathered during play.

3 Data Recording

The dataset used in this paper was gathered during an experimental game survey in
which 36 participants (80% males, aged from 21 to 47 with mean and standard deviation
of age equal 27.2 and 5.84, respectively) played four pairs of different variants of the
same video-game. The test-bed game named Maze-Ball is a 3D prey/predator game that
features a green ball inside a maze controlled by the arrow keys. The goal of the player
is to maximize her score in 90 seconds by collecting the pellets scattered in the maze



while avoiding the red enemies that wander around. The eight available variants of the
game differ only on the virtual camera profile used which defines how the virtual world
is presented on screen.

Blood volume pulse, b, and skin conductance, s, were recorded at 32Hz during
the session using the IOM biofeedback device. Heart rate, h, is inferred by the BVP
signal every 5 seconds and the magnitude (SM), m, and the duration (SD), d, of signal
variation have been derived from SC [23]. The players filled in a 4-alternative forced
choice questionnaire after completing a pair of variants reporting whether the first or
the second game of the pair felt more anxious, boring, challenging, exciting, frustrating,
fun and relaxing, or whether both felt equally, or none of them did. The details of the
Maze-Ball game design and the experimental protocol followed can be found in [24, 5].

The following set of features is extracted from different time intervals — full game
(90 seconds), two overlapping windows of 60 seconds (0 to 60 and 30 to 90), two non-
overlapping windows of 45 seconds, three non-overlapping windows of 30 seconds and
four non-overlapping windows of 22.5 seconds — of each signal (α ∈ {b, s, h,m, d})
inspired by previous studies on physiological feature extraction [15, 25]:

– average (E{α}) and variance (σ2{α}) of the signal;
– initial (αin) and final (αlast) recording and difference between them (∆α);
– minimum (min{α}) and maximum (max{α}) signal recording and difference be-

tween them (Dα);
– time when maximum (tmax{α}) and minimum (tmin{α}) samples were recorded

and difference between those times (Dα
t );

– average first and second absolute differences (δα|1| and δα|2|, respectively);
– Pearson’s correlation coefficient (Rα) between raw α recordings and the time t at

which data were recorded;
– autocorrelation (lag equals the sampling rate of α) of the signal (ρα);

All features are normalized to the [0,1] interval using standard min-max normaliza-
tion.

4 Method

Neuroevolutionary preference learning is applied in order to train computational mod-
els that learn the players’ pairwise self-reports of affect. The inputs to the models are
selected automatically through Genetic Feature Selection (GFS). The two algorithms
are briefly described in the following subsections.

4.1 Genetic Feature Selection

Feature selection (FS) is essential in scenarios where the available features do not have a
clear relationship and, thus, impact to the prediction of a target output (i.e. it is not easy
to decide a priori which features are useful and which are irrelevant for the prediction).
Moreover the computational cost of testing all available feature sets is combinatorial
and exhaustive search might not be computationally feasible in large feature sets. Under



these conditions, FS is critical for finding an appropriate set of model input features that
can yield highly accurate predictors [5].

Genetic feature selection [16] is a global search FS algorithm guided by a genetic
search. The search starts by evaluating the fitness of several subsets with one feature;
in subsequent iterations combinations of the fittest subsets from the previous iterations
are evaluated. The algorithm stops after a fixed number of iterations or when highly
fit feature subsets are found. The fitness function is calculated as the average cross
validation performance of a model trained on the selected features on unseen folds of
classification data. More details about GSF can be found in [16].

4.2 Neuroevolutionary Preference Learning

We apply preference learning [26] to build affective models that predict users’ self-
reported emotional preferences based on the subsets of features selected by the GFS
algorithm. In this study, the models are implemented as single layer perceptrons (SLPs)
that are trained via neuroevolutionary preference learning (as in [27, 5]) to map the
selected features to a predictor of the reported pairwise emotional preferences.

Note that the pairwise preference relationship of the training data is known (e.g.
game A is preferred to game B) but the value of the target output is not (i.e. the magni-
tude of the preference is unknown). Thus, any gradient-based optimization algorithm is
inapplicable to the training problem since the error function under optimization is not
differentiable. The trained model learns for each pair of games a higher output value for
the preferred game than for the non preferred.

5 Experiments

Ten ANN-models are trained for each affective state and time window using 3-fold
cross validation and their average accuracy is depicted on Figure 1. For the 45 and
60 second long intervals, all affective states but challenge are predicted with higher
accuracy in the second interval. By further subdividing the windows, boredom and the
three positive affective states — excitement, fun and relaxation — are predicted with the
highest accuracy using statistical features of the physiological signals calculated in the
central 30-second interval and the second or third quarter of the game (22.5 second long
intervals). Furthermore, these models built on small time intervals yield, on average,
significantly higher prediction accuracies than the models trained on the full-length
experience — difference in accuracy of 3.15% for boredom (t(18) = 3.43), 6.0% for
excitement (t(18) = 7.31), 4.75% for fun (t(18) = 4.52) and 7.22% for relaxation
(t(18) = 10.82); p-values < 0.01 for all four states. This suggests that the information
more relevant for predicting self-reports of positive experiences and boredom in Maze-
Ball is located at time windows which are in the middle of the short (90 s) gaming
experience.

The anxiety models built on 45 and 60 second-long windows suggest that the second
half of the game is more relevant to define the experience; however, the smaller win-
dows do not show a clear trend. Similarly, frustration models present the same average
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Fig. 1. Average and standard error of ten models trained on the 7 affective states — anxiety (Anx),
boredom (Brd), challenge (Chl), excitement (Exc), frustration (Frs), fun (Fun) and relaxation
(Rlx) — using statistical features calculated in different time-intervals of the experience.



accuracy in the last 60 seconds and in the first 30 seconds. This points out that self-
reports of these two negative affective states are not significantly related to a specific
part of the Maze-Ball experience and instead possibly linked to concrete asynchronous
events in the game. It is possible that when players report fun, excitement, relaxation
and boredom they build an overall assessment of the experience which is better approx-
imated by the events occurring in the middle of the game while the reports of anxiety
and frustration might be determined by punctual events in the game that elicited those
affective states.

The predictors built for self-reports of challenge present, consistently across differ-
ent time-window sizes, higher accuracies when trained on the first parts of the expe-
rience although no significantly different from the models trained on the complete 90
seconds of the game (higher difference equal to 1.81%; t(18) = 1.18, ns). It appears
that in such short experience with a constant level of challenge — all elements in the
level remain the same during each level — the first half of the game is enough to assess
the difficulty of the level. Perceived challenge, opposite to the other six user states in-
vestigated, is not considered an affective state but rather a cognitive state which might
be remembered more accurately than affect having an impact on which parts of the
experience are taken into account while reporting the experience via questionnaires.

Despite the fact that only some states appear to be related to a specific interval of the
experience, there exists at least one time interval for each of the seven states investigated
that yields, on average, more accurate models than the complete game (not significant
for challenge and anxiety). This suggests that statistical features calculated in small
parts of the signals highlight better the differences on the experience than physiological
features calculated in the full-length of the game.

6 Conclusions

The most common approach to create predictors of players’ affective states based on
their physiological states consists of applying machine learning algorithms to find map-
pings between reports of affect and statistical features extracted from the physiological
signals recorded during play. This paper examines the effect of using different fractions
of the physiological signals to the prediction of seven self-reported affective/cognitive
states in a short 3D prey/predator game. Results show that features extracted from mid-
dle parts of the signals yield more accurate predictors of positive affective states and
boredom than features extracted from the complete signals. Moreover, self-reports of
perceived challenge are predicted more accurately by parts of the signals located at the
beginning of the experience. Finally, reports of anxiety and frustration are not clearly
related to a specific time window in the experience. Even though the games played are
short (90 seconds), results show that more accurate models can be built when using a
fraction instead of the complete physiological signals recorded during the game.

Future work will attempt to validate these results across more players and different
casual games, i.e. short games with simple rules, that can provide comparable experi-
ences. Additionally, this paper only uses information from the physiological state of the
player leaving out game play events and game metrics which provide relevant informa-
tion for the prediction of reported emotions (see [16] among others); an extended study



will explore whether the most informative intervals of that modality correspond to the
same intervals of the physiological signals.
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