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Abstract: The scenario of business computer systems changed
with the advent of cross-entity computer interactions: computer sys-
tems no longer had the limited role of storing and processing data,
but became themselves the players which actuated real-life actions.
These advancements rendered the traditional transaction mechanism
insufficient to deal with these new complexities of longer multi-party
transactions.
The concept of compensations has long been suggested as a solu-
tion, providing the possibility of executing “counter”-actions which
semantically undo previously completed actions in case a transaction
fails.
There are numerous design options related to compensations partic-
ularly when deciding the strategy of ordering compensating actions.
Along the years, various models which include compensations have
emerged, each tackling in its own way these options.
In this work, we review a number of notations which handle compen-
sations by going through their syntax and semantics — highlighting
the distinguishing features — and encoding a typical compensating
transaction example in terms of each of these notations.
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1 Introduction

Up to a few decades ago, the main aim of computer systems in businesses was to store
records of information and be able to process them in an efficient way. In general,
computer systems of an entity did not interact with another’s. Therefore, the main
challenge was to keep data safe and consistent, and to handle concurrency issues if the
system was accessed from several points within the entity. To this end, the concept
of a transaction has been widely used, ensuring that a change in the data is either
complete or undetectable.

The scenario changed with the advent of online interactions among computer systems
of several entities. At this point, computer systems no longer had the limited role
of storing and processing data, but became themselves the players which actuated
real-life actions. For example, originally, a travel agent system would have required
a human operator which contacted an airline to book the flight, a hotel to book
the accommodation, and a taxi operator to book the transport. When successful,
the operator would input all the information in the travel agency computer system.
Subsequently, the customer would be told about the success of the transaction and
pays for the service. The scenario now is different: an online travel agency will
allow the client to submit the flight, hotel and transport details and then attempt
to automatically actuate all the bookings, charging the customer’s bank account
if successful. This new model, thus, brought about the following changes: (i) since
interactions involved several entities, transactions began to take long to complete; and
(ii) since computer transactions not only reported but actuated transaction actions,
the possibility of failure of such real-life actions necessitated the option of semantically
reversing (real-life) actions — real-life actions cannot be simply undone (or erased
from a database) but rather reversed by a compensating action.

These changes rendered the traditional transaction mechanism insufficient to deal
with the new complexities. Particularly, since resource locking is a fundamental
mechanism for the implementation of traditional transactions, these were not appro-
priate for handling large volumes of transactions which take long to complete. As a
solution, the concept of compensation has been suggested so that rather than waiting
for the whole transaction to complete, any completed part is considered successful
with the possibility that if some other part fails later on, the affected parts can be
compensated for. Taking again the example of the travel agency, if all bookings suc-
ceed but the payment by the customer fails, then the travel agency might decide to
cancel the previously completed bookings. Note that compensating for an activity
does not necessarily mean that the activity is undone in exactly the reverse way. For
example, as a compensation for bookings, one might not only need to cancel each
booking but also inform the client and keep some form of record for future reference.
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Compensation is a very rich construct since, in contrast to the usual sequential or
parallel programming, compensation allows one to execute a number of steps based on
the history of the execution. There are numerous design options related to compen-
sation particularly when deciding the strategy of ordering the compensating actions.
Along the years, various models which include compensations have emerged, each
tackling in its own way the options which such a mechanism poses.

There were several attempts of formalising the notion of compensation, mainly moti-
vated by the need of clear semantics and the possibility of applying verification tech-
niques. These efforts resulted in numerous formalisms and notations with notable
differences in the way they handle compensations. In this report, we will analyse the
compensation mechanism of each formalism in depth, going into the actual formal
semantics where necessary. The formalisms are organised depending whether they as-
sume a centralised coordination mechanism — orchestration approaches (Section 3),
or whether they assume processes collaborate together in a decentralised fashion —
choreography approach (Section 4). Next, we dedicate a section to BPEL (Section 5),
which although an orchestration approach is treated separately due to the amount of
worked revolving around it. Finally, we compare the orchestration and choreography
approaches in Section 6). To further help in the illustration of these formalisms, we
shall present a simple yet non-trivial example (Section 2) which will subsequently be
represented in the different notations, enabling us to explain and compare them.

3



2 An Online Bookshop Transaction Example

In order to compare the compensation notations presented in the following sections,
we present in this section a substantial example consisting of an online bookshop
transaction. To help delineate the differences among the notations, we include in the
example the main features which one normally encounters in long running transac-
tions: sequential and parallel activities, alternative forwarding1, programmable com-
pensation2 and speculative choice3. In the following two subsections we first give a
textual description of the example and then represent the example diagrammatically
for more clarity.

2.1 Textual Description

An online bookshop receives an order from a client and the shop initiates an order
handling procedure. First, it attempts to deduct the respective stock levels (implicitly
checking that there is sufficient stock available). If this is successful, the client is
redirected to a marketing promotion offer. The client is allowed to refute the offer, in
which case another one is presented. Subsequently, whether or not an offer is taken
up, two processes are started in parallel: the packing of the ordered books and the
money transfer for payment. These processes are handled by the bookshop and the
bank respectively. If both of these activities succeed, then two couriers are contacted
(concurrently) and the first one accepting to deliver the order is chosen while the
other booking attempt is cancelled.

If a failure occurs in any of the above mentioned processes, the previously completed
activities must be compensated. Therefore, if the courier booking fails, the money
taken from the customer’s account is refunded and the books are unpacked, the offer
is withdrawn, the stock is increased to its original level and an email is sent to the
customer indicating the failure of the order delivery. Similarly, if the money transfer
fails, the packing is undone (or cancelled if it has not yet completed), the offer is

1The alternative forwarding mechanism provides an alternative way of reaching a goal such that
if an activity fails, but successfully compensates, then the alternative is tried out. If the alternative
succeeds, then the transaction does not continue with compensation but rather continues its normal
execution.

2A programmable compensation refers to the replacement of a fine-grained compensation with
one which is coarse grained. Put differently, after the completion of a number of activities (each with
possibly a compensation activity), programmable compensation allows the installation of a single
compensation which replaces the various installed compensation activities.

3A speculative choice starts the execution of two processes in parallel, stopping one if the other
succeeds. If both succeed concurrently, then an arbitrary one is compensated for, while it is consid-
ered as failed if both processes fail.
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withdrawn, stock is updated and an email is sent to the client. Thus, the activities
executed in case of a fault depend on the point where the fault occurs. Note that
irrespective of the order in which the activities were carried out, their compensations
can be carried out in parallel since there is no dependency among the compensations.

Finally, if the transaction and its compensation both fail, an operator is notified so
that the failure can be handled manually. It is assumed that any of the mentioned
activities may fail.

2.2 Illustrative Description

After the informal description of the previous subsection, we now give the diagram-
matic representation of the example making use of the following abbreviations:

Transaction the main book ordering transaction
Order accepting an order and reducing the stock
Pack packing the order

Credit charging the customer’s credit card
Courieri booking the first (i = 1) or second (i = 2) courier
Canceli cancelling the first or second courier
Refund refunding the money paid
Unpack unpacking the order
ReStock incrementing stocks to their previous levels
Email sending an email to the customer
Offeri presenting the first or second offer

Withdraw withdrawing an offer
Operator manual intervention

Shop the section which receives orders from the client
Packing the section responsible for packing the order

Bank the section responsible for crediting the client’s bank account
Offers the section responsible for the offers

Couriers the section responsible for booking couriers

As shown in Figure 1, we use the Business Process Modelling Notation (BPMN)
[bpm08] to represent our example. BPMN is defined by the Object Management
Group (OMG) and provides pictorial business process modelling notation supporting
compensations. There have been various attempts of formalising BPMN ([DDO07,
DGHW07, WG08, Tak08, DDDGB08]). However, we refrain from going deeply into
BPMN’s semantics since the compensation concepts are similar to BPEL’s (see Sec-
tion 5 regarding BPEL and [bpm08] for a mapping from BPMN to BPEL).
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Figure 1: A BPMN representation of the example.
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Informally, the symbols used in Figure 1 have the following meanings: a circle rep-
resents the starting point of execution when the parent transaction obtains control;
a bold circle represents the end of execution; a diamond (with not symbol inside)
represents a simple merge of control flows (exactly one input token is expected); a
diamond with a plus symbol inside represents a merge of parallel control flows; a dia-
mond with an asterisk symbol inside represents a complex decision (among a number
of alternatives), allowing only the first incoming token to go through; a double circle
with the “rewind” symbol signifies that the activity has an associated compensation;
a double circle with the “lightning” symbol signifies that the activity has an asso-
ciated exception handler; a double circle with the times symbol signifies that if the
transaction is cancelled, then an attached activity is to be executed.

Note that due to space limitations we do not explicitly show compensation requests in
the diagram. However, we assume that each activity can trigger an exception which
in turn triggers compensation.

In the three sections which follow, we refer to this example and encode it using the
various notations presented.
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3 Orchestration Approaches

In this section, we present a number of orchestration approaches which are able
to handle compensations. Orchestration approaches, sometimes referred to as flow-
based approaches, assume a centralised coordination mechanism which manages the
execution of the activities involved. This means that the activities themselves need
not be aware of that they are part of a composition of activities. The consequence is
that processes do not need to interact with each other and notations supporting such
approaches provide structured operators enabling one to build complex activities out
of basic ones.

In what follows we review a number of orchestration approaches, briefly going through
their syntax and semantics, enabling us to highlight the main features of each ap-
proach and explain the respective example encoding. Note that BPEL is also an
orchestration approach but we opt to dedicate a whole section (Section 5 due to the
considerable number of works which revolve around it.

3.1 Sagas

Sagas [BMM05] is a flow composition language based on the idea of sagas intro-
duced by Garcia-Molina and Salem [GMS87] where, in essence, a sequential saga is
a long-lived transaction (i.e. a transaction which takes long to complete, abbreviated
as LLT) composed of a sequence of activities which either succeed in totality (all
activities succeed) or else the completed activities should be compensated (giving the
illusion that none of the LLT was successful). Starting from this basic structure,
Bruni et al. [BMM05] go on to provide a hierarchy of extensions including parallel
composition, nesting of transactions, programmable compensations and various other
highly expressive features.

Syntax

Given an infinite set of basic activities A (each of which may either succeed or fail, but
not partially succeed) ranged over by A and B, steps (ranged over by X), processes
(ranged over by P ) and sagas (ranged over by X) are defined as follows:

X ::= 0 | A | A÷ B step
P ::= X | P ;P | P |P | P ⊞ P | S process
S ::= {[P ]} | S ÷ P | try S with P | try S or P saga

A step X may either be the inert activity 0; an activity A; or an activity A with a
compensation B, A÷B. Note that B is an activity and cannot itself have compensa-
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tions. A process is either a step; a sequence or a parallel composition of processes; a
speculative choice P ⊞P ; or a saga (for nesting transactions). Finally, a saga is either
a process enclosed within a scope written as {[P ]}; a saga S with programmable com-
pensation P , written as S ÷ P (introducing the possibility of a compensation having
compensations); a saga with exception handling, represented by try S with P , such
that if S terminates abnormally, P is executed; or a saga with alternative forwarding,
try S or P , such that if S fails but successfully aborts, P is tried out such that if P
succeeds, the transaction continues forward.

Semantics

The semantics of Sagas is given as big-step operational semantics and the success
or failure of an action depends on a context Γ, abstracting away from explicitly
programming failure. For example, the rule Γ ⊢ 〈P, β〉

α
−→ 〈2, β′〉 signifies that under

context Γ, transaction P evolves to (terminates as) 2 if the actual flow of control is
α. Furthermore, given that the starting compensation is β, the compensation evolves
to β′. Note that an activity is considered to be atomic; i.e. either it succeeds fully,
or it leaves no trace of its execution. A transaction may terminate in three different
ways: 2 ∈ {�, ⊠, �} where � signifies that a transaction terminated successfully,
⊠ signifies that the transaction has been correctly aborted; i.e. a failure occurred
but the transaction have successfully compensated, while � signifies an abnormally
terminated transaction; i.e. one which failed and whose compensation has failed as
well.

First, we consider what happens upon a successful completion of a step. Recall that
the point of completion is the point when an activity becomes compensable. Applying
this principle, upon successful completion of a step A÷ B, B is added as a prefix to
the currently accumulated compensation. The rule is given as follows:

A 7→ �,Γ ⊢ 〈A÷B, β〉
A

−→ 〈�, B ; β〉

Specifically, note that A÷B evolves to �, and that β evolves to B ; β. Next, we focus
on the semantic rules handling the compensation mechanism of Sagas, starting with
the following:

Γ ⊢ 〈β, 0〉
α

−→ 〈�, 0〉

A 7→ ⊠,Γ ⊢ 〈A÷B, β〉
α

−→ 〈⊠, 0〉

Γ ⊢ 〈β, 0〉
α

−→ 〈⊠, 0〉

A 7→ ⊠,Γ ⊢ 〈A÷ B, β〉
α

−→ 〈�, 0〉

The first rule handles the case where compensation succeeds — β progresses to � —
leading to an aborted transaction when A fails (A 7→ ⊠), i.e. A÷B evolves to ⊠. The
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second rule states what happens if a failure occurs (A 7→ ⊠) and the compensation
fails as well (β progresses to ⊠). This leads to an abnormal termination, i.e. A ÷ B
evolves to �. An interesting aspect of Sagas’s compensation mechanism is that the
parent of a successfully aborted saga is unaware that one of its child sagas have
aborted. This means that abortion does not in any way affect the parent if it is
successful. The rule which hides abortion is defined as follows:

Γ ⊢ 〈P, 0〉
α

−→ 〈⊠, 0〉

Γ ⊢ 〈{[P ]}, β〉
α

−→ 〈�, β〉

Note how {[P ]} evolves to �, even though P evolves to ⊠. The situation is completely
different when the compensation fails. In such a case the parent is fully aware that
one of its sub-sagas have failed. The consequences that a failed child brings about
are explained further below.

Next, we consider sequential and parallel composition of processes. Sequential com-
position is quite straight forward such that if the first process fails the sequential
composition is considered a failure (Not even attempting the second one). Otherwise,
the compensation of the first process is remembered so that if the second process
fails, the former is compensated. However, the case of parallel composition is more
complex. If a parallel composition succeeds, the compensation installed is the parallel
composition of the compensations of both branches. The rule is as follows:

Γ ⊢ 〈P, 0〉
α

−→ 〈�, β′〉 Γ ⊢ 〈Q, 0〉
α′

−→ 〈�, β′′〉

Γ ⊢ 〈P |Q, β〉
α|α′

−→ 〈�, β′|β′′ ; β〉

In particular, note that the compensations of the parallel processes P and Q, β′ and
β′′ (respectively) are added as a parallel composition in front of the accumulated com-
pensation β. In the other case where one of the parallel branches fails, it is usually
desirable that the other processes running in parallel are interrupted so that com-
pensation starts immediately. Such interruption is referred to as forced termination.
If the compensation resulting from a forced termination is successful, it is symbol-
ised as ⊠; otherwise, the symbol � is used. If the compensations of both parallel
branches succeed, then the outcome of the overall parallel composition is considered
as a successful abortion. Yet, there is also the possibility that one of the parallel
branches fails (i.e. resulting in either � or �). If this is the case, the other branch
(unless it has already compensated or failed) is forced to terminate and execute its
compensations. However, the forced compensation might also fail resulting in the
four possible outcomes ⊠, �, ⊠ and �. The rule handling this scenario is as follows:
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Γ ⊢ 〈P, 0〉
α

−→ 〈σ1, 0〉 Γ ⊢ 〈Q, 0〉
α

−→ 〈σ2, 0〉

Γ ⊢ 〈P |Q, β〉
α|α′

−→ 〈σ1 ∧ σ2, 0〉

{
σ1 ∈ {�,�}
σ2 ∈ {⊠,�,⊠,�}

The conjunction (∧) of transaction terminating symbols has the aim of giving an
overall verdict of the parallel composition such that failure takes over abortion (eg.⊠∧
⊠ = ⊠ but � ∧⊠ = �), while non-forced termination takes over forced termination.
Thus, since at least one of the parallel branches is a non-forced termination, the final
outcome of the transaction can never be a forced termination. This rule also explains
how failure is propagated within a saga, such that if a child of the saga fails, then the
whole saga fails by propagating the failure to any parallel branches.

Example

The example of the bookstore given in Sagas is as follows:

Trasaction
def

= try {[
(Order ÷ ReStock) ; (0÷ Email) ;
({[try Offer1 or Offer2]} ÷Withdraw) ;
((Pack ÷ Unpack)|(Credit ÷ Refund)) ;
((Courier1 ÷ Cancel1)⊞ (Courier2 ÷ Cancel2))

]} with Operator

Since Sagas employs big step semantics, the actions (Order , ReStock , etc) are not
decomposed further. The possibility of these succeeding or failing is handled by the
semantics of Sagas through a context Γ. A limitation of Sagas is that it does not
allow a compensation to be a process. For this reason, the sending of an email as
a compensation for a successful order has been encoded as the compensation of the
inert process (0÷Email). By so doing, we have not strictly kept to the specification
because the stock update and the sending of the email are supposed to be done in
parallel. The alternative would have been to amalgamate both activities as a single
basic activity.

In this example, we have also deviated from the original specification of the example
in two main aspects: (i) the compensations cannot be executed in parallel because in
Sagas the compensations of sequential processes are executed in the reverse order of
the original execution; (ii) the interaction among the various entities involved in the
transaction cannot be modelled (eg. we cannot model the client communicating with
the bookstore). The latter is a limitation of all flow composition languages.
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3.2 Compensating CSP

Compensating CSP (cCSP) [BHF04, BR05] is an extension to CSP [Hoa85] with the
aim of providing support for LLTs. In cCSP, all basic activities succeed and failures
are explicitly programmed using a special THROW activity which always fails. Al-
though cCSP executable semantics has been given [BR05], the cCSP semantics has
originally been given in terms of traces [BHF04]. In this overview, we use the latter
to explain the calculus.

Syntax

cCSP has two kinds of processes: standard processes and compensable processes.
Standard processes are unaware of compensations. When two standard processes are
glued together, one as forward behaviour and another backward behaviour (using
the ÷ operator), they form a compensable process. Given a set of atomic actions
ranged over by A, the syntax of cCSP standard processes (ranged over by P ) and
compensable processes (ranged over by PP ) is given as follows:

P ::= A | P ;P | P 2 P | P || P | SKIP standard process
| THROW | YIELD | P � P | [PP ]

PP ::= P ÷ P | PP ;PP | PP 2 PP | PP || PP compensable process
| SKIPP | THROWW | YIELDD

A standard process P can be an atomic action A; a sequence of two processes, written
as P ;P ; a choice between two processes, P 2 P ; a parallel composition, P || P ; the
process SKIP which represents the inert process; THROW representing a process
which always fails; YIELD which signifies the possibility of yielding (see below) to an
interrupt; a process having another process as an interrupt handler, written as P �P ;
or a transaction block [PP ].

A compensable process is either a pair of standard processes P ÷ P where the latter
is a compensation of the former; a sequence, choice or parallel composition of two
compensating processes; or SKIPP , THROWW , or YIELDD — the counterparts of
SKIP , THROW , YIELD for compensable processes.

Some interesting things to point out directly from the syntax are that: (i) compen-
sations cannot have compensations; (ii) a transaction block automatically discards
its compensation (concluded from the fact that [PP ] is a standard process); (iii) and
nested transactions are supported. The fact that [PP ] is a standard process implies
that a compensation can be attached to a transaction block as soon as it completes
(programmable compensation).
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Semantics

The semantics of a cCSP standard process is given in terms of a set of possible traces
describing possible behaviours of the process. In the case of a compensable process the
semantics is given as a set of pairs of traces (since a compensation may be installed).
A trace is a sequence of basic actions ending in either 〈X〉 — signifying success, 〈!〉
— signifying failure, and 〈?〉 signifying a yield.

The purpose of the YIELD operator is to allow processes running in parallel to “yield”
to forced termination if one of them fails. In other words, yields mark points within
a process indicating that at those points the process allows itself to be interrupted.
Consider the following equation:

THROW || (YIELD ;P ) = THROW 2 P ;THROW

Note that if the THROW process occurs before the start of the second process, the
latter does not even start execution because it allows itself to be interrupted by the
exception. This explains the possibility of a solitary THROW in the right hand side of
the equation. However, since parallel composition is defined as the interleaving of the
activities, P can take place before THROW (hence the other possibility). Another
observation is that unlike various other formalisms whose forced termination stops
the other parallel processes instantly, in this case another process is only terminated
when it yields to the interrupt.

Apart from providing the compensation mechanism, cCSP also supports exception
handling. In fact, compensations are triggered in the case of an unhandled exception
(or a failed exception handler). Consider two traces p and q, and two processes P and
Q each representing a set of traces (corresponding to their behaviour). The semantics
of Q as an exception handler of P , P � Q, is given as:

p〈!〉 � q = pq
p〈ω〉 � q = p〈ω〉 (ω ∈ {X, ?})
P � Q = {p � q | p ∈ P ∧ q ∈ Q}

Note that if a trace ends with failure (〈!〉) then the exception handler is executed —
hence the resultant pq. Otherwise, q is simply ignored (in the second case). Finally,
the semantics of P �Q is the application of � on each pair of possible traces for each
process.

Next, we consider the installation of compensations. The installation of compensa-
tion for sequential processes is installed as a prefix of the previously accumulated
compensations (resulting in the reverse order in which the activities were originally
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executed), while the compensation of parallel processes is installed as the parallel
composition of the respective compensations.

Subsequently, we consider the execution of compensations. Upon the completion of a
transaction block, a decision is taken regarding whether the accumulated compensa-
tion is to be activated or discarded. Consider the following equation giving semantics
for a transaction block [PP ]:

[PP ] = {pp′ | (p〈!〉, p′) ∈ PP} ∪ {p〈X〉 | (p〈X〉, p′) ∈ PP}

If the forward behaviour of PP terminates with 〈!〉 (the first part of the union), then
the installed compensation p′ is executed. Otherwise, the compensation is simply
discarded (the second part of the union). Note that a successfully compensated
transaction is considered a successful transaction by the parent transaction (since
the termination of p′ is preserved in pp′). Another interesting observation is that
the above equation does not consider the possibility of a trace ending in 〈?〉. The
reason is that, forced termination (recall that a trace ending with yield (〈?〉) signifies
a forced termination of a parallel branch) is not allowed to surface up to the level of a
transaction block. An interrupted parallel branch is in fact handled by the following
equations where ω, ω′ ∈ {X, ?, !}, the & operator combines possible terminations
such that abnormal termination takes over forced (yielding) termination, and forced
termination takes over successful termination (eg. ! & ? = !), and ||| returns a set of
all possible interleavings of two traces.

p〈ω〉 || q〈ω′〉 = {r〈ω&ω′〉 | r ∈ (p ||| q)}
P ||Q = {r | r ∈ (p || q) ∧ p ∈ P ∧ q ∈ Q}

Firstly, the parallel composition of two traces is thus the sets of all interleavings of
both traces with the combination of their termination as the resulting termination.
Secondly, the parallel composition of two compensable processes P and Q is the
parallel composition of all pairs of possible traces of P and Q.

Subsequently, we consider the choice operator (2) which is crucial in cCSP because it
models the uncertainty which is usually associated with third party service invocation.
(Recall that all basic activities in cCSP succeed.) Therefore, the choice operator
is indispensable for modelling the possible failure of certain activities. Defined in
terms of choice, cCSP also provides speculative choice (⊠) such that two functionally
equivalent processes are started in parallel and the first one to commit causes the
second one to abort.

Example
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The example of the bookstore encoded in cCSP is given as follows:

Order
def

= Order ′ 2 THROW

ReStock
def

= ReStock ′ 2 THROW

Transaction
def

= [ (Order ÷ (ReStock || Email)) ;
( [Offer1 � Offer2]÷Withdraw) ;
((Pack ÷ Unpack) || (Credit ÷ Refund)) ;
((Courier1 ÷ Cancel1)⊠ (Courier2 ÷ Cancel2))

] � Operator

Note that cCSP does not offer an explicit construct for alternative forwarding. How-
ever, we have used the exception handling operator which achieves the same result if
Offer1 fails. Also, to model the fact that all the involved activities can possibly fail,
each activity (eg: Pack , Credit , Unpack , etc) should be defined in a similar fashion to
Order and ReStock where Order ′ and ReStock ′ are some lower level activities. Thus,
each activity can non-deterministically fail (including compensating activities).

In this example, we have deviated from the original specification in two main aspects:
(i) the compensations cannot be executed in parallel because in cCSP the compensa-
tions are executed in the reverse order of the original execution; (ii) the interaction
among the various entities involved in the transaction (such as the interaction with
the client) cannot be modelled.

3.3 StAC

In StAC [CGV+02, BF04], the compensation mechanism is separated from failure.
Therefore, both practically and conceptually, compensations need not be used only
in case of failure.

Compensations in StAC are stored in so called compensation stacks such that com-
pensations can be installed, executed and discarded through stack operations.

StACi is an extension of StAC supporting concurrent compensation stacks, implying
that several compensation tasks can be maintained concurrently during the execution
of a process. Additionally, StACi (but not StAC) provides the mechanism for pro-
tecting a process from early termination originating from another process. For early
termination to propagate (causing forced termination), it must be enclosed within an
attempt block. Below, we give the StACi syntax and a summary of its semantics,
further elaborating these notions.

Syntax
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Let P range over StACi processes; A over atomic activities; b, v over boolean expres-
sions; N over process names; S, X over sets of activities; i over natural numbers; and
J over sets of natural numbers.

P ::= A | skip | b& P | call(N) | P\S | P ;P | P ||
X

P | P ⊓ P | P 8 P | ⊙

| P{P}vP | early | |P |v | new(i).Pi | ⊠i | 2Xi | ↑i P | J � i

A StACi process can be an atomic activity A; the inert process skip; a guarded
process b & P , which is only activated if the condition, b, is true; a call to another
process named N (thus supporting recursion); a process hiding activity P in S (as
in CSP [Hoa85]) denoted by P\S; a sequential composition of a pair of processes;
a parallel composition of two processes, P ||

X

P , synchronising on activities in X; an

internal (P ⊓ P ) or an external choice (P 8 P ) of two processes; early termination
⊙ (representing failure); an attempt block P{P}vP (explained further on); an early
terminated process; a protected block |P |v (explained further on); the creation of
a new compensation task, i, available in Pi, written as new(i).Pi; the execution (in
reverse) of a compensation task i, denoted by ⊠i; the discarding of a compensation
task i, written as 2Xi; a push of a process P onto a compensation task i, written as
↑i P ; and the merge of compensation tasks whose index is an element of J onto the
compensation task i.

The syntax of StACi is quite large and the authors themselves admit that the semantic
definition is “somewhat complicated”. Having said this, StACi offers a high degree of
flexibility and expressiveness, particularly, because compensations are separated from
failure. This provides the freedom of using compensations as any other programming
structure. For example while making a number of related bookings, two kind of
compensations are stored: one for confirming the bookings and another for cancelling
the temporary bookings. Upon successful completion of all bookings the first set of
compensations are triggered, confirming all the bookings, while if a booking fails, the
second set of compensations are executing, cancelling all the bookings.

In what follows we attempt to give an overview of the most important aspects of
StACi’s semantics.

Semantics

The first aspect to tackle is the compensation handling mechanism of StACi. There
are five operators related to compensation: new(i).Pi, ⊠i, 2Xi, ↑i P , and J � i. Re-
call that StACi allows multiple compensation tasks to be maintained simultaneously.
Each compensation task has a stack structure such that new tasks can be appended
(pushed) to one end. A new stack can be created using new(i).Pi, meaning that
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stack i will be available as a new compensation stack to which tasks can be added
throughout P . The operator which pushes process P on stack i is ↑i P , signifying
that P has been added to the stack. Effectively, if the stack is executed just after
the installation of P , P would be the first process to be executed. The execution
of compensation tasks in StACi has to be programmed explicitly using the opera-
tor ⊠i, meaning that the operations on stack i are executed in the reverse order of
their installation. Similarly, a stack i of compensation tasks can be emptied using
2Xi — discarding all the tasks in stack i. Finally, one is allowed to merge a number
of compensation tasks with one another through the operator J � i. For example,
{1, 2}�3 means that the parallel composition of compensation tasks 1 and 2 is added
sequentially to compensation task 3.

Putting everything together, consider the following example:

(A ↑iA
′) ;new(j).((B ↑jB

′) ;⊠j ; (C ↑jC
′) ;2Xi ; {j} � i)

Upon the first step, A is executed and A′ is pushed on compensation task i. Subse-
quently, a new compensation task j is created and B′ is pushed onto j. ⊠j causes
the execution of B′ and immediately afterwards, C is executed, pushing C ′ onto j.
2Xi causes i to be emptied, discarding compensation A′. Finally, C ′ is merged onto
i, leaving i with C ′ and discarding j. The executed activities would be A ;B ;B′ ;C.
Note that by having different indexes it is easy to scope compensations, i.e. compen-
sation execution only executes the compensations within the respective compensation
task. Also, it is clear that after compensation the process will continue at the point
exactly after ⊠.

Before we proceed to discuss the representation of failure in StACi, we will explain an
inherent exception handling mechanism called the attempt block written as P{Q}R.
This operator is similar to a try-and-catch statement where a process Q in curly
brackets is tried out and if it succeeds, execution continues with process P on the
left-hand side of the block. Otherwise, execution continues with process R on the
right. In this way, it combines the ideas behind conditionals and exception handling.
For the sake of the semantics, a boolean is attached to the block, flagging whether
an exception has been encountered or not. Thus, the full syntax is P{Q}vR, with
v as the flag. For better readability we use TRY Q THEN P ELSE R instead of
P{Q}falseR (The flag is initially false and it is thereafter handled automatically by
the semantic rules).

Another construct particular to StACi is early termination, represented by ⊙. This
is used to signal that a process has ended prematurely. If a process in a sequential
composition terminates early, then the rest of the sequential composition is forced
to terminate, and the whole sequential composition terminates early. Similarly, if a
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process within an attempt block terminates early, then the whole process (possibly
including other processes running in parallel) within the attempt block is forced to
terminate. The only processes which are not affected by forced termination are the
merge (J � i) and a protected block (discussed next). However, forced termination
does not apply to parallel processes outside attempt blocks. Therefore, attempt
blocks can be used to model transactions modelling the behaviour that either the
whole transaction succeeds or else it all fails.

A protection block ensures that the block does not get discarded because of a forced
termination. The syntax of a protected process P is given by |P |v where v indicates
that the block has started execution and cannot be interrupted. If the block has
not yet started execution, then it is never executed. Protection is notably used
to protect compensation operations from interruption. For this reason pushing a
compensation onto the stack is usually protected by using the following syntactic
sugar: P ÷i Q

def

= |P ; ↑i Q |false. Note that upon failure of P , the compensation Q
never gets installed.

Another abbreviation used is IF b THEN P ELSE Q which is defined as b & P 8
¬b & Q. Note that external choice (8) chooses whichever of the processes becomes
ready first. In cases where both processes can execute simultaneously (eg. A ;B and
A ;C), internal choice (⊓) should be used.

In StACi, compensations can have compensations. For example A ÷ (B ÷ C) is a
valid process, installing compensation B ÷ C upon the execution of A and installing
C upon the execution of the compensation task B.

Example

The example of the bookstore encoded in StACi is given in parts. We start with the
definition of the basic actions, using primed names to represent lower level activities
with the actual logic:

Order
def

= Order ′ 8 (⊠0 ;⊙)

Pack
def

= Pack ′ 8 (⊠0 ;⊙)

Offer1
def

= Offer1
′ 8 (⊠1 ;⊙)

Offer2
def

= Offer2
′ 8 (⊠1 ;⊙)

ReStock
def

= ReStock ′ 8 ⊙

Recall that the example requires that any of the activities might fail. To model such
behaviour we need to provide an external non-deterministic choice, which in case
of failure, compensates the previous activities (using ⊠i) and terminates execution
(using ⊙). This is the case of Order , Pack , etc. Note that the compensation context
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i depends on the context of the execution of the process. For example, in the case of
Order context 0 is used, while in the case of Offer1 context 1 is used. If compensating
activities fail, we opt to simply signal a failure (⊙). Other compensating activities
should be defined in a similar fashion to ReStock .

For the case of the offers we have used two nested TRY statements such that if one
fails, the other is tried out.

Offers
def

= new(1).(
TRY Offer1 ÷0 Withdraw
THEN skip
ELSE (TRY Offer2 ÷0 Withdraw THEN skip ELSE skip))

The new stack created via new(1) ensures that if any of the offers fail, it is not the
outer compensation that is executed (since ⊠1 is used within Offer1 and Offer2 instead
of ⊠0 as explained above). Note that if Offer2 fails, no failure is signalled since the
failure is caught by the TRY statement and continues as skip.

The most complex part of the example is the speculative choice of the couriers as
shown below:

Couriers
def

= TRY new(2).new(3).(
|Courier1 ; ↑2Cancel1 |true || |Courier2 ; ↑3Cancel2 |true
|| (Ready1 &⊙) || (Ready2 &⊙)

) THEN skip
ELSE (IF Ready1 THEN ⊠3 ; {2} � 0

ELSE (IF Ready2 THEN ⊠2 ; {3} � 0 ELSE ⊠0 ;⊙))

In order to encode speculative choice, we required two extra boolean variables: Ready1
and Ready2. These become true when Courier1 or Courier2 succeed, respectively.
Note that the booking of the couriers is put inside a TRY block and in parallel to
the booking processes, we added two processes which signal early termination upon
the completion of any of the bookings. Thus, when a booking succeeds, the whole
process is terminated early. Furthermore, upon early termination, if both bookings
succeeded simultaneously, one has to be compensated while the compensation of the
other has to be relayed to the outer compensation (using �0). Note that if one of
the bookings terminates early (due to failure), the other booking is not affected since
both are enclosed in a protected block with the boolean flag set. If neither booking
succeeds, the compensation is executed and early termination is signalled so that the
outer TRY statement executes the Operator process.
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Finally, the overall transaction process is given below:

Transaction
def

= TRY ( (Order ÷0 (ReStock || Email)) ;
Offers ;
((Pack ÷0 Unpack) || (Credit ÷0 Refund)) ;
(Couriers)

) THEN skip
ELSE Operator

Note that the transaction is enclosed within a TRY block so that if it results in
an early termination (due to a failure), the operator is notified. Note that since
there is no way of distinguishing between failure during normal execution and failure
during compensation, the operator is notified even when compensation is successful,
diverging from the specification of the example.

As in the case of Sagas and cCSP, due to the stack structure which StACi uses
for storing compensations, there seems to be no straightforward way of running the
compensations in parallel. Also, it is not possible to model the interactions among
the parties involved in the transaction.

3.4 Transaction Calculus

The transaction calculus (t-calculus) [LZH07, LZPH07] is a highly expressive language
which builds on the ideas of StAC [CGV+02, BF04], cCSP [BHF04, BR05], and Sagas
[BMM05], providing an algebraic semantics for transactions. The transaction calcu-
lus provides various exception handling mechanisms apart from the compensation
mechanism. The building blocks of the calculus are atomic actions which always suc-
ceed. Each of these actions has a compensation action associated to it which can be
the empty process or the process which always fails. Basic actions with compensa-
tions are connected together to form transactions, which in turn can be enclosed as
a transaction block.

Syntax

We will use A and B to range over a set of basic activities Σ, variables S and T to
range over transactions, and variable P to range over transaction blocks:
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BT ::= A÷B | A÷ 0 | A÷ ♦ basic transactions
| Skip | Abort | Fail

S, T ::= BT basic transaction
| S ;T sequential composition
| S || T parallel composition
| S 8 T external choice
| S ⊓ T internal choice
| S ⊗ T speculative choice
| S � T backward exception handling
| S � T forward exception handling
| S  T alternative forwarding
| S > T programmable compensation

P ::= {T} transaction block

A basic transaction may be a basic activity A with possibly another action B as
compensation, written as A ÷ B; a basic activity A with an empty compensation
which always succeeds (0); a basic activity A with an empty compensation which
always fails (♦); a Skip signifying a successful transaction; an Abort signifying a
transaction which needs to be compensated; or a Fail signifying a failed transaction
which cannot be compensated and is treated as an exception.

A transaction may either be a basic transaction BT ; a parallel or a sequential com-
position; an external, internal or speculative choice (denoted by S 8 T , S ⊓ T , and
S ⊗ T respectively); a transaction S with a backward exception handler T , written
as S � T , meaning that after the execution of the exception handler, the transaction
should be considered as never executed; a transaction S with a forward exception
handler T , written as S � T such that after the execution of the exception handler,
the transaction should be considered accomplished; an alternative forwarding denoted
by S  T such that if S compensates, T is tried out as an alternative; or a trans-
action with programmable compensation denoted by S > T such that T replaces the
compensation of S. Finally, a transaction block represented a transaction enclosed
within curly brackets.

In t-calculus there are two operators for attaching compensations: ÷ is used to attach
a compensation to a basic activity, while > attaches a transaction as a compensation
of another transaction (replacing the existing compensation). For example, we can
write: A ÷ A′ > B ÷ B′. However, note that the compensation of the compensation
(i.e. B′) is semantically discarded.

Semantics

In order to give the formal definition, we introduce a number of preliminaries which
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will be used further on.

A one-step behaviour is denoted by h → T where the activity h can either be: (i) an
atomic activity; (ii) an error activity — ♦ if the error occurs during the forward flow,
♦ if otherwise; (iii) a ready activity ♯; or (iv) a forced activity � which leads to forced
termination.

There are five states in which a transaction can terminate: (i) �\T signifies that a
transaction has successfully terminated having T as its compensation; (ii) ⊠ denotes
a successfully compensated transaction; (iii) ⊠ denotes a forced abort which has been
successful; (iv) � represents a failed transaction whose compensation also failed; and
(v) � represents a transaction whose forced compensation failed.

In the semantic rules which follow the following operators are used: (i) S ↑ T means
that S is next to be executed in the forward flow with T as the currently installed

compensation; (ii)
↼

T represents a compensation T which has been automatically

activated upon failure; (iii)
←֓

T represents a compensation T which has been forcedly
activated.

In order to give the algebraic laws, transactions are converted into their head normal
form (hnf) using the function HF(). A transaction is in hnf if either: (i) it is in
{�\T,⊠,⊠,�,�}; (ii) it is of the form 8i≤Nhi → Ti such that each Ti is in hnf; or
(iii) it is of the form ⊓j≤MTj such that each Tj is in hnf.

In the case of the simple transaction A÷ B, either it is forced to terminate evolving
to ⊠, requiring no compensation, or else A succeeds and compensation B is installed:

HF(A÷B) = �→ ⊠ 8 A → HF(Skip ↑ (B ÷ 0))

The case of HF(A ÷ 0) is similar but there is no compensation to be installed.
However, in the case of HF(A ÷ ♦), the compensation installed is Abort because it
always fails during the backward flow. For a Skip, Abort or Fail the rules are given
below such that a transaction succeeds (�), aborts (⊠) or fails (�) respectively unless
there is a forced termination:

HF(Skip) = �→ ⊠ 8 ♯ → �\Skip
HF(Abort) = �→ ⊠ 8 ♦→ ⊠
HF(Fail) = �→ ⊠ 8 ♦→ �

Next, we consider what happens after the termination of a transaction, considering
the possible termination modes:
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HF(S) = �\S ′

HF(S ↑ T ) = �\(S ′;T )

HF(S) = S ′, S ′ ∈ {�,�}

HF(S ↑ T ) = S ′

The first rule states that upon the successful completion of a transaction S, the com-
pensation is sequentially installed with the accumulated compensation T . Otherwise
(by the second rule), if a transaction fails, the parent transaction fails as well. Next,
we consider the other two cases of transaction termination:

HF(S) = ⊠

HF(S ↑ T ) = HF(
↼

T )

HF(S) = ⊠

HF(S ↑ T ) = HF(
←֓

T )

If a transaction aborts, then the outcome is the same as that of the installed com-
pensation. Similarly, in the case of a forced abort, the outcome is the same as that
of the installed compensation. The following two rules cater for transactions which
are executed as compensations:

HF(T ) = �\T ′

HF(
↼

T ) = ⊠

HF(T ) = T ′, T ′ ∈ {⊠,�}

HF(
↼

T ) = �

A successful compensation implies that the transaction has been correctly compen-
sated (i.e. aborted (⊠)). Otherwise, if the compensation aborts or fails, then the
transaction fails (�). (The case of a forced termination is similar but the rules are
not given for brevity.)

From the above rules, the similarity of t-calculus to Sagas and cCSP is immediately
apparent. The same applies for the handling of parallel transactions. If two parallel
transactions succeed, then their compensations are installed in parallel. When both
fail, the end result depends on a special function (&) which follows the following
two simple rules: if one of the parallel transaction fails, then the whole parallel
composition fails and if one of the parallel transaction is not a forced termination,
then the parallel composition in not a forced termination.

Of particular interest is the definition of the programmable compensation, speculative
choice, exception handling mechanisms and alternative forwarding because these are
rarely explicitly available in other calculi. In the case of programmable compensation,
upon the successful completion of a transaction, the existing accumulated compen-
sation is discarded and the programmable compensation is installed. Otherwise, the
accumulated compensation is not discarded.
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Alternative forwarding is interesting because it provides a continuation point after
successful abortion. Without such an operator (as in the case of many other calculi)
there is no way (except through scoping4) of going back to the forward flow once the
backward flow has been started. Note that if T is the alternative of S, T is only run
if S aborts. Otherwise, if S succeeds (triggering no compensation) or fails during
compensation, T is never activated.

t-calculus offers two ways of handling exceptions: forward or backward. The forward
exception handler is activated only upon a non-forced failure, i.e. when a compen-
sation, which has not been triggered by forced termination, fails. Otherwise, the
exception handler is not activated. Note that forward exception handling is similar
to alternative forwarding which instead of activating upon failure, activates upon
abort. In the case of backward exception handling, the exception handler is activated
as backward behaviour upon a failure (forced or not), i.e. the transaction contin-
ues with compensation after the termination of a backward exception handler.The
rules which handle forward activation, backward activation in the case of forced and
non-forced termination are given below:

HF(S) = �

HF(S � T ) = HF(T )

HF(S) = �

HF(S � T ) = HF(
←֓

T )

HF(S) = �

HF(S � T ) = HF(
↼

T )

The first rule deals with forward exception handling in the case of a failure. The
second and third rules deal with backward exception handling of forced and non-
forced failure respectively. Note that in the latter cases, transaction T is executed as
backward behaviour.

Example

The example of the bookstore given in t-calculus is as follows:

Order
def

= (Order ′ ÷ 0) ⊓ Abort

ReStock
def

= (ReStock ′ ÷ ♦) ⊓ Fail

Transaction
def

= { ( (Order > (ReStock || Email)) ;
((Offer1  Offer2)>Withdraw) ;
((Pack > Unpack) || (Credit > Refund)) ;
((Courier1 > Cancel1)⊗ (Courier2 > Cancel2))
) � Operator }

4Recall that abortion is not propagated to the parent in the case of Sagas and cCSP.
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Note that the undefined processes (Offer1, Pack , etc) can be defined similarly to
Order where we encode the possibility of failure by a non-deterministic internal choice
between the execution of the activity and Abort. With this arrangement we model the
possibility of an action failing since in the semantics of the t-calculus, basic activities
(such as Order ′) never fail. In the case of compensating activities such as ReStock ,
Email , etc, the definition is similar to the one given for ReStock . Note that if the
compensation fails, this time we signal a Fail rather than an abort, meaning that the
problem cannot be compensated (unlike Abort).

The definition of the main transaction is quite straightforward due to the rich syntax
of the t-calculus, providing explicit operators for alternative forwarding, speculative
choice and programmable compensation.

Note that in this example we have also failed to model the interactions among the
transaction parties and the compensations cannot run in parallel as requested by the
specification.

3.5 Automata

Automata have also been used to model compensating transactions. Apart from the
advantage of being graphical, a lot of work has already been done in automata partic-
ularly in the area of verification which can then easily be adapted for compensations.

Communicating hierarchical transaction-based timed automata (CHTTAs) [LMSMT06,
LMSMT08] are communicating hierarchical machines [AKY99] enriched with time
(similarly to timed automata [AD94]), and with other slight modifications to accom-
modate the representation of transactions. Two appealing features of CHTTAs (apart
from the inherent graphical aspect) is that they support the notion of time and can be
reduced to timed automata and hence model-checkable. Long running transactions
(LRTs) are defined over and above CHTTAs such that a CHTTA can be specified
as the compensations of another CHTTA. Furthermore, LRTs can also be nested or
composed in parallel or sequentially. Similarly to a number of other approaches, the
order of compensation execution in LRTs is in reverse order in case of sequence and
in parallel in case of a parallel composition. Also, in the case of successfully aborted
nested transactions, the parent transaction is not aware of abortion and continues
unaffected. A limitation of LRTs is that they do not show clearly (graphically) which
compensation corresponds to which component and it is assumed that compensations
succeed. The latter limitation can be lifted by introducing exception handling which
is completely absent in LRTs. Another mechanism which LRTs do not provide is
forced termination and consequently neither termination handling.

In what follows, we give a brief overview of the syntax and semantics of LRTs: (i)
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first, we introduce the basic transaction-based timed automata (TTAs) on top of
which CHTTAs are defined; (ii) next, we introduce CHTTAs; and (iii) finally, we
describe how CHTTAs can be composed together through nesting, sequential and
parallel composition to form LRTs.

Transaction-based Timed Automata

A transaction-based timed automaton (TTA) is a timed automaton with some ad-
ditions enabling it to handle transactions. Formally, given a set of communicating
channels C, a set of clocks X, and a set of clock constraints Φ(X) on X, a TTA is a
tuple A = (Σ, X, S,Q, q0, Inv , δ) where:

Σ ⊆ {a!, a? | a ∈ C} is a finite set of labels;
S is a finite set of superstates;
L is a finite set of basic states;
Q = L ∪ S ∪ {⊙,⊗} where ⊙ and ⊗ represent the special states commit
and abort respectively;

q0 ∈ L is the initial state;
Inv : L ∪ S → Φ(X) assigns a function to each state which must hold
whenever the state is enabled;
δ ⊆ (L× Σ ∪ {τ} × Φ(X)× 2X ×Q) ∪ (S × {�,⊠} ×Q) is the set of
transitions with special labels � and ⊠ being special labels for commit
and abort transitions respectively.

Note the various modifications to timed automata: (i) there are two different kinds
of states: superstates and basic states; (ii) the introduction of two special states, ⊙
and ⊗, which are considered as final states; and (iii) special transitions labelled with
� and ⊠ which are the only transitions possible from superstates. The motivation
behind these additions we be clear when we introduce CHTTAs and LRTs in what
follows.

Communicating Hierarchical Transaction-based Timed Automata

Given a set of TTAs A = {A1, . . . , An} (with Ai = (Σi, X i, Si, Qi, qi0, Inv
i, δi)), a

CHTTA is either a tuple 〈Ai, µ〉, or a parallel composition of two CHTTAs, where
µ is a hierarchical composition function u : Si → CHTTA{Ai+1,...,An}, assigning a
CHTTA to each superstate. Note that a state can only be refined by an automaton
with a higher index, avoiding cyclic nesting. Thus, CHTTAs are parallel compositions
of TTAs with superstates refined in terms of other TTAs. Through shared channels,
parallel CHTTAs can communicate by synchronising transitions with a sending and
a receiving action on a particular channel.
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Although CHTTAs support special states and transition labels to denote transaction
commit and success, to support compensations another layer on top of CHTTAs is
required; enabling the definition of long running transactions.

Long Running Transactions

A long running transaction (LRT) requires that upon the failure of one of its activities,
any previously completed activities are compensated. Thus, the basic building block
of a LRT is the association of a CHTTA as the compensation of another: a CHTTA,
B, can be specified as the compensation of another CHTTA, A, represented by A�B.
Furthermore, LRTs can be composed: (i) sequentially — having two LRTs, T1 and T2,
T1 ·T2 is their sequential composition; (ii) in parallel — having two LRTs, T1 and T2,
T1 || T2 is their parallel composition. For example, if A2 in A1 �B1·A2 �B2 fails, then B1

must be executed to compensate for A1. However, through nesting, a transaction may
have subtransactions such that if a subtransaction fails but successfully compensates,
then the main transaction is not aborted. A nested transaction is represented by {T}
where T is a LRT.

Semantics

The semantics of LRTs is given in terms of an encoding function J·K : T → CHTTA×
CHTTA×P(CHTTA), which given a LRT returns (i) a CHTTA representing the for-
ward behaviour; (ii) a CHTTA representing the backward (compensating) behaviour;
(iii) a set of CHTTAs, one for each nested transaction, controlling whether the com-
pensation for a nested transaction needs to be executed (compensation is only ex-
ecuted if the nested transaction has not aborted). It is beyond the scope of this
overview to give the full semantics of LRTs but to give an idea, we show how the
semantics of two sequentially composed long running transactions is defined.

Informally, the LRT T = A1 �B1 · {A2 �B2} · A3 �B3 (where A1, A2, A3, B1, B2, B3 are
CHTTAs) should (i) execute A1 followed by A2 followed by A3; (ii) but if A1 fails,
execution stops; (iii) while if A2 fails, execution progresses normally to A3 since A2

is nested; (iv) if A3 fails, A2 has to be compensated (if it has not failed) and A1 also
has to be compensated; (v) if all of A1, A2 and A3 succeed, then T commits and it
can be undone through the compensation B3 followed by B2 followed by B1. Thus
(A,B,M) = JT K is formally defined as (depicted in Figure 2):
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A = 〈(∅, ∅, {s1, . . . , s5}, {s1, . . . , s5, q0,⊙,⊗}, q0, Inv true , δ), µ〉
B = 〈(∅, ∅, {s1, s2, s3}, {s1, s2, s3, q0,⊙,⊗}, q0, Inv true , δ

′), µ′〉
M = ∅

where
δ = {(q0, τ, true, ∅, s1), (s1,�, s2), (s1,⊠,⊗), (s3,�,⊙), (s3,⊠, s4), (s2,�, s3), (s4,�, s5), (s5,�,⊗)}
µ = {(s1, A1), (s2, A

′
2), (s3, A3), (s4, B

′
2), (s5, B1)}

δ′ = {(q0, τ, true, ∅, s3), (s3,�, s2), (s2,�, s1), (s1,�,⊙)}
µ′ = {(s1, B1), (s2, B2), (s3, B3), (s4, B

′
2)}

A′2 = 〈({cn1!, an1!}, ∅, {s1}, {s1, q0, q1, q2,�}, Inv true , δA), µA〉
B′2 = 〈({cn1?, an1?}, ∅, {s1}, {s1, q0,�}, Inv true , δB), µB〉
δA = {(q0, τ, true, ∅, s1), (s1,�, q1), (s1,⊠, q2), (q1, cn1!, true, ∅,⊙), (q2, an1!, true, ∅,⊙)}
µA = {(s1, A2)}
δB = {(q0, cn1?, true, ∅, s1), (s1,�, q1), (q0, an1?, true, ∅,⊙)}
µB = {(s1, B2)}

Next, we encode the bookshop example in terms of a LRT.

Example

There are a number of limitations in long running transactions which do not allow
the faithful specification of the example. Unless one adds more operators through
channel communication, features such as exception handling, alternative forwarding
and speculative choice are not available. Thus the bookshop example in long running
transactions can be encoded a follows:

(Order �(ReStock || Email)) · {Offer 1 �Withdraw}·
((Pack �Unpack) || (Credit �Refund)) · (Courier 1 �Cancel1)

Note that the following features could not be encoded: (i) alternative forwarding to
try the second offer if the first one fails; (ii) speculative choice among the couriers;
and (iii) exception handling reporting failure to a human operator.

The basic activities such as Order and ReStock can be encoded as a CHTTA having
channel communication with a third-party which then communicates back on other
channels indicating whether the action was successful or not. This is depicted in
Figure 3.

Note that there are no superstates and thus the refinement function µ is empty.
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Figure 2: A representation of (A,B,M) = JT = A1 �B1 · {A2 �B2} · A3 �B3K with (a)
showing A and (b) showing B.
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Figure 3: A representation of the Order CHTTA.

3.6 Comparison of Orchestration Approaches

The majority of orchestration approaches are quite similar, particularly Sagas, cCSP,
and t-calculus basically vary as regards some operators which one offers and the
others do not (ignoring more technical aspects such as the way the semantics are
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defined). For example cCSP offers the yield operator while t-calculus offers the back-
ward exception handler. An orchestration approach which particularly stands out is
StAC due to its treatment of compensations as a series of stack operations. Thus,
operations which in the other notations are automatic (e.g. compensation installation
and activation), in StAC are explicitly programmed by the programmer. The au-
tomata approach stands out mostly due to the fact that it is automata-based and not
due to major differences in the underlying semantics. Apart from this, it differs be-
cause it does not support exception handling and forced termination. Finally, BPEL
also shares many commonalities with the other orchestration approaches. The main
difference is that BPEL allows for full customisation of the compensation and that
compensations are executed in reverse order of the original execution (as opposed to
running compensations in parallel for a parallel forward execution).

Other features which are common to all notations will be discussed in Section 6 where
orchestration approaches are compared to choreography approaches.
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4 Choreography Approaches

As opposed to orchestration approaches, choreography approaches do not assume a
centralised coordination mechanism. Rather, activities participating in a choreogra-
phy collaborate together towards forming a higher-level activity through direct com-
munication. This means that each activity is aware of other collaborators and knows
when to start processing (according to some communication sequence). Due to the
importance of communication in choreography approaches it is not surprising to find
that all the approaches reviewed in this section are process algebras. This is mainly
because communicating processes can be naturally modelled in process algebras.

In what follows, we present a number of process algebras which model a distinctive
compensation modelling approach. Other process algebras which are intended as
formalisations of BPEL will be tackled in the section dedicated to BPEL (Section
5.3.3).

4.1 πt Calculus

πt calculus [BLZ03] can be considered as one of the first attempts of formalising
long running transactions using a process algebras. The approach is quite different
from that of flow composition languages — mainly due to the distributed approach
of processes rather than a central approach.

πt calculus shares many constructs with the π calculus with the addition of the trans-
action construct which is not present in the π calculus. Basically, a transaction (in
πt calculus) is a process with another three associated processes: a failure manager,
a compensation store, and a compensation process. The failure manager is a process
which is executed in case the transaction fails, the compensation store is a collection
of compensations which compensate for previously completed nested transactions,
while the compensation process is a process which will be added to the compensation
store if the current transaction succeeds. Then, in case of a failure, the compensation
store is executed followed by the execution of the failure manager.

Syntax

The following is the syntax of the πt calculus with P ranging over processes, x, y,
u, v ranging over a countable set of names, ũ ranging over tuples of names, K, K ′

ranging over process constants, a ranging over boolean variables, and k over boolean
values:
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P ::= done success
| abort error
| x〈ũ〉 output
| x(ũ).P input
| P | P parallel
| P ;P sequence
| (x)P new
| K(ũ) invocation
| if (a = k) then P else P conditional
| t(P, P, P, P ) transaction

Thus, a πt calculus process can be done or abort being the inert process or the
failing process respectively; x〈ũ〉, representing an output on channel x affecting a set
of variables ũ; x(ũ).P , denoting input on channel x affecting the set of variables ũ;
P |P and P ;P representing parallel and sequential composition respectively; (x)P ,
specifying name x as local for the given scope P ; K(ũ), being the invocation of a
process P with values ũ whereK(ũ) = P ; the conditional operator, which executes the
first process if a = k or the second if otherwise, or the transaction process t(P, F,B,C)
where P is the main process, F is the failure handler, B is the accumulation of
compensations, and C is the compensation process for the given transaction.

Semantics

The semantics of πt calculus is given in terms of reduction rules. In this short
overview, we focus mostly on those concerning compensation. The first one which
provides a lot of insight as to the handling of transactions is the following:

t(t(done, F,B,C) | P, F ′, B′, C ′) → t(P, F ′, B′ | C,C ′)

The intuition behind it is quite straightforward. Upon the successful completion of a
transaction (terminating as done), the corresponding compensation is added in par-
allel to the “compensation bag” and control is passed on to the parent transaction.
The fact that compensations are added in parallel implies that the only way of hav-
ing sequentiality among compensations is through the use of synchronisation. This
approach will similarly be utilised in other process algebras. Also note that the accu-
mulated compensation B is discarded and not propagated to the parent transaction.
This means that the accumulated compensation of the completed transaction is being
discarded and replaced by C.

After we have considered what happens upon the successful termination of a trans-
action, next we consider the possibility of failure by considering the following rule:
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t(abort, F,B,C) → B ;F

This rule shows that upon the failure of a transaction, both the accumulated com-
pensations and the failure manager are executed in sequence (B ;F ). Hence upon an
abort within a transaction, the parent (if there is one) is not immediately aware of
the failure, but will be if B ;F also fails.

Next, we consider how a parent transaction is affected by the failure of one of its chil-
dren. For this purpose, we explain the following two structural congruence equations:

abort | abort ≡ abort
done | P ≡ P

These rules (and the absence of the rule abort | P ≡ abort) implies that for a parallel
composition to be treated as a failed process, all the processes must terminate (i.e.
there is no notion of forced termination). Only then, can the rule which handles the
transaction abort trigger and cause the compensation bag to be executed. Note that
one aborted process is enough for the whole transaction to be considered aborted
since by the second equation done | abort ≡ abort .

Example

The example in πt-calculus is given in parts; we start by showing how basic actions
can be encoded:

Store
def

= order(resp).resp(1) | order(resp).resp(0)

Store ′
def

= stock(resp).resp(1) | restock(resp).resp(0)

Order
def

= order〈resp〉 | resp(a).if (a=1) then done else abort | Store

ReStock
def

= restock〈resp〉 | resp(a).if (a=1) then done else abort | Store ′

Shop
def

= t(Order , done, done, (ReStock | Email))

Note how the Shop transaction is responsible for starting the stock handling activity
— we exploit the transaction construct with the first element being the actual activity
(Order) and the last entry of the quadruple being the corresponding compensation
(ReStock in parallel with Email). Furthermore, the Order operation is encoded as
a communication with the Store (representing an activity at the book warehouse)
such that if the activity at the store succeeds, the Order activity receives a positive
response. The possibility of failure is encoded by non-deterministically sending both
a 1 and a 0. The same approach should be used for encoding the rest of the activities.
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Next we show how the offers are tackled:

Offers1
def

= t(Offer1,Offers2, done,Withdraw)

Offers2
def

= t(Offer2, done, done,Withdraw)

In this case, we use the failure manager of the transaction which is specified as the
second entry in the transaction definition. In this way we model the behaviour that
if Offer1 fails, Offer2 is started, and if Offer2 fails as well, execution continues since
the failure handler always succeeds. Note that conceptually the turning down of an
offer is not a failure however the encoding presented above provides the equivalent
behaviour in the absence of an alternative forwarding operator.

Finally, we tackle the courier booking:

Couriers
def

= t(Courier1〈resp1〉 | Courier2〈resp2〉 |
resp1(a1).resp2(a2).
if (a1=1 & a2=1)
then Cancel2 ; done
else if (a1=0 & a2=0)

then abort else done,
done, done,Cancel)

This is the most intricate part of the example. The values received on channels
resp1 and resp2 model the response received from Courier1 and Courier2 respectively.
Subsequently, if both bookings succeed, then one is cancelled (by executing Cancel i).
If both fail, then the courier booking fails. Otherwise (if one succeeds and one fails),
nothing is done except reporting success. Note that it is not straightforward to encode
the decision of whether to use Cancel1 or Cancel2 as a compensation for the whole
transaction. Above we simply use Cancel to represent either possibility.

The overall transaction which glues everything together is as follows:

Transaction
def

= t(Shop ;Offers ; (Packing | Bank) ;Couriers ,
Operator , done, done)

4.2 SOCK

SOCK [GLG+06, GLMZ08, LZ09] is aimed specifically as a calculus for service oriented
computing. It has three layers intended for modelling service oriented architectures.
The layers are the service behaviour calculus, the service engine calculus, and the
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services system calculus. The first layer describes the low-level behaviour of a service;
the second layer has the aim of handling the various instantiations of a service; while
the third layer allows for the definition of the whole system, possibly including various
service engines.

In this overview, we will focus on the behaviour layer. SOCK has a number of spe-
cialised constructs intended for modelling the service-oriented architecture. For ex-
ample, SOCK provides the request-response mode of communication. This differs
from the standard input-output communication in that a client can solicit an activity
on a server and receive the output of the activity back. For such a scenario, SOCK
also offers other notions such as the concept of a location. A process is not only
distinguished by its definition but also on the location where it is running.

SOCK provides a flexible error handling mechanism with three variations: fault han-
dling, termination handling and compensation handling. The mechanism relies on
a handler which is a function associating names with processes. If a fault name is
thrown, the corresponding process (according to the function) is executed. The ter-
mination and compensation handling mechanism is associated to the scope. A scope
can be thought of as an execution container to which a termination can be associ-
ated. If the scope terminates and the termination handler has not yet been invoked,
then the termination handler becomes a compensation handler because the scope has
been successfully completed. SOCK provides a high level of flexibility by allowing the
modification of the fault and termination handlers to be carried out at any point of
the process execution in the corresponding scope.

Another peculiarity of SOCK is that it provides a mechanism for distributed compen-
sation. This is achieved by allowing a server to send a failure handler to the client.
Thus, if the operation on the server fails, the client is informed by the server how
compensation can take place.

Syntax

SOCK’s syntax is given as follows, with P , Q ranging over processes, o over one-way
communication operations, or over request-response operations, l over locations, q
over scope names, f over fault names, u over scope names and fault names:
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P,Q ::= o | or(P ) input
| o@l | or@l(H) output
| P ;Q sequential composition
| P | Q parallel composition
| P +Q non-deterministic choice
| 0 inert process
| {P}q scope
| inst(H) handler update
| throw(f) throw
| comp(q) compensate
| cH current handler

A SOCK process can be a one-way (o) or a request-response input, written as or(P ),
where P is the process to be executed upon an incoming request; a one-way (o@l) or
a request response output, written as or@l(H), such that H is the handler to be used
in case the external operation requested fails; a sequential or a parallel composition;
a non-deterministic choice, denoted by P + Q; the inert process; a scope-bounded
process, denoted by {P}q, with P as its operation and q as its name; the installation
of a handler H, denoted by inst(H); the throw of a fault f , denoted by throw(f); the
activation of compensation for a scope name q, written as inst(q); or a reference to
the current handler, cH.

To facilitate the definition of the semantics, the following additional syntax is required:

P,Q ::= Exec(P, or, l) request-response execution
| {P : H : u}q⊥ active scope
| or(H) receive for response
| or〈H〉 dead receive for response
| or!f@l fault send

A process can be an executing request-response Exec(P, or, l) such that P is the
process being executed, or the invoking operation and l the location; an active scope
{P : H : u}q⊥ where P is the running process, H the fault handler, u the name of
a handler which is waiting for the appropriate time to be executed, and q⊥ stands
for either the name of the scope or ⊥ (representing the fact that the scope is in
zombie state); receiving a response for an earlier outgoing request-response, denoted
by or(H); receiving a response for an earlier outgoing request-response while in zombie
state, denoted by or〈H〉; or the sending of a fault f , or!f@l, in response to an earlier
request.
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Semantics

The semantics of SOCK is given in terms of a considerable number of rules. For this
overview we will focus on some important ones. The first four rules give some insight
regarding the request-response mechanism:

or(P )
↑or@l
−−−→ Exec(P, or, l) Exec(0, or, l)

↓or@l
−−−→ 0

or@l(H)
↑or@l
−−−→ or(H) or(H)

↓or
−−→ inst(H)

The upper two rules deal with the processing of an incoming request-response: upon
a request (↑ or@l), the execution of process P is initiated; once P completes, the
response (↓ or@l) is sent back to the requester. The lower two rules deal with an out-
going request-response: A request is first sent to a server and a response is expected;
as soon as the response arrives back, the handler is installed.

Consider the following rules concerning the activation of a fault handler and the
installation of compensation respectively:

{0 : H : f}q⊥
τ
−→ {H(f) : H⊕ [f 7→ ⊥] : ⊥}q⊥ {0 : H : ⊥}q

inst(cmp(H))
−−−−−−−→ 0

The first rule states that if a name f is waiting to be executed in the scope, its handler
is loaded (the subsequent two rules ensure that f always has a handler) and removed
from the handler function H. The second rule installs the scope termination handler
(cmp(H)) to the next higher scope so that this can act as compensation. Note that
the main activity within the scope is the inert process, meaning that the activity has
successfully terminated.

Next, we consider what happens when a fault is thrown:

P
th(f)
−−−→ P ′,H(f) 6= ⊥

{P : H : u}q⊥
τ
−→ {P ′ : H : f}q⊥

P
th(f)
−−−→ P ′,H(f) = ⊥

{P : H : u}q
th(f)
−−−→ 〈{P ′ : H : ⊥}⊥〉

The first rule deals with the case when a fault handler is available, i.e. H(f) 6= ⊥.
In such a case, the fault name is set in the scope waiting to be executed. On the
other hand, if no handler is available, the scope changes into zombie mode — marked
with the scope name ⊥ — and the fault is rethrown to the next outer scope. A scope
in zombie mode signifies that the scope has not completed successfully. However, a
zombie scope is still allowed to continue executing a number of particular processes
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controlled by the killable function. This function kills all processes which are in
parallel to an unhandled fault (forced termination) but allows mainly two kinds of
processes to continue: pending communication and termination handlers of forcedly
terminated child scopes. Note that the zombie scope is enclosed in angled brackets
signifying protection, indicating that the scope can no longer be killed by external
faults.

Another important detail is that to ensure that the handler updates are executed
before a fault is handled, execution of a fault throw is not allowed to take place
unless the function killable is defined. Given that this function is undefined on handler
installations, fault throws will have to wait for handler updates to take place.

Finally, the next set of rules deal with installing and discarding compensations:

P
inst(H)
−−−−→ P ′

{P : H′ : u}q⊥
τ∗

−→ {P ′ : H′ ⊕H : u}q⊥

P
cm(q,Q)
−−−−→ P ′,H(q) = Q

{P : H : u}q′
⊥

τ
−→ {P ′ : H⊕ [q 7→ 0] : u}q′

⊥

In the first rule, a handler (H) is installed. Recall that a handler is a function from
names to processes. Thus, the operator ⊕ merges the two functions H and H′ into
a single function, replacing any conflicts by the mapping of the new handler (H).
The second rule states that after the execution of compensation Q, the corresponding
handler should be removed, i.e. the function mapping the name q is set to the inert
process.

Example

The example encoded in SOCK is presented below starting from the definition of the
basic activities:

Store
def

= order ; (x@ST | (x) + (x ; throw(st))

Order
def

= order@ST ([s 7→ (cH | ReStock | Email), st 7→ throw(f)])

ReStock
def

= restock@ST ([rs 7→ throw(g)])

Modelled in a service-oriented fashion, the Order activity contacts the Store through
channel order. If the activity at the Store succeeds, then the activity exits, other-
wise, the activity throws fault st. This fault is handled by Order and rethrown as
fault f which is in turn handled by the main transaction (given later) — triggering
compensation for scope s. The activities should be all modelled in this fashion. A
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slight difference applies to compensating activities where the fault to be triggered is
g (instead of f) as in the case of ReStock . This causes the Operator activity to start.
Finally, note that the handler named s will be used to accumulate compensations in
parallel — hence the use of cH which refers to the currently installed compensation.

Next, we give the definition of processes related to the offers:

Offer1
def

= offer1@SP([failedOffer 7→ Offer2])

Offer2
def

= offer2@SP

Offers1
def

= ((offer1 ; (x@MK | (x ; inst([s 7→ (cH | Withdraw)])))) +
(x ; throw(failedOffer)))

Offers2
def

= offer2 ; (x@MK | (x ; inst([s 7→ (cH | Withdraw)])) + (x))

If the first offer fails, the exception failedOffer is thrown. However, this is caught by
Offer1 and is not propagated further. failedOffer is handled by attempting Offer2. If
this fails as well, no action is taken. On the other hand, if either of the offers succeed,
the compensation Withdraw is installed.

Finally, we consider the courier booking:

Courier
def

= {courier1@C1([c1 7→ Cancel1, failedCourier 1 7→ failed1@C]) ;

booked1@C}c1 |
{courier 2@C2([c2 7→ Cancel2, failedCourier 2 7→ failed2@C]) ;

booked2@C}c2 |
( (booked1 ; (failed2 + (booked2 ; comp(c2)) ;

inst([s 7→ (cH | Cancel1)]))) +
(failed1 ; (booked2 ; inst([s 7→ (cH | Cancel2)]) +
(failed2 ; throw(f)))))

For the Courier process, the non-deterministic choice has been used to distinguish
among the possible outcomes. If both succeed, then the second courier is compensated
by running the compensation associated to the scope (comp(c2)). If either of them
fails and the other succeeds, then the appropriate compensation is added to the higher
compensation scope (s). Finally, if both fail, then the fault f is thrown, causing the
whole transaction to fail.

We end this example by giving the topmost transaction which refers to the above
defined processes:

Transaction
def

= {inst([f 7→ comp(s), g 7→ Operator ]) |
(Order ;Offer1 ; (Pack | Credit) ;Courier)}s
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Note the installation of the fault handlers f and g, the former initiating the compen-
sation of scope s.

4.3 webπ

webπ [LZ05, MG05] is an extension of asynchronous π calculus with a special process
for handling transactions. A notable aspect of webπ is that it has the notion of a
timeout; if a transaction does not complete within a given number of cycles, then it is
considered to have failed. A variation of webπ which abstracts from this notion of time
is webπ∞ [ML06]. When the notion of time is abstracted, a transaction which has not
timed out is a transaction with normal behaviour, while timed out is a failure. Both
flavours of webπ provide the notion of mobility which is important when modelling web
services. For this reason, machines are a layer on top of processes such that different
machines with different processes can be executing concurrently. However note that
time is not synchronised across machines, but only between parallel processes on the
same machine. In this overview, we will focus on webπ∞ and hence we will not deal
with time. Furthermore, we choose also to leave out machines.

Syntax

The syntax of webπ∞ is as follows, with P , Q ranging over processes, x, y, z, u ranging
over channel names, ũ ranging over tuples of names, and i over a finite non-empty
set I of indexes:

P ::= 0 nil
| x ũ output
| Σi∈Ixi(ũi).Pi guarded choice
| (x)P restriction
| P | P parallel composition
| P ⊕ P internal choice
| !x(ũ).P guarded replication
| 〈| P ;P |〉x work unit

A process can be the inert process; x ũ, denoting an output of a tuple of names u on
a channel x; an input-guarded choice Σi∈Ixi(ũi).Pi such that upon an input xi, the
process evolves to Pi; a process P with a restriction on a name x, written as (x)P ; a
parallel composition; an internal choice written as P⊕P ; an input guarded replication
!x(ũ).P , spawning a process P upon an input on x; or a work unit 〈| P ;Q |〉x which
behaves as P until an abort is signalled on x, after which it behaves as Q.

Semantics
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It is evident from the syntax that webπ∞ does not provide a direct construct for
compensation. The work unit construct available is closer to the concept of excep-
tion handling rather than a compensation approach. However, the work unit is still
expressive enough to encode compensations.

The semantics of the calculus is given in terms of a structural congruence and a
reduction relation. In what follows, we give a description of the important aspects of
webπ∞ while highlighting the relevant rules. Consider the following two axioms:

〈| 0 ;Q |〉x ≡ 0 〈| 〈| P ;Q |〉y | R ;S |〉x ≡ 〈| P ;Q |〉y | 〈| R ;S |〉x

The first axiom states that upon the successful completion of a work unit, the repa-
ration Q is discarded. In other words this means that a transaction cannot be com-
pensated once it has completed. The second axiom shows how nested transactions
are flattened. This implies that the failure of a parent transaction does not affect its
children and vice-versa (unless explicitly programmed).

There are another two axioms which deal with work units. Their purpose is to allow
restrictions and outbound messages to float in an out of work unit boundaries in a
similar fashion to nested transactions. The rules are below:

〈| (z)P ;Q |〉x ≡ (z)〈| P ;Q |〉x if z /∈ {x} ∪ fn(Q)
〈| z ũ | P ;Q |〉x ≡ z ũ | 〈| P ;Q |〉x

Note that in the first axiom, if z is the name of the work unit (z = x), then taking the
restriction outside of the unit would render the unit unabortable from the outside.
On the other hand, if z is a free name in Q (z ∈ fn(Q)), z in Q would be bound if
the restriction of z is taken outside the unit.

The rule responsible for aborting a unit (not given here),upon receiving an abort
signal (an output on the name of the unit), replaces the main body of the process
by the exception handler. This has the purpose of simultaneously aborting the main
body and giving control to the exception handler. Note that the exception handler
is protected from any further external abort signals by restricting the name of the
new work unit using the first axiom above. Purposely, the rule does not fire if the
work unit includes any nested transactions, outbound communication or restrictions,
as these must first float out of the work unit, before the work unit can be aborted.

Example

The example encoded in webπ∞ is given below, starting with the basic activities:
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Order
def

= s1 ⊕ f1
Restock

def

= 0⊕ g

ReStock
def

= 〈| Order | s1.c1.w1 ;ReStock | Email |〉w1

Pack
def

= 〈| DoPacking | s3.c3.w3 ;Unpack |〉w3

Credit
def

= 〈| DoCrediting | s4.c4.w4 ;Refund |〉w4

The possibility of a success or failure of an activity is modelled through internal choice,
signifying a success by an output on si or a failure on fi. A central issue in this example
is that the compensable actions should only be activatable once the corresponding
action has been completed successfully. For this reason, in parallel with each action,
the channel input si is used to wait for the signal of the successful completion of the
activity. Unless si is received, ci cannot accept any input. For this reason, the failure
of any activity is always triggered through ci (which in turn triggers wi) and never is
the name of work unit (wi) directly invoked. The other activities should be encoded
in a similar fashion. In the case of compensating activities, their failure triggers a
fault g which is handled (later on) by activating the Operator activity.

Another important issue is that transactions with the possibility of compensating
after completion should be carefully treated since (in webπ∞) the compensation of
a completed transactions (work units) is discarded. This is the reason behind the
presence of ci — ci waits for input and only after ci is received, is the reparation
triggered (output on wi).

Next, we consider the encoding of the offers:

Offer1
def

= s2 ⊕ x

Offer2
def

= s2 ⊕ 0

Offers1
def

= 〈| Offers2 | s2.c2.w2 ;Withdraw |〉w2

Offers2
def

= 〈| Offer1 ;Offer2 |〉x

In case Offer1 fails, it simply signals failure to the work unit in Offers2. This, in turn,
triggers Offer2. If any of these succeed, the compensation Withdraw is activated by
output on s2. However, if both fail, nothing happens, i.e. the main transaction is not
affected.

The encoding of the courier booking is given below:
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Book 1
def

= (s′1 | s5)⊕ f ′1
Book 2

def

= (s′2 | s6)⊕ f ′2
Courier1

def

= 〈| Book 1 | s5.c5.w5 ;Cancel1 |〉w5

Courier2
def

= 〈| Book 2 | s6.c6.w6 ;Cancel2 |〉w6

Couriers
def

= Courier1 | Courier2 | (s
′
1.(s

′
2.c6 + f ′2) + f ′1.(s

′
2 + f ′2.f5))

The case of the courier is handled among five processes. The Couriers process starts
the booking of Courier1 and Courier2 in parallel. The booking is then handled by the
two processes Book 1 and Book 2. If a booking succeeds, both Couriers and Courier1
(or Courier2) are notified: Courier1 is notified so that the compensation is made
available by exposing c5 (or c6 in the case of Courier2). Couriers has to also be
notified in order to take the necessary decision regarding both bookings. If both
succeed, one of them is compensated; if both fail, then a failure is signalled to the
main transaction (Transaction); otherwise, if one succeeds and the other fails, no
action is taken.

Finally, we give the definition of the main transaction as follows:

Transaction
def

= 〈| ReStock | Offers | Pack | Credit | Couriers |∑
i∈{1..5} fi.main ;

〈| c1 | c2 | c3 | c4 | c5 | c6 ;Operator |〉h |〉main

Note that Transaction starts all the main processes in parallel (diverting from the
original specification of the example) since webπ∞ does not provide a sequential com-
position operator.

4.4 dcπ

dcπ [VFR09] tries to address various limitations of its predecessors. In particular, it
supports dynamic construction of compensations; guarantees that installations and
activations of compensations take place (through proofs); and preserves compensa-
tions till after the completion of transactions so that completed transactions can also
be compensated for.

A central aspect of dcπ is that it assigns a unique identifier to each transaction. It
is through this identifier that a transaction can be signalled to start executing its
compensation. For this reason any process which is allowed to signal a transaction
t to compensate, should be given access to channel t (whose name corresponds to
the identifier of the transaction). Scope extrusion is in fact heavily heavily used in
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dcπ for this purpose. Informally, scope extrusion occurs when a restricted (local)
channel is passed on to another process (outside of the scope of the channel). This
technique is also used to pass control among the processes and thus allowing a form
of sequentiality which is not explicitly available in dcπ.

Syntax

dcπ has two kinds of processes: compensable processes and execution processes. In
addition to compensable processes, execution processes can also include stored com-
pensations. The syntax of compensable processes is given next with i ranging over
the natural numbers; P , Q, Pi and Qi ranging over compensable processes; a and ai
ranging over a countable set of channel names N ; t ranging over a countable set of
transaction identifiers T ; v and x ranging over the union of the disjoint sets N and
T ; and ṽ and x̃ ranging over sequences of identifiers.

P,Q ::= 0 inaction
| t failure
| a〈ṽ〉 output
| Σi∈Iai(x̃i)%Qi.Pi input guarded choice
| !a(x̃)%Q.P input guarded replication
| (P | Q) parallel composition
| (ν x)P restriction
| 〈P 〉 protected block
| t[E] transaction scope

Thus, a compensable process may be the inert action; a failure signal t for a transac-
tion named t; an output ṽ on a channel a, written as a〈ṽ〉; an input guarded choice
Σi∈Iai(x̃i)%Qi.Pi where upon an input on ai, the process evolves to Pi, installing
compensation Qi; a replication !a(x̃)%Q.P , spawning process P and installing com-
pensation Q upon each input on a; scope restriction (ν x)P , restricting x in P ; a
protected block 〈P 〉 (explained below); or a transaction scope t[E] named t with
body E (whose syntax is given below).

The syntax of an execution process is given below with E and F ranging over execution
processes:

E,F ::= P compensable process
| {P} stored compensation
| (E | F ) parallel composition
| (ν x)E restriction

An execution process may be a compensable process; a stored compensation {P} with
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body P ; a parallel composition of execution processes; or a scope restriction (ν x)E.

Semantics

An aspect which is particular to dcπ is that compensation is associated to input
rather than a successfully completed action. Note that compensations are associated
to input and not output because output can be used to signal failure. The advantage
of this approach is that it offers a high level of dynamicity in the installation of
compensations such that a compensation process can be composed in parallel to the
currently stored compensation upon each input. This logic is formally given in terms
of reduction rules on contexts. Consider the following two rules where D is a double
context (two comma-separated contexts running in parallel):

D does not bind a
a = aj for some j ∈ I

DJa〈ṽ〉,Σi∈Iai(x̃i)%Qi.PiK → DJ0, {Qj{
ṽ/x̃j

}} | Pj{
ṽ/x̃j

}K

D does not bind a

DJa〈ṽ〉, !a(x̃)%Q.P K → DJ0, {Q{ṽ/x̃}} | P{ṽ/x̃} |!a(x̃)%Q.P K

The first rule handles the input guarded choice such that upon taking one of the
options, the associated compensation Qi is installed as a stored compensation (within
curly brackets) in parallel to the main body of the transaction. The second rule is
similar but handles the input guarded replication instead. Note that compensations
are always installed in parallel to other compensations in dcπ (no matter the order in
which they were originally executed).

After considering how compensations are installed, we consider how compensations
are activated. In dcπ compensations are automatically activated upon a failure signal.
A failure is signalled with an output on the identifier of the transaction. Once this
signal is received, the failed transaction is discarded while the stored compensations
are “extracted” and put inside a protected block. The extraction of the stored com-
pensations is handled by the function extr which, given an execution process, returns
a compensation process. The following two reduction rules explain what happens
upon an internal error and an external error respectively:

C does not bind t

t[CJ t K] → extr(CJ0K)

C does not bind t

t[DJ t, t[E]K] → DJ0, extr(E)K

In the case of the first rule, the failure signal is invoked from within the transaction.
Note that if the context C binds the name of the transaction, the invocation will
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not reach the transaction. As soon as failure reaches the transaction, the function
extr is invoked on the outer context in order to discard the remainder of the transac-
tion (including sub-transactions) and extract the stored compensations, putting them
in protected blocks. Thus the function accepts an execution process (possibly with
stored compensations) and returns a compensable process (with no stored compen-
sations). Note that protected blocks and scoping constructs are not discarded by
extr.

Finally, in dcπ compensations are not discarded upon the termination of the corre-
sponding transaction, allowing transactions to be compensated even after they com-
plete.

Example

dcπ relies heavily on channel communication both for programming sequences of
processes and for programming compensations. For this reason the example has been
programmed in terms of a number of communicating entities with the initial request
originating from the client. The example encoded in dcπ is given below, starting with
the basic activities:

Order
def

= (ν o) o [{b} | (ν x,msg)(x.(x%(ReStock).stockOk + x.o))]

ReStock
def

= (ν r) r [{op} | (ν x)(x | x.0 + x.r)]

We start by defining the Order activity, modelled as a transaction scope in which
a non-deterministic choice between success or failure is modelled through an input
guarded choice on x. If the order is successful, ReStock is installed as compensation,
otherwise failure is signalled by outputting on the transaction name (in this case o).
Note that a statically stored compensation has been used {b} so that upon failure
of the order, the whole transaction is signalled as failure — triggering the global
compensation. The compensating activity ReStock is modelled similarly to Order
with the difference that it does not have a compensation, and upon failure it outputs
on op (through the static compensation mechanism) to trigger the Operator activity.
The other basic activities can be modelled in a similar fashion to the above.

However, a failure of a process should not always cause the failure of the overall
transaction — this is the case of the offers below:

Offer1
def

= (ν h) h [(ν x,msg)({Offer2} | x | x%(Withdraw).0 + x.h)]

Offer2
def

= (ν i) i [(ν x,msg)(x | x%(Withdraw).0 + x.0))]

In the case of Offer1, the static compensation is not the failure of whole transaction
but the execution of Offer2, i.e. {Offer2} instead of {b}. Offer2, in turn, does not
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have any compensation specified. Thus in case of failure, this will have no effect on
the overall transaction.

Another interesting process is the booking of the courier:

Courier1
def

= (ν k) k [(ν x)(x | x%(Cancel1).booked1 + x.failed1.k))]

Courier2
def

= (ν l) l [(ν x)(x | x%(Cancel2).booked2 + z.failed2.l)]

Couriers
def

= (ν j) j [{b} | Courier1 | Courier2 |
(booked1.(failed2.courierOk + booked2.l.courierOk) +

(failed1.(booked2.courierOk + failed2.j)))]

In this case, the booking of two couriers is initiated in parallel while the process
Couriers waits for the outcomes. As soon as the outcomes are available, using the
input guarded choice, Couriers decides whether to cancel one of the couriers or send
a failure signal to the Transaction process in case both fail.

Finally, we specify the overall transaction and the client interaction below:

Client
def

= (ν a) a [(ν ctl ,msg)(ord〈ctl ,msg〉 | ctl(b)%(msg(failed)) |
(ctl〈a〉 | (νx)(x | (x.b | x.(msg(done))))))]

Transaction
def

= !ord(ctl ,msg).(ν b) b [ctl〈b〉 | ctl(a)%(a | msg〈failed〉)
(ν stockOk , bankOk , packOk , courierOk)
(Order | Offer1 | Pack | Charge | Couriers |
op.Operator |
stockOk.bankOk.packOk.courierOk .msg〈done〉)]

As soon as the client issues an order (on channel ord), the shop responds by initiating
a number of processes in parallel: Order, Offer 1, Pack, Charge, and Couriers. Note
that the client can decide to cancel the order at any time. This is programmed using
a non-deterministic choice between issuing a failure signal b on the name of the main
transaction (b has been passed to the client by scope extrusion), and waiting for the
done message to be received. This definition of processes diverts from the original
specification in that all the processes are done in parallel. It is possible to keep to the
original specification, but the definition in dcπ becomes cluttered. If the Transaction
process fails, the client transaction is terminated with failure and a message indicating
failure is sent to the client (representing an email notification). Finally, recall that
according to the specification, if the transaction fails the operator should be notified.
This has been modelled by the Operator activity waiting for an input on op.
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4.5 COWS

COWS [LPT07, LPT08a] is specifically targeted to formally model web services, pro-
viding a way of applying formal methods to web services. In COWS, an endpoint
which receives or sends invocations is a tuple: a partner and an operation. Thus, each
partner can be involved in various concurrent operations. A partner can be thought of
as a location. Notably, COWS provides a very restricted basic syntax, using which,
richer syntax is defined. Particularly, no notion of failure, success, transaction or
scope is provided in the basic syntax. Note that in COWS, a computational entity is
called a service rather than a process.

Syntax

The syntax of COWS is given below with s ranging over services; k ranging over killer
labels; w ranging over variables and values (w̄ over tuples); e ranging over expressions
(ē over tuples); d ranging over killer labels, names and variables; p ranging over names
used to refer to partners; o ranging over names used to refer to operations; and u, u′

ranging over names and variables:

g ::= 0 | p · o ? w̄.s | g + g input-guarded choice
s ::= kill(k) | u · u′ ! ē | g | s|s | {|s|} | [d] s | ∗ s services

An input-guarded choice is either the inert service 0; the receive activity p · o ? w̄.s,
receiving w̄ on endpoint p ·o and continuing as s; and the choice of two input-guarded
choices, denoted by g + g.

A service is either a kill activity kill(k), representing a termination request of k’s
scope; an invoke activity u · u′ ! ē, sending ē through endpoint u · u′ where u stands
for the partner and u′ stands for the operation; an input-guarded choice; a parallel
composition of services s | s; a protection {|s|}, protecting s from being externally
killed; a delimitation [d] s, binding d inside s; or a replication of a service ∗ s.

Semantics

The semantics of COWS is given in terms of a structural congruence and a labelled
transition relation. The labelled transition relation

α
−→ is the least relation over

services induced by a number of rules of which we only present a selection here. The
label α is generated by the following grammar:

α ::= †k | (p · 0) � v̄ | (p · o) � w̄ | p · o)⌊σ⌋w̄v̄ | †

†k denotes the execution of a request for terminating a term k; (p·0)� v̄ and (p·o)�w̄
denote an invoke and a receive action on endpoint (p · o) respectively; (p · o)⌊σ⌋w̄v̄
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denotes communication over p·o — receiving parameters w̄ with corresponding values
v̄ with substitutions σ (still to take place); and † denotes forced termination.

We start the semantics overview by giving the rules related to killing:

kill(k)
†k
−→ 0

s1
†k
−→ s′1

s1 | s2
†k
−→ s′1 | halt(s2)

s
†k
−→ s′

[k] s
†
−→ [k]s′

The first rule specifies that a kill activity becomes the inert service 0 with a †k activity.
The kill activity is propagated to the parallel siblings (by the second rule) resulting
in the application of the halt function. The halt function returns the inert process
for any service unless the service is a protected service, in which case the service is
returned intact. The kill activity, however, is stopped as soon as a delimitation [k] is
encountered. This is the reason for the third rule (changing †k to †). Kill features
yet in another rule. The rule given below ensures that if a kill is active, it takes
precedence over other processes, i.e. if a kill action is active, the action is either a †
or a †k:

s
α
−→ s′ d /∈ d(α) s = AJkill(d)K ⇒ α ∈ {†, †k}

[d] s
α
−→ [d] s′

Note that AJ·K represents a context; d(α) returns the set of names, variables and killer
labels occurring in α; and d is a name bound in s. The first condition states that α
does not contain the bound name d (otherwise a special rule (not given here) takes
care of the α-conversion, removing the restriction [d] or in the case of †d, the kill is
stopped from propagating by the third rule above). The second condition regards the
priority of kill activities, ensuring that if an activity takes place while a kill is active,
it is either † (if the kill action is related to d) or †k if otherwise.

The constructs for handling scopes, exception handling and compensations are defined
in terms of the basic syntax introduced above (Note that the sequential operator ( ;)
is also a derived operator whose definition is not given here):

〈〈[s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]ι〉〉k =
[pφ1

, . . . , pφn
](〈〈catch(φ1){s1}〉〉k | . . . | 〈〈catch(φn){sn}〉〉k |

[kι](〈〈s〉〉kι ; (xdone · odone ! 〈〉 | {|pι · ocomp ? 〈〉.〈〈sc〉〉kι|})))

〈〈catch(φ){s}〉〉k = pφ · ofault ? 〈〉.[k
′]〈〈s〉〉k′

〈〈undo(ι)〉〉k = pι · ocomp ! 〈〉 | xdone · odone ! 〈〉
〈〈throw(φ)〉〉k = {|pφ · ofault ! 〈〉 | xdone · odone ! 〈〉|} | kill(k)
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The encoding 〈〈·〉〉k gives a definition of the constructs in terms of the basic COWS
syntax. There are a number of important things to note: (i) A scope is made up
of a service s representing normal behaviour; a number of exception handlers si,
each associated with a particular exception signal φi and compensation handler sc.
Note that the compensation handler is protected from being killed (using {||}). This
is useful so that if during compensation a sibling process fails, compensation is not
interrupted. Also, exception handlers are saved from being killed by throws because of
the delimitation [kι] applied to the scope execution. (ii) A catch receives a fault signal
from the respective throw and executes the exception handler in a new delimitation
k′ (rather than k). Thus, if the exception handler fails, it only kills the exception
handler (rather than other exception handlers for example). (iii) The undo operation
simply invokes the compensation through pι · ocomp. Note that the compensation is
only listening for a trigger if the normal execution has been completed — hence the
use of the sequential composition. Also note that undo is parametrised with the name
of the scope (in this case ι). (iv) A throw communicates with a catch through pφ ·ofault
and kills the scope which triggered the throw. Note that the communication with the
catch is protected to prevent the kill operation from terminating this communication
as well.

Example

The example encoded in COWS is given below starting with the basic activities:

Order ′
def

= ps · oorder ! 〈〉 | ps · oorder ? 〈〉.xdone · odone ! 〈〉 |
ps · oorder ? 〈〉.throw(fault)

ReStock
def

= ps · orestock ! 〈〉 | ps · orestock ? 〈.〉xdone · odone ! 〈〉 |
ps · orestock ? 〈〉.throw(compfault)

Order
def

= [Order ′ : ReStock | Email ]s

The Order process is encoded as a scope named s with the main activity Order ′

and compensation ReStock in parallel with Email . The basic activities Order ′ and
ReStock are similarly encoded through a non-deterministic choice in terms of an
invoke in parallel with an input-guarded choice. The purpose is to model the fact
that these may either succeed or fail. If they fail, they throw faults which are handled
by their respective scopes (defined later). The other basic activities should follow the
same pattern.

Next, we present the encoding of the offers:
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Offer1
def

= po · ooffer1 ! 〈〉 | po · ooffer1? 〈〉.xdone · odone ! 〈〉 |
po · ooffer1? 〈〉.Offer2

Offer2
def

= po · ooffer2 ! 〈〉 | po · ooffer2? 〈〉.xdone · odone ! 〈〉 |
po · ooffer2? 〈〉.0

Offers
def

= [Offer1 : Withdraw ]b

In the case of the offers, the second offer is not implemented as an exception handler
for the first offer. The reason is that a throw will prevent the compensation Withdraw
from being installed. Thus, the throw-catch mechanism is bypassed and Offer2 is
called directly from Offer1 if the latter fails. Note that no fault throw is specified in
case Offer2 fails since the failure of the offers does not affect the overall transaction.

What follows is the definition of the courier booking:

Courier1
def

= [pc · ocourier1 ! 〈〉 | pc · ocourier1 ? 〈〉.xdone · odone 〈〉 |
ps · ocourier1 ? 〈〉.pc · ofail1 ! 〈〉 |
pc · oforced1 ? 〈〉.throw(unhandled) : Cancel1]c1

Courier2
def

= [pc · ocourier2 ! 〈〉 | pc · ocourier2 ? 〈〉.xdone · odone 〈〉 |
ps · ocourier2 ? 〈〉.pc · ofail2 ! 〈〉 |
pc · oforced2 ? 〈〉.throw(unhandled) : Cancel2]c2

Couriers
def

= Courier1 ; pc · oforced2 ! 〈〉 | Courier2 ; pc · oforced1 ! 〈〉 |
pc · ofail1 ? 〈〉.pc · ofail2 ? 〈〉.throw(fault)

The speculative choice of the couriers is implemented as follows: First both courier
booking requests are started, with the first one to complete terminating the other
by invoking pc · oforcedi . If neither booking succeeds, Couriers is notified on pc ·
ofaili and throws an exception (fault) which causes the compensation of the whole
transaction. Note that although a fault generated by a forcedly terminated courier is
unhandled, it is still important that a fault is thrown, preventing the installation of
the compensation.

Finally, the overall transaction is specified as follows:

Transaction
def

= [Shop ;Offers ; (Pack | Credit) ;Couriers
: catch(fault){[undo(s) | undo(p) | undo(b) |
undo(o) | undo(c1) | undo(c2)
: catch(compfault){Operator}]}

: 0]

Note that upon the detection of fault fault, all the completed activities are undone
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through the construct undo. If any of the compensating activities fail, the exception
compfault is caught and handled by the Operator activity. Any compensations for
sub-transactions which have not yet been completed are not executed as per the
COWS definition of scope which only listens for a compensation activation after the
normal scope behaviour has completed.

4.6 Committed Join

Chemical abstract machines are an attempt of emulating chemical processes as a
means of computation. Similar to process algebras, chemical abstract machines are
apt to model interactions among processes and how processes evolve during execution.
The committed join (cJoin) [BMM04] is an extension of the join calculus [FG96],
enabling it to handle compensations. The join calculus has been devised to provide
an abstract foundation for object-based languages. It follows the idea of a chemical
abstract machine, having a solution made up of molecules and atoms. An atom is
a pending message. When atoms are joined together (composed in parallel) they
become a molecule. Molecules can be heated into smaller molecules and vice-versa.
For example consider:

∅ ⊢ ready〈laser〉, job〈1〉, job〈2〉⇋ ∅ ⊢ ready〈laser〉 | job〈1〉, job〈2〉

The two atoms ready〈laser〉, job〈1〉 have been glued together into the molecule
ready〈laser〉 | job〈1〉. A set of molecules and atoms M operate within the realm of
a set of reactions R, represented by R ⊢ M. A reaction J � P corresponds to a
reduction step (R ⊢ M −→ R ⊢ M′), where any join patterns J in the solution are
replaced by copies of P with replaced parameters. For example consider the following
reaction D:

D = ready〈printer〉 | job〈file〉 � printer〈file〉

Applied to the set of molecules given in the previous example, we get:

D ⊢ ready〈laser〉 | job〈1〉, job〈2〉 −→ D ⊢ laser〈1〉, job〈2〉

Finally, reactions can be created dynamically. Consider the following example where
reaction D is introduced as the realm in which the molecules operate:

∅ ⊢ def D in ready〈laser〉 | job〈1〉 | job〈2〉⇋ D ⊢ ready〈laser〉 | job〈1〉 | job〈2〉
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Over and above the join calculus, cJoin has the following extensions: (i) a negotiation
process [P : Q] which behaves as P in normal execution and as Q in case of an abort;
(ii) an abort signal (abort) which gives control to the compensation of the negotiation;
(iii) a merge operator J � P which joins (merges) different scopes into a larger one
— allowing scope messages to cross scope boundaries; (iv) a frozen molecule P is
a special kind of molecules which represents a frozen compensation waiting to be
activated — written as xPy.

Syntax

After this informal introduction, now we give the full syntax of cJoin with x, y ranging
over an infinite set of names (~y representing a tuple of names); J , K ranging over
joining messages; D, E ranging over reaction definitions; M , N ranging over processes
without definitions; P , Q ranging over processes; m ranging over molecules; and S
ranging over solutions:

M,N ::= 0 | x〈~y〉 | M |N
J,K ::= x〈~y〉 | J |K
D,E ::= J � P | J � P | D ∧ E
P,Q ::= M | abort | def D in P | [P : Q] | P |Q

m ::= P | D | xPy | {[S]}
S ::= m | m,S

A process without definitions can be the inert process 0; an emission of a message ~y
over port x, written as x〈~y〉; or a parallel composition. A joining message is either
an emission of a message x〈~y〉 or a parallel composition of such emissions. A reaction
definition is either an association J�P of a joining message J with process P ; a merge
J �P with joining message J and process P ; or a conjunction of reaction definitions.
A process is either a process without definitions; an abort; a definition def D in P
of a reaction definition D over a process P ; a negotiation [P : Q], starting as P but
continuing as Q if P aborts; or a parallel composition of processes. A molecule is
either a process; a reaction definition; a frozen compensation xPy with behaviour
P ; or a sub-solution {[S]}. Finally, a solution is a molecule or a comma separated
collection of molecules.

Semantics

Next, we give a number of semantic rules with their explanation below:
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Str-def def D in P ⇋

Dσdn(D), Pσdn(D)(range (σdn(D)) globally fresh)
Red J � P, Jσ → J � P, Pσ
Str-cont [P : Q] ⇋ {[P, xQy]}
Abort {[abort | P, xQy]} → Q
Commit {[M | def D in 0, xQy]} → M
Merge J1 | . . . | Jn � P,

⊗
i{[Jiσ, Si, xQiy]} →

J1 | . . . | Jn � P, {[
⊗

i Si, Pσ, xQ1 | . . . | Qny]}

The rule Str-def is responsible for opening reaction definitions and generating glob-
ally fresh names for the defined names (dn returns the defined names within a reaction
definition) in D and P , ensuring that the names remain restricted to D and P . σ
represents the substitution of names x1, . . . , xn by names y1, . . . , yn such that dom(σ)
returns {x1, . . . , xn}, range(σ) returns {y1, . . . , yn}, and σN refers to σ such that
dom(σ) = N . Next, rule Red describes an instance of J being consumed by a reac-
tion rule J �P . The consumption is accompanied by substitution of names such that
dom(σ) is equal to the received names of J . Rule Str-cont shows how a negotiation
process corresponds to a solution with two molecules: the process P and the compen-
sation Q which is initially a frozen process waiting to be activated. The rule Abort

is the activation of the compensation Q caused by an abort process. On the other
hand, Commit triggers when the negotiation terminates successfully. Note that at
this point the compensation is discarded. Finally, the Merge rule merges several
negotiations into one, enabling interaction among negotiations. Note that

⊗
i mi is a

shorthand for m1, . . . ,mn where m is a molecule.

Example

The example in cJoin is given below starting with the basic activities (In the example
below we ignore name locality and assume the names are global.):

Credit
def

= def Payment〈〉 � [
def pay〈$〉 � paymentOK 〈〉
∧pay〈$〉 � abort〈〉

in credit〈〉 : abortAll〈〉] in Payment〈〉

Refund
def

= def paymentOK 〈〉 � refunded〈〉
∧paymentOK 〈〉 � Operator〈〉

in refundRequest〈〉

In this example, we start by considering the Credit activity since the Order activity
in cJoin is peculiar. Note that the possibility of failure is modelled through the spec-
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ification of two entries for pay〈$〉. If an activity succeeds, paymentOK 〈〉 is used to
communicate the success to the main transaction. Otherwise, in case an abort oc-
curs, abortAll〈〉 communicates the failure to the main transactions, causing the whole
transaction to start compensation. A similar approach is used to model the failure of
Refund , triggering the Operator activity in case of failure. Note that the execution
of Refund depends on paymentOK . This ensures that refund is only given if the
payment has been successful. The same approach is used for the other compensating
acitivities.

Next, we consider the encoding of the offers:

Offer 1
def

= def proposeOffer 1〈〉 � [
def proposeOffer 1〈$〉 � offerOK 〈〉
∧ proposeOffer 1〈$〉 � abort〈〉

in offerReq1〈〉
: def offerReq2〈〉 � proposeOffer 2〈$〉in Offer 2]

in proposeOffer 1〈〉

Offer 2
def

= def proposeOffer 2〈〉 � [
def proposeOffer 2〈$〉 � offerOK 〈〉
∧ proposeOffer 2〈$〉 � abort〈〉

in offerReq2〈〉 : 0] in Offer 2〈〉

Note that if Offer1 fails, Offer2 is triggered, while if the latter fails, the exception han-
dler is the inert process, i.e. failure does not disrupt the overall transaction. However,
if either succeeds, offerOK communicates the success to the main transaction.

What follows is the definition of the courier booking:
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Couriers
def

= def CourierBooking〈〉 � [
def courierOK 1〈〉 | courierOK 2〈〉

�Cancel2〈〉 | CourierOK 〈〉
∧ courierOK 1〈〉 | courierFailed2〈〉 � CourierOK 〈〉
∧ courierFailed1〈〉 | courierOK 2〈〉 � CourierOK 〈〉
∧ courierFailed1〈〉 | courierFailed2〈〉 � abortAll〈〉

in Courier 1 | Courier 2
: abortAll〈〉] in CourierBooking〈〉

Courier 1
def

= def bookingReq1〈〉 � courierOK 1〈〉
∧ bookingReq1〈〉 � courier1Failed〈〉

in BookCourier 1〈〉

Courier 2
def

= def bookingReq2〈〉 � courierOK 2〈〉
∧ bookingReq2〈〉 � courierFailed2〈〉

in BookCourier 2〈〉

The courier booking initiates the bookings in parallel Courier 1 | Courier 2 and de-
pending on the outcome, chooses a course of action. The first case considered is when
both succeed, where the second courier is cancelled through Cancel2 while CourierOK
is signalled to the main transaction. Similarly, if either succeeds, success is reported
to the main transaction, while abortAll is signalled if both fail.

Finally, we define the interaction with the client and the overall transaction:
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Client
def

= def OrderItems � [
def shopResp〈ok〉 � itemsBought〈〉
∧ shopResp〈failed〉 � abort

in order〈info〉 : 0] in OrderItems〈〉

Order
def

= def ProcessOrders � [
def info〈req , conf 〉 � price〈$〉 | items〈〉
∧ price〈$〉 | credit〈〉 � pay〈$〉
∧ items〈〉 | pack〈〉 � packReq〈items〉
∧ offerReq〈〉 � Offers1〈$〉
∧ abortAll � abort
∧ creditOK | packingOK | courierOK � shopResp〈ok〉

in sell〈req , conf 〉
: shopResp〈failed〉 | Withdraw | Refund | Unpack |
Cancel1 | Cancel1]

in ProcessOrders〈〉

Transaction
def

= def order〈info〉 | sell〈req , conf 〉 � info〈req , conf 〉
in Client | Order | Offer1 | Credit
| Pack | Couriers

Note that the processing of a client order starts at Transaction which glues together
all the processes by starting them in parallel (Order, Client, Offer1, etc) and merging
(through the merge (�) operator) negotiations defined in the sub-processes, allowing
interactions to take place across negotiation boundaries. In this example, Transaction
merges Client and Order through the merge on order and sell. Similarly, Order
merges itself with Credit through the merge on credit and so on.

Since in cJoin there is no explicit construct for compensation, the approach taken
is that when a process fails, it sends a signal over abortAll which is received by
the Order negotiation. This, in turn, compensates for all the activities which have
been completed. In order to detect whether an activity needs compensation or not,
the signals paymentOK, packingOK, etc are used since these indicate the successful
completion of the respective activities.
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4.7 Comparison of Choreography Approaches

A major dividing line among the choreography approaches is whether static or dy-
namic compensation is supported5: πt calculus, webπ and cJoin only support static
compensation. There are other distinctive features which isolate particular notations
from the rest. For example, SOCK is the only notation allowing total freedom as to
the order in which compensations are installed. On the other hand, dcπ is the only
notation which associates compensation installation with inbound interaction. webπ
is the only notation which ignores transaction nesting and treats all transactions as
parallel transactions. A direct consequence is that in webπ the failure of a transaction
does not affect any other transaction unlike the case of the other notations.

Other features which are common to all notations will be discussed in Section 6 where
orchestration approaches are compared to choreography approaches.

5Dynamic compensation is when compensation is constructed dynamically during execution while
static compensation is predefined.
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5 Business Process Execution Language for Web

Services

With the advancement of the Service Oriented Architecture (SOA), promoting soft-
ware integration across organisational boundaries, various challenges arose — partic-
ularly the challenge of programming complex services and interactions. Among the
suggested languages to tackle such a problem were Microsoft’s XLANG [Tha01] and
IBM’s WSFL [Ley01]. Business Process Execution Language for Web Services, known
as BPEL4WS [bpe03] and more recently WS-BPEL [bpe07] (or BPEL for short) is
the offspring of both XLANG and WSFL, integrating XLANG’s structured nature
with WSFL graph-based approach. BPEL’s semantics is given in textual descriptions,
giving rise to a lot of work which strives to provide a formal semantics for BPEL —
motivated by the need of clearer semantics and verification of various properties.

It is beyond the scope of the review to give a detailed overview of BPEL (for a
more detailed overview we refer the read to for example [LM07]). Rather, we focus
on the compensation mechanism of BPEL, giving a simple example for illustration
purposes. Next, we go through a number of formalisms which have been suggested
to provide a formal semantics for BPEL (distinguishing between those which include
BPEL’s compensation construct from those which do not). We conclude this section
by considering some critiques of BPEL.

5.1 Overview

BPEL processes fall under two categories: abstract processes and executable pro-
cesses. The former’s aim is to give a high-level description of the interactions that
a particular party may have in a conversation. Such processes cannot be executed
because they lack details. On the other hand, executable processes are processes de-
scribing business logic in full detail — enabling such processes to be executed. The
main aim for providing this duality is two-fold: on the one hand, a business will
not need to disclose the internal logic to other businesses, but it suffices to simply
disclose abstract processes to enable interaction; and on the other hand, it provides
a separation of concerns between the interactions and the business logic — enabling
changes in the business logic to leave the interaction unaffected.

In this overview, we focus on executable BPEL processes, particularly on the fault,
compensation and termination handling mechanisms. BPEL provides various basic
activities and structured activities. Basic activities include the following:

Receive Waits for a request (invocation) from a partner.
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Reply Allows a business process to send a message in reply to one received earlier
(by a receive activity).

Invoke Invokes a remote operation provided by a partner participating in an inter-
action. The invoked operation can also send back a response.

Assign Assigns new values to variables.

Validate Validates values of variables according to their definition.

Throw Generates a fault from inside a business process.

Wait Waits for a given period of time.

Empty Does nothing but is considered as a successful activity.

Exit Immediately ends the enclosing business process.

Rethrow Rethrows a fault to the next outer scope.

Compensate Activates the installed compensation.

ExtensionActivity Can be used to extend BPEL by introducing a new type of
activity.

Structured activities include the following:

Sequence Is used to define a collection of activities to be performed in sequential
order.

If Selects exactly one activity for execution from a set of choices.

While Defines a child activity to be repeated as long as the specified condition is
true.

RepeatUntil Repeats a child activity until a specified condition becomes true.

ForEach Repeats a child activity for a specified number of times.

Pick Waits for one of several possible events to occur (either a message arrival or a
time to elapse) and triggers the associated child activity.

Flow Specifies one or more activities to be executed concurrently.
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Scope Is used to define a nested activity with associated partner links, message
exchanges, variables, correlation sets, fault handlers, compensation handler,
termination handler, and event handlers. (See Section 5.1.1 for more details.)

CompensateScope Acts as an enclosing scope for the execution of a compensation.

After the above short introduction to the activities available in BPEL, we proceed to
tackle BPEL’s compensation mechanism in detail. Compensation in BPEL has a close
relationship to scopes, faults and termination handling. In the following subsections,
we will thus consider these mechanisms in detail.

5.1.1 Scopes

A scope in BPEL is the mechanism which associates compensation to a unit of ex-
ecution. Furthermore, each scope also provides event handlers, fault handlers and a
termination handler to the scope-enclosed activity.

The life-cycle of a scope can be summarised as follows (more details in the subse-
quent): (i) the enclosed activity starts executing; (ii) if a fault occurs, then this is
thrown for the fault handler to handle it; (iii) if a forced termination occurs, the
executing activity is terminated, executing the termination handler; (iv) if the scope
completes successfully, the corresponding compensation is installed; (v) if a fault,
termination, or another compensation handler calls for the scope’s compensation to
be executed, then the installed compensation is activated.

5.1.2 Fault Handling

A scope may have a number of catch statements which intercept a fault. If such a
statement does not exist for a particular kind of fault, then the fault is rethrown to
the next higher level. Upon the activation of a fault handler, the active activities
(including event handlers) within the enclosing scope are automatically terminated
(although some kind of activities may be allowed to continue till completion). If not
specified, by default the fault handler activates the installed compensations of any
previously completed scopes (within the fault handler’s scope) and rethrows the fault
to the next higher level. If a fault occurs during fault handling this is thrown to the
next higher scope.
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5.1.3 Compensation Handling

Although there is an explicit activity which is responsible for activating installed
compensations, this cannot be invoked from any part of a scope but only from within
fault handlers, termination handlers or other compensation handlers. Thus, the use
of compensation is limited to be used as a part of the fault-handling mechanism.
Therefore compensations can be triggered in three scenarios: (i) either a fault has
been thrown and any installed compensations are executed; (ii) the compensation
handler triggers the compensation for previously completed nested scopes; (iii) or the
terminations handler triggers the compensation in order to compensate for a forcedly
terminated scope.

Scopes within compensation handlers

A compensation scope may have other scopes within it and such scopes may have
associated compensations. However, the outermost scope (of a compensation) may
not have compensations as this would be unreachable. In other words, a compensation
handler may utilise the compensation mechanism so that either the compensation
succeeds or none of it, yet once the compensation completes there is no way of undoing
it. In fact, upon the completion of a compensation, any installed compensations are
discarded.

Default compensation handler

If left unspecified, the default compensation handler of a scope simply activates the
compensations installed for the next-lower level scopes. Note that a scope can only
trigger the compensation of its immediate child-scopes (which in turn can trigger that
of their children, etc).

Default compensation order

Although a compensation can be application specific, if left unspecified, a default
compensation order is utilised. Compensation ordering is a complex issue which dif-
ferent compensation mechanisms handle differently. BPEL specifies that any order
dependencies which were in place during normal execution, must also be in place (in
reverse) during compensation. Such order dependencies can either be the result of
the sequence structured activity or due to explicit link dependencies. Link dependen-
cies are tricky because links may be present across scope boundaries. However, as
long as there are no cyclic dependencies, the activity ordering issue can be resolved.
Otherwise, a BPEL process with cyclic dependencies is not a valid BPEL process.

Process state usage

Since activities in BPEL may depend on data, it is crucial to determine the data
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values which are used during compensation. To this end scope snapshots are taken
at the point of a scope completion so that when the corresponding compensation is
executed, it has access to the data values as were preserved at the end of that scope
execution. A compensation handler also has access to the state of the enclosing scope
(from where the compensation was activated).

5.1.4 Termination Handling

Upon the throw of a fault, any remaining activities executing within the scope are
terminated (see Section 5.1.2). Once forced termination is completed, the termination
handler is executed. The aim of the termination handler is to execute any necessary
actions in order to correctly terminate the scope. If left unspecified, the termination
handler automatically invokes the compensation handler in order to compensate for
any successfully completed activities. Note that if an unhandled fault occurs during
termination handling, this is not rethrown because the enclosing scope has already
faulted.

5.2 Example

In the example below, we consider a very simple scenario where a bookstore first
updates the stock levels — checking that there is enough stock, and subsequently
packs the books and charges the customer’s bank account concurrently. Note that
the implementation details are left out.

<process name="bookSellingTransaction">

<documentation xml:lang="EN">

A WS-BPEL process for handling a purchase order.

</documentation>

... partnerLinks, variables, etc

<faultHandlers>

<catchAll>

<compensate />

</catchAll>

</faultHandlers>

<sequence>

<scope name="stockUpdate">
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<documentation>

This is the scope for handling the stock level.

</documentation>

<faultHandlers>

<!-- This is the default fault handler>

<catchAll>

<sequence>

<compensate />

<rethrow />

</sequence>

</catchAll>

</faultHandlers>

<compensationHandler>

... reupdate stock levels

</compensationHandler>

... checkstock and decrease

</scope>

<flow>

<scope name="packOrder">

<documentation>

This is the scope for packing the order.

</documentation>

<compensationHandler>

... unpack

</compensationHandler>

<!-- This is the default termination handler>

<terminationHandler>

<compensate />

</terminationHandler>

...packing

</scope>

<scope name="chargeCustomer">

<documentation>

This is the scope for charging the customer’s account.

</documentation>

<compensationHandler>

... refund customer
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</compensationHandler>

... charge customer’s bank account

</scope>

</flow>

</sequence>

</scope>

The encoding in BPEL is done using three scopes — one for each activity with a
compensation. This is due to the fact that compensation can only be associated
to an activity through a scope. Due to the sequence and concurrency requirement
of the example, the corresponding constructs are used to encapsulate the activities
accordingly.

Note that in all scopes, the default fault handling mechanism is utilised (only explic-
itly shown for the scope stockUpdate; it is implicit in the other cases). This simply
executes the installed compensations (using <compensate />) and rethrows the fault
to the next higher level scope. Similarly, we only explicitly declare the default termi-
nation handler in scope packOrder so that, if for example the bank account charge
fails while the packing is still executing, compensation is executed (assuming packing
has a further nested scope with compensation).

The rest of the details are left out, indicated in the example by ... activity. These
can be implemented using BPEL processes such as assign to update stock values,
and invoke and receive to communicate with the bank and the warehouse (where
the packing takes place).

Figure 4 shows a graphic representation of the example just described, highlighting the
scopes, compensation, fault and termination handlers. The notation used is inspired
by the diagrams in the BPEL documentation [bpe07].

5.3 BPEL Formalisations

A lot of work has been done to provide a formalisation of BPEL. However, various for-
malisms proposed for modelling BPEL [HB03, AFFK04, KvB04, HMMR04, FBS04,
PRB04, WFN04, Vir04, VvdA05, PTBM05, BBM+05, KP05, YTX+06, PZWQ06,
Nak06, WDW07, MR08, yLsL09] do not take into consideration the compensation
mechanism. The reason is that, given the complexity of BPEL’s compensation mech-
anism, works which do not focus on the error-handling aspect are likely to leave
compensations out. Since our review is focused on compensation semantics, we do
not tackle such formalisms. However, some formalisms discussed below (which include
compensation) are based on some of these referenced works.
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Scope: chargeCustomer
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Scope: packOrder
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Scope: stockUpdate

Sequence structured activity

Process: bookSellingTransaction

Figure 4: A representation of the BPEL example.

Two formalisms which have already been tackled in this report have also been pro-
posed as formalisms for modelling BPEL. These are StAC (see Section 3.3) — map-
ping from BPEL to StAC in [BFN05] and webπ∞ (see Section 4.3) — mapping from
BPEL to webπ∞ in [LM07]. In particular, StAC has been combined with the B nota-
tion [Abr96] (enabling the representation of state operations), to model a substantial
subset of BPEL, including compensations. The translation from BPEL to webπ∞
is particularly interesting since webπ∞ only provides one error handling mechanism
(unlike BPEL). The translation does not handle the whole of BPEL but it focuses on
event, fault and compensation handlers, all of which are modelled through the single
mechanism provided by webπ∞.

In the rest of this section, we consider a number of other BPEL formalisations, focus-
ing on the compensation mechanism. For a complete overview of BPEL formalisms
we refer the reader to [vBK05] (although a number of formalisms have emerged since).
We group BPEL formalisms according to their type, and after giving a short overview,
we comment about which parts of BPEL are handled by the formalisations.

5.3.1 Formalisms based on Abstract State Machines

An abstract state machine (ASM) involves a state made up of arbitrary variables and
a number of transition rules. Each rule consists of a boolean condition and a number
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of assignment statements which can be applied on the state. The boolean condition
is used to decide whether the transition is applicable or not at a particular state.
The ASM changes state by applying the assignments of the enabled transitions on
the state.

ASM-based BPEL models

ASMs have been used to model BPEL by Farahbod et al. [Far04, FGV05] and by
Fahland and Reisig [FR05, Fah05]. It is beyond the scope of this short overview to
give the full details of each of these formalisms. However, we shall give some intuition
about the method used by Fahland and Reisig as an example. Consider the following
activity definition:

ExecuteScopecompensate, pattern(sI ∈ SubInstance, scope ∈ Scope) ≡

if receivedCompensationCalls(sI, scope) 6= ∅
then HandleCompensationCallpattern(sI, scope)

onSignal signalCompleted from scopeCompensationHandler(scope)
in sI via signalChannelup do ConfirmComepsantion(sI, scope)

if faultChannelup(sI, scopeCompensationHandler(scope), scope) 6= ∅
then PropagateFaultsFromCH(sI, scope)

The above rule handles a scope after completion, i.e. waiting for the possibility of ex-
ecuting its compensation. If a call for the execution of the compensation is received
(receivedCompensationCalls(sI, scope) 6= ∅), the compensation handler is called. Sub-
sequently, if the compensation completes, signalCompleted is received and a confir-
mation is sent to the originator of the compensation. Otherwise, if the compensation
fails, a signal is received on faultChannel which is propagated so that the appropriate
scope can handle it. Note that parametrisation is crucial to determine the correct
instance and scope in which the activity is operating.

Similar to this approach, a rule is available for every BPEL construct. Therefore,
in order to model a BPEL process, one simply has to translate the process into the
initial state of the ASM and then simply apply the rules to model the execution of
the process.

In what follows, we comment on both works with regards to their treatment of BPEL.

Comments

Farahbod et al. give a mapping from each BPEL construct (including fault, com-
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pensation, and termination constructs) to an ASM agent thus preserving a direct
relationship to BPEL. Fahland and Reisig consider their work to be very similar to
that of Farahbod et al. and their work also handles all of BPEL.

5.3.2 Formalisms based on Petri Nets

A Petri net is a directed, connected, and bipartite graph in which each node is either
a place or a transition. Note that places cannot be directly connected to other places
and neither can transitions be directly connected to other transitions. Places may
be occupied by tokens. For a transition to be enabled, each place connected by an
incoming arrow to the transition must contain at least one token. When a transition
fires, it consumes a token from each incoming place and adds one in each outgoing
place. Note that a transition firing is an atomic operation.

Petri Net-based BPEL models

There are three major works which model BPEL processes in Petri nets:

(i) A Petri net semantics for BPEL 1.1 was developed by Hintz et al. [HSS05] based
on previous work by Schmidt and Stahl [SS04]. The work was later enhanced
to cover BPEL 2.0 by Lohmann [Loh07];

(ii) Another Petri net-based BPEL semantics was given by Ouyang et al. [OVvdA+07];

(iii) He et al. [HZWL08] use general stochastic high-level Petri nets (GSHLPN) to
model BPEL.

The main idea behind modelling BPEL in terms of Petri nets is to define a Petri
net pattern for each of BPEL’s activities and then simply glue the patterns together
to form a complete model of a BPEL process. This approach has the advantage of
preserving the structure of BPEL. In what follows, we give an example of a pattern
related to the compensation mechanism taken from [OVvdA+07]. Consider Figure
5 where a compensation invocation takes place, attempting to compensate for scope
Q1.

Note that the call to compensate scope Q1 originates from within a FH/CH scope
representing a fault handler or a compensation handler. For the invocation to be
successful (i.e. causing the compensation activity to actually execute), the scope being
compensated should have completed. Upon completion, a scope preserves a scope
snapshot so that the ending state is available for the compensation activity to use
during its execution. Note how, in the absence of a snapshot, the compensation
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Figure 5: A Petri net pattern for handling a compensation invocation (taken from
[OVvdA+07]).

activity is by-passed and behaves as no-operator. Otherwise, the invocation of the
compensation handler takes place. In any case, after the completion of the invocation,
control is passed back to the caller FH/CH.

Comments

The work by Hintz et al. [HSS05] and Lohmann [Loh07] have already been compared
by Lohmann et al. [LVOS09] with the work by Ouyang et al. [OVvdA+07]. They are
both feature-complete (i.e. model all features of BPEL) but differ in some aspects.
Of particular interest is that the work of Ouyang et al., activities stop immediately
in case of a fault, while in the other case activities may take time to stop (although
the fault handler does not start unless the activities have terminated). Finally, the
work by He et al. [HZWL08] mainly focuses on the need to model the time aspect of
transactions, enabling performance evaluation. Furthermore, they exploit GSHLPN’s
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two-level priority transactions to model interrupt behaviour, facilitating the encoding
of exception, fault and compensation-related events.

5.3.3 Formalisms based on Process Algebras

A number of process algebras which handle compensations have already been intro-
duced in Section 4. In this section, we aim at considering process algebras which have
been used for modelling BPEL.

Process algebra-based BPEL models

Process algebras are by far the most commonly used kind of formalisms to model
BPEL. Here we list six works in this respect:

(i) A two-way mapping between LOTOS and BPEL [Fer04b, Fer04a];

(ii) BPEL0, a calculus by Pu et al. [PZQ+06];

(iii) A mapping from BPEL to finite state process notation (FSP) [FUMK06, Fos06];

(iv) BPELfct, a calculus focusing on BPEL’s fault, compensation and termination
(fct) handling by Eisentraut and Spieler [ES08];

(v) BP-calculus, a calculus by Abouzaid and Mullins [AM08];

(vi) Blite, a language meant as a simplification of BPEL [LPT08b].

Comments

The work by Ferrara [Fer04b, Fer04a] is notorious for its two-way mapping between
LOTOS and BPEL, allowing the programmer freedom of choice while enjoying the
benefits of both languages. The mapping includes compensation but does not consider
all the aspects of BPEL.

BPEL0 [PZQ+06] is a language aimed at studying scope-based compensation lan-
guages and thus models only the key features of BPEL. In particular, BPEL0 focuses
on compensation contexts and compensation closures. Informally, a compensation
context is a compensation container which is currently being accumulated with new
compensations, while a compensation closure is a compensation container which is
awaiting to be activated but no more compensations can be accumulated.

Foster et al. [FUMK06, Fos06] present a mapping from BPEL to finite state process
notation (FSP) in order to verify a design in message sequence charts (which is also
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translated in FSP) against its implementation. The mapping from BPEL to FSP
includes compensation but is not feature complete.

Eisentraut and Spieler particularly used process algebra to study BPEL’s fct mecha-
nism [QWPZ05, ES08]6. The aim of the work is not to cover all of BPEL’s semantics
but rather to capture in full detail the BPEL’s fct mechanism. Two important as-
pects covered are (i) all-or-nothing semantics — the fact that compensations can be
compensated, thus semantically undoing all the effects of a failed transaction; and (ii)
coordinated interruption — forcing parallel siblings of a failed activity to terminate
as soon as possible and simultaneously.

Abouzaid and Mullins [AM08] propose BP-calculus for which they give the corre-
sponding semantics through BPEL, i.e. the mapping is from BP-calculus to BPEL
and not the other way round as in the case of the other formalisms. In this fashion
they allow modelling and verification of workflows in a formal language, which can
then be directly implemented in BPEL. Their mapping includes all the constructs of
BPEL.

Blite [LPT08b] is a formalisation of a significant subset of BPEL (including compensa-
tion), aiming to clarify intricate issues in BPEL. A mapping from Blite to COWS (see
Section 4.5) has also been defined, enabling the application of formal tools available
for COWS to be applied to Blite and therefore to BPEL.

5.4 Comparison of BPEL Formalisation Approaches

The main motivation behind all BPEL formalisations is to give a precise semantics
of BPEL which would enable formal reasoning to be applied. Certain formalisation
techniques provide an encoding which is closer to the original BPEL process and thus
arguably more understandable. In particular, this is true for ASMs which provide
a means of translating a BPEL process into a mathematical object clearly showing
how the state of processes evolves. Other formalisations are mainly attractive due to
their support for particular proof techniques. For example bisimulation techniques
for process algebras are highly developed and thus notions of equivalence among
BPEL processes (encoded in process algebras) can be defined more straightforwardly.
While also providing a range of formal techniques, Petri nets have the advantage of
preserving the structure of BPEL processes and clearly showing the flow of control
among such processes.

6Although the first work referenced does not take termination handling into consideration.

71



6 Comparison of Orchestration and Choreography

Approaches

In this section we aim to consider the commonalities of both orchestration approaches
and choreography approaches and thus compare the overall approaches of orchestra-
tion versus choreography.

The most basic difference between orchestration and choreography approaches is that
the latter requires the processes to communicate together while the former assumes
a central coordinator and thus processes need not be aware of each other. The conse-
quence is that in the case of choreography approaches various composition operators
can be encoded in terms of the communication mechanism provided by the approach.
On the other hand, orchestration approaches have to provide all the operators explic-
itly. This explains why in general far less operators are provided in the choreography
approaches. As an extreme consider webπ which only provides the transaction oper-
ator over and above the communication operators. Other choreography approaches
such as COWS provide a very basic set of operators but define higher level ones in
terms of the basic.

Another consequence of the fact that choreography approaches include communica-
tion among processes is that these show interaction among different parties explicitly.
For this reason a number of choreography approaches also support the notion of a
location where a process is executing. On the other hand, orchestration approaches
do not need communication among the participating parties. Due to this and the fact
that this necessitates more explicit operators, the composition of activities to form a
higher level activity is usually more immediately clear when analysing an orchestrated
activity.
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7 Conclusions

Fuelled by the streamlining of more complex business logic, the increasing frequency
of financial operations, and the increasing degree of cross-entity interaction, mod-
ern day transactions require a robust framework, able to deal efficiently with failures.
Compensation is a mechanism which has been added over and above traditional trans-
action mechanisms, enabling them to handle more complex transactions, involving
various lower-level transactions. The vast literature on the subject corroborates the
relevance of compensations in dealing with complex transactions.

The initial ideas of compensations, have evolved and been integrated with more com-
plex models involving amongst other aspects parallelism, exception handling, trans-
action nesting and process interaction. Various approaches to several design issues
emerge when coming up with a compensation model. This variety is apparent in the
differences which exist among different formalisms and models which handle com-
pensations. In order to highlight these differences, we have given an overview of
various notations, focusing particularly on their compensation mechanism. Further-
more, through a non-trivial example, we have shown how each of these notations can
be used to encode various aspects of compensable transactions, including alternative
forwarding and speculative choice. Although, there are other notations catering for
compensations, we have included those which propose a substantially different com-
pensation mechanism from other approaches. For example, Acu and Reisig [AR06]
extended the work on workflow nets by v.d. Aalst [vdA98] to include compensations.
However, the concept of compensation employed is very much like that of Sagas
[BMM05]. Similarly, the concepts presented in [GYDuR06] (which we leave out) are
almost identical to those in [BLZ03].

The ever increasing interaction among computer systems suggests that the usefulness
of compensating transactions will not diminish in the near future. Considerable re-
search has been carried out in the research of the area, particularly by suggesting
different formal models of compensation and defining formal semantics for BPEL.
However, although BPEL is a de facto standard in industrial settings, as yet, there
seems to be no accepted standard formalisation of compensating transactions. We
hope that this report, reviewing and comparing various works in compensating trans-
actions, contributes towards a more universally accepted view of compensations.
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