
Automatic Classification of Web Pages into Bookmark
Categories ∗.

Chris Staff
University of Malta,

Department of Computer Science and AI,
Malta

cstaff@cs.um.edu.mt

ABSTRACT
We describe a technique to automatically classify a web page
into an existing bookmark category whenever a user decides
to bookmark a page. HyperBK compares a bag-of-words
representation of the page to descriptions of categories in
the user’s bookmark file. Unlike default web browser di-
alogs in which the user may be presented with the category
into which he or she saved the last bookmarked file, Hy-
perBK also offers the category most similar to the page be-
ing bookmarked. The user can opt to save the page to the
last category used; create a new category; or save the page
elsewhere. In an evaluation, the user’s preferred category
was offered on average 67% of the time

1. INTRODUCTION
Bookmark management systems that can help classify book-
marked web pages, track web pages that have moved since
they were bookmarked, help a user to find web pages simi-
lar to pages that were bookmarked, and that generally assist
with their own organisation are becoming increasingly im-
portant. Recent surveys indicate that a user’s bookmark
file contains on average 184 entries [4], and that approx-
imately 73.7% of pages visited are page revisits [8], with
interaction through either a bookmark file, or the history
list of recently visited sites, or the browser’s back button
being the most common ways of revisiting a page. Modern
Web browsing software, such as Mozilla, Microsoft Internet
Explorer, and Safari, provide only limited support for au-
tomatic management of bookmarked web pages (see section
2). Even less support is provided for navigating through the
list of recently visited web pages to enable a user to return
to a recently visited page. Bugeja’s HyperBK [3] addresses
some of the issues. A moved bookmarked Web page can be

∗This paper is based on the work of Ian Bugeja, a BSc IT
(Hons) student at the University of Malta, who built the
system described in this paper for a Final Year Project under
my supervision.

tracked via a third-party search engine. A user can be re-
minded of the query that had been used to find a web page
before it was bookmarked, or HyperBK can suggest a query
to use to find web pages similar to a category of bookmarked
web pages. HyperBK provides a variety of perspectives or
views to potentially make it easier for a user to find an entry
in the list of recently visited web pages. Finally, HyperBK
automatically suggests a bookmark category into which to
store a web page whenever the user requests to bookmark a
web page. This last feature is the subject of this paper.

In section 2 we discuss general bookmark management is-
sues. We describe HyperBK in section 3. The web page
classification algorithm is described in section 4, and results
of the evaluation are presented in section 5. Similar sys-
tems are reported in section 6. We give our future work and
conclusion in section 7.

2. BOOKMARK MANAGEMENT ISSUES
Bookmark files tend to be partially organised, with some
web pages carefully clustered into a single category or a hi-
erarchy of categories [2]. Many other web pages are not as-
signed to any category in particular, and are either lumped
together in the top-most category or into a generically named
category (e.g., ‘My Favourite Pages’). The complete or par-
tial URL of frequently used bookmarks may be accurately
remembered so that as it is being keyed into the browser’s
address bar, the browser will assist with a simple URL com-
pletion task. Infrequently visited, but bookmarked, web
pages may be easy to find, if they have been stored in the
category the user is looking through, but frequently, the
page will not have been placed into its most relevant cat-
egory, and may prove difficult to find again. If pages are
(almost) always saved to the most relevant bookmark cate-
gory, then they may be easier to find again in the future. As
bookmark files tend to be poorly organised, the user could
probably do with some assistance. Safari, Mozilla FireFox,
and now Microsoft Internet Explorer show the last category
saved to, instead of the root category, so the user must either
knowingly save a bookmark to the wrong category, or must
otherwise locate or create a more appropriate category.

Every once in a while, a user may wish to update a category
by looking for more related information. Here, a frequently
or infrequently visited category or page may be selected, and
the user will try to remember the strategy that was used to
find this page in the first place. If the user had foresight,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


he or she may have also bookmarked the results page of
the search engine query that had been used, so that rather
than trying to remember the query, the URL containing
the query can simply be re-requested. This makes a num-
ber of assumptions: that the user remembered to bookmark
the query; that the page bookmarked was actually related
to the query; and that the user wants to find pages that
are relevant to a single page (many search engines allow a
straightforward search for pages similar to a given URL).
Sometimes, however, a user may wish to find pages that are
similar to a category or cluster of related bookmarks.

Other bookmark management related issues are concerned
with the freshness or currency of the bookmarked URLs.
Web servers do go down or are renamed. Pages may exist
for a short period of time. The page contents may change,
even though the URL continues to exist. Hard disk space is
becoming incredibly cheap. Given the relatively small num-
ber of bookmarks on average, and the small average size of
bookmarked files, it should not be too expensive to allocate
a permanent local cache for web pages that have been book-
marked. If the address of the original of the bookmarked
page is later changed, then rather than having only a vague
memory of what important thing the page contained, the
page can be reloaded from the local cache. In addition, as-
sistance can be given to automatically relocate the page on
the Web (if it still exists).

Web browsers and hypertext systems in general have always
had problems finding a suitable interface to help users nav-
igate their way around recently visited nodes. Historically,
this was identified as one of the issues leading to the ‘Lost
in Hyperspace’ syndrome [5], in particular because it is dif-
ficult to build a representation of the user’s recent browsing
activity that accurately matches his or her mental model of
the recent past. Web browsers have tended to adopt a flat,
linear representation of what may be a complex user ses-
sion including cycles, backtracking, and branching. Current
Web browsers have increased the complexity of the prob-
lem by retaining the flat, linear path representation, even
though users can now have multiple tabbed windows and
multiple windows, potentially containing concurrent tasks
that may or may not be related to each other. The problem
of searching for information in history is likely to increase
in the future, as systems such as MyLifeBits [7] contemplate
digitally storing everything seen by a user throughout his or
her lifetime.

3. BACKGROUND TO HYPERBK
HyperBK was developed as a Mozilla Firefox extension1 to
provide simple mechanisms to address some of the issues
referred to in section 2, but the primary motivation was to
automatically classify a web page that a user in the process
of bookmarking, according to the bookmark classifications
or categories that the user has already created. We describe
the automatic classification task more fully in section 4, but
here we give a brief overview of the other tasks.

3.1 Views of the History List
1HyperBK is available at
https://addons.mozilla.org/firefox/2539/

Bugeja provides multiple representations of the history list.
On visiting a page, the page is classified to find a suitable
category in the bookmark file, just in case it will be book-
marked. Apart from the ability to see the recently visited
pages in the order of most recently visited, the history list
resembles the bookmark file, with visited pages allocated to
bookmark categories (see Fig. 1). This enables users to
locate visited pages according to their topic. This does re-
quire a high degree of correctness in the classification of web
pages, otherwise pages will be stored in the wrong category
and users will have difficultly using the topic-related view
to locate previously visited web pages. Other filters avail-
able to find visited pages are by frequency count, to quickly
identify frequently visited pages; by keyword, a representa-
tion of the contents of the page are kept so keyword search
is possible on the content of visited pages, rather than just
their title; and, finally, by co-incidence. In this last case, we
assume that the user cannot remember any distinguishing
characteristics of the visited web page, but remembers an-
other page visited in roughly the same period. This other
page can be located using the tools described above, and
then a time filter can be used to pull out the other pages
visited just before or after the remembered page. One pos-
sible weakness of Bugeja’s approach, which is inherited from
the way Web browsers, and Mozilla in particular, implement
their history lists, is that only the last visit to a web page
is recorded. If the user is looking for web page, P1, which
has been visited at time T1 and again at the later time T2,
and the user remembers visiting another page, P2 close to
time T1, and T2 - T1 is larger than the time filter, P1’s only
recorded visit will be at time T2, so looking up P2 will not
help the user to find page P1. However, if P2 is a very fre-
quently revisited page, then remembering it is also of little
use, because the user will have far too many instances to
choose from. The best page to remember is an infrequently
visited page (preferably just once), so that remembering it
will lead to the page P1 that the user seeks.

3.2 Web Page Tracker
A Web page is bookmarked because the user intends to re-
visit the page [1] and so saves the page’s address in a book-
mark or favorites file. However, Web pages may be moved
to a new address by the maintainers of the web page, in
which case the stored address is out of date, and the user
may be given a server response that the page cannot be
found when the user next tries to revisit it. HyperBK stores
bookmarked web pages in a local cache, to enable the user
to see the contents of the page even if the page is no longer
available online, and also to assist with the automatic re-
discovery of the page on the internet (if it still exists and
is indexed in its new location by the search engine). We
do not distinguish yet between a dynamic page and a static
page. It may be useful to do so, because if a dynamic page
changes frequently, then it may be likely that the page has
been bookmarked for reasons other than the content, and
attempting to rediscover a dynamic page according to its
content is likely to fail.

3.3 Search for Related Pages
Each time a web page is bookmarked two things happen.
First, we track back through the pages that the user has
visited that act as ‘Search Engine (SE) Referrers’ (that is,
a visited page that contains a link to the next visited page)



 

Figure 1: History viewer (from [3]).

until we have a chain of visited pages with either a search
engine results page as the root or else the first page visited in
the chain. It is possible to correctly identify the SE Referrer,
even if a session is split across multiple tabs and windows,
and even if a session is started in one tab or window and con-
tinues in another tab or window, as long as a link is actually
followed (rather than, for instance, copying a URL and past-
ing it into an address bar). If a search engine results page
is the root of the chain, then the keywords that were used
to generate the results page are extracted and stored. The
second thing that happens is that keywords from the book-
marked page are extracted and stored. These keywords are
used to perform a keyword search on the history list (while
the page is still in the history); to rediscover the address of
a bookmarked web page if the web page has changed ad-
dress; to generate a query to search for similar pages on the
web; and to contribute to the description of the category to
which the bookmark belongs (if any) to i) generate a query
to search for web pages that could belong to the category
on the web, and ii) to decide if a web page in the process of
being bookmarked could belong to this category.

A user can invoke the contextual menu from a category
name in the bookmark file and select the “See Also” op-
tion to search the Web for web pages similar to the book-
marks in that category (see Fig. 2). HyperBK can use
either the query that the user had originally used to find
web pages that were eventually bookmarked into the cat-
egory (the Search Engine Referers described earlier in this
section), or else HyperBK can construct a query from the
keyword representations of web pages in that category. In a
limited evaluation involving 7 users, users claimed that they
were “Very Satisfied” or “Satisfied” with 82% of overall re-
sults of the queries generated automatically from categories
in their bookmark files (the use of previous user created
queries has not yet been evaluated, as it requires reasonably
long term use of HyperBK).

HyperBK currently submits the automatically generated query
to Google’s Web Directory, rather than to the Google Search
Engine per se, because in initial personal trials Bugeja ob-
tained better results from the Web Directory ([3], pg. 71).
The algorithm is being improved to take context into ac-
count, and to obtain useful results even when the query is
submitted to the Google Search Engine [13].

 

Figure 2: HyperBK Bookmark menu (from [3]).

4. CLASSIFYING WEB PAGES TO BE BOOK-
MARKED

Each web page that is accessed is parsed using the Docu-
ment Object Model (DOM) to extract the text components.
Stop words, HTML and JavaScript tags are removed, and
the remaining words are stemmed using Porter’s Stemming
Algorithm [11]. According to Bugeja, the five stems with
the highest frequency are selected to be representative of the
page, but only if they have a frequency of at least two, other-
wise only three stems are selected. This helps to keep down
computational costs. If a web page author has used META
keywords in his or her document, then the five META key-
words that most frequently occur in the document are used
as the document representation instead.

In a future experiment, the keyword selection process will be
modified. First, we will segment a document into its compo-
nent topics, and extract keywords from the topic most likely
to be relevant to the user. Although the results obtained by
evaluation are good (see section 5), we think we can improve
on them. Picking the top five ranking terms will not nec-
essarily accurately capture the user’s interest in the page.
A web page is likely to consist of more than one topic, and
it is unlikely that a page has been bookmarked because the
user is interested in each topic. If only high ranking terms
are selected, then potentially, the terms individually repre-
sent different topics that occur on the page, so some of the
selected terms may, in fact, be irrelevant to the user. We
will build upon HyperBK’s ideas related to the SE Referrer
to find out which keywords were used on a search engine
query page which ultimately led to the current page. We
can then use these keywords to represent the user’s interest



in the page. Alternatively, we can examine the parent that
was used to access the current page, extract the region sur-
rounding the link and assume that terms occurring in that
region accurately describe the potential interest in the to-
be-bookmarked page. Finally, we can segment an accessed
page into its component topics, merge similar topics, and
generate a representation for each topic.

Ultimately, we want to recommend that the user saves the
bookmark entry into a particular category. Fig. 3 shows the
‘Add Bookmark’ dialog box. The algorithm described below
is used to select a candidate category in which to store the
bookmark. A thumbnail of the page is shown in the top-left
hand corner of the dialog box, and the candidate category is
highlighted in the ‘Bookmark Location’. If the user presses
the ‘OK’ button, the bookmark will be stored in this loca-
tion. Alternatively, the user can either search for a more
appropriate location to store the bookmark; create a new
category; or, save the bookmark to the last used location by
pressing the ‘Bookmark in...’ button (in this case, the last
location was ‘University of Malta’).

The algorithm used to select the candidate category is based
primarily on simple keyword matches. As was described
above, each time a web page is accessed, representative key-
words are extracted and stored. If the page is bookmarked
into a category, these terms are added to the set of terms
that represent the category. The recommended category
is the category that has the greatest number of keyword
matches for the incoming web page. If no category scores
highly enough (matches a high number of page terms), then
the recommended category will be the category that con-
tains another page from the same domain, as long as the
category and incoming page share at least one keyword in
common. Finally, if even this fails, then the title of page is
compared to the category descriptions. The category with
the highest number of matches is recommended.

The HyperBK approach does not automatically create cat-
egories and pick reasonable category names, meaning the
user must be involved in creating categories and keeping
the bookmark file organised by allocating pages to the cor-
rect bookmark category until there are a sufficient number
of categories and bookmarked pages to make the recommen-
dations accurate. A future experiment is planned to identify
the smallest number of categories and category members to
make recommendation feasible.

HyperBK includes a wizard to assist with the importation of
bookmark files from other web browsers, and to assist with
the automatic segmentation of categories if they become too
large. Bugeja recommends that a category is split into sub-
categories once it reaches a membership of 20 pages, but he
doesn’t give reasons why 20 is a good number to split on.
This setting is user changeable.

5. EVALUATION
We decided that the most appropriate way to evaluate the
classification algorithm, apart from a longitudinal study in
which HyperBK users would evaluate the system in situ over
a period of time, would be to collect real user’s bookmark
files to see if HyperBK could assign bookmarked pages to
categories in the same way that the users did. This means

that we require bookmark files to be organised (and to con-
tain some categories), and we assume that the user has as-
signed each bookmarked page to the correct category. Of
course, this is a weak assumption, but we had insufficient
time to conduct a longitudinal study. Bookmark file submis-
sion was conducted anonymously through a specially created
portal.

Students following the BSc IT (Hons) degree programme
at the University of Malta were invited by e-mail to submit
their bookmark files (regardless of which Web Browsing soft-
ware they used). Of approximately 200 students contacted,
30 submitted their bookmark files (a return of about 15%).
Of these, 22 files were considered inappropriate for use be-
cause they did not contain more than one or two categories
(the files were too loosely structured) and we felt that in-
cluding them in the evaluation could unfairly bias the results
in HyperBK’s favour.

We randomly removed 10 URLs from categories of 5 of the
remaining 8 bookmark files. We removed less than 10 URLs
from the other three: in two cases because there were too
few categories overall and in the third case (79231 in Table
5) because although there were many more categories, most
of them contained bookmarks that appeared to be mostly
unrelated. The challenge was to place the randomly se-
lected bookmarks into the same categories that the users
had placed them. The results are given in Table 5.

Figure 5 plots the precision against categories. We would
hope for a generally high precision, perhaps dropping slightly
as the number of categories grows, especially if categories
become less distinguishable from each other (because only
5 terms are selected to describe a page). For two book-
mark files containing 38 and 45 categories, precision drops
to below 0.7, which is probably unacceptably low. However,
one of the two bookmark files contains many similar cate-
gories, and the other had many categories each containing
unrelated bookmarks.

6. SIMILAR SYSTEMS
Bugeja [3] has given a recent, short survey on bookmark
management systems. Bugeja notes that bookmark man-
agement systems are usually offered as stand-alone systems
- unlike HyperBK, none is integrated into a browser, and
as discussed in [3], web browsers offer minimal bookmark
management facilities. Most of the systems Bugeja looks at
do not offer automatic web page classification features, al-
though Abrams, Baecker, and Chignell [2] list some require-
ments for bookmark management systems. Among their
requirements are improving the organisation of bookmarks
on behalf of the user, possibly by automatically “filing” new
bookmark entries, and integrating the bookmark manage-
ment system with a web browser. Feng and Brner [6] use
“semantic treemaps” to categorise bookmark entries. Naka-
jima et. al. use keywords that appear in a document’s “con-
text” to to automatically construct queries, rather than to
classify a document, where a context is composed of the
pages visited between a search engine’s query page and a
page that is bookmarked [10]. Li and Yamanishi [9] use a
“finite mixture model” to classify documents, but as Bugeja
points out, this requires the prior existence and standard de-
scription of categories in which to place documents. On the



 

Figure 3: ‘Add bookmark’ dialog (from [3]).

Table 1: Classification Evaluation Results (from [3]) (Legend: ‘BKs’ = Total Bookmarks; ‘Cat.’ = Total
Categories; ‘Hits’ = bookmarks allocated into correct category; ‘Misses’ = bookmarks allocated wrongly;
‘Near Hits’ = bookmark allocated to a parent category (excluding the Bookmarks Root); ‘Approx Precision’
= Near Hits+Hits/total; ‘Precision’ = Hits/total.)

Root Root Near Approx.
ID BKs Cat. BKs Cat. Hits Misses Hits Precision Precision

23740 425 105 49 33 7 2 1 0.80 0.70
24166 330 64 2 26 8 0 2 1.00 0.80
88014 240 53 21 12 7 2 1 0.80 0.70
23248 197 45 6 9 5 3 2 0.70 0.50
79231 158 38 18 18 4 3 0 0.57 0.57
58917 139 29 21 11 8 2 0 0.80 0.80
76243 38 11 3 11 5 0 0 1.00 1.00
80999 22 7 1 5 4 0 0 1.00 1.00

Totals 48 12 6 6.67 6.07
Averages 4.8 1.2 0.6 0.67 0.61

Figure 4: Categories v. Precision (from [3]).



other hand, Shen, et. al. [12] use a page summary on which
to base a classification. Google also offers bookmark host-
ing2, but whether they plan to offer automatic bookmark
management remains to be seen.

7. CONCLUSION AND FUTURE WORK
Automatic bookmark file classification could be a useful ex-
tension to web browsers. Instead of just offering the last
category used to store a bookmark, or dumping the newly
created bookmark into a default location, HyperBK presents
the user with a candidate category based on a simple Boolean
matching algorithm, which has been extended to also con-
sider the domain names of previously bookmarked pages and
keyword extraction from titles. This simple algorithm gives
reasonable accuracy. In an experiment, 67% of bookmarks
were classified correctly. There is room for improvement.
We intend to perform topic segmentation on web pages to
extract keywords from the topic most likely to be of inter-
est to the user, and we intend to carry out a more exten-
sive evaluation. Instead of classifying a random selection of
URLs from a user’s bookmark file, we will attempt to allo-
cate all the bookmarked pages to the user selected category
in the order that they were really allocated. This will help us
determine the average minimum category membership size
required to consistently place a page in the correct category.

8. ACKNOWLEDGEMENTS
This paper is based on ‘Managing WWW Browser’s Book-
marks and History: A Firefox Extension’, Ian Bugeja’s Final
Year project report [3]. Ian was a BSc IT (Hons) student
under my supervision in 2005-06.

9. REFERENCES
[1] D. Abrams and R. Baecker. How people use WWW

bookmarks. In CHI ’97: CHI ’97 extended abstracts
on Human factors in computing systems, pages
341–342, New York, NY, USA, 1997. ACM Press.

[2] D. Abrams, R. Baecker, and M. Chignell. Information
archiving with bookmarks: personal Web space
construction and organization. In CHI ’98:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 41–48, New York,
NY, USA, 1998. ACM Press/Addison-Wesley
Publishing Co.

[3] I. Bugeja. Managing WWW broswer’s bookmarks and
history (a Firefox extension). Final year project
report, Department of Computer Science & AI,
University of Malta, 2006.

[4] A. Cockburn and B. McKenzie. What do web users
do? an empirical analysis of web use. Int. J.
Hum.-Comput. Stud., 54(6):903–922, 2001.

[5] J. Conklin. A survey of hypertext. Technical Report 2,
Austin, Texas, 3 1987.

[6] Y. Feng and K. Brner. Using semantic treemaps to
categorize and visualize bookmark files. In Proceedings
of SPIE - Visualization and Data Analysis, volume
4665, pages 218–227, January 2002.

2http://www.google.com/bookmarks

[7] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and
C. Wong. MyLifeBits: fulfilling the Memex vision. In
MULTIMEDIA ’02: Proceedings of the tenth ACM
international conference on Multimedia, pages
235–238, New York, NY, USA, 2002. ACM Press.

[8] E. Herder. Forward, Back, and Home Again -
Analysing User Behavior on the Web. PhD thesis,
University of Twente, 2005.

[9] H. Li and K. Yamanishi. Document classification using
a finite mixture model. In Proceedings of the 35th
annual meeting on Association for Computational
Linguistics, pages 39–47, Morristown, NJ, USA, 1997.
Association for Computational Linguistics.

[10] S. Nakajima, S. Kinoshita, and K. Tanaka.
Context-dependent information exploration. In
Proceedings of the the 11th World Wide Web
Conference (WWW2002), New York, NY, USA, 2002.
ACM Press.

[11] M. F. Porter. An algorithm for suffix stripping. pages
313–316, 1997.

[12] D. Shen, Z. Chen, Q. Yang, H.-J. Zeng, B. Zhang,
Y. Lu, and W.-Y. Ma. Web-page classification through
summarization. In SIGIR ’04: Proceedings of the 27th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 242–249, New York, NY, USA, 2004. ACM
Press.

[13] C. Staff. How did I find that? Automatically
constructing queries from bookmarked web pages and
categories. In CSAW’06: Proceedings of the third
Computer Science Annual Workshop., to appear.


	Chris Staff 2

