
Embedded Languages for Origami-Based
Geometry

Gaetano Caruana and Gordon J. Pace

Department of Computer Science, University of Malta

Abstract. Embedded languages have been used to support composi-
tional descriptions for various domains. In this paper, we look at the do-
main of paper folding, or Origami-based geometry, in which sequences of
paper folding are used to describe points and lines on the plane. Based on
seven basic origami axioms, we design and develop an embedded domain
specific language for the descriptions of such constructions in Haskell.
We argue that the embedded language approach, that is composing a
model using the basic constructors in the domain specific language, gives
a compositional and concise way to describe Origami models. We look
into analysis, manipulation and generation of origami models using this
approach, including textual explanations of models, analysis of models to
discover inherent preconditions (or constraints) in a description and ba-
sic animation of the folding of a model. Finally, we look into the tagging
of blocks within a construction, enabling different evaluations at various
levels of abstraction according to the user’s knowledge of Origami.

1 Introduction

Language design has been an important area of research in computer science
right since its inception. It is generally accepted that for designing a specialised,
domain-specific language can aid and simplify the design and specification of
algorithms in that domain. Various such domain specific languages have been
developed for various different areas. Rather than design a full domain spe-
cific language (DSL) from scratch, with operators to features generally found
in most languages to support features such as iteration and algorithm reuse, an
increasingly used approach is to embed the basic domain specific language inside
another programming language. The language in which the DSL is embedded,
called the host language, acts like a container for the embedded language, and is
used to build functions that describe, analyse and manipulate programs written
in the embedded language. This approach guarantees that the features of the
host language are automatically inherited by the embedded language [Hud96].

By inheriting features from the host language, the domain-specific embedded
languages designers are relieved from having to reinvent the wheel to support
commonly found features in general-purpose programming languages. Further-
more, building a new embedded language does not require the implementation of
new development tools by sharing the host language’s compilers and interpreters,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Gaetano Caruana and Gordon J. Pace

providing only interpretation mechanisms for the domain-specific features, mak-
ing the building of a DSEL much simpler than designing and supporting a DSL
from scratch. Apart from making use of existing infrastructure of the host lan-
guage, one can combine different DSELs embedded in the same host language,
thus enabling easy combination of languages, making them more extendable than
DSLs [Hud96,LM99].

In this paper, we look at design of an domain-specific embedded language for
Origami (paper-folding) based geometrical constructions. Ever since Euclid gave
his axioms of planar geometry, expressing how one can construct and reason
about points, lines and circles on the plane, different techniques have been ex-
plored into the expressiveness and relation between different ‘tools’ which limit
what constructions can be derived from other ones. It is well known, for instance,
that trisecting an angle using straight-edge and collapsing-compass is, in general,
impossible. Various alternative tools have been explored, one of which is based
on Origami, the Japanese art of paper folding. Using this geometrical tools, one
only construct new points and lines by folding the plane (and unfolding it back)
using already known points and lines for reference. We embed a small domain-
specific language to express such constructions in Haskell [Jon03]. Based on these
descriptions, we build a library of functions to manipulate, analyse and visualise
such constructions. Since large models can become rather repetitive to explain
to a user, and one should be able to simply state the name of commonly found
sequences of constructions to advanced users, we explore different techniques to
tag blocks in constructions to enable us to give more compact descriptions.

2 Related Work

Various embedded domain-specific languages have been developed in the litera-
ture for domains as diverse as financial contracts [Jon01], hardware-description
languages [CSS01,DLC99] and stage-lighting [Spe01]. The common trait in these
applications is that objects in these domains can be complex and difficult to
handle as a single entity, but can be expressed into the composition of smaller
objects. Such decomposition, especially if regular, enables simple descriptions
of complex compound objects. A library of basic objects, and combinators for
their composition thus make up the domain-specific language. These descrip-
tions can then be manipulated and evaluated using different techniques without
having to change their description. For example, in the case of financial con-
tracts, one can analyse the expected value of a contract, or simulate it with
projected future data on which it may depend (such as exchange rates), or even
produce a natural-language rendition of the contract. In the case of the em-
bedded hardware-description language Lava [CSS01] one can not only simulate
circuits, but also produce VHDL descriptions and verify properties of the circuits
by using external model checking tools.

Although purely-functional languages have been shown to be very appropri-
ate vehicles for embedding languages, one recurring problem in such descriptions
has always been that of identifying blocks induced by the description visible at

Embedded Languages for Origami-Based Geometry 3

the host language level, but which are lost at the domain specific level. An area
in which this restriction has been recurringly encountered is that of embedded
hardware description languages. Although various regular, yet complex circuits
can be described using a recursive algorithm which induces the gate connections
[CSS01,DLC99], one loses the ‘virtual’ blocks one automatically goes through
upon every function call recursive or otherwise. Some different techniques have
appeared recently [ACS05,Pac07] looking at component and block oriented view
of circuits. In Wired [ACS05], circuits are seen as relational blocks which can be
composed together using a set of combinators, allowing various non-functional
features of such circuits to be analysed. In [Pac07], another component-based
approach is taken, moving away from the purely functional descriptions in Lava
and combinator-based approach in Wired, looking more at the connection de-
scriptions with explicit wire parameters. Our approach to describing blocks in
our language differs from these, by providing an explicit tagging construct which
can be used to tag the boundaries of a sub-construction. Although the use of
explicit tagging can be tedious and prone to error, we only require tagging in few
places for our domain. Furthermore, our descriptions still look functional, and
less component-oriented than the other approaches we have mentioned, more in
keeping with the host language.

3 Origami

The ancient Japanese art of paper folding, Origami, may seem deceptively simple
and straightforward. Origami models can be constructed after a few days of
practice, but advanced techniques and models require years of experience and
knowledge to execute well, and the design of new models requires a high degree
of creativity. Origami is based on the repeated folding of a sheet of paper, to
form models, usually resembling real-life objects.

Although variants of Origami allowing the use multiple sheets of paper (see,
for example, [Mit77]), or glueing or even the cutting of the sheet of paper exist,
the traditional approach is to use one sheet of paper and allow only creases
with respect to other known creases or points (corners of the sheet of paper or
intersections of creases) are allowed.

3.1 The Geometry of Origami

Usually Origami is viewed simply as the art of building models, through the
performance of a sequence of folds, in some cases folding the sheet of paper
and unfolding it back (to mark a crease on the paper), in others keeping the
paper folded. However, the mathematical analysis of these constructions yielded
an interesting geometry. Most people are familiar with straight-edge and col-
lapsing compass geometry in which lines can be constructed through the use of
an unmarked straight-edge (to draw a line between two known points), circles
constructed using a collapsing compass (which allows the drawing of a circle
centred on a known point, passing through another known point) and points

4 Gaetano Caruana and Gordon J. Pace

which can be constructed only through finding the intersection of two known
shapes. It is well-known that using only such construction techniques, one can-
not deduce certain positions on the plane. Most famously, one cannot trisect an
arbitrary angle, square a circle or double a cube using such techniques. Origami
constructions are made up of only folds (straight lines) and points. New lines
can be deduced by folding the paper (in a limited number of ways) and points
through finding the intersection of two lines. Folds are temporary, used only to
induce a line, with the sheet of paper then being unfolded. Interestingly, certain
points and lines can be constructed using the Origami operations but not using
straight-edge and collapsing compass (and vice-versa).
In our Origami DSEL (OriDSEL), we consider this type of geometric interpre-
tation of Origami:

– the paper is considered to be an idealized mathematical plane;
– a fold line is considered to be an infinitely extended line on the plane;
– a reference point is an idealized point on the plane.

3.2 The Axioms of Origami Geometry

As in the case of straight-edge and collapsing compass geometry, in Origami-
based geometry, one can only construct lines and points in a set of well-defined
ways. Origami constructions have been reduced to seven underlying axioms1:

Axiom 1: Given two points p1 and p2, one can construct a line that passes
through both of them.

Axiom 2: Given two points p1 and p2, one can construct a line, folding along
which, places p1 onto p2.

Axiom 3: Given two lines l1 and l2, one can construct a line, folding along
which, places l1 onto l2.

Axiom 4: Given a point p1 and a line l1, one can construct a line folding along
which places l1 onto itself (in other words, is perpendicular to l1) and that
passes through point p1.

Axiom 5: Given two points p1 and p2 and a line l1, one can construct a line
passing through p2, and folding along which, places p1 onto l1.

Axiom 6: Given two points p1 and p2 and two lines l1 and l2, one can construct
a line, folding along which, places p1 onto l1, and p2 onto l2.

Axiom 7: Given a point p1 and two lines l1 and l2, one can construct a line,
folding along which, places p1 onto l1 and l2 onto itself (in other words, is
perpendicular to l2).

1 The original six can be found in [Huz92], while the seventh, so-called Hatori’s axiom,
was added later — see http://origami.ousaan.com/library/conste.html for more
details

Embedded Languages for Origami-Based Geometry 5

4 OriDSEL — Embedding Origami Axioms

The axiomatisation of Origami constructions provides a straightforward way in
which we choose to embed the language of Origami constructions. In OriDSEL,
we choose to use a deep embedding, to have access to the structure of a construc-
tion, enabling us to provide different interpretations of a single model. Internally,
two basic types are used to model points and lines (or folds):

data Point =

Intersection Line Line

| ...

data Line =

Axiom1 Point Point

| Axiom2 Point Point

| Axiom3 Line Line

| ...

In keeping with the host language, we choose to show constructions to the
user as functions from a structure of points and folds to a structure of points and
folds. The axioms themselves are visible to the user as functions, with names
indicating their behaviour:

intersect :: (Line, Line) -> Point

intersect = uncurry Intersection

foldThroughPoints :: (Point, Point) -> Line

foldThroughPoints = uncurry Axiom1

foldPointOntoPoint :: (Point, Point) -> Line

foldPointOntoPoint = uncurry Axiom2

foldLineOntoLine :: (Line, Line) -> Line

foldLineOntoLine = uncurry Axiom3

...

Thus, for example, given a rectangular sheet of paper (as four points), we
can give a construction to select the four edges (lines) of the sheet of paper:

fourSidedPaper ::

(Point, Point, Point, Point) -> (Line, Line, Line, Line)

fourSidedPaper (nw,ne,se,sw) = (n,s,e,w)

where

n = foldThroughPoints (nw, ne)

s = foldThroughPoints (sw, se)

e = foldThroughPoints (se, ne)

w = foldThroughPoints (sw, nw)

6 Gaetano Caruana and Gordon J. Pace

We can generalise this, such that, given a polygonal sheet of paper (as
a sequence of points), we can give a construction to select the edges (lines)
of the sheet of paper. This can be used to give an alternative definition of
fourSidedPaper:

edgesOfPolygon :: [Point] -> [Line]

edgesOfPolygon vertices@(v:_) =

[foldThroughPoints (p,p’) | (p:p’:_) <- tails (vertices ++ [v])]

fourSidedPaper’ (nw,ne,se,sw) = edgesOfPolygon [nw,ne,se,sw]

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

Fig. 1. Folding a kite

Using an abstract datatype to describe Origami models, constructions cor-
respond to a tree. In practice, one can have sharing of points or lines as in the
following example of a standard construction (see figure 1):

kite (nw,ne,se,sw) = (nw, point_e, se, point_s)

where

diagonal = foldThroughPoints (nw, se)

(n, s, e, w) = fourSidedPaper (nw,ne,se,sw)

l1 = foldLineOntoLine (n, diagonal)

l2 = foldLineOntoLine (w, diagonal)

point_e = intersect (l1, e)

point_s = intersect (l2, s)

In this example, the diagonal is used twice in the construction. However, due
to referential transparency, there is no way we can differentiate the construc-
tion from a similar one, but which replaces the two references to diagonal by
foldThroughPoints (nw, se). In practice, when traversing the data structure

Embedded Languages for Origami-Based Geometry 7

produced, we would want to identify the common parts. This will avoid, for
instance, describing how to obtain diagonal twice, when explaining how to con-
struct the kite. Various solutions have been proposed in the literature, including
explicit naming of structures [O’D92] and the use of the state monad to thread
references to definitions [CSS01]. Finally, we opted for the use of observable shar-
ing [CS99], which enables a cleaner description, albeit breaking the functional
purity of the language. In practice, the use of references is hidden within the
basic datatypes and the axiom definitions, thus enabling the user to write the
programs we have shown with no knowledge of the underlying machinery.

The advantages of the use of an embedded language, with the host language
as a meta-language of the domain specific language become more apparent when
we produce regular repetitive constructions as in the following example:

cross (nw, ne, se, sw) = (ns,ew)

where

ns = foldPointOntoPoint (nw, ne)

ew = foldPointOntoPoint (ne, se)

subsquare corners =

(intersect (ns,n), intersect (ew, e),

intersect (ns,s), intersect (ew, w))

where

(ns, ew) = cross corners

(n, s, e, w) = fourSidedPaper corners

repeatedSubsquare 0 square = square

repeatedSubsquare n square =

subsquare (repeatedSubsquare (n-1) square)

4.1 Manipulation of Origami Constructions

The availability of a meta-language to the domain-specific language enables us to
provide a library for the analysis and manipulation of programs in the embedded
language. We provide a number of such functions to enable the user to explore
and study the constructions described.

Explaining a given construction: We provide functions which explain an
Origami construction and produce a textual explanation of how it be achieved
by traversing the directed acyclic graph describing the construction. We
provide both plain text and HTML descriptions, explaining the model in
a step-by-step manner. HTML descriptions are richer, giving links between
the different parts of the construction when referring to previously described
folds or reference points. It is important for us to identify sharing in the given
model, to avoid repeated descriptions of the same construction.
Below is the text description of a kite fold given earlier:

Fold the paper along points NW and point NE, calling it line 1.

Fold the paper along points SW and point NW, calling it line 2.

8 Gaetano Caruana and Gordon J. Pace

Fold the paper along points SW and point SE, calling it line 3.

Fold the paper along points SE and point NE, calling it line 4.

Fold the paper along points NW and point SE, calling it line 5.

Fold the paper by putting line 1 over line 5, calling it line 6.

Fold the paper by putting line 2 over line 5, calling it line 7.

Find the intersection of line 4 and line 6, calling it point 1.

Find the intersection of line 3 and line 7, calling it point 2.

The result is (NW, point 1, SE, point 2)

Animation: Textual descriptions can be useful for small constructions, but
tend to become too long and complex for larger ones. Having to keep track
of previously identified creases and reference points can quickly get out of
hand. OriDSEL provides a link to an external tool we have build to show an
animation showing, step-by-step, how the construction is achieved.

Constraint Checking: The Huzita Hatori axioms are partial functions in that
they are only defined for some inputs. For example, axiom 5 (given two points
and a line, draw a line going through one of the points and folding along
which places the other point on the line) cannot be applied to if the points lie
on opposite sides of the line. Because of this, constructions are also partial, in
that for certain inputs, the model will fail. We provide functions to calculate
the constraints that are to be satisfied in order for a construction to be well
defined. These constraints can then be checked for concrete values of the
vertices.

5 Partitioning of Models

As the number of folds in an Origami model increases, so does its complexity.
In most of the Origami literature, complex Origami models are not described
in terms of the basic folds, but rather in terms of so called base folds — each
of which being an often used sequence of basic folds. Using Haskell, the user
descriptions of a model in OriDSEL can be written to resemble the ones in the
Origami literature. Starting off with a library of base folds, one can describe
complex models in terms of these library functions. However, the internal de-
scription of these models obviously contains no information about which parts
of the model were generated by which functions. We would like to add sufficient
information in the internal structure to enable concise output descriptions, using
compound constructions (such as base folds) in the description. Since such base
folds vary in difficulty, we would like to enable tagging of blocks not only with a
name (for reference), but also with a difficulty level. The user can then request
textual descriptions taking his or her expertise level into account.

Various techniques have recently been proposed in the literature to resolve
this issue of named blocks in embedded languages. For instance, [ACS05,Pac07]

Embedded Languages for Origami-Based Geometry 9

take a component, or block, oriented view of circuits, composed together using a
set of combinators rather than simply functional composition. Other approaches,
such as [MO06] look at the use of meta-programming features to access this
information. In our case, the problem is simpler — we only want to name and
tag the difficulty of a few blocks, and their access is based entirely on difficulty
level which ranges over few possible values.

One possible approach is to tag all nodes in a structure wite a name and
difficulty level. The main problem with this solution is that without additional
internal machinery, there is no way of differentiating between two blocks with
the same name connected together, and one large block with that name. Fur-
thermore, one can make do with much less information in the model, to enable
outputting descriptions in terms of named blocks.

The approach we take is to label output boundaries of a block with all relevant
information about the block (name, difficulty level, input and output nodes)
enabling structured output descriptions by referring to blocks of the appropriate
level as a whole using the name stored on the boundaries.

data SkillLevel = Beginner | Intermediete | Expert

data Boundary = Boundary String SkillLevel [Ref] [Ref]

data Point =

OutputBoundaryP Boundary Point

| Intersection Line Line

| ...

data Line =

OutputBoundaryL Boundary Line

| Axiom1 Point Point

| Axiom2 Point Point

| ...

As with the underlying axioms, the above data structures are abstracted
away from the user:

block skill name construction ins =

markAsOutput skill name (structToRefs ins, structToRefs outs) outs

where

outs = construction ins

beginnner = block Beginner

intermediete = block Intermediate

expert = block Expert

The function markAsOutput marks a structure of output lines and points
with the appropriate constructor and structToRefs transforms a structure of
lines and points into a list of references to the data.

Users may now name blocks and label them with their difficulty level. For
instance, the subSquare construction given earlier may be tagged as an inter-
mediate level base fold with the name ‘subsquare-construction’ in the following
manner:

10 Gaetano Caruana and Gordon J. Pace

subsquareBlock = intermediate "subsquare-construction" subsquare

The use of subsquareBlock is now identical to that of subsquare, enabling
us to redefine the repeated subsqure construction given earlier using the base
fold:

repeatedSubsquare 0 square = square

repeatedSubsquare n square =

subsquareBlock (repeatedSubsquare (n-1) square)

Now, by calling explainIntermediate (repeatedSubsquare 10), we get
an explanation appropriate for the intermediate user. Rather than explaining
all the constructions from scratch, the system will assume that the descrip-
tion is aimed at someone having an intermediate skill level, who thus knows
what a subsquare-construction is, and will give just a ten line explanation,
one for each application of the subsquare construction. On the other hand,
explainBeginner will give a full description going down to the underlying ax-
ioms.

6 Conclusions

In this paper, we have explored the embedding of Origami geometric construc-
tions in Haskell. The axiomatization of the problem domain has provided us
with the necessary building blocks upon which to build the language. Using
standard techniques from embedded languages, we have built a deeply embed-
ding of such constructions and a number of functions to analyse and manipulate
constructions. The axioms of Origami geometry have been explored well in the
literature. However, looking into actual model creation with Origami introduces
further challenges — the folding primitives remain unchanged, but extra infor-
mation needs to be added to the folds to specify whether the fold is unfolded,
the direction of folding and for more advanced models, the angle of the fold.

The main challenge in this domain is the abstract description of models,
enabling the user to hide information away for an expert, for whom a more
abstract description of a sequence of folds would be sufficient. The solution we
have developed enables explicit tagging of such blocks, which can be impractical
in certain other contexts and a potential source of errors in others (through the
reuse of tags). In our case, the use of a small number of tags (corresponding
to the difficulty levels and names of basic folds), enables a simpler solution,
which is used to effectively enable different descriptions of the same model. It
would be interested to explore this technique in other contexts, such as textual
explanations of proofs in theorem proving.

References

[ACS05] Emil Axelsson, Koen Claessen, and Mary Sheeran. Wired: Wire-aware cir-
cuit design. In Proceedings of Conference on Correct Hardware Design and

Embedded Languages for Origami-Based Geometry 11

Verification Methods (CHARME), volume 3725 of Lecture Notes in Computer
Science. Springer-Verlag, October 2005.

[CS99] Koen Claessen and David Sands. Observable sharing for functional circuit
description. In Proceedings of Asian Computer Science Conference (ASIAN),
Lecture Notes in Computer Science. Springer Verlag, 1999.

[CSS01] Koen Claessen, Mary Sheeran, and Satnam Singh. The design and verification
of a sorter core. In CHARME. Springer, 2001.

[DLC99] Nancy A. Day, Jeffrey R. Lewis, and Byron Cook. Symbolic simulation of
microprocessor models using type classes in Haskell. In CHARME’99 Poster
Session, 1999.

[Hud96] Paul Hudak. Building domain-specific embedded languages. ACM Comput.
Surv., 28(4es):196, 1996.

[Huz92] H. Huzita. Understanding geometry through origami axioms. In J. Smith,
editor, Proc. of the First International Conference on Origami in Education
and Therapy (COET91), pages 37–70. British Origami Society, 1992.

[Jon01] Simon L. Peyton Jones. Composing contracts: An adventure in financial engi-
neering. In José Nuno Oliveira and Pamela Zave, editors, FME, volume 2021
of Lecture Notes in Computer Science, page 435. Springer, 2001.

[Jon03] Simon Peyton Jones. Haskell 98 language and libraries: the Revised Report.
Cambridge University Press, 2003.

[LM99] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In DSL,
pages 109–122, 1999.

[Mit77] David Mitchell. Mathematical Origami. Tarquin Publications, 1977.
[MO06] Tom Melham and John O’Leary. A functional HDL in reFLect. In Mary

Sheeran and Tom Melham, editors, Sixth International Workshop on Design-
ing Correct Circuits: Vienna, 25–26 March 2006: Participants’ Proceedings.
ETAPS 2006, 2006.

[O’D92] John T. O’Donnell. Generating netlists from executable circuit specifications.
In John Launchbury and Patrick M. Sansom, editors, Functional Program-
ming, Workshops in Computing, pages 178–194. Springer, 1992.

[Pac07] Gordon J. Pace. A strongly typed, component-based embedded hardware de-
scription language. In Proceedings of the Computer Science Annual Workshop
2007, University of Malta, 2007.

[Spe01] M. Sperber. Developing a stage lighting system from scratch. In Proceedings
of the sixth ACM SIGPLAN International Conference on Functional program-
ming, 2001.

