
 1

 Formal Verification of Enterprise Integration
Architectures

Dr. Ernest Cachia

University of Malta, Msida, Malta

ernest.cachia@um.edu.mt

Mark Vella

University of Malta, Msida, Malta

mvel0022@um.edu.mt

ABSTRACT

This is a near-finished paper to be presented in an
international research conference.

Weak Bisimulation is a process calculus equivalence relation,
applied for the verification of communicating concurrent
systems [Miln 99]. In this paper we propose the application of
Weak Bisimulation for Enterprise Application Integration
verification. Formal verification is carried out by taking the
system specification and design models of an integrated
system and converting them into value passing CCS (Calculus
of Communicating Systems) processes. If a Weak
Bisimulation relation is found between the two models, then it
could be concluded that the EI Architecture is a valid one.

The formal verification of an EI Architecture would give
value to an EI project framework, allowing the challenge of
cumbersome and complex testing typically faced by EI
projects [Khan 05], to be alleviated, and thus increasing the
possibility of a successful EI project, delivered on time and
within the stipulated budgeted costs.

This paper shows the applicability of value passing CCS (or
equivalent) formal notation to model the EI systems
characteristics, as well as investigates into the computation
complexity of available weak bisimulation algorithms, in
order to analyze the applicability of this proposition in real
life.

1. Background

In the process of searching for an Enterprise Integration
(EI) specific framework to guide an integration team in the
strategic implementation of an integrated IT landscape within
and beyond the scope of a single enterprise, an extensive
research in the following areas of Enterprise Integration was
made: -

 Integration and middleware technology [Cumns 02]

[Linth 03] � for acquiring the understanding of the
technological mechanisms that make systems integration
possible.

 Standards [BPMI][Linth 03] [OMG 04a] [OMG 04b] �
to be aware of the agreed upon standards in order to
work on their lines.

 Scientific foundation [Miln 99] [Press 96] [OMG 04b] �
in order to be able to add value to the field of Enterprise
Integration based on the concepts of Computer Science
and Software Engineering.

 Challenges [Gar 01] [GB & Ruh 04] [Khan 05] [Linth
03] [Lubl & Far 02] [Mav 03] [Sif 01] � in order to
locate those Enterprise Integration specific areas that
need improvement.

 Methodology and Best Practices (Linthicum 2003) [Ruh
et al 00] [Sif 01], [Schm 03] � in order to have the
knowledge of existing improvement efforts and possibly
build on them.

The industry research, made up mainly of compiled

industry reports, articles [BIJ] [IntCons.] and literature [Burl
01] [Cumns 02] [GB & Ruh 04] [Linth 03] [Ruh et al 00],
allowed the broad understanding of the current state of EI
projects in industry; from the projects business drivers,
technologies and methodologies being used, to the factors
affecting the success of these projects. On the scientific level,
the research investigated which areas of computer science and
software engineering could be applied to EI projects, in order
to improve the situation of this area. [Miln 99] [Press 96]
[OMG 04b]

1.1 Software Engineering Principles

A sound software engineering framework is one that
delivers high quality software deliverables on budget and on
time. [Ghezz et al 02] [Press 96] [Somm 04] In the case of an
EI-specific framework, it is being proposed that in addition
this would be a framework that is targeted specifically at EI
systems, that achieves the EI-specific goals and qualities,
allowing the EI project challenges to be overcome, and thus
maximizing the probability of success and avoiding project
failures as identified in [Lubl & Far 02].

1.2 EI-specific Framework Value
The proposed value of an EI-specific Project Framework

could be better explained in the following scenario: take a
software project manager who has managed traditional
software projects for some time, but is now faced with the
challenge of setting up an EI project plan. He/she should be
aware of the fact that managing an EI project, although still a
software project, requires a specific management framework
to address the specific EI challenges. An EI-specific
management framework would be very beneficial, in this
particular case, to start building the EI project plan and
carrying out all the necessary tasks leading to an effectively
built EI system.

1.3 EI Project Challenges, Goals and Qualities

Further to what was presented in [Gar 01], according to
[Lubl & Far 02] and [Herr 04] the main challenges causing
failure in EI Projects include:

 Lack of standard methodologies � so far only industry

best practices and EI product specific methodologies
were found.

 Lack of proper business process definitions � in fact
many business models today exist only in the head of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OAR@UM

https://core.ac.uk/display/132619289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ernest.cachia@um.edu.mt
mailto:mvel0022@um.edu.mt

 2

departmental managers and at times these also conflict
with the understanding of their colleagues.

 Lack of business units co-operation � In several cases,
business units only communicate to put the blame on
each other, and compete fiercely for company budgets.
On the other hand, EI projects require full business unit
co-operation.

 Implementation is more complex than expected � An EI
implementation usually consists of several
implementation technologies, packages from different
vendors, multiple platforms and an unexpected number
of interface links.

 Relying too much on integration technology for project
success � Middleware technology in fact is only an
enabler of integration implementation but far from being
a complete software engineering tool.

 Lack of thorough testing - this is so, given the newly
introduced integration level and the enterprise wide
scope of such systems.

 Lacking the proper integration team roles � EI projects,
given their novel nature, are only seen by the IT
department as just another IT project, and fail to re-
organize the IT roles before the start of these projects.

[Ruh et al 00] compiled a list of goals and qualities that

should be reached/exhibited by an EI-specific project
framework. These are as follows: -

Goals
 Ensure that the EI architecture and developed

applications satisfy business needs
 Describe how to manage the EI process
 Describe how to work with legacy systems and packaged

solutions to integrate them
 Provide guidance on technology selection and

standardization
 Ensure that the methodology promotes reuse

Qualities
 Align IT with the enterprise business strategy
 Build on a solid enterprise architecture
 Leverage legacy and commercial software
 Focus on security

In addition to these goals and qualities, the main strategic
business value of EI today is that of being an enabler of
Business Process Management [McGov 01] [McGov 03]
[Krish 04]. This point was taken into consideration and a
decision was taken to focus on the Business Process
Integration [GB and Ruh 04] type of integration, where the
main focal points of integration are the business process and
not the applications. Here, Application Integration is only a
consequence of joining up the business processes, but not the
main driver.

These goals and qualities along with the EI project

challenges form the basis for the reasoning underlying an EI-
specific framework.

1.4 Framework Building Blocks
The foundation of this framework is made up of building

blocks from the fields of Computer Science, Software

Engineering and Business Management. These building
blocks are: -
Value passing CCS (Calculus of Communicating Systems) or
equivalent Process Calculus � from the field of Computer
Science that allows the mathematical modeling of
communicating concurrent and mobile systems. [Miln 99]
CCS allows the formal specification and reasoning of
communicating concurrent systems. Its applicability to the EI
domain is shown in section 3 of this paper.
Unified Modeling Language (UML) � a software
engineering tool allowing the modeling of software
specification and design. [OMG 2004b] UML was chosen due
to the wide adoption in the software engineering world and its
OMG standard status.
Business Process Management (BPM) � a business
management discipline born out from Business Re-
engineering that advocates end to end business process
modeling, automation and their continuous monitoring and
optimization. [Burl 01] This building block was made part of
the project in order to be able address the goal of EI systems
to be an enable to Business Process Management
programmes.

This paper concerns only the application of the first

building block: value passing CCS. More specifically, Weak
Bisimulation, that is a binary relation on CCS processes [Miln
99], is being proposed as a possible tool for the verification of
EI architectures.

1.5 Scope
The whole process required for completing the formal

verification of an EI architecture is illustrated in figure 1,
where the business process model defines the system
specification and the EI Architecture is the system design that
is verified against the business process model.

This paper shows the applicability of process calculus

such as value passing CCS to the domain of EI, present a
treatment of Weak Bisimulation and the possibilities this
offers as a formal verification tool, and place the verification
step within the context of an EI-specific framework. The
formal specification and design, as well as an in-depth look at
the verification process will be treated in subsequent papers.

Figure 1 � EI Architecture verification process

 3

2. Formal EI Architecture Verification
Proposition

Weak Bisimulation (≈) is a process binary equivalence
relation based on the equivalence of just the observable
reactions between 2 processes. In other words, as long as the
second process can match each observable reaction sequence
of the first process and vice versa, the 2 processes are
regarded as weak bisimilar, irrespective of their internal
reactions. Thus Weak Bisimulation is also known as
observation equivalence, with the processes in question
regarded as black boxes

[Miln 99] shows how the weak equivalence relation (≈)

could be used to prove that a particular system structure
implements correctly a particular system definition. More
specifically he showed the application of Weak Bisimulation
as follows: System ≈ Specification.

Weak bisimulation is the chosen process equivalence
relation for the fact that a system specification does not have
as yet an internal structure and as a consequence, minimal
internal reactions. Thus, this reasoning rules out both
Structural Congruence (≡) and Strong Bisimulation (~). Given
that Weak Equivalence (≈) is insensitive to both internal
reactions and structure [Miln 99], it fits well the need of
proving the correctness of the implementation of a system
against its specification.

Applied to the domain of Enterprise Integration, or more

specifically to the chosen Business Process Integration type of
integration, this observation equivalence relation is being
proposed to be applied as follows: -

Business Process Model ≈ EI Architecture

The Business Process Model defines the required

business process flows to be automated by the underlying
system, whilst the EI Architecture is the design of the EI
system implementing the business flows. By mapping these
models into value passing CCS processes, the equivalence
between the Business Process Model and the EI architecture,
could be formally verified by finding a Weak Bisimulation
relation between these two processes.

3. EI systems characteristics

From the initial research underpinning this paper, the
following architectural characteristics of EI systems stood out:
-

 Concurrent Systems [Cumns 02] [Linth 03]
 Business Process Modelling [GB and Ruh 04]

[McGov01]
 Mobility [Smit and Fin 03]
 Security [Ruh 00]

The next four sub-sections introduce these characteristics

and show how value passing CSS fairs, in modeling these
characteristics.

3.1 Concurrent Systems

In EI architectures, concurrency is exhibited by the
several applications, services and middleware executing in

parallel, whilst messaging is the communication link between
them. In Enterprise Integration, messaging is carried out by
several middleware technologies that link applications
together. [Linth 03] categorizes the middleware technology
available today as follows: -

 Remote Procedure Calls � this type of middleware
allows a software process to make synchronous calls
to remote processes. E.g. Java Remote Method
Invocation (RMI) [JavaRMI]

 Message Oriented Middleware � this type of
middleware is a queuing software that allows
software processes to write and read messages to
and from a queue. Communication between
processes is asynchronous with guaranteed delivery.
E.g. MQSeries. [IBMMQ]

 Distributed Object Transactions � this is a
middleware infrastructure allowing the exposure of
business logic making up applications, supported by
a transactional platform. E.g. Component Object
Model (COM) [Microsoft.com/com.] and Common
Object Request Broker (CORBA) (CORBA]

 Database Oriented Middleware � this kind of
middleware provides software processes with access
to database servers. E.g. Open Database
Connectivity (ODBC) [IODBC]

 Transaction Oriented Middleware � this type of
middleware provides co-ordination of information
movement and method sharing within the scope of a
transaction. These are mainly to link legacy
procedural applications to the transactional
enterprise level. E.g. Tuxedo [Bea]

As defined by [Miln 99], value passing CCS � a formal

way of modeling concurrent communicating systems, where
variables are allowed along communication channels - is able
to model concurrency and messaging, in the following ways: -

Concurrency

Being an extension of the CCS (Calculus of
Communicating Systems) [Miln 99] value passing CCS
supports the modeling of concurrent processes with the
construct P ::= (P1 | P2), where processes P1 and P2 are
parallel composed together.

Messaging

The following value passing CCS constructs support the
modeling of messaging as represented in Business Process
Models (Figure 2) and EI Architectures (Figure 3). Figure 4
shows how these are represented in value passing CCS.

Input channel - x(y).P, means input a name on channel x
by substituting with place holder y, and use the input in
process P. In the EI scenario, x can represent a listening port
such as a web service. The name y represents the place holder
for an incoming message. Continuing on the example of a web
service implementation, this incoming message can be an
input XML (eXtendible Markup Language) document to the
web service (a tagged data document), whose schema is
referenced in the web service WSDL (Web Service Definition
Language), which defined the interface of the particular web
service.

 _
Output Channel - x <y>.P means output the name y on

the channel named x, and then do P. In previous the web
service analogy, this represents the consumption of the web

 4

service, where an XML document y is sent from the client
application along channel x. In this case x is the TCP/IP based
connection using the SOAP protocol.

Figure 2 � Business Process Modeling Notation � Sending a

message

Figure 3 � Messaging in UML Activity Profile for EAI

(Enterprise Application Integration) [OMG 04a]

Figure 4 - Messaging in value passing CCS

In EI, messaging can be either synchronous for example
in the case of a web service call or a Remote Procedure Call
(RPC), or asynchronous, as in the case of message queues. It
is possible to model both these types of messaging using
value-passing CCS as follows.

Synchronous Messaging
P = new x (P1 | P2)

 _
P1 = x<y>.x(z).P1�

 _
P2 = x(a).ô. x.P2

Using the web service analogy in the above simplified

process; an application process P1 consumes web service P2.
P1 calls P2 along channel x and passes the XML document y
as an input. When the call is made, P1 -> P1�� transition
occurs, where P1�� = (z)x.P1�. In the P1�� state, the calling
process is kept blocking waiting on the same channel for web
service P2 to return. Once a message is returned back along
channel x the calling process goes into state P� executing the
rest of the process.

From the server�s perspective P2 listens indefinitely on

channel x. When an XML document arrives along channel x,
the web service executes its internal logic, represented by the
tau (ô) symbol, and returns an output document XML back on

channel x to P1 on completion. The web service then resumes
in state P2 listening indefinitely for the next call.

Asynchronous Messaging

P = new x y (P1 | P2 | P3)
 _
P1 = x<y>.P1
 _
P2 = x(w).ô.y<w>.P2

P3 = y(z).ô.P3

Process P2 handles continuous asynchronous

communication between processes P1 and P3. Even though
the communication between P2 and the other processes is
synchronous in terms of readiness of processes to be able to
communicate between each other, process P2 provides the
mechanism for asynchronous messaging between P1 and P3.
In the above-simplified example, P2 models a messaging
queue-like structure, allowing application P1 to
asynchronously call P3 without blocking, even in cases when
P3 is not ready to communicate.

3.2 Business Process Modeling
Business Process Modeling involves the modeling and

documentation of the business process flows within an
enterprise and is a main element of Business Process
Management [Burl 01] [BPMI] [Smit & Fin 03]. EI systems
are expected to serve as an infrastructure to these modeled
processes, possibly by means of a Business Process
Management System. [McGov 01]

CCS abstracts the notion of a process and is not specific

to any particular software process living in a computer
memory. Thus, it can be argued that CCS could also be
suitable for modeling processes in the business sense. In the
business context, we have business processes, embodying
workflows, running in parallel communicating between each
other inter-departmental and business to business (B2B)
messages. In [Smt & Fin 03], Smith and Fingar elaborate in
full detail of how Pi Calculus, an extension of CCS
incorporating mobility, perfectly suites the modelling
requirements of business processes.

As a matter fact, Process Calculi are already being

applied to BPM for other reasons. The Business Process
Modelling Notation (BPMN) adopted by the Business Process
Management Initiative (BPMI) [BPMI] is fully based on Pi
Calculus foundations; as is the Business Process Execution
Language For Web Services (BPEL4WS) by Microsoft
Corporation (Microsoft.com) and IBM [IBM] and the BPML
(Business Process Modelling Language) by the BPMI.

3.3 Mobility
From personal experience in enterprise integration

projects, the communication links between the nodes of an EI
architecture (applications, services and middleware) are not of
fixed nature but rather of a dynamic mobile nature, where
communication channels are created, moved and destroyed.
For example we have the scenarios where communication
channels between two processes are created as in the
discovery of a web service by UDDI (Universal Discovery
Description and Integration) protocol [UDDI]. There are also
situations of channel proliferation where for example an
application server or middleware becomes unavailable. There

 5

are also situations of pure mobility where a communication
channel is relocated in the process space as in the scenario
where a client application is instructed to start communication
with an alternate server for example, for performance reasons
or during a seamless, no down time, new application roll out.

Mobility in the context of business processes is reflected

in the continuous change in business rules as a result of a
Business Process Management Programme [Smith and
Fingar, 2003]. An example is where in a move to eliminate
bureaucracy an electronic components manufacturing
company consolidates approvals of component designs in one
department. In this case a link between the engineering
department and the first auditing department in line, moves to
a link with the newly created consolidated department

Pi Calculus supports the modeling of process mobility by

definition; in fact Pi Calculus was invented by extending the
CCS to support mobility. Mobility is modeled in Pi Calculus
by allowing names representing communicating channels to
be themselves passed as messages along channels. [Miln 99]

Even though Pi Calculus would be required to model

mobility, for the time being only value passing CCS is being
considered in order to make the proposition of this
verification tool clearer. Moreover, the researched Business
Process Modeling Notation [BPMI] does not include the
concept of mobility within the graphical notation; thus
making value-passing CCS sufficient for formally
representing business models built using this notation for the
time being.

3.4 Security
Now that the applications have been �opened up� in order

to communicate possibly with the whole world, the issues of
security breaches increase [Ruh, et al, 2000]. An improper
security infrastructure can invalidate an otherwise well built
integrated architecture. In fact the role of secure messaging
increases immensely in such architectures. The importance of
security in EI projects has already been identified in the
Secure Application Integration Methodology by [Ruh et al
00].

The notion of restriction in CSS denoted by (new x) P

means that x is for the exclusive use of P. A more specific
example is P = new x (P1 | P2) which means that P1 and P2
communicate via a private channel x even when placed in the
context of other concurrent processes having a channel with
the same name [Miln 99]. This construct enables us to model
secure communication channels in integrated architectures.

Having said that, this does not mean that by using the

restriction construct, it means that model is definitely secure,
it only specifies that the indicated channel of communication
should be secured. A typical case where a secure channel does
not imply complete overall security is shown in the following
system: -

System = new x (P1 | P2) | P3
 _
PI = x<outval>
 _
P2 = x(inval).y<inval>

P3 = y(inval)

Where even if P1 and P2 communicate via a secure
channel, over which P3 can never interfere, it is still up to the
implementation of P1 and P2 to ensure that that any sensitive
data is not passed on to P3. In the above example, P2 is
sending the data received over the secure channel x to P3.

Still, having the individual processes formally defined,
these can be individually formally verified in terms of system
security.

4. Enterprise Architecture Verification

It is being proposed that CCS based verification occurs
within an EI framework as follows.

Once the Business Process Model diagram (the system

specification), and the EI architecture (system design) are
produced, these are converted to CCS processes. This way the
model passes from a semi-formal representation of the system
to a formal one. If a Weak Bisimulation relation were found
between the two processes, the EI architecture would be
considered equivalent in behavior to the Business Process
Model, and thus validated.

This verification step is carried out during the framework

stage where the EI Architecture is completed and the lower
level steps of design and implementation are about to start
(Figure 5). Having the architecture validated at such an early
stage maximises the success of the EI system by alleviating
the challenge of EI testing as discussed in [Khan 05] and
[Lubl & Far 02]

5. Practical applicability

In order for the proposed EI Architecture formal
verification tool to be practical and usable in real world
applications, the verification process must be automated, and
the algorithm automating the process should do this in an
efficient manner.

[Baier & Herm 99] explain that Weak Bisimulation can

be decided in a time complexity of O(n2.3), where n is the
number of states, using a technique called the
partitioning/splitter technique. Thus, using this algorithm, it is
possible to efficiently decide a Weak Bisimulation between
two processes given that: -

1. We keep the number of states finite
2. Possibly minimizing the number of states

The first condition can only be adhered to by not using

variables from infinite domains (the algorithm does not work
on symbolic labeled transition systems). This might sound too
restrictive at first, but if it is kept in mind that at this stage the
system is simply being described rather than specified in
terms computations, it can be viewed from a different aspect.
For example, consider a task that receives an integer, and
decides on two alternative flow branches based on the value
of the integer received. In the system specification and design
models, one simply needs to pass a boolean value based on
the size of the integer. In this case, instead of using a variable
from an infinite domain, one can use a variable from a finite
one. The latter can be achieved by assuming synchronous
parallelism as described in [Baier & Herm 99], and thus

 6

avoiding a state size explosion when a system is made up of
several parallel composed processes.

An alternate approach would be that of using a Weak
Bisimulation algorithm that functions on symbolic transition
systems, allowing the use of variables from an infinite
domain. [Dovier et al.] present an efficient Bisimulation
algorithm stating that is possible to port to the symbolic case.

Architecture Verfication

Business
Strategy

Business Process
Design

Development and
Implementation

Optimization

Company Strategic Direction

New Business Process Model

Integrated Enterprise System

Operational Business and System logsSystem Improvement Iteration

 Business Improvement
Iteration

Strategic Iteration

Architect

New Business Process Model
Enterprise ArchitectureCorrect

Figure 5 � Architecture Verification as part of an EI
framework

6. Conclusions

This paper attempts to show that the application of value
passing CCS and Weak Bisimulation as a means of validating
an EI Architecture against the Business Process Model is
possible by the treatment of the mapping of Business Process
Models and EI Architectures to value passing CCS processes.
CCS is able to model the main features of EI systems; these
being Concurrency, Business Process Modeling, and Security.
On the other hand the Weak Bisimulation relation is an
equivalence relation that is insensitive to internal structure
and reaction. This enables the checking for an equivalence
relation between the Business Process Model and the EI
Architecture. Whilst Pi Calculus would be required to model
the remaining EI characteristic, mobility, this is not
considered for the time being since mainly since no Business

Process Modeling Notation researched so far addresses
mobility, and also for reasons of better focusing on the usage
of the proposed formal verification system in real life.

The formal verification of the EI Architecture is

proposed to give value to an EI-specific project framework,
allowing the challenge of complex testing typically faced by
EI projects, to be overcome by allowing the formal
verification of the architecture, before development and
testing starts.

Finally the paper also proposed a sound foundation for a

way forward for a practical application of the proposition, by
mechanically automating the verification process.

7. References

[Baier & Herm 99] Baier, C. and Hermanns, G. (1999) Weak
Bisimulation for Fully Probabilistic Processes
[Bea] BEA Tuxedo.
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/co
ntent/products/tux http://www.bea.com
[BPMI] BPMI.ORG The Business Process Management
Initiative Homepage http://www.bpmi.org
[Braun 05] Braunstein, J. (2005). Integration Audit
Methodology: A Primer on Assessing Integration. In EAI
Journal Feb� 2005.
[BIJ] Business Integration Journal Online.
http://www.bijonline.com
[BPMI] Business Process Management Initiative. (2004).
Business Process Modelling Notation v1.0.
http://www.bpmn.org
[Burl 01] Burlton, R. (2001). Business Process Management:
Profiting From Process. SAMS
[Corba] CORBA.ORG. The OMG�s CORBA Website.
http://www.corba.org
[Cumns 02] Cummins, F.A. (2002). Enterprise Integration:
An Architecture for Enterprise Application and Systems
Integration. Wiley
[Dovier et al.] Dovier A., Piazza, C. Policriti A. An efficient
algorithm for computing bisimulation equivalence.
[Erk & Pen 98] Eriksson, H.E. and Penker, M. (1998). UML
Toolkit, Wiley Computer Publishing.
[Gar 01] Garimella, K. Ph.D. (2001). Integration Challenges
in Mergers and Acquisitions. In EAI Journal Aug 01.
[GB & Ruh 04] Gold-Bernstein, B. and Ruh, W. (2004).
Enterprise Integration: The essential guide to integration
solutions, Addison-Wesley.
[Ghezz et al 02] Ghezzi, C. et al. (2002). Fundamentals of
Software Engineering (2md edition). Prentice Hall.
[Herr 04] Herrera, J. (2004). Avoiding Common EAI
Implementation Missteps, LogicCurve.
[IBM] IBM.COM IBM Homepage http://www.ibm.com
[IBMMQ]IBM WebSphere MQ. http://www.ibm.com
[IODC] IODBC.ORG. Platform Independent ODBC.
http://www.iodbc.org
[IntCons.] Integration Consortium
http://www.wwintegration.com
[JavaRMI] java.sun.com/products/jdk/rmi. Java Remote
Method Invocation (Java RMI) http://www.sun.com
[Khan 05] Khanna, R. (2005). Top Challenges in Integration
Projects. Wipro Technologies White Paper.
[Krish 04] Krishnan, M. (2004). The EAI Paradigm Shift,
WIPRO Technologies White Paper.

http://www.bea.com/framework.jsp?CNT=index.htm&FP=/co
http://www.bea.com
http://www.bpmi.org
http://www.bijonline.com
http://www.bpmn.org
http://www.corba.org
http://www.ibm.com
http://www.ibm.com
http://www.iodbc.org
http://www.wwintegration.com
http://www.sun.com

 7

[Linth 03] Linthicum, D. S. (2003). Next Generation
Application Integration: From Simple Information to Web
Services. Addison Wesley.
[Lubl & Far 02] Lublinsky, B. and Farrel M. Jr. (2002). Top
10 Reasons Why EAI Fails. In EAI Journal.Dec� 02
[MSE] MSE http://www.magicsoftware.com Magic Software
Enterprises
[Mav 03] Maverick, G. (2003). EAI Project Management. In
EAI Journal Nov� 03.
[McGov 01] McGoveran, D. (2001). BPMS Concepts,
Enterprise Integrity. In EAI Journal Jan �01
[McGov 03] McGoveran, F. (2003). Managing Business
Process for EAI, In Business Integration Journal Sep �03.
[Microsoft] Micosoft.com Microsoft Corporation Homepage
http://www.microsoft.com
[Micr COM]Microsoft.com/com. Component Object Model
Technologies http://www.microsoft.com
[Miln 92] Milner, R. (1992) Mathematical Structures in
Computer Science, Vol. 2, pp. 119-141
[Miln 99] Milner, R. (1999) Communicating and mobile
systems: the Pi-calculus. Cambridge
University Press.
[OMG 04a] Object Management Group (2004). UML for
Enterprise Application Integration,v1.0. OMG Formal
Specification. http://www.omg.org
[OMG 04b] Object Management Group (2004). UML
Superstructure Specification,v2.0. OMG Formal
Specification. http://www.omg.org
 [OMG 04c] Object Management Group (2004). UML Flow
Composition Model v1.0. OMG Formal Specification.
http://www.omg.org
[OMG 05a] Object Management Group (2005). UML Profile
for Modeling Quality of Service and Fault Tolerance
Characteristics and Mechanisms. OMG Formal Specification.
http://www.omg.org

[OMG 05b] Object Management Group (2005b). UML
Profile for Schedulability, Performance, and Time, v1.1.
OMG Formal Specification. http://www.omg.org
[Press 96] Pressman, R.S. (1996). Software Engineering: A
Practioner�s Approach. 4th Edition. McGraw-Hill.
[Roch 04] Roch, E. (2004). A Software Development
Methodology for EAI. In EAI Journal Sept �04.
[Ruh et al 00] Ruh, A. W., et al; (2000). Enterprise
Application Integration: A Wiley Tech Brief. Wiley
[Sang 96] Sangiorgi, D. (1996). A theory of bisimulation for
the ð-calculus. Acta Informatica, Volume 33 , Issue 1.
[Schm 03] Schmidt, J. (2003). EAI Lifestyle Evaluation. The
Software Ecologist Column, In EAI Journal Apr� 03.
[Sif 01] Sifter, C.J. (2001). Integration Project Management
101. In EAI Journal March� 01.
[Smt & Fin 03] Smith, H. and Fingar P. (2003). Business
Process Management: The Third Wave. Meghan-Kiffer Press.
[Stribna 98] Stribrna, J.(1998) Decidability and complexity of
equivalences for simple process algebras.
[Somm 04] Sommerville, I. (2004) Software Engineering (7th
Edition). Addison Wesley.
[UDDI] UDDI.ORG The Universal Description, Discovery
and Integration (UDDI) protocol homepage
http://www.uddi.org
[V der Aalst 04] Van der Aalst, W. et al. (2004). Workflow
Patterns
http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl
[Whit 05] White S.A. (2005). Process Modelling Notations
and Workflow Patterns. IBM corp

http://www.magicsoftware.com
http://www.microsoft.com
http://www.microsoft.com
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.omg.org
http://www.uddi.org
http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl

	Ernest Cachia, Mark Vella

