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suggest that 5-HT2A receptor may be a potential therapeutic 
target for those disorders related to hippocampal and amyg-
dala dysfunction.
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Introduction

The amygdaloid complex (or amygdala) and the hippocam-
pal region are part of the temporal lobe. These regions, 
interconnected by many reciprocal pathways (Pikkarainen 
et  al. 1999; Pikkarainen and Pitkänen 2001; Kemppainen 
et  al. 2002; Pitkänen et  al. 2002; Majak and Pitkänen 
2003), mediate functions involving emotion and memory 
(Aggleton 2000; Morris 2007; Whalen and Phelps 2009). 
The amygdala and the hippocampus region are linked to 
two independent memory systems, but they act in concert 
when “emotion meets memory” (Phelps 2004). The amyg-
dala has an essential role in the expression of emotions and 
the formation of emotion-related memories (LaBar and 
Phelps 1998). The hippocampus instead is involved in the 
storage of explicit/declarative memory (Eichenbaum et al. 
1996). These two brain areas affect each other in subtle 
but important ways (Richardson et  al. 2004). Indeed, the 
amygdala influences both the encoding and the storage of 
hippocampal-dependent episodic memory for emotional 
stimuli. On the other hand, the hippocampus can influence 
the amygdala response when emotional stimuli are encoun-
tered, by enabling it to place the event into the proper con-
text (Phelps 2004).

Among all the neurotransmitters, serotonin (5-hydrox-
ytryptamine, 5-HT) seems to play a critical role in the 
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serotonin (5-HT) in the physiological basis of memory 
and its pathogenesis by modulating directly the activity 
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amygdala and the hippocampus receive remarkably dense 
serotoninergic inputs from the dorsal and median raphe 
nuclei. Anatomical, behavioral and electrophysiological 
evidence indicates the 5-HT2A receptor as one of the prin-
cipal postsynaptic targets mediating 5-HT effects. In fact, 
the 5-HT2A receptor is the most abundant 5-HT recep-
tor expressed in these brain structures and is expressed on 
both amygdalar and hippocampal pyramidal glutamater-
gic neurons as well as on γ-aminobutyric acid (GABA)-
containing interneurons. 5-HT2A receptors on GABAergic 
interneurons stimulate GABA release, and thereby have an  
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review will focus on the distribution and physiological 
functions of the 5-HT2A receptor in the amygdala and hip-
pocampal region. Taken together the results discussed here 
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regulation of the various amygdala/hippocampal func-
tions (Pralong et  al. 2002; Harvey 2003; Hensler 2006). 
Moreover, many neurological and psychiatric diseases, 
especially affective disorders, are characterized by a sero-
tonergic dysfunction in these regions (Pralong et al. 2002; 
Hensler 2006; Shin et  al. 2006; Esposito et  al. 2008, Di 
Giovanni et al. 2011). Among the plethora of 5-HT recep-
tors (Rs), 5-HT2ARs have received considerable attention 
because of their distribution in these areas, relative high 
affinity for atypical antipsychotics, and their involvement 
in the etiology of psychiatric diseases (Gray and Roth 
2001; Meltzer and Huang 2008) and memory impair-
ments (de Quervain et  al. 2003). Moreover, serotonergic 
innervations of the amygdala and the hippocampus have 
been shown to mediate anxiogenic effects by 5-HT2ARs 
stimulation (Graeff and Zangrossi 2010). Finally, reduced 
5-HT2A receptor signaling has been found in the amyg-
dalae (Hurlemann et  al. 2009) and hippocampi (Mintun 
et al. 2004) of patients suffering from anxiety and depres-
sion, respectively.

Serotonin interacts with various subtypes of receptors, 
which have different cellular and subcellular distribution in 
the central nervous system (CNS). Based on molecular and 
pharmacological properties, serotonin receptors are classi-
fied into 7 families (from 5-HT1 to 5-HT7), which comprise 
14 receptor subtypes. Most serotonin receptors are typi-
cally G-protein coupled, besides the 5-HT3 receptor that is 
a ligand ion channel (Barnes and Sharp 1999; Hoyer et al. 
2002).

The 5-HT2 receptor (5-HT2R) family comprises the 
5-HT2A, 5-HT2B, and 5HT2C receptors, which exhibit  
46–50 % overall sequence identity and couple preferentially  
to Gq/11 to increase inositol phosphates and cytosolic  
Ca2+ (Di Giovanni et  al. 2006). The 5-HT2AR comprises 
471 amino acids and presents seven transmembrane 
domains. This serotonin receptor also activates phospholi-
pase D and phospholipase A2 by interacting with additional 
G-proteins (Barnes and Sharp 1999; Hoyer et al. 2002). In 
a variety of brain regions, 5-HT2AR activation results in 
neuronal depolarization because of the decrease in potas-
sium conductance (Barnes and Sharp 1999; Hoyer et  al. 
2002). Stimulation of the 5-HT2AR also increases cGMP 
production through an indirect cellular mechanism involv-
ing glutamate release and N-methyl-d-aspartate (NMDA) 
receptor activation (Regina et al. 2004). There is generally 
an overlap between the distribution of 5-HT2AR mRNA 
and immunoreactivity, suggesting a postsynaptic location 
(Lopez-Gimenez et al. 2001).

The aim of the present review is to summarize what is 
known about the functional distribution and the role of 
5-HT2ARs in modulating amygdaloid complex and hip-
pocampal activity in relation to emotional memory.

Anatomical organization of the amygdala

The amygdala is an anatomically heterogeneous structure 
located in the temporal lobe that comprises 13 nuclei and 
cortical areas and their subdivisions (Pitkänen 2000; Pit-
känen and Kemppainen 2002). Cytoarchitectonic, chemo-
architectonic, and connectional analysis of the amygdala 
in the rat and monkey indicate that this structure is com-
posed of deep, superficial, and “remaining” nuclei (Table 1;  
Pitkänen 2000; Pitkänen and Kemppainen 2002).

Consistent with the anatomic heterogeneity, multiple 
functions are assigned to the amygdala, including generation 
of emotional responses, formation of emotional memories,  
enhancement of explicit memory formation in emotionally 
arousing situations, formation of stimulus-reward associa-
tions, and regulation of sexual behavior (Aggleton 2000; 
Whalen and Phelps 2009). Alterations in the amygdaloid 
functions can occur in neurological and psychiatric dis-
eases such as Alzheimer’s disease, temporal lobe epilepsy, 
schizophrenia, anxiety, and depression (Aggleton 2000; 
Whalen and Phelps 2009).

Major cell types of the amygdala

Different morphological, immunohistochemical, and physi-
ological studies have showed that different cell types are 
distributed in the amygdaloid complex (Table  1; McDon-
ald 1992, 1998; Sah et al. 2003; Spampanato et al. 2011). 
The deep nuclei exhibit two major cell classes: excitatory 
(glutamatergic) pyramidal projection neurons and inhibi-
tory (γ-aminobutyric acid [GABA]ergic) nonpyramidal 
interneurons. The pyramidal neurons have conical cell bod-
ies and five to seven spiny primary dendrites. GABAergic 
interneurons are a heterogeneous population of sparsely 
spiny or nonspiny neurons that can be divided into distinct 
subpopulations on the basis of their content in calcium-
binding proteins and peptides (for reviews, see McDonald 
1992, 1998; Sah et  al. 2003; Spampanato et  al. 2011). In 
the superficial nuclei, the two main cell types are pyrami-
dal and nonpyramidal neurons (McDonald 1992, 1998; Sah 
et al. 2003). Although these cells exhibit a laminar organi-
zation (layers I, II, and III), their morphology is similar to 
those of counterparts in the deep nuclei. Thus, pyramidal 
neurons are excitatory projection neurons that utilize glu-
tamate as an excitatory neurotransmitter, whereas nonpy-
ramidal neurons are local circuit cells that utilize GABA as 
an inhibitory neurotransmitter (McDonald 1992, 1998; Sah 
et al. 2003). Unlike other superficial amygdaloid nuclei, the 
medial nucleus contains small-to medium-sized ovoid neu-
rons which possesses moderately to densely spiny dendrites 
(McDonald 1992, 1998; Sah et  al. 2003). In the anterior 
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amygdaloid area, there are small-to-medium-sized ovoid, 
fusiform, or polygonal densely spiny projection neurons 
and nonspiny interneurons (McDonald 1992, 1998; Sah 
et al. 2003). The neuronal morphology of the amygdalohip-
pocampal area is virtually similar to that described for the 
deep nuclei (McDonald 1992, 1998; Sah et al. 2003). Cen-
tral nucleus has neurons very different from those present 
both in deep and in superficial nuclei. The lateral division 
of the central nucleus exhibits a homogeneous population 

of medium-sized ovoid spiny neurons which resemble those 
of the caudato-putamen. The vast majority of the neurons 
in the capsular division of the central nucleus are similar 
to those in the lateral division. The medial division of the 
central nucleus is composed mainly of ovoid, fusiform, and 
piriform, sparsely spiny neurons (McDonald 1992, 1998; 
Sah et  al. 2003). Finally, in the intercalated nuclei, there 
are two main types of neurons: medium ovoid neurons with 
spiny dendritic trees and large cells with very long thick 

Table 1   Nuclei, nuclear subdivisions, and cell types of the rat and monkey amygdala

Nuclei Rat subdivisions Monkey subdivisions Cell types

Deep nuclei

 Lateral nucleus Dorsolateral Dorsal Pyramidal and nonpyramidal neurons

Medial Dorsal intermediate

Ventrolateral Ventral intermediate

Ventral

 Basal nucleus Magnocellular Magnocellular

Intermediate Intermediate

Parvicellular Parvicellular

 Accessory basal nucleus Magnocellular Magnocellular

Parvicellular Parvicellular

Ventromedial

 Paralaminar nucleus – No subdivisions

Superficial nuclei

 Bed nucleus of the  
accessory olfactory tract

No subdivisions – Small spherical, angular, and fusiform neurons

 Medial nucleus Rostral No subdivisions Small-to-medium-sized ovoid neurons

Central  
(dorsal and ventral parts)

Caudal

 Nucleus of the lateral  
olfactory tract

No subdivisions No subdivisions Pyramidal and nonpyramidal neurons

 Anterior cortical nucleus No subdivisions No subdivisions

 Periamygdaloid  
cortex (PAC)

Periamygdaloid cortex PAC oral

PAC medial PAC1

PAC sulcal PAC2

PAC3

PAC sulcal

 Posterior cortical nucleus No subdivisions No subdivisions

Remaining nuclei

 Anterior amygdaloid area No subdivisions No subdivisions Spiny projection neurons and nonspiny 
interneurons

 Central nucleus Capsular Lateral
Medial

Medium-sized ovoid spiny neurons and ovoid, 
fusiform, and piriform, sparsely spiny neuronsLateral

Intermediate

Medial

 Intercalated nuclei No subdivisions No subdivisions Medium ovoid neurons with spiny dendritic 
trees and large cells with very long thick  
spiny or aspiny dendrites

 Amygdalohippocampal area Lateral Dorsal Pyramidal and nonpyramidal neurons

Medial Ventral
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spiny or aspiny dendrites (McDonald 1992, 1998; Sah et al. 
2003). Central nucleus and intercalated nuclei are almost 
entirely populated by GABAergic neurons that act not 
only as local circuit cells, but also as projection neurons 
(McDonald 1992, 1998; Sah et al. 2003).

Anatomical organization of the hippocampal formation

The hippocampal region consists of two sets of corti-
cal structures, the hippocampal formation and the para-
hippocampal region (Scharfman et  al. 2000; Witter and 
Amaral 2004). The hippocampal formation is composed of 
three-layered allocortical structures, including the dentate 
gyrus (DG), the hippocampus proper (which is subdivided 
into three fields: CA3, CA2 and CA1), and the subiculum 
(Scharfman et al. 2000; Witter and Amaral 2004). The par-
ahippocampal region, located between the neocortex and 
the hippocampal formation, includes the presubiculum, the 
parasubiculum, the entorhinal cortex, the perirhinal cortex, 
and the postrhinal cortex (in nonprimate mammalian spe-
cies) or parahippocampal cortex (in primates) (Scharfman 
et al. 2000; Witter and Amaral 2004). The parahippocam-
pal region consists of two six-layered cortices called the 
periallocortex and the proisocortex. The periallocortex 
is characterized by the presence of an acellular layer IV 
(termed lamina dissecans) and includes the presubiculum, 
the parasubiculum, and the entorhinal cortex (Scharfman 
et  al. 2000; Witter and Amaral 2004). The perirhinal and 
postrhinal cortices are proisocortical structures in which 
the lamina dissecans disappears and layer IV is not as well 
developed as that in the neocortex (Scharfman et al. 2000; 
Witter and Amaral 2004).

The hippocampal formation plays a prominent role in 
spatial learning and declarative memory (Morris 2007). 
The parahippocampal region has a pivotal position between 
the neocortex and the hippocampal formation and relays 
the majority of the hippocampal formation input and out-
put, in particular via the entorhinal cortex (Witter and 
Amaral 2004).

Major cell types of the hippocampal formation

In the hippocampal region, there are several subpopulations 
of neurons that can be distinguished on the basis of their 
morphology and neurochemical code, as well as their con-
nections and electrophysiological characteristics (Amaral 
and Lavenex 2007; Witter and Amaral 2004). Although 
the neuronal and synaptic organization is extremely com-
plex, the cell types of the entire hippocampal region 
can be classified in two main groups: principal excita-
tory (glutamatergic) projection neurons and inhibitory 

(GABAergic) interneurons (Amaral and Lavenex 2007; 
Witter and Amaral 2004). The principal neurons are repre-
sented by granule cells of the DG and pyramidal cells of 
the hippocampus proper, the subiculum, the presubiculum, 
the parasubiculum, the entorhinal cortex, the perirhinal cor-
tex, and the postrhinal cortex (Amaral and Lavenex 2007; 
Witter and Amaral 2004). The granule cell has a small 
elliptical cell body and a cone-shaped tree of spiny den-
drites. Pyramidal cells have a pyramidal-shaped cell bod-
ies from which arise a basal and an apical spiny dendritic 
tree (Amaral and Lavenex 2007; Witter and Amaral 2004). 
GABAergic interneurons are a heterogeneous group of 
cells that can be characterized on the basis of their morpho-
logical and neurochemical features (for reviews, see Freund 
and Buzsáki 1996; Amaral and Lavenex 2007; Witter and 
Amaral 2004).

Serotonergic innervation of amygdala and hippocampal 
region

Tracing studies have demonstrated that serotoninergic inputs 
to the amygdala originate mainly from the dorsal raphe and, 
to some extent, from the median raphe nuclei (for reviews, 
see Pralong et al. 2002; Hensler 2006). The distribution of 
serotonin has also been detected in the amygdala with histo-
fluorescence, radioautographic, and immunohistochemical 
procedures (Steinbusch 1981; Pralong et al. 2002; Bauman 
and Amaral 2005; Hensler 2006). The amygdala is densely 
innervated by serotonin immunoreactive (IR) fibers. How-
ever, substantial variation in fiber density is present among 
rodents and primates. In fact, in the rat amygdala, the low-
est fiber densities are observed in the superficial and cen-
tral nuclei. Low to moderate fiber densities are found in the 
parvicellular division of the basal nucleus and accessory 
basal nucleus. Moderate to high fiber densities are located 
in the lateral nucleus. The highest density of serotonin-IR 
fibers is observed in the magnocellular division of the basal 
nucleus and amygdalohippocampal area (Steinbusch 1981). 
On the other hand, in the monkey’s amygdala, the density 
of serotonin-IR terminals is as follows: (i) low in the acces-
sory basal, anterior cortical, posterior cortical and medial 
nuclei, and in subregions of the periamygdaloid cortex; (ii) 
moderate in portions of the basal, lateral, and intercalated 
nuclei; and (iii) high in the central nucleus, the nucleus of 
the lateral olfactory tract, the paralaminar nucleus, the ante-
rior amygdaloid area, and a small region of the amygdalo-
hippocampal area (Bauman and Amaral 2005). Accordingly, 
ultrastructural analyses in the rat basal nucleus (magnocel-
lular and intermediate divisions) have demonstrated that 
serotonin terminals contact pyramidal and nonpyramidal 
(parvalbumin [PV]–IR and vasoactive intestinal peptide 
[VIP]–IR) neurons (Muller et al. 2007b).
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The hippocampal region receives a robust serotoniner-
gic innervation from the median and dorsal raphe nuclei 
(for reviews, see Pralong et  al. 2002; Witter and Amaral 
2004; Hensler 2006; Amaral and Lavenex 2007). In the 
hippocampal formation, the density of serotonergic fib-
ers is higher in the DG and CA3 field than in the CA1 
field and subiculum. Serotonin fibers directed to DG and 
hippocampus proper innervate especially GABAergic 
interneurons with axons that contact the distal dendrites 
of principal cells (granule and pyramidal cells) (Wit-
ter and Amaral 2004; Amaral and Lavenex 2007). In the 
presubiculum, parasubiculum and entorhinal cortex sero-
tonin fibers innervate all layers, with the highest innerva-
tion in superficial layers (for reviews, see Pralong et  al. 
2002; Witter and Amaral 2004; Hensler 2006; Amaral and 
Lavenex 2007).

In the amygdala and hippocampal region, serotonin 
operates via conventional synapses as well as local vol-
ume neurotransmission, reaching their specific receptors 
through extra-cellular or paracrine diffusion (Amaral and 
Lavenex 2007; Muller et al. 2007b).

Functional distribution of the 5-HT2A receptor  
in the amygdala

Deep nuclei

Different immunohistochemical studies have reported 
that the deep nuclei of the rat amygdaloid complex con-
tain 5-HT2AR–IR pyramidal and nonpyramidal neurons 
(Morilak et  al. 1993; Cornea-Hébert et  al. 1999; Xu  
and Pandey 2000; McDonald and Mascagni 2007; Jiang 
et al. 2008; Bombardi 2011). These studies correlate with 
the evidence from an in situ hybridization study show-
ing that 5-HT2R mRNA is located in the lateral, basal, 
and accessory basal nuclei (Wright et  al. 1995). It is 
important to underline that other similar studies were 
contradictory; in fact, Pompeiano et  al. (1994) failed to 
find 5-HT2AR mRNA in the deep nuclei. Also, autoradio-
graphic research has demonstrated specific binding in the 
deep nuclei, and specifically in the lateral nucleus (Pazos 
et al. 1985).

In the deep amygdaloid nuclei, virtually all of pyrami-
dal cells express the 5-HT2AR which appear to be preva-
lently located in the dendritic processes, especially apical  
dendrites (McDonald and Mascagni 2007; Bombardi 
2011). Accordingly, the local injection of 1-(2,5-dimeth-
oxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2A/ 
5-HT2C agonist, increases discharge rate (Stein et al. 2000) 
and facilitates synaptic plasticity via an NMDA-mediated 
mechanism (Chen et  al. 2003) in presumptive pyramidal 
neurons of the rat basolateral amygdala.

Also, inhibitory nonpyramidal neurons in the rat deep 
nuclei express the 5-HT2AR (Morilak et al. 1993; McDon-
ald and Mascagni 2007; Bombardi 2011). In addition, dou-
ble-immunofluorescence experiments have revealed that 
this receptor is expressed by 66.3, 70.6, and 66.4 % of the 
GABAergic neurons in the lateral nucleus, basal nucleus, 
and accessory basal nucleus, respectively (Bombardi 
2011). It is important to point out that some differences in 
the degree of colocalization of GABA and the 5-HT2AR 
have been observed in the various subdivisions of the baso-
lateral amygdala. In particular, the highest percentages of 
GABAergic neurons expressing the 5-HT2AR have been 
located in the medial subdivision of the lateral nucleus 
(74.7 %) and in the parvicellular and magnocellular subdi-
visions of the basal nucleus (73.8 and 71.9 %, respectively). 
The lowest percentage of double-labeled cells is located in 
the ventrolateral subdivision of the lateral nucleus (53.8 %) 
(Bombardi 2011). This variability suggests that the GABA 
release mediated by the 5-HT2AR varied in the different 
subdivisions of the basolateral amygdala (Bombardi 2011). 
In the lateral (medial subdivision) and basal (magnocellular 
subdivision) nuclei of the rat amygdala, GABAergic neu-
rons immunopositive for the 5-HT2AR also express PV and 
somatostatin (SOM) (McDonald and Mascagni 2007). In 
particular, 59.8 % of PV–IR neurons in the lateral nucleus 
(medial subdivision) and 75.6 % of PV–IR neurons in the 
basal nucleus (magnocellular subdivision) express the 
5-HT2AR (McDonald and Mascagni 2007). In contrast, only 
33.1 % of SOM–IR neurons in the lateral nucleus (medial 
subdivision) and 32.6 % of SOM–IR neurons in the basal 
nucleus (magnocellular subdivision) exhibit the 5-HT2AR 
(McDonald and Mascagni 2007). Also, electrophysiologi-
cal studies have demonstrated that the 5-HT2AR activates 
GABAergic nonpyramidal neurons of the deep nuclei.  
In fact, α-methyl-5-hydroxytryptamine, a 5-HT2R agonist, 
induces a dose-dependent membrane depolarization in the 
GABAergic interneurons of the rat basal nucleus (Rainnie 
1999). Likewise, activation of the 5-HT2AR enhances fre-
quency and amplitude of spontaneous inhibitory postsyn-
aptic currents (sIPSCs) recorded from pyramidal neurons 
located in the juvenile rat basolateral amygdala (Jiang  
et  al. 2008). Accordingly, the inhibition of pyramidal cell 
firing in the lateral nucleus of the rat amygdala obtained 
after local application of serotonin is blocked by a simul-
taneous application of GABA antagonist (Stutzmann and 
LeDoux 1999). Finally, the activation of GABAergic non-
pyramidal neurons of the rat basolateral amygdala is also 
induced by DOI (Stein et al. 2000; Sokal et al. 2005).

In the rat basal nucleus and along the external and 
internuclear borders of the rat basolateral amygdala, the 
5-HT2AR is also expressed by large GABAergic nonpy-
ramidal neurons that project to the mediodorsal thalamus 
(McDonald and Mascagni 2007).
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Superficial nuclei

Several immunohistochemical studies have reported 
5-HT2AR–IR neurons in the rat superficial nuclei (Morilak 
et al. 1993; Cornea-Hébert et al. 1999; Bombardi 2011). In 
particular, a high density of 5-HT2AR–IR neurons is located 
in the nucleus of the lateral olfactory tract and in the bed 
nucleus of the accessory olfactory tract (Cornea-Hébert 
et al. 1999; Bombardi 2011). In situ hybridization investi-
gations have demonstrated a moderate density of 5-HT2R 
mRNA (Wright et al. 1995) and 5-HT2AR mRNA (Pompei-
ano et al. 1994) in the rat superficial nuclei, with the excep-
tion of the bed nucleus of the accessory olfactory tract, 
which has presented high levels of 5-HT2AR mRNA (Pom-
peiano et al. 1994). In contrast to the pattern of 5-HT2AR 
immunoreactivity, autoradiographic observations of the 
binding sites of the 5-HT2 receptor have demonstrated low 
receptor levels in the rat superficial amygdaloid nuclei, 
although the anterior cortical nucleus has shown a high 
density of binding sites (Pazos et al. 1985).

In the rat superficial nuclei, the 5-HT2AR–IR neurons are 
heterogeneous in shape and size (Bombardi 2011). Pyram-
idal neurons are located mainly in the nucleus of the lat-
eral olfactory tract (layer II), the anterior cortical nucleus 
(layers II and III), the periamygdaloid cortex (layers II and 
III), and the posterior cortical nucleus (layers II and III) 
(Bombardi 2011). In these cells, the 5-HT2AR is abundant 
in apical dendrites, where it may induce excitatory synap-
tic currents. Small to large nonpyramidal neurons in many 
superficial nuclei (nucleus of the lateral olfactory tract, 
anterior cortical nucleus, periamygdaloid cortex, and poste-
rior cortical nucleus) express 5-HT2ARs (Bombardi 2011). 
These interneurons are located in all three layers but are 
particularly abundant in layers II and III (Bombardi 2011). 
The pattern of 5-HT2AR–IR neurons in the medial nucleus 
is different from that seen in other superficial amygdaloid 
nuclei (Bombardi 2011). This is not surprising, since Golgi 
studies have demonstrated that the cells contained in the 
medial nucleus were different from the pyramidal and non-
pyramidal neurons located in the other superficial nuclei 
(McDonald 1992, 1998; Sah et  al. 2003). In fact, the rat 
medial nucleus especially contains 5-HT2AR–IR neurons 
with ovoid somata (Bombardi 2011).

Remaining nuclei

In situ hybridization preparations have reported moderate 
levels of 5-HT2R mRNA in the rat central nucleus (Wright 
et  al. 1995). Accordingly, immunohistochemical studies 
have revealed that the rat central nucleus displays ovoid-
shaped somata stained for the 5-HT2AR (Cornea-Hébert 
et al. 1999; Bombardi 2011). Many 5-HT2AR–IR cells with 
angular- and ovoid-shaped somata are located in the rat 

anterior amygdaloid area (Bombardi 2011). Small and large 
neurons in the rat intercalated nuclei express the 5-HT2AR 
(Xu and Pandey 2000; Bombardi 2011). This result is in 
disagreement with in situ hybridization studies, showing 
that intercalated nuclei do not present 5-HT2AR mRNA 
(Pompeiano et al. 1994). Finally, pyramidal and nonpyram-
idal neurons of the rat amygdalohippocampal area contain 
the 5-HT2AR (Bombardi 2011).

Distribution of the 5-HT2A receptor in the hippocampal 
region

Hippocampal formation

The presence of the 5-HT2R or the 5-HT2AR in the hip-
pocampal formation has been demonstrated in differ-
ent studies. In rat, Wright et al. (1995) demonstrated low, 
intermediate, and high levels of 5-HT2R mRNA in the 
hippocampus proper, subiculum, and DG, respectively. 
5-HT2AR transcripts have also been observed in the rat hip-
pocampal formation, particularly in the pyramidal cell layer 
of the CA3 field (Pompeiano et al. 1994). In contrast to in 
situ hybridization studies, autoradiographic observations 
of the binding sites of the 5-HT2R have demonstrated low 
receptor levels in the rat hippocampal formation, although 
the ventral DG has presented an intermediate level of spe-
cific binding (Pazos et  al. 1985). Immunohistochemical 
studies have demonstrated that the 5-HT2AR–IR cells in the 
rat hippocampal formation are morphologically heteroge-
neous and correspond to excitatory and inhibitory neurons 
(Cornea-Hébert et  al. 1999; Xu and Pandey 2000; Jans-
son et al. 2001; Lüttgen et al. 2004; Klempin et al. 2010; 
Bombardi 2012). In particular, it has been demonstrated 
that virtually all principal excitatory neurons (granule cells 
and pyramidal cells) of the hippocampal formation express 
the 5-HT2AR. A strong 5-HT2AR immunoreactivity is local-
ized in the apical dendrite of the pyramidal cells where this 
serotonin receptor may increase excitatory postsynaptic 
currents (Lüttgen et  al. 2004; Bombardi 2012). The find-
ing that the 5-HT2AR is expressed by hippocampal pyrami-
dal neurons correlates with an electrophysiological study 
demonstrating that, in the pyramidal somata of the rat CA1 
(ventral field), the outward current induced by serotonin 
and alpha-methyl-serotonin (a 5-HT2 agonist) is blocked by 
ketanserin (a 5-HT2 antagonist) and spiperone (a 5-HT1A 
and 5-HT2 antagonist) in a concentration-dependent man-
ner (Uneyama et al. 1992). The 5-HT2AR is also expressed 
in the rat mossy fibers (Bombardi 2012). It is known that 
the mossy fibers arise from the granule cells and leave 
the DG to innervate the pyramidal cells of the CA3 hip-
pocampal field (Amaral and Lavenex 2007). The 5-HT2AR 
located at presynaptic level could modulate excitatory 
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neurotransmission in the mossy fibers and consequently act 
on the hippocampal release of glutamate. This is in agree-
ment with studies indicating that different subtypes of sero-
tonin receptors can affect presynaptic neurotransmission 
(Hashimoto and Kita 2008; Guo and Rainnie 2010).

Colocalization analysis shows that the majority of 
GABAergic neurons located in the different areas of the 
rat hippocampal formation express 5-HT2AR (Bombardi 
2012). In the DG, 5-HT2AR is expressed by 91.7  %, of 
GABAergic interneurons. In the granule cell layer, most of 
the GABAergic neurons (90.2 %) express 5-HT2AR (Bom-
bardi 2012). Many of these latter cells (91.5 %) are located 
between the granule cell layer and the polymorphic cell 
layer. In the polymorphic cell layer, 94.4 % of all GABAer-
gic neurons are 5-HT2AR–IR (Bombardi 2012).

In the hippocampus proper, 90.7  % of the GABAergic 
neurons express the 5-HT2AR. The colocalization of GABA 
with 5-HT2AR is similar in the different hippocampal  
fields (CA1—91.4  %; CA2—89.9  %; CA3—90.4  %).  
In every hippocampal field, the 5-HT2A receptor is 
abundantly expressed in a large number of GABAer-
gic interneurons distributed in the pyramidal cell layer  
(CA1—92.2 %; CA2—91.5 %; CA3—93.7 %), the strata 
oriens (CA1—97.1  %; CA2—95.5  %; CA3—95.3  %), 
radiatum (CA1—86.9  %; CA2—84.8  %; CA3—84.4  %), 
and lacunosum-moleculare (CA1—88.7 %; CA2—89.7 %; 
CA3—89.1 %) (Bombardi 2012).

In the subiculum, 84.2 % of the GABAergic neurons are 
5-HT2AR–IR. These interneurons are present in every layer, 
but are particularly abundant in the principal cell layer, 
where the 5-HT2AR is expressed by 91.2  % of GABAer-
gic interneurons. In the molecular layer, only 49.3 % of the 
GABA–IR neurons express 5-HT2AR (Bombardi 2012).

The presence of the 5-HT2AR in the GABA–IR neurons 
is in agreement with electrophysiological studies, indicat-
ing that 5-HT2A/2C receptors activate GABAergic neurons 
in the rat DG (Piguet and Galvan 1994) and the rat CA1 
field of the hippocampus proper (Shen and Andrade 1998).

In the rat DG, the distribution of GABAergic/5-HT2AR–
IR neurons in the deep surface of the granule cell layer 
resembles the neurogenic gradients (suprapyramidal to 
infrapyramidal gradient) observed during granule cell 
ontogenesis (Bayer 1980; Bombardi 2012). In addition, 
the high density of 5-HT2AR–IR neurons located along the 
deeper portion of the granule cell layer is in agreement with 
a study, demonstrating that this serotonin receptor can regu-
late neurogenesis in the subgranular zone (Jha et al. 2008). 
Since GABA regulates both the progenitor turnover and the 
integration of newly generated neurons in the DG (Ge et al. 
2006), it is reasonable to assume that the GABAergic neu-
rons distributed in the subgranular zone may be involved 
in 5-HT2AR-mediated hippocampal progenitor proliferation 
(Banasr et al. 2004).

In the DG and hippocampus proper, several classifica-
tions of GABAergic interneurons have been proposed, 
based on their morphology, axonal location, neurochemi-
cal code, and electrophysiological characteristics (for 
reviews, see Freund and Buzsáki 1996; Witter and Amaral 
2004; Amaral et al. 2007; Amaral and Lavenex 2007). The 
5-HT2AR–IR inhibitory interneurons of the DG and hip-
pocampus proper, on the basis of their location, morphol-
ogy, and neurochemical code, could correspond to specific 
types of inhibitory interneurons (Lüttgen et al. 2004; Bom-
bardi 2012). In the rat DG, the interneurons expressing 
the 5-HT2AR may correspond to PV–IR pyramidal basket 
(located at the border of the granule cell layer with the pol-
ymorphic cell layer), PV-immunopositive chandelier (axo-
axonic) cells (located within the granule cell layer), and 
SOM–IR interneurons with hilar dendrites and ascending 
axons (HIPP cells) (located in the polymorphic cell layer, 
immediately adjacent to the granule cell layer) (Lüttgen 
et al. 2004; Bombardi 2012).

In the rat hippocampus proper, the GABAergic interneu-
rons expressing the 5-HT2AR are located in the strata 
oriens, radiatum, lacunosum-moleculare, and in the pyram-
idal cell layer. These interneurons may correspond to the 
following cells: SOM/neuropeptide Y–IR cells terminating 
in conjunction with entorhinal afferent (O-LM cells) (stra-
tum oriens), calbindin-D28  k (CB)–IR neurons (stratum 
oriens), CB–IR interneurons with the axon and dendrites 
in the stratum radiatum (stratum radiatum), VIP–IR IS3 
interneurons (stratum radiatum), CB–IR horizontal lacu-
nosum-moleculare interneurons (located at the border of 
the stratum lacunosum-moleculare with the stratum radia-
tum and within the stratum lacunosum-moleculare), PV–IR 
pyramidal basket cells (pyramidal cell layer), and PV–IR 
chandelier cells (pyramidal cell layer) (Lüttgen et al. 2004; 
Bombardi 2012).

Parahippocampal region

High density of 5-HT2R ligand binding sites is present in 
the rat entorhinal cortex (Pazos et  al. 1985). In addition, 
high levels of 5-HT2AR mRNA levels are located in the rat 
entorhinal cortex, particularly in layers V and VI (Pompei-
ano et  al. 1994). These data coincide with immunohisto-
chemical studies showing that a variety of morphological 
cell types is distributed in the rat entorhinal cortex and else-
where in the rat parahippocampal region (Cornea-Hébert 
et al. 1999; Bombardi 2012).

Pyramidal or modified pyramidal cells are the main cell 
type of the rat parahippocampal region expressing 5-HT2AR 
(Bombardi 2012). This receptor is strongly expressed on 
the apical dendrite of pyramidal neurons where it could 
modulate excitatory glutamate input, as has been demon-
strated in the cerebral cortex (Puig et al. 2003).
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In the rat parahippocampal region, 5-HT2ARs are also 
localized in nonpyramidal neurons (Bombardi 2012). In 
particular, double-immunolabeling analysis has revealed 
that a majority of the GABAergic cells in the entorhinal 
cortex contained 5-HT2ARs. These nonpyramidal neurons 
are present in every layer, but are abundant in layers II, III, 
V, and VI, where the 5-HT2AR is expressed by 82.1, 85.3, 
93.4, and 92.3 % of interneurons, respectively (Bombardi 
2012). The rat entorhinal cortex is divided into six cyto-
architectonically distinct fields: the dorsal lateral entorhinal 
field (DLE), the dorsal intermediate entorhinal field (DIE), 
the amygdalo-entorhinal transitional field (AE), the ventral 
intermediate entorhinal field (VIE), the medial entorhinal 
field (ME), and the caudal entorhinal field (CE) (Insausti 
et al. 1997). Interestingly, there is no significant difference 
in the colocalization pattern of GABA and 5-HT2ARs in the 
different fields of the entorhinal cortex (DLE 86.7 %; DIE 
85.6 %; AE 74.9 %; VIE 87.4 %; ME 84.7 %; CE 92.3 %) 
(Bombardi 2012).

Implication of the cellular distribution of the 5-HT2A 
receptor in amygdalar and hippocampal microcircuits

Microcircuits located in the amygdala and hippocam-
pal region consist of principal (excitatory) neurons and 
GABAergic (inhibitory) interneurons which can exert 
inhibitory control of the soma, proximal dendrites, distal 
dendrites, and the initial axonal segment of the principal 
cells (Aggleton 2000; Witter and Amaral 2004; Amaral  
et  al. 2007; Amaral and Lavenex 2007; Whalen and 
Phelps 2009). From available data, it is possible to con-
clude that 5-HT2ARs are located on both the excitatory 
and the inhibitory neurons of the amygdala and hippocam-
pal region. Therefore, serotonin modulates the activity of 
the principal cells in various ways, either directly through 
the activation of the 5-HT2AR in the principal cells or 
indirectly through the activation of the 5-HT2AR in the 
GABAergic neurons.

The exact knowledge of the role of the 5-HT2AR located 
in the principal cells of the amygdala and hippocampal 
region is virtually inexistent. However, the 5-HT2AR pre-
sent in pyramidal cells of the deep nuclei could increase 
cell firing and synaptic plasticity, as reported by Stein 
et  al. (2000) and Chen et  al. (2003), respectively. Simi-
larly, pyramidal cells of the hippocampal region could be 
excited through the activation of the 5-HT2AR, as reported 
in pyramidal cells of the ventral CA1 field (Uneyama et al. 
1992).

Electrophysiological studies have demonstrated that 
the 5-HT2A/2CRs activate GABAergic neurons in the deep 
amygdalar nuclei (Rainnie 1999; Stutzmann and LeDoux 
1999; Stein et al. 2000; Sokal et al. 2005; Jiang et al. 2008), 

in the DG (Piguet and Galvan 1994), and the CA1 field of 
the hippocampus proper (Shen and Andrade 1998).

In the deep amygdaloid nuclei, the GABAergic nonpy-
ramidal neurons expressing 5-HT2ARs contain especially 
PV, but also SOM (McDonald and Mascagni 2007; Fig. 1). 
At the electron microscope level, PV–IR axon terminals 
form symmetrical synapses with a variety of postsynap-
tic elements, which include perisomatic (cell body, axon 
initial segment, and thick proximal dendrites) and distal 
dendritic (small-caliber dendrites and dendritic spines) 
domains of pyramidal cells (Muller et al. 2006; Fig. 1). The 
PV–IR neurons are connected by gap junctions and con-
stitute an inhibitory network that synchronizes the firing 
of pyramidal cells (Woodruff and Sah 2007). Since most 
of the pyramidal neurons form intimate synapse-like con-
tacts with the perisomatic domain of the PV–IR interneu-
rons, the activities of these two cell types are regulated by 
reciprocal circuit (McDonald et  al. 2005). This reciprocal 
perisomatic connection may be important to modulate the 

Fig. 1   Schematic drawing of a neuronal microcircuit expressing 
5-HT2A receptors (5-HT2ARs) in the basolateral amygdala. 5-HT2ARs 
are located in pyramidal cells (P) and also in GABAergic nonpy-
ramidal interneurons containing parvalbumin (PV) or somatostatin 
(SOM). PV-immunoreactive (IR) interneurons are basket or chande-
lier cells. However, PV–IR interneurons can also provide an extensive 
innervation of distal dendrites of pyramidal cells. SOM–IR interneu-
rons contact distal dendritic domain of pyramidal cells
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synchronized rhythmic activity associated with the forma-
tion of emotional memories (Paré and Collins 2000; Paré 
et al. 2002; Rainnie et al. 2006).

In the deep nuclei, SOM–IR neurons provide an inhibi-
tory innervation (symmetrical synapses) especially of dis-
tal dendritic domain (small-caliber dendrites and dendritic 
spines) of pyramidal cells (Muller et  al. 2007a; Fig.  1). 
Since SOM–IR axon terminals are adjacent to asymmetri-
cal excitatory glutamatergic synapses involved in emotional 
memories, the SOM–IR interneurons could play a criti-
cal role in the modulation of synaptic plasticity occurring 
in the distal dendritic domain of pyramidal cells related to 
emotional learning (Paré et al. 2002; Muller et al. 2007a).

Together, these data indicate that 5-HT2AR–IR GABAe-
rgic interneurons in the deep nuclei could regulate the gen-
esis of emotional memories acting on different domains of 
pyramidal cells.

In the hippocampal formation, 5-HT2ARs could be 
expressed by GABAergic interneurons which innervate the 
cell body and proximal dendrites (PV–IR basket cells), the 

proximal dendrites (CB–IR interneurons), the initial axonal 
segment (PV–IR chandelier or axo-axonic cells), and the 
distal dendrites (SOM–IR HIPP cells; SOM–IR O-LM 
cells; CB–IR interneurons located in the strata radiatum 
and lacunosum-moleculare) of the principal cells (granule 
and pyramidal cells; Figs.  2, 3). Furthermore, 5-HT2AR 
could be located also in VIP–IR interneurons contacting 
other interneurons (Lüttgen et  al. 2004; Bombardi 2012; 
Figs. 2, 3).

In the hippocampus formation, the GABAergic 
interneurons targeting the perisomatic and distal dendritic 
domains of the pyramidal cells can modulate the firing and 
the synaptic plasticity of the principal cells, respectively. 
Thus, these interneurons could be involved in the hip-
pocampal synchronization related to learning and memory 
(Maccaferri and Lacaille 2003; Klausberger and Somogyi 
2008; Ellender and Paulsen 2010). This indicates that acti-
vation of 5-HT2ARs in hippocampal GABAergic interneu-
rons may have effects on the formation of memories 

Fig. 2   Schematic drawing of a neuronal microcircuit expressing 
5-HT2A receptors (5-HT2ARs) in the dentate gyrus (DG). 5-HT2ARs 
are expressed on both the excitatory (granule cells, G) and the 
inhibitory interneurons. 5-HT2AR-immunoreactive (IR) inhibitory 
interneurons express parvalbumin (PV) or somatostatin (SOM). 
PV–IR interneurons are basket or chandelier cells, whereas SOM–
IR interneurons contact distal dendrites of granule cells and may be 
identified as interneurons with hilar dendrites and ascending axons 
(HIPP cells). Interestingly, 5-HT2ARs are also expressed in the mossy 
fibers

Fig. 3   Schematic drawing of a neuronal microcircuit expressing 
5-HT2A receptors (5-HT2ARs) in the hippocampus proper. 5-HT2ARs 
are located in excitatory (pyramidal cells, P) as well as inhibitory 
neurons. In particular, 5-HT2AR could be expressed by GABAergic 
interneurons which innervate the cell body and proximal dendrites 
(parvalbumin-immunoreactive [IR] basket cells), the proximal den-
drites (calbindin-D28  k-IR interneurons), the initial axonal segment 
(parvalbumin-IR chandelier cells), and the distal dendrites (soma-
tostatin-IR O-LM cells; calbindin-D28  k-IR interneurons) of the 
pyramidal cells. Furthermore, 5-HT2ARs could be expressed also 
in vasoactive intestinal peptide-IR interneurons contacting other 
interneurons
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associated with synchronous activity of the hippocampal 
principal cells. Consistent with this finding, M100907, a 
highly selective 5-HT2AR antagonist, enhances theta activ-
ity in the rodent hippocampus (Kehne et al. 1996). Accord-
ingly, M100907 application to brain slices facilitates the 
induction of long-term potentiation (LTP) within the CA1 
field of the rat hippocampus proper (Wang and Arvanov 
1998).

Role of 5-HT2ARS on amygdala/hippocampus 
interaction in emotional memories

Emotion and memory are closely related. Impaired regula-
tion of emotional memory is a feature of several affective 
disorders, including depression, anxiety, and post-traumatic 
stress disorder (PTSD). Converging findings of animal and 
human studies provide compelling evidence that emo-
tion-associated modulation of memories occurs, in part, 
by interactions between the basolateral amygdala (BLA) 
and the hippocampus (Richardson et  al. 2004; Tsoory  
et al. 2008). Emotional conditions might induce long-term 
neural plasticity in the amygdala, and therefore the inter-
relations between the amygdala and the hippocampus are 
not static but dynamic (Richter-Levin 2004). The role of 
5-HT2ARs in the functional interaction between these 
two areas has not yet been fully investigated. BLA con-
tributes to modulation of hippocampal LTP (Abe et  al. 
2003), and intra-BLA injection of 5-HT2R antagonists and 
agonists inhibits and promotes the induction of perforant 
path-DG LTP, respectively (Abe et  al. 2009). Although 
these authors claimed that these effects were mediated 
by 5-HT2CRs, they did not use selective antagonists, for 
example, SB242084 (Di Matteo et al. 2000) leaving doubts 
about the receptor subtype involved. Recently, it has been 
shown that stimulation of 5-HT2ARs facilitates the consoli-
dation and extinction of trace and delay cued fear memory 
and the consolidation of object memory in mice (Zhang 
et  al. 2013). Blocking 5-HT2ARs impairs the acquisition 
of fear memory extinction. These results support the view 
that serotonergic activation of the 5-HT2ARs provides an 
important modulatory influence on circuits engaged during 
extinction learning (Zhang et al. 2013). It is also possible 
that 5-HT2ARs are involved in hippocampal cytoskeletal 
protein (Arc) increase induced by BLA activation (McIn-
tyre et al. 2005) since early evidence has shown that DOI 
modulates activation of hippocampal immediate early 
genes (Tilakaratne and Friedman 1996). Furthermore, 
5-HT2AR might mediate BLA-induced adult hippocam-
pal neurogenesis in fear context-specific activation (Kirby 
et  al. 2012). Indeed, it is known that 5-HT2AR activation 
increases adult neurogenesis similar to antidepressants 
(Banasr et al. 2004).

Concluding remarks

The present review reported that, in the amygdala and hip-
pocampal region, 5-HT2ARs are located on both excitatory 
and inhibitory neurons. Thus, this receptor, modulating 
the activity of amygdalar and hippocampal microcircuits, 
could be critically involved in the regulation of emotional 
processes and cognitive functions. Moreover, 5-HT2A 
receptor signaling may be a critical link in the pathogen-
esis of anxiety and cognitive impairment seen in different 
disorders. The evidence reviewed here suggests that genetic 
influences on serotonergic systems and 5-HT2ARs might 
contribute to individual differences in the emotional mem-
ory process. Given that the association between serotonin 
and anxiety such as panic disorders and PTSD has been 
strongly demonstrated in the literature and is considered 
to have a heritable foundation, 5-HT2A hypofunction could 
represent a neurochemical trait that predisposes individuals 
to anxiety and impaired regulation of emotional memory, 
typical features of affective disorders.

Pharmacotherapy tailored to modulating the effect of 
5-HT2A in the amygdala and hippocampus thus might rep-
resent an important future direction in developing novel, 
more efficacious, pharmacological agents for the symptoms 
associated with anxiety and fear-related memory disorders. 
Nevertheless, the functional significance of the 5-HT2ARs 
in these regions remains controversial and necessitates 
additional clarifications.
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