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The interaction between serotonin (5-HT) and dopamine (DA)-containing
neurons in the brain is a research topic that has raised the interest of many sci-
entists working in the field of neuroscience since the first demonstration of the
presence of monoamine-containing neurons in the mid 1960. The bulk of neu-
roanatomical data available clearly indicate that DA-containing neurons in the
brain receive a prominent innervation from serotonin (5-hydroxytryptamine,
5-HT) originating in the raphe nuclei of the brainstem. Compelling
electrophysiological and neurochemical data show that 5-HT can exert
complex effects on the activity of midbrain DA neurons mediated by its var-
ious receptor subtypes. The main control seems to be inhibitory, this effect
being more marked in the mesocorticolimbic DA system as compared to the
DA nigrostriatal system. In spite of a direct effect of 5-HT by its receptors lo-
cated on DA cells, 5-HT can modulate their activity indirectly, modifying γ -
aminobutyric (GABA)-ergic and glutamatergic input to the ventral tegmental
area (VTA) and substantia nigra pars compacta (SNc). Although 5-HT/DA in-
teraction in the brain has been extensively studied, much work remains to
be done to clarify this issue. The recent development of subtype-selective lig-
ands for 5-HT receptors will not only allow a detailed understanding of this
interaction but also will lead to the development of new treatment strategies,
appropriate for those neuropsychiatric disorders in which an alteration of the
5-HT/DA balance is supposed.

Introduction

Dopamine (DA)-containing neurons of the ventral mes-
encephalon have been designated as A8, A9, and A10
cell groups: these neurons can be collectively designated
as the mesotelencephalic DA system [1]. Historically, the
mesolimbic DA system was defined as originating in the
A10 cells of the ventral tegmental area (VTA) and project-
ing to structures closely associated with the limbic sys-
tem. This system was considered to be separated from
the nigrostriatal DA system, which originates from the
more lateral substantia nigra pars compacta (SNc)(A9 cell
group) [1–5] (Figure 1). The mesolimbic and mesocortical
DA system appear critically involved in modulation of the
functions subserved by cortical and limbic regions, such
as motivation, emotional control, and cognition [6]. Sub-
stantial evidence indicates that the mesolimbic pathway,
particularly the DA cells innervating accumbal areas, is

implicated in the reward value of both natural and drug
reinforcers, such as sexual behavior or psychostimulants,
respectively [7–9]. The medial prefrontal cortex (mPFC)
is generally associated with cognitive functions includ-
ing working memory, planning and esecution of be-
havior, inhibitory response control, and maintenance of
focused attention [6]. In addition, the mesolimbic DA
pathway is sensitive to a variety of physical and psycho-
logical stressors [10]. Indeed, recent studies have indi-
cated that stress-induced activation of the mesocortical
DA neurons may be obligatory for the behavioral expres-
sion of such stimuli [11].

The nigrostriatal DA system, which originates from the
substantia nigra (A9 cell group), is one of the best stud-
ied because of its involvement in the pathogenesis of
Parkinson’s disease [12]. In mammals, the substantia ni-
gra is a heterogeneous structure that includes two dis-
tinct compartments: the SNc and the substantia nigra pars
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Figure 1 A schematic view of SN and VTA connections. DA neurons re-

ceive input from the local GABA-ergic interneurons and input from other

brain areas. Both areas receive serotonergic input from the DEN. The dot-

ted line indicates the subdivision of the SN: the SN pars reticulata (SNr)

and the SN pars compacta (SNC). Neurons receiving a collective input are

grouped (dotted circles). GABA-ergic, glutamatergic and serotonergic in-

puts are indicated by black, white and gray symbols, respectively. HIPP,

hippocampus; NAC, nucleus accumbens; PFC, prefrontal cortex; STN, sub-

thalamic nucleus.

reticulata (SNr). The SNc represent the major source
of striatal DA and, as already mentioned, its degener-
ation causes Parkinson’s disease. On the contrary, the
SNr mainly contains γ -aminobutyric (GABA)-ergic neu-
rons which constitute one of the major efferences of the
basal ganglia [12]. These DA-ergic systems receive inner-
vation from serotonergic (5-HT) fibers arising from cell
bodies of the two main subdivisions of the midbrain 5-
HT-ergic nuclei, the dorsal raphe nuclei (DRN) and the
medial raphe (MRN) [13–19]. Serotonin-containing cell
bodies of the raphe nuclei send projections to dopamin-
ergic cells both in the VTA and the SN, and to their ter-
minal fields in the nucleus accumbens, prefrontal cortex,
and striatum [14–19] (Figure 1). Moreover, electron mi-
croscopy demonstrates the presence of synaptic contacts
of [3H]5-HT labeled terminals with both DA-ergic and
non-DA-ergic dendrites in all subnuclei of the VTA, and
the SN pars compacta and reticulata [4,16,19] (Figure 1).
The diverse physiological effects of serotonin in the brain
are mediated by a variety of distinct receptors. These re-
ceptors are presently divided into seven classes (5-HT1–5-
HT7), which are then subdivided into subclasses with
a total of at least 14 different receptors, based upon
their pharmacological profiles, cDNA-deduced primary
sequences and signal transduction mechanisms [20–22]
(Figure 2). Several investigators began to study the be-
havioral, biochemical, and electrophysiological relevance
of these neuroanatomical findings. This research was
further spurred by the increasing evidences that most
psychotropic drugs, including antidepressants, antipsy-
chotics, opioids, anxiolytics, and psychostimulants ex-
erted their pharmacological actions by interfering with
5-HT-ergic and DA-ergic transmission.

Early studies showed that experimental manipulations
aimed at decreasing central 5-HT function, such as selec-
tive nerve lesions by neurotoxin, inhibition of 5-HT syn-
thesis, or 5-HT receptor blockade tended to potentiate the
behavioral and neurochemical effects of drugs enhancing

Figure 2 Serotonin receptors.
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the dopaminergic transmission such as amphetamine and
related compounds, thus leading to the conclusion that
central serotonergic systems inhibits DA functions [23].
The interest of our laboratory to investigate 5-HT/DA in-
teraction sprang from these early studies. Our approach
was based on in vivo electrophysiological and neurochem-
ical techniques. The experimental data gathered over a
period of almost 20 years lead to the conclusion that
several 5-HT receptor subtypes, including the 5-HT1A,
5-HT1B, 5-HT2A, 5-HT3, and 5-HT4 receptors, act to fa-
cilitate neuronal DA function and release, while the 5-
HT2C receptor mediates an inhibitory effect of 5-HT on
the basal electrical activity of dopaminergic neurons and
on DA release.

Central serotonergic and dopaminergic systems play
an important role in regulating normal and abnormal
behaviors [24,25]. Moreover, dysfunctions of 5-HT and
DA neurotransmission are involved in the pathophys-
iology of various neuropsychiatric disorders including
schizophrenia, depression, and drug abuse [24–26]. Thus,
the development of a number of relatively selective phar-
macological agents with agonist or antagonist activity at a
specific 5-HT receptor subtype, has allowed investigators
to better understand the functional role of these recep-
tors in the control of central DA-ergic function, as sero-
tonin widely contributes to the regulation of a number
of behavioral and physiological processes involving both
limbic, cortical, and striatal DA pathways [27–30].

Serotonin–Dopamine Interactions
in Neuropsychiatric Disorders

Depression

Although dopamine has received little attention in bi-
ological research on depression, as compared to other
monoamines such as serotonin and noradrenaline, cur-
rent research on the dopaminergic system is about to
change this situation. It is now well-established that dis-
turbances of mesolimbic and nigrostriatal DA function are
involved in the pathophysiology of depression [25,26].
Moreover, stress promotes profound and complex alter-
ations involving DA release, metabolism, and receptor
densities in the mesolimbic system [31,32]. It seems that
exposure to unavoidable/uncontrollable aversive experi-
ences leads to inhibition of DA release in the mesoac-
cumbens DA system as well as impaired responding to
rewarding and aversive stimuli. These alterations could
elicit stress-induced expression and exacerbation of some
depressive symptoms in humans [32]. Thus, in view of
the hypothesis that disinhibition of the mesocorticolim-
bic DA system underlies the mechanism of action of
several antidepressant drugs, the disinhibitory effect of

SB 206553 and SB 242084 on the mesolimbic DA sys-
tem might open new possibilities for the employment of
5-HT2C receptor antagonists as antidepressants [33,34].
This hypothesis is consistent with the suggestion that
5-HT2C receptor blockers might exert antidepressant ac-
tivity [27,29,34–37]. In this respect, it is interesting to
note that several antidepressant drugs have been shown
to bind with submicromolar affinity to 5-HT2C receptors
in the pig brain and to antagonize mCPP-induced penile
erections in rats, an effect mediated through the stimula-
tion of central 5-HT2C receptors [37–39]. Based on those
findings, Matteo et al. [34] have carried out experiments
showing that acute administration of amitriptyline and
mianserin, two antidepressants with high affinity for 5-
HT2C receptors, enhances DA release in the rat nucleus
accumbens by blocking these receptor subtypes, in ad-
dition to their other pharmacological properties. Inter-
estingly, amitriptyline and mianserin have been tested
in the chronic mild stress-induced anhedonia model of
depression and were found to be effective in reversing
the stress effects [40,41]. The antianhedonic effects of
tricyclic antidepressants, mianserin, and fluoxetine were
blocked by pretreatment with D2/D3 receptor antagonists,
thus indicating an involvement of DA in the antidepres-
sant effect of various drugs in this model [40,42]. The
ability of antidepressants, such as tricyclics, SSRIs, and
mianserin, to affect DA systems, via indirect mechanisms,
was also reported by studies of Tanda et al. [43,44] sug-
gesting that potentiation of DA release in the rat cortex
may play a role in the therapeutic action of antidepres-
sants. The chronic mild stress procedure, which induces
a depression-like state in animals, was shown to enhance
5-HT2C receptor-mediated function, as measured in vivo
by mCPP induced penile erections. In contrast, two dif-
ferent antidepressant treatments (72-h REM sleep depri-
vation and 10-day administration of moclobemide, a re-
versible inhibitor of monoamine oxidase type A) resulted
in a reduction of this 5-HT2C receptor-mediated func-
tion [45]. This was interpreted as an indication that the
5-HT2C receptor may be altered, and preasumably may
exist in a dysregulated (hypersensitive) state in de-
pressive illness. Thus, adaptive processes resulting from
chronic antidepressant treatment (i.e., desensitization
and/or downregulation of 5-HT2C receptors) may play an
important role in reversing the 5-HT2C receptor system
supersensitivity resulting from a depressive state [37,46].
In contrast to most other receptors, 5-HT2C is not clas-
sically regulated. Indeed, 5-HT2C receptors appear not
only to decrease their responsiveness upon chronic ago-
nist stimulation, but also and paradoxically after chronic
treatment with antagonists [47,48]. This mechanism ap-
pears to be related to an internalisation process that re-
moves activated cell surface receptors from the plasma
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membrane involving a phosphorylation step and possible
degradation in lysosomes [47]. As a large number of psy-
chotropic drugs, including atypical antipsychotics, antide-
pressants, and anxiolitics, can all induce down-regulation
of 5-HT2C receptors, it has been suggested that this re-
ceptor adaptation plays a role in the therapeutic action
of these drugs [47,48]. In this respect, it is interesting to
note that chronic treatment with 5-HT2 agonists or antag-
onists resulted in a paradoxical down-regulation at the 5-
HT2A and 5-HT2C receptors [47–51] and it seems that the
down-regulation state occurring after chronic exposure
to mianserin in isolated systems as well as in cell cultures,
is a direct receptor-mediated mechanism of this drug at
these receptors [51]. Therefore, the down-regulating ca-
pacity of 5-HT2C agonists and antagonists may play a
particularly important role in treating the supersensitiv-
ity of 5-HT2C receptors resulting from a depressive state
[37,46,48]. The possible involvement of 5-HT2C recep-
tors in the pathogenesis of depressive disorders and in
the mode of action of antidepressants is further substan-
tiated by several other observations. For example, acute
administration of fluoxetine caused a dose-dependent in-
hibition of the firing rate of VTA DA neurons [52], and
decreased DA release in both the nucleus accumbens and
the striatum [53], but it did not affect the activity of
DA cells in the SNc [52]. A similar effect, though less
pronounced, has been observed with citalopram [52].
Furthermore, mesulergine, an unselective 5-HT2C recep-
tor antagonist, as well as the lesion of 5-HT neurons
by the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT),
prevented fluoxetine-induced inhibition of VTA DA cells
[52]. These results indicate that fluoxetine inhibits the
mesolimbic DA pathway by enhancing the extracellular
level of 5-HT, which would act through 5-HT2C recep-
tors [52]. This study also demonstrated that fluoxetine-
induced inhibition of DA neurons in the VTA was no
longer observed after chronic treatment (21 days) with
this drug. Interestingly, mCPP inhibited the firing activ-
ity of VTA DA neurons in control animals but not in
those chronically treated with fluoxetine [52]. The au-
thors suggested that 5-HT2C receptors might be down-
regulated after repeated fluoxetine administration. Con-
sistent with this hypothesis is the evidence that chronic
treatment with sertraline and citalopram, two selective
serotonin reuptake inhibitors (SSRIs), induced tolerance
to the hypolocomotor effect of mCPP [54]. This hyposen-
sitivity of 5-HT2C receptors might be a key step for the
achievement of an antidepressant effect. Indeed, it is pos-
sible to argue that the acute inhibitory effect of fluoxetine
on the mesolimbic DA system would mask its clinical ef-
ficacy in the early stage of treatment. This masking effect
would disappear when the hyposensitivity of 5-HT2C re-
ceptors occurs. A series of studies carried out in our lab-

oratory have shown that acute administration of SSRIs
such as paroxetine, sertraline, and fluvoxamine causes a
slight but significant decrease in the basal firing rate of
VTA DA neurons [55]. Therefore, it is conceivable that,
similar to fluoxetine, these SSRIs could reduce mesocorti-
colimbic DA transmission by activating 5-HT2C receptors.
Furthermore, employing complementary electrophysio-
logical and neurochemical approaches, and both acute
and chronic administration routes, it was found that mir-
tazapine, nefazodone, and agomelatine, three effective
and innovative antidepressants, elicit a robust and pro-
nounced enhancement in the activity of mesocorticolim-
bic DA pathways. These actions were ascribed to their an-
tagonistic properties at inhibitory, tonically active 5-HT2C

receptors, that desensitize after repeated drug administra-
tion [56–58].

Interestingly, agomelatine, has shown antidepressant
efficacy in clinical trials [59–61], and, indeed, it was
found to be effective in treating severe depression asso-
ciated with anxiety symptoms, with a better tolerabil-
ity and lower adverse effects than other antidepressants
such as paroxetine [59]. Recent experimental evidence
suggests that 5-HT2A and 5-HT2C receptors can be consti-
tutively active (agonist-independent activity) in vivo, and
alterations in the constitutive activity of these receptor
systems could be involved in the mechanisms underlying
anxiety and depression or exploited for therapeutic ben-
efit. Therefore, drugs with inverse agonist properties at
these receptors may have more activity in vivo to regu-
late DA neurotransmission than that afforded by simple
competitive antagonism [62].

Other serotonin receptors such as 5HT3 receptors may
also contribute to the changes in 5-HT-induced dopamine
release [63]. Thus, antidepressant drugs that will block
5-HT2C and activate 5-HT3 receptors will probably re-
store serotonin induced DA release in the nucleus accum-
bens, and normalize depressive-like behavior faster than
classical antidepressant drugs [58,63,64]. This suggestion
agrees with clinical studies that demonstrated that mir-
tazapine, which acts on 5-HT2C and 5-HT3 receptors, and
nefazodone, which acts on 5-HT2C, and whose metabo-
lite acts on 5-HT3 receptors, are characterized by a more
rapid onset of behavioral effects of treatment [65]. Fur-
ther, valproic acid, carbamazepine, and zonisamide, three
anticonvulsant mood stabilizers, have been reported to
preferentially increase DA release in the mPFC of rats,
sharing a common mechanism of action mediated by 5-
HT1A receptor activation [66,67]. Thus, both anticonvul-
sant mood stabilizers and atypical antipsychotic drugs,
would be expected to ameliorate or prevent depres-
sion, at least in part, via reversal of decreased prefrontal
cortical activity by facilitating 5-HT1A activation and its
resultant increase in mPFC DA release. A number of
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antidepressant agents, such as ipsapirone [68], mirtaza-
pine [69], fluoxetine, and buspirone [70,71], all drugs
showing agonistic properties at 5-HT1A receptors, raised
extracellular DA in mPFC, and were markedely attenu-
ated by pretreatment with WAY 100635. Also, the com-
bination of atypical antipsychotic drugs in addition to
serotonin reuptake inhibitors has recently proven to be
beneficial in a number of neuropsychiatric disorders, such
as resistant depression, schizophrenia, and obsessive-
compulsive disorder, as this method markedly potentiates
mPFC DA release elicited by the administration of a sin-
gle drug alone. Interestingly, acute combination of fluox-
etine and olanzapine caused a synergistic and selective ef-
fect on the extracellular concentration of dopamine in the
medial prefrontal cortex [72,73], and this regional selec-
tivity may account for the mood-stabilizing properties of
these drugs. Nevertheless, the combination of long-term
fluoxetine with acute olanzapine did not show the syner-
gistic effect on the extracellular of DA observed following
acute administration [74] suggesting that the therapeutic
benefit of this pharmacological combination may not be
associated with changes in the cortical concentration of
monoamines, but to postsynaptic blockade of monoamin-
ergic receptors. Thus, activation of 5-HT1A receptors sec-
ondary to the combined blockade of 5-HT2A/2C and D2/3

receptors seems to be relevant for this action [73–82].

Schizophrenia

Both hypo- and hyperfunction of dopaminergic systems
may occur in schizophrenic patients, perhaps even simul-
taneusly, albeit in a region specific manner [83–85]. Thus,
whereas a dopaminergic hyperfunction of the mesolim-
bic system may underlie the development of positive
symptoms, a dopaminergic hypofunction of the cortical
projections may well be related to the negative symp-
tomatology in schizophrenia. Given the critical role of
cortical DA in cognitive functioning [86,87], the hypothe-
sized cortical DA hypofunction may therefore also be im-
plicated in the cognitive disturbances frequently experi-
enced by schizophrenic patients. Hence, it appears likely
that both the negative symptoms and cognitive distur-
bances of schizophrenia may be associated with a hypo-
function of the mesocortical DA system.

Currently used antipsychotic drugs are usually di-
vided into two main classes, on the basis of their li-
ability to induce neurological side effects after long-
term treatment. Drugs defined as typical antipsychotics
(APDs) (e.g., chlorpromazine, haloperidol, trifluopro-
mazine) are known to induce, following repeated ad-
ministration, various extrapyramidal side effects (EPS) in-
cluding Parkinson-like syndrome and tardive dyskinesia
[88]. On the other hand, chronic treatment with atypical

antipsychotic drugs (e.g., clozapine, risperidone, sertin-
dole, zotepine) is associated with a low incidence of neu-
rological side effects [88]. Moreover, atypical antipsy-
chotic drugs do not increase plasma prolactin levels in
humans [88]. The hypothesis that typical antipsychotics
produce their clinical effects, as well as EPS, by blocking
DA D2 receptors in the mesolimbic and nigrostriatal sys-
tems, respectively [88], is now generally accepted. In con-
trast, the mechanisms responsible for the clinical effects
of atypical antipsychotic drugs are still not clear. Numer-
ous studies have shown that the so-called “atypical an-
tipsychotics” such as clozapine, amperozide, olanzapine,
risperidone and others, compared to the typical antipsy-
chotics haloperidol or (-) sulpiride, stimulate the release
of DA more potently in the mPFC and mesocorticolimbic
innervated areas, than in the striatum [89–96]. This se-
lective action is associated with a lower incidence of EPS,
and with a greater ability to improve negative symptoms
and cognitive functions in schizophrenia [24,88,97,98].
As a common property of these drugs, that distinguishes
them from the typical antipsychotics, is their high affinity
for the 5-HT2A receptor, it has been suggested that po-
tent 5-HT2A antagonism, in relation to a weaker DA D2

receptor antagonism, contributes to their beneficial ef-
fects [99]. Thus, pretreatment with the selective 5-HT2A

antagonist M100907 before administration of the D2 an-
tagonists haloperidol, sulpiride or raclopride produced an
increase in mPFC DA release, wich was not observed
by these compounds administered alone [89,95,100,101].
Interestingly, M100907 potentiated low but not high dose
haloperidol-induced DA release in the mPFC and inhib-
ited that in the nucleus accumbens [100,101], thus, weak
D2 and potent 5-HT2A receptor blockade may have an im-
portant influence on the preferential increase of mPFC
DA release by the atypical antipsychotics and on their
clinical effectiveness. Further, evidence has been pro-
vided that this effect may be mediated by actions of re-
leased 5-HT interacting with 5-HT1A receptors. In fact, re-
versal by WAY100635 of the potentiation of DA release
in mPFC induced by selective antagonism at 5-HT2A and
D2 receptors suggested that facilitation of 5-HT1A recep-
tor stimulation is essential to the simultaneus blockade of
5-HT2A and D2 receptors to increase cortical DA release
[89,100].

Interestingly, 8-OH-DPAT, a 5-HT1A agonist, or amper-
ozide and M100907, two 5HT2A receptor antagonists, in-
hibited the ability of amphetamine to increase DA re-
lease in rat nucleus accumbens and striatum [101–103].
Thus attenuation of stimulated DA release in the nucleus
accumbens and striatum by 5-HT1A receptor agonism
and/or 5-HT2A antagonism, may contribute to reverse
neuroleptic-induced catalepsy in rats. In this respect,
combining antagonist/partial agonist activity at dopamine
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D2 and agonist activity at serotonin 5-HT1A receptors is
one of the approaches that has recently been chosen to
develop the new generation of antipsychotics, including
bifeprunox, SSR181507 and SLV313, in that 5-HT1A re-
ceptor activation greatly reduces or prevents the catalep-
togenic potential of these novel antipsychotics [104–106].
Interestingly, 5-HT1A receptor activation and dopamine
D2 receptor antagonism underlie the electrophysiological
and neurochemical profile of F15063 as measured by de-
termination of DRN and VTA electrical activity that in-
creased catecholamine levels in the medial prefrontal cor-
tex and decreased 5-HT levels in the hippocampus [107].

As already mentioned, preferential increase of DA re-
lease in the mPFC seems to be a common mechanism
of action of atypical antipsychotic drugs, an effect which
might be relevant for their therapeutic action on nega-
tive symptoms of schizophrenia [94]. In this respect, it is
important to note that the selective 5-HT2C receptor an-
tagonist SB 242084 markedly increases DA release in the
frontal cortex of awake rats [108,109]. Thus, it is possi-
ble to argue that blockade of 5-HT2C receptors might con-
tribute to the preferential effect of atypical antipsychotics
on DA release in the prefrontal cortex. It is noteworthy
to mention recent data showing that atypical antipsy-
chotic drugs (clozapine, sertindole, olanzapine, ziprasi-
done, risperidone, zotepine, tiospirone, fluperlapine,
tenilapine), which produce little or no EPS while improv-
ing negative symptoms of schizophrenia, exert substan-
tial inverse agonist activity at 5HT2C receptors [110–112].
Thus, 5-HT2C receptor inverse agonism might underlie
the unique clinical properties of atypical antipsychotic
drugs [111]. Interestingly, there is preclinical evidence in-
dicating that 5-HT2C receptor blockade is responsible for
reducing EPS: 5-HT2C but not 5-HT2A receptor antagonists
were capable of inhibiting haloperidol-induced catalepsy
in rats [113]. On the other hand, the blockade of DA-
ergic neurotransmission in the nucleus accumbens via
D2 receptor antagonism or partial agonism is considered
the primary mechanism underlying antipsychotic efficacy
for the positive symptoms (i.e., hallucinations, delusions,
and thought disorder) of schizophrenia. Thus, an alterna-
tive approach to blocking dopamine D2 receptors may be
to reduce the activity of the mesolimbic pathway with-
out affecting that of the nigrostriatal system, thus avoid-
ing potential extrapyramidal side effect liabilities. The se-
lective effects shown by the 5-HT2C receptor agonists on
the mesolimbic DA pathway suggest that 5-HT2C recep-
tor agonists should have antipsychotic efficacy without
the EPS associated with typical antipsychotics. To this
end, recently, the antipsychotic efficacy of the selective
5-HT2C receptor agonist WAY-163909 was preclinically
evaluated by in vivo microdialysis, electrophysiology, and
various animal models of schizophrenia [114], showing

selectivity for the mesolimbic system and an interesting
profile similar to that of an atypical antipsychotic, when
given acutely or chronically in mice and rats, facilitating
cortical DA-ergic neurotransmission and reducing that of
the nucleus accumbens, without affecting the nigrostri-
atal DA activity.

Agents acting at multi-receptor sites appear to be more
promising as antipsychotic drugs, and recent data show
that blockade of DA receptors and combined antago-
nism at 5-HT2A as well as 5-HT2C receptors may be in-
volved in the therapeutic effects of novel antipsychotics
[97,98,100,115]. Interestingly, ritanserin, a mixed 5-
HT2A/2C receptor antagonist, has been reported to poten-
tiate the D2/3 receptor antagonist raclopride-induced DA
release in the medial prefrontal cortex and nucleus ac-
cumbens, but not in the striatum [116]. Another putative
atypical antipsychotic drug SR46349B, that shares both
5-HT2A and 5-HT2C receptor antagonism, increased cor-
tical DA release and potentiated haloperidol induced DA
release in both mPFC and nucleus accumbens, suggesting
that 5-HT2C receptor antagonism may also contribute to
the potentiation of DA release produced by haloperidol
[100]. A novel putative atypical antipsychotic ACP-103,
inverse agonist at both 5-HT2A and 5-HT2C receptors, in-
creased DA relese in the mPFC but not in the nucleus
accumbens, and potentiated low dose of haloperidol-
induced DA release in the mPFC, while inhibiting that
in the nucleus accumbens [117]. Taken together, these
data suggest that combined 5-HT2A/2C receptor antago-
nism may be more advantageous than selective 5-HT2A

antagonism alone as an adjunct to D2 antagonism and
5-HT1A stimulation to improve cogniton end negative
symptoms in schizophrenia.

Parkinson’s Disease

The major pathology in Parkinson’s disease is the degen-
eration of pigmented dopamine-producing neurons, par-
ticularly within the SNc, which causes a consequent re-
duction of dopamine levels in the striatum, and changes
in the basal ganglia–thalamo–cortical network activity
[118–120]. The neural mechanisms underlying the gen-
eration of parkinsonian symptoms are thought to in-
volve reduced activation of primary motor and premo-
tor cortex and supplementary motor areas, secondary to
overactivation of the output regions of the basal gan-
glia, that is, SNr and globus pallidus internus (GPi) [121],
largely because of excessive excitatory drive from the
subthalamic nucleus (STN), consequent to dopamine loss
in the striatum [119,120]. Therapy for Parkinson’s dis-
ease consists mainly of amelioration of the symptoms
with classical dopaminomimetics [122]. This treatment,
however, is characterized by declining efficacy and the
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occurrence of disabling side-effects [123]. Functional in-
hibition of GPi or STN, has provided an alternative to le-
sioning, by deep brain stimulation associated with mod-
est side-effects [124]. As serotonergic projections from
the DRN innervate all components of the basal ganglia
circuitry [119,120], it is likely that 5-HT plays a role in
regulating the basal ganglia’s activities, and of particular
interest with respect to the development of new treat-
ments for Parkinson’s disease are 5-HT1A, 5-HT1B, and
5-HT2C receptors [119,125]. Stimulation of 5-HT1A recep-
tors might be expected to reduce 5-HT release in sev-
eral brain regions, including the basal ganglia, and reduce
the activity of glutamatergic inputs to the striatum, that
may have both antiparkinsonian and antidyskinetic ac-
tions [119]. Moreover, stimulation of striatal 5-HT1B re-
ceptors may modulate levodopa metabolism to dopamine
in 5-HT terminals [126]. 5-HT1B receptors in the pal-
lidum and substantia nigra reduce GABA release thus
having either antiparkinsonian or antidyskinetic actions
[119]. Another interesting application of the data regard-
ing the functional role of 5-HT2C receptors in the basal
ganglia is the possible use of 5-HT2C receptor antagonists
in the treatment of Parkinson’s disease, and 5-HT2C ago-
nists to reduce the problems of levodopa-induced dyski-
nesia [119,127]. As already mentioned, 5-HT2C receptors
are located in the SNr and medial segment of the pall-
idal complex in the rat and human brain [13,128], and
enhanced 5-HT2C receptor-mediated transmission within
the output regions of the basal ganglia in Parkinsonism
appears to contribute to their overactivity [127]. In ad-
dition, 5-HT2C-like receptor binding is increased in a rat
model of Parkinsonism [129] and in human Parkinsonian
patients [130]. Interestingly, systemic administration of
the 5-HT2C receptor antagonist SB 206553 enhanced the
anti-Parkinsonian action of the DA D1 and D2 agonists
in the 6-hydroxydopamine-lesioned rats [131,132], sug-
gesting that the use of a 5-HT2C receptor antagonist in
combination with a DA receptor agonist may reduce the
reliance upon dopamine replacement therapies and may
thus reduce the problems associated with long term use
of currently available antiparkinsonian agents [127].

Drugs of Abuse

Substantial evidence indicates that the mesolimbic path-
way, particularly the dopaminergic system innervating
accumbal areas, is implicated in the reward value of
both natural and drug reinforcers, such as sexual behav-
ior or psychostimulants, respectively [7,8,133]. There-
fore, blocking or stimulating several 5-HT receptor sub-
types, including the 5-HT1B, 5-HT2A, 5-HT2C, and 5-HT3

subtypes, modulates both the neurochemical and the
behavioral effects of addictive drugs. 5-HT3 antagonism

has been shown to counteract the increase of accumbal
DA release induced by various drugs of abuse, such as
ethanol, nicotine, morphine, or cocaine [134–139]. Sys-
temically, ICS205-930, ondansetron, and MDL72222 at-
tenuated morphine-induced DA release in the nucleus
accumbens [134,135,137,140], nevertheless, intra VTA,
but not intra-accumbal, infusion of ICS205-930, was able
to counteract the action of morphine [140], suggest-
ing that selective antagonism on VTA 5-HT3 receptors is
able to modulate the morphine’s action in the mesolim-
bic system. Furthermore, intra-accumbal infusion of on-
dansetron strongly reduced the enhancement of DA re-
lease elicited by a high but not a low dose of morphine in
the same area [137] so, it was proposed that in addition to
increased DA tone, increased 5-HT release is required to
trigger the excitatory action of accumbal 5-HT3 receptors
on DA release. Systemic pretreatment with ICS205-930
also attenuated ethanol-induced increase of DA efflux in
the nucleus accumbens [134,141]. Furthermore, local in-
fusion of ICS205-930 into the VTA [142] or in the nu-
cleus accumbens [143] prevented ethanol’s action in both
areas. In addition, the 5-HT3 agonist mCPBG had additive
effect on DA release when infused in the nucleus accum-
bens concomitantly to the systemic injection of ethanol
in rats [143]. Therefore, Yoshimoto et al. [144] showed
that chronic alcohol intake increases the sensitivity of ac-
cumbal 5-HT3 receptors in rats, thus suggesting their in-
volvement in alcohol dependence.

There are, however, contrasting results in the case
of amphetamine or cocaine. Systemic administra-
tion of the 5-HT3 antagonists MDL72222 and zaco-
pride has been shown to attenuate both cocaine- or
amphetamine-induced DA release in the nucleus accum-
bens [138,139,145], while, other studies have shown that
systemic 5-HT3 receptor antagonism had no effect on
DA efflux enhanced by these drugs in the same area
[137,146,147]. Therefore, the fact that drugs of abuse
stimulate DA release through different cellular mecha-
nisms leads to the possibility that their effect on DA func-
tion could be modulated by the 5-HT3 receptor only un-
der specific conditions, in that it requires a concomitant
increase in both endogenous DA and 5-HT tones and op-
erates selectively on the depolarization-dependent exo-
cytosis of DA.

Pharmacological studies have shown that the acute
administration of 5-HT1B receptor agonists augments
cocaine-evoked DA overflow within the nucleus accum-
bens [148]. The ability of extracellular 5-HT to facili-
tate mesolimbic DA release through 5-HT1B receptors has
implications for psychostimulant abuse. Likewise, stud-
ies have shown that systemic or intra-VTA 5-HT1B re-
ceptor agonism (CP 93129 and RU 24969, respectively)
potentiated cocaine-induced increase in DA efflux in the

CNS Neuroscience & Therapeutics 16 (2010) 179–194 c© 2010 Blackwell Publishing Ltd 185



5HT Modulation of DA Function G. Di Giovanni et al.

nucleus accumbens and decreased GABA release in the
VTA [148,149]. Dopaminergic activity from the mesolim-
bic pathway may then be disinhibited by the stimulation
of 5-HT1B receptors on GABA-ergic projection neurons
from the nucleus accumbens to the VTA, resulting in a
potentiated response to cocaine. There is also evidence
that VTA 5-HT1B receptors may be involved, in part, in
mediating the activating effects of ethanol on mesolimbic
DA neurons, in that activation and blockade of VTA 5-
HT1B receptors potentiated and attenuated, respectively,
the ethanol-induced increases in extracellular DA con-
centrations in both the VTA and the ipsilateral nucleus
accumbens [150]. Taken together, these studies suggest
that 5-HT1B and/or 5-HT3 receptor antagonism could be
beneficial in treating psychostimulant abuse.

5-HT2A and 5-HT2C receptor subtypes have also been
implicated in modulating responses to psychostimulants
and may play a role in their rewarding effects. The
fact that addictive drugs act through different cellular
mechanisms leads to the possibility that their effects on
DA release could be modulated differentially by each
of the 5-HT2A or 5-HT2C receptor subtypes. For exam-
ple, it has been reported that the increased locomotor
activity, as well as the accumbal DA release, elicited
by phencyclidine is further enhanced by the blockade
of 5-HT2C receptors [109], while antagonism at 5-HT2A

receptors had opposite effects [151]. A similar picture
emerges when considering the influence of these recep-
tors on 3,4-methylenedioxymethamphetamine (MDMA,
ecstasy)-induced effects on DA neuron activity. Thus, the
selective 5-HT2A antagonist MDL 100,907 significantly re-
duced hyperlocomotion and stimulated DA release pro-
duced by MDMA while the selective 5-HT2C antagonists
SB 242084 and SB 206553 potentiated it [152–155].

It was recently found that SB 206553 administra-
tion potentiates both the enhancement of DA release
in the nucleus accumbens and striatum, and the in-
creased DA neuron firing rate induced by morphine
both in theVTA and the SNc [156]. Consistent with
these findings, stimulation of central 5-HT2C receptors
has been shown to inhibit morphine-induced increase in
DA release in the nucleus accumbens of freely moving
rats [157]. A series of studies showed that blockade of
5-HT2A or 5-HT2C receptors had opposite effects on
cocaine-induced locomotor activity. Thus, 5-HT2A re-
ceptor blockade with M100,907 attenuated cocaine-
induced locomotion, whereas 5-HT2C blockade with SB
242084 or SB 206553 enhanced cocaine-induced activ-
ity [158–161]. Consistent with these data obtained in
rats, 5-HT2C receptor null mutant mice showed enhanced
cocaine-induced elevations of DA levels in the nucleus
accumbens, and marked increase in locomotor response
to cocaine as compared to wild-type mice, suggesting that

selective 5-HT2C receptor agonist treatments may rep-
resent a promising novel approach for treating cocaine
abuse and dependence [162]. In line with this hypoth-
esis, it was previously found that RO 60-0175 reduced
cocaine-reinforced behavior by stimulating 5-HT2C recep-
tors [163]. Moreover, these authors also showed that
RO 60-0175 reduced ethanol- and nicotine-induced self-
administration and hyperactivity [164,165]. Consistent
with this evidence, we showed that the selective acti-
vation of 5-HT2C receptors by RO 60-0175 blocks the
stimulatory action of nicotine on SNc DA neuronal ac-
tivity and DA release in the corpus striatum [166,167].
The mesolimbic DA system appeared to be less sensi-
tive to the inhibitory effect of 5-HT2C receptors activa-
tion on nicotine-induced stimulation, indeed a higher
dose of RO 60-0175 was necessary to prevent the en-
hancement of VTA DA neuronal firing elicited by acute
nicotine. Furthermore, pretreatment with the 5-HT2C ag-
onist did not affect nicotine-induced DA release in the
nucleus accumbens [166]. Interestingly, in animals
treated repeatedly with nicotine, pretreatment with RO
60-0175 reproduced the same pattern of effects on the
enhancement in DA neuronal firing caused by challenge
with nicotine, and as a result was effective only at a
higher dose in preventing nicotine excitation in the VTA
compared to the SNc. Furthermore, the 5-HT2C recep-
tors agonist counteracted nicotine-induced DA release
both in the striatum and in the nucleus accumbens in
rats chronically treated with this alkaloid, even if this
effect was observed only with the highest dose of RO
60-0175 [166,167]. Therefore, we hypothesized that after
repeated nicotine exposure an up-regulation of 5-HT2C

receptors occurs only in the DA mesolimbic system and
the blocking of its hyperfunction by 5-HT2C receptor ac-
tivation might be a useful approach in reducing nicotine
reward, and eventually helping in smoking cessation.

Conclusion

Serotonergic and dopaminergic systems are closely re-
lated in the central nervous system, and the involvement
of 5-HT receptors in the control of central DA activity is
now well established. Recent evidence suggests that dys-
function of dopaminergic and serotoninergic neurotrans-
mitter systems contributes to various disorders includ-
ing depression, schizophrenia, Parkinson’s disease and
drug abuse. Thus, the use of a complementary dialy-
sis and electrophysiological approach, together with sev-
eral highly selective ligands, has permitted important in-
sights into the complex pattern of reciprocal interactions
via which multiples classes of 5-HT receptors control the
activity of central dopaminergic pathways. These data
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facilitate interpretation of the influence upon central DA-
ergic systems exerted by 5-HT and diverse classes of an-
tidepressant, antipsychotic and psychostimulant agents,
and suggest numerous possible receptorial strategies for
modulation (potentiation) of their therapeutic actions.

Moreover, the scenario is complicated by some experi-
mental caveats. Most of the agonists and antagonists used
in the studies reviewed here are selective but are not
specific enough to identify receptors involved, especially
when used in relatively high concentrations. Most of the
in vivo data, obtained by extracellular recordings are from
putative DA neurons identified by their firing properties.
Nevertheless, these classical identification criteria are de-
ceptive. In fact, the presence of a functionally distinct
non-dopaminergic (but not GABA-ergic) population of
neurons in the VTA with overlapping characteristics has
been demonstrated [168], which is likely to have been in-
cluded in the analysis of DA neurons in the electrophysio-
logical studies that we reviewed. In addition, these studies
are carried out in anaesthetized rats. Although DA neu-
rons are autoactive, their impulse activity and response
to natural neurochemical inputs are strongly affected by
general anaesthesia. Some alterations appear to be spe-
cific to the general anaesthetic used, while others proba-
bly reflect changes in the activity of afferent inputs, brain
metabolism, and neurotransmitter uptake that are typi-
cal to any type of general anaesthesia. Most of the data
are obtained using chloral hydrate that is known to exert
subtle effects on the basal activity and pharmacological
responsiveness of midbrain DA neurons [169]. Therefore,
taking consideration of the aforementioned, when extra-
cellular unit activity from single DA neurons in anaes-
thetized rats are performed, it is of paramount impor-
tance that they are subsequently labelled with the use of
the juxtacellular technique, and neurochemically charac-
terized with immunofluorescence for Tyrosine Hydrox-
ylase. Moreover, the utilization of microiontophoresis or
reverse dialysis might be encouraged. In fact, despite their
methodological constraints, they remain almost the only
way of applying relatively few molecules rapidly into the
vicinity of central synapses. The techniques get closer to
mimicking synaptically released neurotransmitters than
any other, and can show direct or indirect effects. De-
spite the large body of data available on this subject there
still a number of points that need to be elucidated. Thus,
it would be important to establish the exact brain site(s)
involved in the control of DA neuronal activity by the
various 5-HT receptor subtypes. For example, it would
important to determine whether or not the effects of the
selective activation of 5-HT subtypes are mediated at the
level of the nuclei of origin of the DA-ergic systems (i.e.,
in the SNc or the VTA); whether or not their effects are
direct or indirect (e.g., mediated by GABA-ergic transmis-

sion) and whether or not feed-back pathways originating
from projection areas of the nigro-striatal and mesocorti-
colimbic systems are involved in their overall effect upon
DA neuronal function. Lastly, the majority of the effects
described herein were acquired upon acute drug adminis-
tration. This approach is eminently suitable to the charac-
terization of the functional roles of various auto- and het-
eroreceptor subtypes. However, inasmuch as the majority
of the therapeutic agents are often administered chroni-
cally, and may trigger adaptive changes, it would be in-
teresting to expand the present observations with studies
of long-term drug administration.

The intensive research in medicinal chemistry will help
this field of investigation. In fact, more selective ligands
for 5-HT receptors are currently produced. In the future,
the use of such selective ligands, especially agonists of
5-HT receptors, would certainly be helpful in determin-
ing their functional importance and their involvement in
the pathogenesis of diseases, not exclusively of the CNS.
However, it should be kept in mind that although selec-
tive receptor ligands are an important and indispensable
research tool, they rarely happen, in practice, to be drugs.
This is likely due to a need to act on different neuro-
transmitter systems to obtain a therapeutic effect since
neuropsychiatric disorders are not pure DAergic dysfunc-
tion. Many questions need to be answered before we
can truly understand how these serotonin receptors reg-
ulate DA neuronal activity in the brain. The challenge
ahead is to build on this foundation and keep up this
engaging adventure: the interaction between serotonin
and dopamine systems is far from being completely re-
vealed.
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