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Abstract. Over the past years, various techniques for the embedding of
hardware description languages within general purpose languages have
been developed and explored. In particular, numerous HDLs embedded
in strongly typed functional languages have been developed and used for
different applications. A common trait of most of these languages is that
they treat hardware components as functions or relations between the
inputs and outputs of the circuit. The alternative view, of viewing the
circuits as components which can be instantiated, composed and trans-
formed has been a relatively less well explored area in this context. In this
paper we present HeDLa, a component-based hardware description lan-
guage embedded in Haskell, and show how features such as strong-typing
and higher-order functions enable us to design and compose circuits in a
safer and more abstract fashion. Furthermore, the component-based ap-
proach allows access to circuit structure directly, enabling us to reason
about non-functional aspects of the component, such as placement, area
and power consumption more easily. Finally, we discuss some initial ex-
periments in multi-level simulation of circuits which enable testing and
more effective simulation of large circuits.

1 Introduction

The utility of domain-specific languages has been widely accepted by the pro-
gramming language design community and has increased in popularity over the
past few decades. General purpose languages are excellent media to express algo-
rithms that work in a variety of contexts, but the need for a context-dependent,
domain-specific core language is extremely useful when designing solutions for a
constrained problem-domain. One area which saw the rise of various (text-based)
domain-specific languages in the seventies and eighties was that of hardware de-
scription and design. Languages such as Verilog [Ope93] and VHDL [LMS86] en-
abled modular design of hardware, allowing reuse of designed components, and
abstraction in hardware design. Such languages recognised the need for different
interpretations of hardware descriptions, allowing both structural descriptions
(in which components are described in terms of their constituent parts, decom-
posing them into subcomponents until the gate or transistor level is reached)
and behavioural descriptions (in which the behaviour of a component is given
algorithmically). The former was necessary to allow actual circuit instantiation
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based on the descriptions given in the language, while the latter enabled easier
testing, more efficient simulation, and better structured design approaches. Due
to the finite nature of hardware, algorithmic constructs, especially ones for loops
were not allowed in structural descriptions, hence ensuring that every structural
description is a finite one (that is, terminates) simply by ensuring that a struc-
ture does not (transitively) refer to a copy of itself — hence resulting in modular
descriptions which are in the shape of a tree (or a directed acyclic graph if one
considers reuse of modules). This restriction, however reasonable it may seem,
did not allow algorithmic descriptions of regular shaped circuits in a concise
manner through the use of loops, recursion and conditional selection based on
values of static (compile-time) parameters. Certain such circuits could be de-
scribed through the use of arrays of data shifted in smart ways to ensure that a
repetative structure is produced. A classic textbook example would be that the
array of carry-outs of the full-adders in a serial-carry adder can be shifted to the
right and passed on as the carry-ins of the full-adders. However, more complex
regular circuit structures, such as trees, and non-constant shifts of the arrays are
simply not possible, or possible only in a convoluted unintelligible manner.

This restriction was addressed in various tools, providing non-standard ex-
tensions to VHDL and Verilog, allowing certain general-purpose constructs to
be used in the circuit structural descriptions. Different tools provided different
languages, some simply allowing regular repetition or structure-composition for-
mats, others providing an essentially full-blown meta-language sitting above the
structural descriptions. This two-tier meta-language approach worked well in
the description of large regular circuits, and as long as the meta-program ter-
minated, it produced a finite circuit that could be analysed, tested, verified and
fabricated.

This two-tier approach is, however, useful in most other domain-specific lan-
guages, and was independently adopted in other areas. This approach of building
a Turing-complete meta-language above the domain-specific language has vari-
ous drawbacks. Domain-specific language design is clearly more challenging with
this approach, since the language designer must also look into the design and im-
plementation of the general-purpose meta-language. Furthermore, the end-users
are expected to learn different syntax, different languages each with their dif-
ferent quirks, and in some cases different programming paradigms, for different
domain-specific languages they are working in.

Embedded languages, a technique developed in the programming language
community, was found to be an excellent approach to alleviate a number of these
problems. In embedded languages, one builds a domain-specific library using a
general-purpose language, called the host language, enabling a programmer to
describe ‘programs’ in the domain-specific language to appear as though they
were part of the host language. The programmer may then generate, analyse
and manipulate programs in the domain-specific programs as though they were
part of the host language itself. The host language thus automatically becomes a
meta-language for the embedded language. Clearly, the more flexible and high-
level the host language and its syntax are, the more difficult it becomes to



distinguish where the domain-specific program ends and where the rest of the
code starts. From the language designer’s point of view, the main advantage of
designing a domain-specific language and embedding it within a host language
is that he or she needs not reinvent the wheel and create a new general-purpose
language, while from the end-user’s perspective, the main advantage is that the
meta-language is a standard language with which he or she may already be famil-
iar and knowledge of which goes beyond the use of the domain-specific language.
Some argue that embedded languages are nothing more than domain-specific li-
braries, and certainly, the dividing line between a domain-specific library, and
a domain-specific language is blurred. However, one may look at embedded lan-
guages as a structuring principle for domain-specific libraries, to provide struc-
tures allowing first-order programs in the domain-specific language to be written
without resorting to the host language.

Over the past years, various embedded hardware description languages have
been designed and used (see, for instance Lava [CSS03], Hydra [O’D96], Hawk
[DLCY9], reFIect [MO06], Wired [ACS05] and Dual-Eval [WAHRO04]). In partic-
ular, functional languages have proved to be particularly suited for this purpose.
A common trait of most of these languages is that they treat hardware com-
ponents as functions or relations between the inputs and outputs of the circuit.
The alternative view, of viewing the circuits as components which can be instan-
tiated, composed and transformed has been a relatively less well explored area
in this context [WAHRO04,ACS05]. Circuits are produced as a result of function
calls in the host language, and a common challenge in most embedded hard-
ware description languages is that of having access to the structure induced
from the description of the circuit in the host-language. For example, a circuit
induced through a linear chain of recursive calls could be viewed as a nested
chain of similar components, which information can be used to aid reasoning
about the circuit or for inducing hints for placement tools. However, without
additional machinery, this information cannot be created and accessed directly.
Being able to refer to such blocks, would also enable a hardware designer to rea-
son about non-functional aspects such as power consumption and wire lengths
of such compound components, and use other standard development techniques
such as refinement in the design process, all within the same language.

In this paper we present initial experiments in building a component-based
hardware description language embedded in Haskell [Jon03], and show how fea-
tures such as strong-typing and higher-order functions enable us to design and
compose circuits in a safer and more abstract fashion. Furthermore, we dis-
cuss the use of refinement and multi-level description and simulation of circuits
which enable testing and more effective simulation of large circuits. Essentially,
this enriches the approach the embedded hardware description language with
a design scripting language. Finally, we discuss how the component-based ap-
proach allows more direct access to circuit structure, enabling us to reason about
non-functional aspects of the component, such as placement, area and power
consumption more easily.



2 HeDLa: Embedding Yet Another Structural HDL in
Haskell

2.1 Breaking Away from Circuits as Functions

When embedding a language, one would want the embedded programs to look
similar in style to the rest of the code. It is thus natural to emulate the host
language paradigm in the embedded language. Most probably for this reason, one
finds that in most hardware description languages embedded in Haskell, circuits
are described as functions from inputs to outputs. Circuit reuse simply becomes
function application, as for example can be seen in the following example in Lava

(CSS03]:

halfAdder (a, b) = (s, c)
where
¢ = and2(a, b)
s = xor2(a, b)

fullAdder (cin, (a,b)) = (s, cout)

where
(c1, s1) = halfAdder(a, b)
(c2, s) = halfAdder(sl, cin)
cout = or2(cl, c2)

In HeDLa, we take a different approach, in which circuits are objects which
can be tagged, manipulated and structurally modified. Structurally describing a
a half-adder in terms of basic gates, and a full-adder in terms of half-adders is
done using the following code:

halfAdder = Circuit

{ name = "halfAdder"

, inputs = ("a", "b")

, outputs = ("s", "c")

, description = use xor2 ("a", "b") "s"
& use and2 ("a", "b") "c"

}

fullAdder = Circuit

{ name = "fullAdder"

, inputs = ("cin", ("a", "b"))

, outputs = ("s", "cout")

, description = use halfAdder ("a", "b") ("si", "c1")
& use halfAdder ("si", "cin") ("s", "c2")
& use or2 ("ci", "c2") "c"

}

Each circuit is defined as a Haskell record, with not only a Haskell func-
tion name, but also a string as a name. The wires are not viewed as Haskell
parameters to the actual circuit objects, but are labelled and cross-referenced



using strings. The inputs and outputs themselves of a circuit are expressed as
structures (tuples and lists) of variable names, and are referred to string names.
Finally, the description of the circuit behaviour is given (in this case) as a struc-
tural description — a combination of instances of basic components and com-
pound components defined elsewhere in the code. The use keyword enables the
creation of an instance of a circuit component (with the input and output wires
given as additional parameters), and these can be combined together using the
& operator.

From this example, it is clear that there is syntactic overhead in using HeDLa
to describe the structure of a circuit as opposed to Lava functional-style descrip-
tions. The primary syntactic distractions are the two names given to each com-
ponent (the name of the Haskell object and the string used in the record) and
the clunkiness of quoted wire names. Despite the additional syntax, the use of
both the component and the wire names is particularly useful when the descrip-
tions are exported to VHDL or other external formats, since they give a way of
relating the simulation and verification with the original HeDLa descriptions. In
fact, the component name is only used for this purpose.

2.2 Strongly-Typed Circuits

In HeDLa, inputs and outputs of a circuit are not directly equivalent to inputs
and outputs in the Haskell sense. Instances of a circuit, take both the inputs
and outputs of the circuit component being instantiated as inputs in the func-
tional sense. Although it creates a dichotomy between the Haskell code and the
embedded language code, the resulting structure is closer to VHDL and Verilog
descriptions of circuit instances. To enable structuring the input as tuples and
lists, Haskell type classes are used to allow different circuits to take different
types of structures as inputs and outputs — in the above example, the basic
gates, the half-adder and the full-adder all have different structures of inputs
and outputs.

Furthermore, Haskell types are used to ensure that circuit instantiation is
done in a type-safe and correct manner. The types of the circuits given and the
basic gates are:

xor2, and2, or2 :: (Bit, Bit) |=> Bit
halfAdder :: (Bit, Bit) |=> (Bit, Bit)
fullAdder :: (Bit, (Bit, Bit)) |=> (Bit, Bit)

The infix parametrised type |=> is used to describe circuits taking inputs
with the structure appearing as the first type parameter, returning a structure
given as the second type parameter. This enables us to use Haskell type checking
to ensure that all circuits are instantiated in type-safe manner.

Currently HeDLa supports only wires carrying boolean streams, but it is
planned to be extended to support other streams carrying integers and other



data types. Streams can be structured not only in tuples, as we have seen in the
examples so far, but also using lists as shown in the example below!:

nBitAdder :: Int -> (Bit, [Bitl, [Bitl]) [=> [Bit]
nBitAdder n = Circuit
{ name = "nBitAdder"
, inputs = ("c"!0, bus "a" n, bus "b" n)
, outputs = bus "s" n ++ ["c"!n]
, description
= combine
[ use fullAdder ("c"'m, ("a"!m, "b"!'m)) ("c"!(m+1), "s"!'m)
| m <= [0..n-1]
]
}
where
bus v i = map (v!) [0..i-1]
v!i = v ++ show i

2.3 Circuit Interpretations

Starting with these descriptions, one can interpret them in different ways. The
most straight-forward interpretation is that of simulation, where the given circuit
is (recursively) interpreted in terms of its underlying components, until the basic
gates are encountered, and interpreted using a default interpretation in Haskell:

> simulate fullAdder (high, (low, high))
(low, high)

Based on the description, one can also produce VHDL output of a circuit.
However, unlike embedded HDLs such as Lava and Hawk, we produce a modular
description following the structure of the circuit as defined, rather than one
flattened netlist with no structure. Apart from outputting to VHDL, HeDLa
also allows exporting a circuit to model checkers? to verify safety properties of
circuits.

3 Behavioural Descriptions, Specifications and
Refinement

3.1 Behavioural Descriptions and Simulation

The underlying gate components in HeDLa are used no differently than the
compound components the user may define. The real difference is the interpre-
tation of the components during simulation — whereas compound circuits are
decomposed into their subcomponents and simulated separately, the basic gates

! The function combine takes a list of circuit instances and combines them together
using &
2 Currently we support only SMV as a model-checker.



have a behavioural semantics associated to them, which enables direct simula-
tion. HeDLa allows the description of new components with a behavioural, as
opposed to structural description. In languages such as VHDL, this necessitated
the definition of a sub-language for the description of behavioural code. In em-
bedding HeDLa in Haskell, we reuse the host language to describe behaviour of
circuits. For instance, the behaviour of a two-input xor gate can be defined in
the following manner:

xor2 = Circuit

{ name = "xor2"

, inputs = ("a", "b")

, outputs = "z"

, description = behaviour (\(a,b) -> a /= b)
}

The simulation of circuits simply uses the behavioural description to inter-
pret the gate when it is encountered in a circuit. Behavioural descriptions of
higher level circuits are frequently used in standard HDLs to test the structural
description, by simulating the two side-by-side for different inputs. Rather than
keeping different descriptions for the different functionalities of a circuit sepa-
rately, we enable dual descriptions of circuits, with can be simulated in either
structural or behavioural modes:

fullAdder = Circuit

{ name = "fullAdder"

, inputs = ("cin", ("a", "b"))

, outputs = ("cout", "s")

, description
= use halfAdder ("a", "b") ("ci1", "si")
& use halfAdder ("si", "cin") ("c2", "s")
& use or2 ("ci", "c2") "cout"

} ‘setBehaviour‘ (\(cin, (a, b)) ->
let (cin’, (a’, b’)) = (bit2int cin, (bit2int a, bit2int b))
in (cin’ + a’ + b’ >= 2, is0dd (cin’ + a’ + b’))

By considering the behavioural description to be the specification, and the
structural to be the implementation, we enable testing of circuits through the use
of QuickCheck [CHOO0]. Furthermore, in larger circuits, the designer can switch
between modes of the constituent subcircuits to enable more efficient simulation
through the use of the specification, rather than the structural description of
large, but trusted subcomponents.

3.2 Observer-Based Testing and Verification

One strength of behavioural descriptions is that they can not only be used as
specifications against which to run tests, but also used to simulate the actual
circuit directly (as opposed through the interpretation of its subcomponents).



This means that the specification has to be a deterministic one, to enable the
calculation of the correct outputs based on the inputs. Furthermore, sometimes
it is easier to write a specification checking that the inputs and outputs are cor-
rect. HeDLa supports the use of observers, which given the input and output
of a circuit, return a single boolean value stating whether the circuit is working
correctly. Both structural and behavioural observers can be defined, with be-
havioural observers used in testing, while structural observers can be used both
in testing and when producing output to model-checkers.

The following example shows a behavioural observer for a full-adder, asserting
that the interpretation of the output as a two-bit number gives the same value
as the addition of the three input bits:

fullAdder = Circuit

{ name = "fullAdder"

, inputs = ("cin", ("a", "b"))

, outputs = ("cout", "s")

, description
= use halfAdder ("a", "b") ("ci", "si")
& use halfAdder ("si", "cin") ("c2", "s")
& use or2 ("ci", "c2") "cout"

} ‘setBehaviouralObserver‘ (\((cin, (a, b)), (cout, sum)) ->
let (cin’, (a’, b’)) = (bit2int cin, (bit2int a, bit2int b))

(cout’, sum’) = (bit2int cout, bit2int sum)

in cin’ + a’ + b’ == 2 * cout’ + sum’

3.3 Multi-Level Refinement and Data Refinement

Frequently, behavioural descriptions and observers use different data represen-
tations than the structural description, requiring translation to and from the
different representations. For instance, in the case of an n-bit adder, the con-
crete inputs (one carry-in bit, and two bitstrings of length n) can be translated
into a more abstract interpretation — as a list of three numbers. The outputs
can be translated back from a number into n 4 1 bits. Once this data refinement
is specified, the behaviour is defined to work on the abstract interpretation of
the inputs, and producing abstract outputs. In this case, the specification simply
becomes the Haskell function sum:

nBitAdder n = Circuit
{ ...
} ‘usingDataRefinement‘
( \(c, (as, bs)) -> [bit2int c, bits2int as, bits2int bs]
, int2bits (n+1)
) ‘setBehaviour‘ sum

Rather than constrain descriptions to just a specification and an implemen-
tation, we are currently experimenting with extending HeDLa with multi-level
refinement, to enable stepwise refinement of a component for design, testing and



verification. In this context, the use of explicit data-refinement specification is
much more useful, since it allows the designer to go up and down the refinement
layers in multiple steps.

3.4 Non-Functional Circuit Properties

The major advantage of using a structure, rather than a functional view of
circuits, is that we maintain a hierarchical view of the circuits and their compo-
nents. Furthermore, one can add circuit information as the circuit is constructed.
We are currently looking into the use of these features for the description of non-
functional properties of circuits. One area of application is adding placement
information, or hints through the use of combinators for combining circuits.
Consider the operator ->-, which connects two circuits next to each other as
shown in figure 1. An implementation, of such an operator can be written as
follows?:

Fig. 1. Placing two circuits next to each other: c1 ->- ¢2

cl ->- c2 =
let (leftl, wupl) = inputs cl
(left2, wup2) = inputs c2

(rightl, downl) = outputs cl
(right2, down2) = outputs c2
in Circuit

{ name = name cl ++ "->-" ++ name c2

, inputs = (leftl, (upl, up2))

, outputs = (right2, (downl, down2))

, description = use cl (inputs c1) (outputs cl)

& use wire rightl leftl
& use c2 (inputs c2) (outputs c2)
}

As it stands, the only information we maintain is that of how wires are
connected. However, one can easily tag the component c1 to lie to the right of
c2. In this manner, we can actually produce concrete placement and wire length
information from such a description.

3 This implementation allows for any pair of structure of wires as input and as output,
but assumes that there are no name clashes between wire names in the subcircuits.
Note that the wire circuit simply connects the input to the output.



4 Future Work and Conclusions

In this paper, we have presented the basic functionality of an experimental struc-
tural hardware description language embedded in Haskell. Various HDLs em-
bedded in Haskell and other functional languages have been developed and used
over the past years. Languages such as Lava [CSS03], Hawk [DLC99] and Hydra
[0’D96] have followed a strictly functional view of circuits — circuits appear as
functions in the host language, and their inputs and outputs are identical to the
inputs and outputs of the functions. The descriptions tend to be cleaner in these
languages, but lose information about the structure due to the functional view of
the circuits. The challenge to incorporate information about the structure of the
circuit description has spawned a number of other embedded languages. Wired
[ACSO05] uses a component-based approach to circuits, with combinators used
to describe circuits, keeping structural and layout information. As opposed to
our approach, the combinators lie at the core of the language making it much
better at describing information about layout, though less oriented towards ac-
tual circuit behavioural description. Just like Wired, Dual-Eval [WAHRO04] is
also similar to HeDLa in that it takes a component-based approach to circuit
description, with explicit wire names and connections. reFIECt uses a functional
meta-language to embed a HDL, with the use of language reflection features
used to have access to the circuit generators themselves. HeDLa loses some of
this information — for instance, when function calls are used to generate fami-
lies of circuit instances (in the description field). On the other hand, we have
access to the nested structure of circuits defined explicitly.

In HeDLa, we have tried to find a balance between using a component de-
scription of circuits, but still keeping as close as possible to the functional view.
There are still various issues we are working on resolving in HeDLa. On one hand,
we are looking into extending the functionality of the language, by introducing
multi-level refinement, and looking into techniques to enable the user to add gen-
eral non-functional features. In particular, we plan to look at the use of HeDLa
to reason about placement, wire length and area analysis. In this paper, we have
only used small examples using combinational circuits. Although HeDLa can
also handle sequential circuits, the interaction between the behavioural descrip-
tions and observers with sequential circuits still needs to be refined, to enable
us to test run the language on a number of large case studies thus assessing how
effective it is in the design of large hardware systems.
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