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Abstract—Alterations in serotonin (5-HT) neurochemistry

have been implicated in the aetiology of all major neuro-

psychiatric disorders, ranging from schizophrenia to

mood and anxiety-spectrum disorders. This review will

focus on the multifaceted implications of 5-HT-ergic dys-

functions in the pathophysiology of aggressive and sui-

cidal behaviours. After a brief overview of the

anatomical distribution of the 5-HT-ergic system in the

key brain areas that govern aggression and suicidal

behaviours, the implication of 5-HT markers (5-HT recep-

tors, transporter as well as synthetic and metabolic

enzymes) in these conditions is discussed. In this regard,

particular emphasis is placed on the integration of phar-

macological and genetic evidence from animal studies

with the findings of human experimental and genetic

association studies. Traditional views postulated an

inverse relationship between 5-HT and aggression and

suicidal behaviours; however, ample evidence has shown

that this perspective may be overly simplistic, and that

such pathological manifestations may reflect alterations

in 5-HT homoeostasis due to the interaction of genetic,

environmental and gender-related factors, particularly dur-

ing early critical developmental stages. The development

of animal models that may capture the complexity of

such interactions promises to afford a powerful tool to

elucidate the pathophysiology of impulsive aggression

and suicidability, and identify new effective therapies for

these conditions. � 2013 IBRO. Published by Elsevier

Ltd. All rights reserved.
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INTRODUCTION: CHALLENGING THE 5-HT
DEFICIENCY HYPOTHESIS IN SUICIDAL

BEHAVIOUR

The definition of suicidal behaviours encompasses a

broad constellation of heterogeneous entities, ranging

from suicidal thoughts and death wishes to attempted

and completed suicide. The great diversity of suicidal

behaviours reflects their comorbidity with different

psychiatric disorders, including affective disorders,

psychoses, alcohol abuse and/or dependence, etc. In

particular, numerous studies have shown a very robust

association between multiple aspects of suicidal conduct

and aggression. In keeping with this idea, multiple

studies have pointed to pathological aggression and

antisocial personality as major risk factors for suicide

(Conner et al., 2001; Gureje et al., 2011).

The bulk of evidence points to the existence of at least

two major subtypes of aggression, characterized by

distinct behavioural profiles and neural underpinnings:

proactive aggression, typically calculated and

instrumental to gaining rewards; and reactive
aggression, which is generally enacted impulsively as a

stress-coping response to potentially threatening

contingencies (Poulin and Boivin, 2000). Research has

shown that both subtypes of aggression may influence

suicidal conduct. Indeed, reactive aggression and

impulsive personality characteristics have been recently

highlighted as major risk factors for suicidal ideation and

behaviour (Pfeffer et al, 2000; Conner et al, 2003;

Dougherty et al, 2004; Hull-Blanks et al, 2004; Smith

et al, 2008). Although impulsive actions often result in

higher likelihood of self-inflicted painful and provocative

experiences, they are rarely conducive to attempted and

completed suicide, which typically require prior planning

(Baca-Garcia et al, 2005; Wyder and De Leo, 2007;

Smith et al, 2008; Witte et al, 2008). Conversely, while

proactive aggression has been often regarded as

unrelated to suicide, recent studies have shown that this

subtype is actually associated to suicide attempt in men,

but not women (Conner et al., 2009). Taken together,

these findings underscore the complex, multifaceted

relationship between aggressive manifestations and

suicidal behaviours.

The neurobiological link between aggression and

suicide is apparently contributed by imbalances in

serotonin (5-HT) neurotransmission. Findings from

preclinical and clinical studies have indicated that

dysregulations of 5-HT release, signalling and/or

turnover may be robust correlates of violent reactivity

(Virkkunen et al., 1995; Higley and Linnoila, 1997;

Stanley et al., 2000) and impulsive-aggressive

behaviours (IABs), which have been recently highlighted

as critical intermediate phenotypes for suicidal conduct

(Turecki, 2005; Zouk et al., 2007; Mann et al., 2009).

Notably, both reactive aggression and suicide are

affected by multiple biological variables that influence

the regulation of 5-HT-ergic neurotransmission,

including psychosocial stress, traumatic experiences,

pathological personality traits, mental disorders, alcohol

abuse and nicotine addiction (Turecki, 2001; Gibb et al.,

2006; Nock et al., 2008; Mann et al., 2009; Pivac et al.,

2010). For several decades the link between 5-HT and

aggression was explained by a ‘‘5-HT deficiency

hypothesis’’, which posited a direct association of

reduced CSF concentrations of 5-HT and/or its

metabolite 5-hydroxyindoleacetic acid (5-HIAA) and

suicidal/aggressive behaviour. Accumulating evidence,

however, shows that this theory is inadequate to

account for the pleiotropic role of 5-HT in the modulation

of pathological aggression and suicidal behaviours; thus,

current views postulate that IABs may be the final

outcome of different homoeostatic imbalances of the 5-

HT system.

In the following section, we will briefly describe the 5-

HT innervations of the forebrain regions involved in IABs

and suicidal behaviours, such as the prefrontal cortex

(PFC), amygdala and nucleus accumbens (NAc)

(Davidson et al., 2000) (Fig. 1). In addition, we will

overview the preclinical and clinical evidence on the

best-characterized 5-HT-ergic targets implicated in

violent and suicidal behaviours, including its receptors,

Fig. 1. Midsagittal view of the rat brainstem with serotonin-immunoreactive cell body groups. The ovals encompass the two major subdivisions of

the brain serotonergic system. Abbreviations: DRN, dorsal raphe nucleus; MRN, medial raphe nucleus; NRM; nucleus raphe magnus; NRO,

nucleus raphe obscurus. Cell groups B1 to B9 according to the terminology of Dahlstrom and Fuxe (1964). 5-HT innervations of the areas involved

in aggression and suicide are depicted.
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its key biosynthetic enzyme tryptophan hydroxylase

(TPH), its transporter (5-HTT) and the main catabolic

enzyme, monoamine oxidase (MAO) A (Fig. 2).

THE SEROTONERGIC SYSTEM IN
AGGRESSION AND SUICIDE

One of the oldest biologically active compounds, 5-HT is

found across all eukaryote kingdoms, including protists,

plants, fungi and animals. Given its ubiquitous presence

in the body, it is not surprising that 5-HT is involved in a

plethora of physiological and pathophysiological

processes (Jacobs and Azmitia, 1992). Based on the

distribution of 5-HT in the organism, its system can be

divided into a central and a peripheral subsystem

(Murphy et al., 2008a); the latter, which includes the

gastrointestinal (GI) tract, lung, heart, pancreatic tissue,

blood vessels and platelets (Thompson, 1971; Cirillo

et al., 2011), contains the greatest concentration (90%)

of 5-HT (up to 10 mg in humans). Conversely, only a

relatively small amount of 5-HT is found in the CNS.

The central 5-HT subsystem is one of the diffusively

organized projection systems of the mammalian brain

and it is topographically organized with respect to

anatomic and functional properties (Abrams et al.,

2004). The majority of the cell bodies of the 5-HT-ergic

neurons are located in the raphé nuclei, within the

reticular formation of the brainstem. Although the 5-HT-

ergic neurons are multipolar, their size and orientation

vary considerably across distinct locations; in fact, their

complex axonal systems innervate virtually all CNS

regions, although their distribution is particularly dense

in the cerebral cortex, limbic structures, basal ganglia,

many regions of the brainstem and the grey matter of

the spinal cord.

Dahlstrom and Fuxe (1964) clustered the 5-HT

neurons in the rat brainstem into nine nuclei, termed B1

to B9 (B1 being the most caudal one) (Fig. 1). In

addition, these midline clusters can be further

categorized into two major groups:

– the caudal or inferior group, localized in the medulla,

which contains three nuclei projecting essentially to

the grey matter of the spinal cord: the nucleus raphe

magnus (NRM, cell group B5), nucleus raphe obscurus

(NRO, cell groups B1-B2-B3), and nucleus raphe palli-

dus (NRP, cell group B4);

– the rostral or superior group, situated in the pons and

midbrain, which contains the dorsal raphe nucleus

(DRN, cell groups B6 and B7), estimated to contain

235,000 neurons in the human brain (Baker et al.,

1990) and the median raphe nucleus (MRN, cell group

B8) (Fig. 1). The main target regions of these 5-HT-

ergic projections are located in the forebrain and spinal

cord.

Serotonergic innervation and 5-HT receptors
distribution in PFC, amygdala and NAc

The ascending projections of 5-HT neurons are very

extensive, and their collateral branches innervate

numerous regions of the cerebral cortex, basal ganglia,

limbic system and diencephalon. Although all the axons

travel within the medial forebrain bundle in their initial

tracts, many of them extend from this structure,

following other fibre pathways up to their target areas.

The 5-HT-ergic system in the PFC. The 5-HT

innervation of the cerebral cortex originates from the

midbrain DRN and MRN, and spreads to every allo- and

iso-cortical area, with variable fibre density across the

different layers. In primates, the 5-HT-ergic innervation

of the cortex is particularly dense in the granular cell

layers (layer IV) (Hillegaart, 1991; Van Bockstaele et al.,

1993). The rich 5-HT-ergic innervations the medial PFC

(mPFC) (as well as most of the frontal cortex) originate

almost exclusively in the DRN (Van Bockstaele et al.,

Fig. 2. The biosynthesis of serotonin. Tryptophan hydroxylase (TPH)

catalyses the first and rate-limiting step in the synthesis of serotonin

(5-HT) using tetrahydrobiopterin and dioxygen as co-substrates and

producing water and dihydrobiopterin as byproducts. The second and

final reaction in the biosynthesis of serotonin is catalysed by the

aromatic amino acid decarboxylase. Monoamine oxidase (MAO)

catalyses the oxidative deamination of 5-HT.

162 M. Bortolato et al. / Neuroscience 236 (2013) 160–185



1993). The orbitofrontal cortex (OFC) is also primarily

innervated by the DRN (Dringenberg and Vanderwolf,

1997), and contains an extremely dense plexus of fine

axons featuring minute varicosities. Axonal tracing

studies show that DRN neurons project to the frontal

cortex following well-characterized rostro-caudal and

dorso-ventral topographic patterns (Waterhouse et al.,

1986). The MRN innervation consists of few thick,

beaded serotonergic axons with large spherical

varicosities (Wilson and Molliver, 1991). The distribution

of the 5-HT-ergic innervation varies according to the

types of cortex and the cytoarchitectonic regions; thus,

5-HTT density in agranular/dysgranular (caudal) OFC is

higher than that in granular (rostral) OFC, and there is a

medial-to-lateral decreasing gradient within the

agranular/dysgranular regions (Way et al., 2007). The

OFC and mPFC send direct projections down to the

raphé nuclei, providing a substrate for top-down control

over the 5-HT-ergic forebrain pathways.

The PFC features an abundant expression of several

5-HT receptor families. In particular, members of the 5-

HT1 receptor family such as 5-HT1A and 5-HT1B, are

localized both pre-synaptically (autoreceptors) on the

dendrites of 5-HT fibres and post-synaptically

(heteroreceptors) on pyramidal cells and different types

of interneurons (Azmitia et al., 1996; Santana et al.,

2004). Activation of post-synaptic 5-HT1A and 5-HT1B

receptors in the pyramidal cells of cortex produces

hyperpolarizing responses, while pre-synaptic 5-HT1

receptors, reduces the amplitude of electrically evoked

excitatory post-synaptic potentials (EPSPs), including

both N-methyl-D-aspartate (NMDA) and non-NMDA

glutamate receptors (Tanaka and North, 1993).

Conversely, in vivo treatment with a low dose of 5-HT1A

receptor agonist 8-OH-DPAT activates these receptors

on GABA-ergic interneurons, leading to an indirect

increase of the discharge rate of pyramidal neurons in

mPFC (Llado-Pelfort et al., 2012). 5-HT2A/2C receptors

are also densely distributed in the PFC; 5-HT2A are co-

expressed with 5-HT1A in pyramidal cells and both

parvalbumin (PV)- and calbindin (CB)-containing

interneurons (Santana et al., 2004). 5-HT2A receptors

activation induces depolarization of both cell types

(Aghajanian and Sanders-Bush, 2002).

Electrophysiologically, in layer V pyramidal cells,

synaptic events induced by 5-HT2A consist largely of

EPSPs although inhibitory post-synaptic potentials

(IPSPs) can be recorded due to GABA-ergic

interneurons activation (Aghajanian and Sanders-Bush,

2002). The 5-HT2C receptor is primarily expressed in the

deep layers of the rat mPFC by calcium-binding

proteins-positive GABA-ergic interneurons in rat

pyramidal cells (Liu et al., 2007), while its mRNA is

absent in pyramidal-shaped cells in both human and

monkey PFC (Pasqualetti et al., 1999). Activation of 5-

HT2C receptors induces neuronal depolarization (Di

Giovanni et al., 2008b, 2011). Thus, the pyramidal cell

inhibition seen by stimulation of the 5-HT2C receptor is

likely due to excitation of PV-positive interneurons in the

mPFC (Di Giovanni et al., 2011). The expression of 5-

HT2C receptors in the deep layers of the rat mPFC

(layers V–VI), suggests that the action of 5-HT2C

receptor may modulate the neuronal output in these

layers (Liu et al., 2007).

Several lines of evidence indicate that the other 5-HT

receptors are also expressed in the neocortex. In

particular, 5-HT3 receptors are mainly localized in the

superficial layers of the cortex and are particularly

abundant in GABA-ergic interneurons (Tecott et al.,

1993; Morales and Bloom, 1997; Miquel et al., 2002;

Puig et al., 2004). With respect to the distribution of

other 5-HT receptors in the PFC, 5-HT4 are particularly

expressed in superficial layers (Varnäs et al., 2003) and

mostly in pyramidal neurons (Lambe et al., 2011);

conversely, 5-HT6 are relatively sparse (Marazziti et al.,

2012) and mostly localized in the interneurons (Lambe

et al., 2011). Finally, 5-HT7 receptors have also been

documented in the frontal pole of the neocortex of

rodents and humans (To et al., 1995; Gustafson et al.,

1996). The function of these receptors in the cortex is

still poorly understood.

The 5-HT-ergic system in the amygdala. In all species

studied to date, the amygdala features an exceptionally

rich 5-HT-ergic innervation, arising mainly from the DRN

(Smith and Porrino, 2008); virtually all neuropeptide Y

(NPY)-immunoreactive (ir) neurons receive peri-somatic

serotonergic innervations (Bonn et al., 2012). 5-HT1A

and 5-HT2A expression has been found in both

pyramidal cells and inhibitory interneurons (Aznar et al.,

2003; McDonald and Mascagni, 2007). 5-HT1B receptors

are also expressed in different amygdaloid nuclei and

their expression increases in rats exposed to aggression

only in the basolateral amygdala (Suzuki et al., 2010).

The cellular expression of 5-HT2C receptors in pyramidal

neurons of the amygdala has not been studied yet, but

recent evidence shows that NPY mRNA-producing

interneurons co-express both 5-HT1A and 5-HT2C

mRNAs (Bonn et al., 2012). Although these anatomical

findings are difficult to reconcile with the anxiogenic

activity of 5-HT2C and the anxiolytic or mixed effects of

5-HT2A and 5-HT1A receptor activation, it is likely that

these divergent roles reflect the high complexity of the

circuits for emotional regulation, as well as the different

patterns of 5-HT receptor neuronal distribution (Holmes,

2008). Of the other 5-HT receptors, 5-HT3, 5-HT4 and 5-

HT7 have been shown to be fairly abundant in the

amygdala (Waeber et al., 1994; Reynolds et al., 1995;

Gustafson et al., 1996; Miquel et al., 2002; Varnäs

et al., 2004), but their role in behavioural regulation

awaits further examination.

The 5-HT-ergic system in the NAc. The NAc receives

an extensive, dense innervation by 5-HT-ir axons, which

are tortuous and of consistent morphology (Van

Bockstaele and Pickel, 1993). Both the NAc core and

shell are densely innervated by 5-HT-ergic projections

from the cell bodies in the dorsal raphe; these

projections differ in regional distribution, morphology,

and 5-HTT expression, and can be divided into two

distinct types of 5-HT axons (Brown and Molliver, 2000).

Furthermore, within the NAc, the shell contains a higher

M. Bortolato et al. / Neuroscience 236 (2013) 160–185 163



density of 5-HT axons than the core (Brown and Molliver,

2000). The NAc contains several types of 5-HT receptors.

5-HT1A receptors are expressed in very low levels (Aznar

et al., 2003), while 5-HT1B receptors are expressed on the

soma of GABA-ergic neurons, as well as on the terminals

of the axons that project to the ventral tegmental area

(VTA) (Morikawa et al., 2000). Moreover, 5-HT1B

heteroreceptors are also distributed in pre-synaptic

glutamate elements (Muramatsu et al., 1998). Both 5-

HT2A and 5-HT2C receptors are expressed in moderate-

to-high abundance within both the cell body and

terminal regions of the NAc (Di Matteo et al., 2008; Di

Giovanni et al., 2011). Investigations on the role of 5-

HT2A/2C receptors in the NAc have revealed a complex

scenario, with opposing effects for 5-HT2A and 5-HT2C

receptors (Robinson et al., 2008). In addition, 5-HT4 and

5-HT6 receptors have been shown to be highly

abundant in the NAc (Compan et al., 1996; Gérard

et al., 1997; Bonaventure et al., 2000; Hamon

et al.,1999; Varnäs et al., 2003; Marazziti et al., 2012),

although their functional roles in this area remain largely

elusive.

The role of 5-HT1 receptors in aggression and suicide

The 5-HT1 receptor class is comprised of five receptor

subtypes (5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E and 5-ht1F),

which, in humans, share 40–63% overall sequence

identity, and couple preferentially, although not

exclusively, to Gi/o proteins to inhibit cAMP formation.

While no physiological role has been found for the 5-

ht1E and 5-ht1F receptors, the function of 5-HT1A, 5-HT1B

and 5-HT1D receptors has been demonstrated in many

tissues across various species (Di Giovanni et al.,

2008a). Although all 5-HT receptor subtypes are

localized post-synaptically on 5-HT target cells

(including all key regions involved in hostile and suicidal

behaviours), the 5-HT1A and 5-HT1B subtypes are also

present in the pre-synaptic elements of 5-HT neurons.

In the raphé nuclei, 5-HT1A autoreceptors are localized

on 5-HT cell bodies and dendrites; conversely, 5-HT1B

receptors are expressed pre-synaptically on 5-HT nerve

terminals, where they subserve the regulation of 5-HT

release (Di Giovanni et al., 2008a).

5-HT1A receptors. The implication of 5-HT1A receptors

in aggression and suicide is supported by numerous lines

of evidence. In particular, several studies have

documented that 5-HT1A receptor agonists attenuate

offensive-aggressive (but not defensive) responses in

animal models, even at doses that do not appear to

cause motor impairments (Olivier et al., 1989; White

et al., 1991; Yoshimura and Ogawa, 1991; Sanchez

et al., 1993; Bell and Hobson, 1994; Muehlenkamp

et al., 1995; Lopez-Mendoza et al., 1998). The effects of

5-HT1A agonists on the modulation of aggressive

responses have been shown to depend on the

activation of multiple populations of 5-HT1A receptors,

located across several brain regions, including

periaqueductal gray (PAG) (Beckett et al., 1992; De

Almeida and Lucion, 1997; Mann et al., 2009), raphé

nuclei (Mos et al., 1993; da Veiga et al., 2011), medial

septal area (De Almeida and Lucion, 1997) and ventral

OFC (Centenaro et al., 2008). While the administration

of 5-HT1A receptor antagonists blocks the anti-

aggressive effects of 5-HT1A receptor agonists (Sanchez

and Hyttel, 1994) [but see also (Pruus et al., 2000) for

contrasting results], these compounds elicit no

significant effects on offensive, defensive and social

behaviours (Lopez-Mendoza et al., 1998; Bell et al.,

1999).

In general, the anti-aggressive effects of systemic 5-

HT1A receptor agonists are likely to mostly reflect the

anxiolytic effects of autoreceptor activation, in

consideration of the predominance of this subpopulation

of 5-HT1A receptors, as well as the well-known role of

anxiety and fear as primary triggers for aggressive

responses. In this perspective, it is possible that the

selective activation of post-synaptic 5-HT1A receptors in

specific forebrain areas may lead to different modulatory

effects on hostile behaviours. Accordingly, rodents

genetically selected for high levels of aggressive

behaviour exhibit distinct alterations of expression and

sensitivity of 5-HT1A receptor across cortical and

subcortical regions (Korte et al., 1996; Popova et al.,

2005; Caramaschi et al., 2007; Popova et al., 2007).

Most studies have indicated that aggressive animals

and individuals exhibit blunted behavioural and

neuroendocrine responses to 5-HT1A receptor agonists

(Coccaro et al., 1990; Cleare and Bond, 2000; Popova

et al., 2005); in addition, the levels of lifetime aggression

were negatively correlated with overall levels of 5-HT1A

receptor binding (Parsey et al., 2002). However, it

should be noted that aggressive subjects were also

reported to exhibit higher 5-HT1A receptor binding levels

in the prefrontal and anterior cingulate cortex (Witte

et al., 2009), probably in view of the differential role of

auto- and heteroreceptors in the regulation of aggression.

The potential involvement of 5-HT1A receptors in

suicidal behaviours has been studied through post-

mortem brain assessments of the kinetic characteristics

of these receptors in suicide victims. The results of

these studies, however, are often affected by a number

of experimental confounds, such as the lack of

adequate controls or the comorbidity of suicide with

other anxiety and mood disorders, whose

pathophysiology may reflect different (and sometimes

opposite) patterns of 5-HT-ergic alterations than those

typically associated with aggression. For example, 5-

HT1A binding was found to be increased in the dorsal

and ventral DRN (Stockmeier et al., 1998) and cortex

(Arango et al., 1995) of suicidal subjects with major

depression; conversely, another study found no

alterations in binding to 5-HT1A receptors in 5-HT-ergic

terminal areas, such as frontal and occipital cortices,

hippocampus and amygdala in depressed suicide

victims (Lowther et al., 1997). In addition to the

methodological caveats listed above, these

discrepancies may also reflect different influences of

gender-related factors (Anisman et al., 2008).

The potential implication of 5-HT1A receptors in

suicide has also been analysed with genetic

approaches. 5-HT1A receptor is coded by HTR1A, an
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intronless 2.1 kb gene located at position 5q11.2-q13,

whose expression is likely regulated by two transcription

factors: Nuclear-deformed epidermal auto regulatory

factor-1 (NUDR/Deaf-1) and Hes5 (Lemonde et al.,

2003; Czesak et al., 2006; Szewczyk et al., 2009)

(Table 1). NUDR/Deaf-1 is a repressor at

somatodendritic 5-HT1A receptors (Lemonde et al.,

2003), but serves as a transcription enhancer in non-5-

HT-ergic neurons that express post-synaptic 5-HT1A

receptors. Although several single nucleotide

polymorphisms (SNPs) have been found in HTR1A
(Drago et al., 2008), the best-characterized one is C-

1019G (rs6295), a functional polymorphism in the

promoter region that regulates gene expression

(Lemonde et al., 2003). In particular, it has been

suggested that the G-1019 variant may modulate

negatively the function of NUDR/Deaf-1 on HTR1A
(Lemonde et al., 2003), possibly leading to

compensatory increases in expression of pre-synaptic 5-

HT1A but decreases in expression of the post-synaptic

5-HT1A receptors in G-1019 allele carriers (Albert and

Francois, 2010). Nevertheless, it should be noted that

no significant association was found between the C-

1019G genotype and the regional binding potential of

two selective 5-HT1A antagonists, 11C-WAY100635

(David et al., 2005) or 18F-MPPF (Lothe et al., 2010)

using positron emission tomography (PET) in healthy

subjects.

Among the many studies conducted on potential

associations between HTR1A variants and suicide in

Caucasian (Lemonde et al., 2003; Videtic et al., 2006;

Wasserman et al., 2006; Serretti et al., 2007, 2009) and

Japanese (Nishiguchi et al., 2002; Ohtani et al., 2004)

populations, only one (Lemonde et al., 2003) has

documented a significant association between higher

frequency of G-1019 allele and GG genotype in patients

with depression and suicide victims than in non-suicidal

healthy controls. The authors posited that this

association may be explained by a reduction of 5-HT-

ergic activity in G carriers due to the inhibitory actions of

this variant on NUDR/Deaf-1-mediated repression of 5-

HT1A autoreceptors (Lemonde et al., 2003). Notably,

recent evidence has documented an association

between homozygosity for the G variant and

impulsiveness (Benko et al., 2010), a trait typically

linked to reduced 5-HT-ergic activity.

In summary, the available evidence on the implication

of 5-HT1A receptors appears to converge on the idea that

IABs may be associated with a reduced activity and/or

expression of the autoreceptors. Functional studies

support that these receptors may not play a primary

causal role in impulsivity and aggression. However, their

key involvement in anxiety regulation and in the

adaptive responses to abnormalities of 5-HT-ergic

homoeostasis may highlight them as attractive

therapeutic targets to reduce the impact of the

conditions that trigger explosive and violent behaviours.

Further studies will be needed to elucidate the nature of

the multiple discrepancies emerging from the preclinical

and clinical literature, as well as the putative roles of

pre- and post-synaptic 5-HT1A receptors in the

regulation of violent and suicidal behaviours, also with

respect to multiple comorbid entities.

5-HT1B receptors. In rodents, activation of 5-HT1B

receptors induces a marked reduction of escalated

aggression in a highly specific fashion, which appears to

be dissociated from alterations of exploration,

locomotion and anxiety-related behaviours (Miczek

et al., 1989; Sijbesma et al., 1990; Mos et al., 1992; Bell

et al., 1995; Fish et al., 1999; de Almeida et al., 2001;

Muehlenkamp and Gutierrez, 2004). The systemic

effects of 5-HT1B receptor agonists are reproduced by

microinjections of these compounds in the ventral OFC

and raphe nuclei, but not infralimbic PFC (De Almeida

et al., 2006; Bannai et al., 2007; Centenaro et al.,

2008). The mechanism underpinning the role of 5-HT1B

in the modulation of reactive aggression may reflect the

involvement of post-synaptic heteroceptors (Mos et al.,

1992; Olivier, 2004) and pre-synaptic autoreceptors

(Clark and Neumaier, 2001; de Boer and Koolhaas,

2005), probably in relation to different facets of

aggressive conduct. This pharmacological evidence is

complemented by the finding of overt impulsive and

antagonistic behaviours, behavioural disinhibition and

increased alcohol intake (Saudou et al., 1994; Crabbe

et al., 1996; Risinger et al., 1999; Bouwknecht et al.,

2001) in 5-HT1B knockout (KO) mice. Collectively, these

Table 1. Gene structure and regulation of key serotonergic genes in humans

Gene organization Key transcription factors

5-HT1A Single exon (intronless) Sp1, Deaf-1, Freud-1, NRSF, AP-1, CREB, MAZ (Pur-1, Zif87), NFKB, c-Jun

5-HT1B Single exon (intronless) GR, c-Fos, c-Myc

5-HT2A Three exons Sp1, PEA3, AP-1, STAT-3

5-HT2C Four exons CUTL-1

5-HT3A Nine exons GR, NRSF

5-HT3B Eight exons IRF-7A, POU2F2, Meis-1, Oct-B1

5-HT4 At least 10 exons (multiple splice variants) POU2F1, POU2F2, GCNF, Oct-B1

5-HT6 Three exons NRSF1, NRSF2, CREB

5-HT7 Four exons (multiple splice variants) Sp1, CREB

TPH1 11 exons NF-Y, Sp1, TBP, TFIID

TPH2 11 exons POU3F2, NRSF, GR

5-HTT 14 exons YB-1, CTCF, GR, NFKB

MAOA 15 exons Sp1, R1, GR, Egr-1, c-Jun, AP-1
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preclinical results support a highly more specific and

direct role of these receptors in the pathophysiology of

reactive aggression, suicidal behaviour and alcoholism

(Soyka et al., 2004; Cao et al., 2011).

The human 5-HT1B receptor is a 390 amino acid-long

peptide, encoded by HTR1B, an intronless gene (1.1 kb

long) located on chromosome 6 (6q14.1) (Sanders

et al., 2001) (Table 1). Seventy-two polymorphisms

have been discovered in the coding sequence and

surrounding 50 and 30 untranslated regions. Using

denaturing gradient gel electrophoresis (DGGE),

Sanders and colleagues (Sanders et al., 2001)

characterized 12 SNPs and two insertion/deletion (INS/

DEL) polymorphisms within the HTR1B gene. The INS/

DEL polymorphisms are �179INS/DEL-178 and

�182INS/DEL-181. Among SNPs, G-511T and T-216G

are detected in the 50 (Nothen et al., 1994; Sanders

et al., 2001) and A-161T in 30 noncoding regions

(Sanders et al., 2001). Four SNPs are synonymous or

silent mutations: C129T (Ser43Ser), G276A (Ala92Ala),

C705T (Ala235Ala) and G861C (Val287Val)

(Lappalainen et al., 1995; Ohara et al., 1996; Cargill

et al., 1999; Sanders et al., 2001). The latter genotype

is in almost complete linkage disequilibrium with C129T

(Huang et al., 1999) and T317G (Sanders et al., 2001),

and may be linked to functional differences. In fact, C

allele carriers have been shown to display lower binding

of 3H-5-HT to 5-HT1B receptors (Huang et al., 1999).

Other non-synonymous polymorphisms have been

found to change the amino acids in second (T371G;

Phe124CysT), fifth (T655C; Phe219Leu) and seventh

(A1099G; Ile367Val9) transmembrane and intracellular

C terminal (G1120A, Glu374Lys), His452Tyr) regions of

5-HT1B receptors (Sanders et al., 2001).

The association studies that investigated allelic

variability at the HTR1B in suicide attempters and

suicide completers have led to inconsistent results. No

association was found between genotype or allele

frequency of G861C or A-161T polymorphisms and

suicide or suicide history in Caucasians of German

(Rujescu et al., 2003; Stefulj et al., 2004), Croatian

(Stefulj et al., 2004), Slovenian (Videtic et al., 2006) and

French Canadian (Turecki et al., 2003) origin, as well as

in African American (Huang et al., 1999; Huang et al.,

2003), Japanese (Nishiguchi et al., 2001), or Han

Chinese (Hong et al., 2004; Tsai et al., 2004) subjects.

In contrast, New et al. (2001) found that Caucasian

patients with personality disorders and a history of

suicide attempts had a higher frequency of the G allele

of G861C polymorphism than patients without a suicide

history. Another study reported an association between

the T allele in the A-161 T polymorphism and suicide or

IAB. However, no association was found with the other

four SNPs (T261G, C129T; G861C; A1180G) (Zouk

et al., 2007). Other variants associated with microRNA-

directed silencing of 5-HT1B transcription were recently

correlated with higher risk for conduct disorder and

greater anger and hostility in young men (Jensen et al.,

2009; Conner et al., 2010).

Taken together, preclinical and clinical evidence

appears to concur in assigning a putative causal role for

hypofunctional 5-HT1B receptors in IABs. Despite these

promising research leads, further studies on the

selective role of pre- and post-synaptic receptors and

clinical studies with a larger number of subjects are

needed to clarify the association between 5-HT1B

receptors and aggressive-impulsive endophenotypes, as

well as their involvement in suicidal behaviours.

The role of 5-HT2 receptors in aggression and suicide

5-HT2 receptors form a closely related subgroup of G-

protein-coupled receptors, functionally linked to the

phosphatidylinositol hydrolysis pathway and currently

classified as 5-HT2A, 5-HT2B and 5-HT2C subtypes,

based on their close structural homology and

pharmacology (Di Giovanni et al., 2008a). Initial studies

on 5-HT2 receptor signalling showed that these

receptors activate the heterotrimeric G proteins that

contain the aq subunit, thereby stimulating

phospholipase Cb and leading to phosphatidyl inositol

hydrolysis (Di Giovanni et al., 2011). These receptors

also stimulate phospholipase A2 and the NO/cyclic

GMP (cGMP) pathway. However, some differences in

the signal transduction characteristics of these receptors

have been reported (Imbrici et al., 2000; Di Giovanni

et al., 2011). Studies focusing on the regulation of the 5-

HT2 receptor family have also indicated that 5-HT2

receptors are non-classically regulated and show

constitutive activity (Di Giovanni et al., 2008a, 2011).

5-HT2A receptors. Although both agonists and

antagonists of 5-HT2A receptors have been shown to

reduce hostile behaviours (White et al., 1991; Olivier

et al., 1995; Sakaue et al., 2002) [for contrasting results,

see (Skrebuhhova-Malmros et al., 2000)], the

interpretation of these findings is often complicated by

the side effects of these compounds, such as the

cognitive deficits induced by 5-HT2A agonists and the

sedative and hypolocomotive effects of their blockers

(de Almeida et al., 2005). Little is currently known about

the roles of different regions in the role of 5-HT2A

receptors in aggression; however, local infusion of 5-

HT2 agonists into the PAG was found to attenuate

maternal aggression in rats (de Almeida et al., 2005).

In contrast with evidence on rodents, converging lines

of evidence have pointed to the implication of 5-HT2A

receptors in aggression. For example, 5-HT2A receptor

expression in platelets has been correlated to the

severity of hostile traits (Coccaro et al., 1997); however,

this index has been shown to be unreliable as a

suicidality marker (Lauterbach et al., 2006). Other

studies have identified inverse correlations between 5-

HT2A expression and activity in the PFC and OFC with

aggression. For example, low levels of 5-HT2A binding

potential have been found in the PFC of violent

aggressive individuals (Meyer et al., 2008). In males, a

negative correlation was found between 5-HT2A binding

in left orbital and medial frontal cortex and aggression

severity (Soloff et al., 2010). In contrast with these data,

prefrontal 5-HT2 binding (as tested by 3H ketanserin)

has been found to be directly correlated with lifetime
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aggression scores in suicidal subjects (but not in their

controls) (Oquendo et al., 2006); furthermore, 5-HT2A

receptor availability in the OFC has been recently

correlated with a state measure of impulsive aggression

(Rosell et al., 2010).

Another important line of research to assess the

implication of 5-HT2A receptors in the pathophysiology

of aggression comes from genetic association studies.

The 64-kb gene coding the 5-HT2A receptor (HTR2A) is
located on the long arm of chromosome 13 at position

13q14-q21 (Sparkes et al., 1991), and is comprised of

three exons and two introns, with translation length of

471 residues (NCBI Gene 2012) (Table 1). A silencer

element found downstream of the second promoter

element suggests that HTR2A contains two alternative

promoters (Myers et al., 2007; Serretti et al., 2007).

Although almost 300 different SNPs within HTR2A have

been listed (Serretti et al., 2007; Fanous et al., 2009)

(Table 2), only a few are well-documented (Serretti

et al., 2007):

– two silent mutations in the coding region, T102C and

C516T (Spurlock et al., 1998);

– nine polymorphisms are located in the promoter region

(Myers et al., 2007), the best-characterized of which is

the A-1438G;

– five non-synonymous polymorphisms in the extracellu-

lar N terminal (polymorphism Thr25Asn), fourth trans-

membrane (Ile197Val) and intracellular C terminal

(Ser421Phe, Ala447Val, His452Tyr) regions (Davies

et al., 2006).

The synonymous mutation T102C (rs6313) is located

in the first exon of the HTR2A. The substitution of base

thymine (T) with cytosine (C) encodes in both cases for

the amino acid serine in codon 34 of the HTR2A and do

not change the amino acid sequence of the protein.

Although T102C represents a silent polymorphism, it is

positioned close to the promoter region and could be

involved in gene regulation (Serretti et al., 2007) by

changing the secondary structure of the transcript or by

prevention of gene expression by methylation of

cytosine in position 102 (Vaquero-Lorenzo et al., 2008).

The G to A base change at position �1438 (rs6311) is

in total linkage disequilibrium with T to C base change at

silent polymorphism T102C (Spurlock et al., 1998;

Kouzmenko et al., 1999; Ono et al., 2001) implying

these two polymorphisms could be considered together.

The functional role of SNP T102C or A-1438G is not

clear. In healthy individuals, TT carriers were shown to

exhibit a higher number of 5-HT2AR binding sites (Bmax)

in blood platelets (Khait et al., 2005) and brain (Turecki

et al., 1999), as compared with TC and CC genotype

carriers. Post-mortem brain analyses have shown higher

expression of HTR2A mRNA in temporal cortex of

healthy subjects with TT genotype in some (Polesskaya

and Sokolov, 2002) but not all (Bray et al., 2004)

studies. In contrast, the A-1438G genotype was found

to have no association with the 5-HT2AR density in post-

mortem samples of the lateral frontal cortex of

schizophrenia patients and healthy probands

(Kouzmenko et al., 1999).

The 5-HT2A His452Tyr (1354 C/T; rs6314)

polymorphism is positioned in exon 3 of the HTR2A
gene. This missense mutation consists of a C-T base

substitution, resulting in the change of the amino acid

hystidine (His) into tyrosine (Tyr) at position 452 in the

C-terminal region of the 5-HTR2A receptor. The most

common variant is C allele (His452His), while the

frequency of T allele is approximately 9% in Caucasians

(Filippini et al., 2006). The His452Tyr is a functional

polymorphism that regulates the 5-HT2A receptor activity

throughout the regulation of Ca2+ fluctuation in cells

(Ozaki et al., 1997) and activation of phospholipases C

and D (Hazelwood and Sanders-Bush, 2004) with

452Tyr being the less active variant.

Several studies have documented significant

associations between the severity or the incidence of

aggression and anger traits with specific polymorphic

functional variants of the gene encoding for these

receptors, including the SNPs T102C (Assal et al.,

2004) and the A-1438G genotypes (Berggard et al.,

2003). Interesting, the latter polymorphism has been

shown to influence the risk of impulsive behaviour

(Nomura and Nomura, 2006) and suicidality (Giegling

et al., 2006). Finally, the SNP His452Tyr has been

associated with rule-breaking components of antisocial

behaviour in adolescence, but not physical aggression

(Burt and Mikolajewski, 2008). It should be mentioned,

however, that other studies have failed to identify

associations between genetic variants of 5-HT2A and

aggression in suicide victims (Videtic et al., 2006) and

alcoholic patients (Preuss et al., 2000). Furthermore,

most of the studies failed to find a significant association

between T102C or His452Tyr and suicidal ideation

(Bondy et al., 2000; Preuss et al., 2000; Fanous et al.,

2009) suicide attempts (Preuss et al., 2000; Arias et al.,

2001; Tan et al., 2002; Oswald et al., 2003; Etain et al.,

2004; Khait et al., 2005; Zalsman et al., 2005; Giegling

et al., 2006; Correa et al., 2007; Saiz et al., 2008;

Zhang et al., 2008), severity of suicidal behaviour (De

Luca et al., 2008a), suicide (Bondy et al., 2000;

Crawford et al., 2000; Faludi et al., 2000; Ono et al.,

2001), suicidal behaviour (Ertugrul et al., 2004; Murphy

et al., 2011) or completed suicide (Turecki et al., 1999).

Few studies found significant association between the

Table 2.

Polymorphisms of 5-HT2A References

Promoter region A-1438G, C-1420T, A-1273G, A-1182G, A-783G, G-561A, C-559T, G-400A, A-311G Myers et al., 2007

Coding region Thr25Asn, Ile197Val, Ser421Phe, Ala447Val, His452Tyr Davies et al., 2006

Silent T102C, C516T Spurlock et al., 1998
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T102C CC genotype and suicide in suicide attempters

compared to a healthy control but not psychiatric

controls (Vaquero-Lorenzo et al., 2009), or in depressed

patients with suicide ideation (Du et al., 2000). In

addition, C allele of the T102C was found to represent a

risk factor for depressed patients to attempt suicide

(Arias et al., 2001).

In summary, the involvement of the 5-HT2A receptor in

the enactment of aggressive and impulsive responses

remains poorly understood, in view of experimental

limitations (such as the lack of highly selective 5-HT2A

receptor agonists for experimental studies) and

differential roles played by these post-synaptic targets

across different brain regions. It is likely that regional

subpopulations of 5-HT2A receptors (such as those in

the PFC and OFC) may participate in the emotional and

cognitive appraisal of environmental triggers for

aggressive and suicidal responses, and thus help

convey some of the neurochemical signals related to the

ideation, planning, initiation, execution and extinction of

IABs. The diverse contributions of these regional

subgroups of 5-HT2A receptors may explain the

associations between HTR2A variants and different

aspects of aggression and suicidal behaviours.

However, further studies on the functional significance

of the different clusters of 5-HT2A receptors are needed

to define the specific relevance of these targets in IABs

and suicide-related traits, as well as the comorbid

emotional disturbances associated with aggression.

5-HT2C receptors. In contrast with the other major 5-

HT receptors, the role of 5-HT2C receptors in aggression

has long remained elusive, and has been investigated

only recently, thanks to the development of novel

selective ligands. The few data currently available

indicate that stimulation of these targets reduces

aggressive responses and enhances the display of

submissive behaviour (Rosenzweig-Lipson et al., 2007;

Dekeyne et al., 2012; Harvey et al., 2012). These

effects, however, may result from a general

enhancement in social anxiety (Kantor et al., 2000). The

possible implication of the 5-HT2C receptor in suicidal

behaviours has been studied in genetic association

analyses. The gene that codes this receptor (HTR2C) is
located at position Xq24 (Milatovich et al., 1992) and

consists of six exons and five introns (Xie et al., 1996)

(Table 1). According to NCBI SNP Database, there are

several thousand SNP within HTR2C. Among them, the

best-characterized one is the polymorphism Cys23Ser

(rs6318), consisting of two variants, C and G and

resulting in the change of the amino acid Cysteine into

Serine in the N-terminal region of the protein. Of note,

5-HT2C is altered post-transcriptionally, and differences

in pre-mRNA editing of 5-HT2C receptors were found

between control subjects and suicidal victims (Gurevich

et al., 2002; Dracheva et al., 2008). In contrast, most

studies failed to identify significant associations among

polymorphisms of this receptor and suicidal attempts

(Arias et al., 2001; Turecki et al., 2003; Serretti et al.,

2007; Zhang et al., 2008; Serretti et al., 2009),

completed suicide (Stefulj et al., 2004), the severity of

suicidal behaviours (De Luca et al., 2008b, 2011) or

suicide risk and deliberate self-harm (Pooley et al.,

2003). To the best of our knowledge, only one study

detected a significant association between completed

suicide and the variants of the SNP rs6318, with the

excess of GG genotype and allele G in suicide victims

(Videtic et al., 2009).

The role of other 5-HT receptors in aggression and
suicide

5-HT3 receptors. In contrast with the other 5-HT

receptors, 5-HT3 is a pentameric, ion-gated channel that

mediates fast synaptic transmission. In the CNS these

receptors are located in many areas relevant to

emotional regulation, including the neocortex, amygdala,

hippocampus, NAc and brainstem. Of the five subunits

identified to date, termed 5-HT3A to 5-HT3E, only the first

two (A and B) have been sufficiently characterized.

Several preclinical experiments have shown that 5-HT3

receptors exert a complex influence on aggressive

responses in rodents. For example, pharmacological

tests suggest that these receptors participate in alcohol-

and cocaine-induced aggression (Ricci et al, 2004;

McKenzie-Quirk et al, 2005). In general, several 5-HT3

antagonists have been shown to reduce aggression in a

fashion dependent on the genetic background and the

baseline proclivity to engage in fighting behaviour

(McKenzie-Quirk et al, 2005; Cervantes et al, 2010).

Conversely, other lines of evidence indicate that these

compounds are often inefficacious in affecting isolation-

induced aggression (White et al, 1991; Sanchez et al,

1993). Notably, 5-HT3 agonists have also been shown

to exert anti-aggressive properties in some (Poncelet

et al, 1995; Rudissaar et al, 1999), but not all studies

(Ricci et al, 2005).

In contrast with the rich associations between 5-HT3

receptors and aggression, their possible involvement in

suicidal behaviour has been challenged by genetic

association studies (Souza et al, 2011) and post-

mortem assessments of their binding in the cortex of

suicide victims (Mann et al, 1996).

5-HT4, 5-HT6 and 5-HT7 receptors. Our current

knowledge on the 5-HT receptors coupled to Gs

proteins (5-HT4, 5-HT6 and 5-HT7) with respect to the

modulation of aggression and suicide is still

rudimentary. Initial studies appear to implicate a

significant up-regulation of 5-HT4 receptors in the frontal

cortex and caudate nucleus of depressed suicide

victims (Rosel et al, 2004). Studies on the C267T

polymorphism of the human 5-HT6 gene have shown a

possible implication of this SNP in the suicide of male

patients (Azenha et al, 2009; but see Okamura et al,

2005 for contrasting findings). The same SNP was not

found in association with aggressive behaviour in

schizophrenia patients (Tsai et al, 1999). Although the

role of 5-HT7 in aggression and suicidal behaviour

remains elusive, preliminary pharmacological studies

appear to temper the possibility of a direct implication of
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this target in the modulation of aggression (Navarro et al,

2004).

The role of TPH in aggression and suicide

The synthesis of 5-HT depends on the specific action and

rate-limiting step of the enzyme l-tryptophan-5-

monooxygenase (EC 1.14.16.4), commonly termed

TPH. A member of the aromatic amino acid

hydroxylases (AAAHs) family, TPH converts tryptophan

to 5-hydroxytryptophan (5-HTP) using molecular

oxygen, ascorbic acid, and biopterin. The two TPH

isoenzymes known to date, TPH1 and TPH2 (Walther

et al., 2003), are respectively encoded by genes located

on chromosome 11 and 12 in humans. Although the two

enzymes share considerable sequence identity, their

regulatory domains differ substantially (Murphy et al.,

2008b). As far as their anatomical distribution is

concerned, TPH1 is expressed mostly in peripheral

tissues (with the exception of the pineal gland) while

TPH2 is predominant in the CNS, and typically

expressed in the raphe nuclei as well as the brain areas

targeted by 5-HT-ergic projections (Carkaci-Salli et al.,

2011) (Table 3). The Km of partially purified TPH for

tryptophan is approximately 30–60 lM. Considering the

brain concentrations of tryptophan, TPH is not expected

to be saturated with substrate, and the formation of 5-

HT in the brain is predicted to rise as the brain

concentration of tryptophan increases (Leathwood and

Fernstrom, 1990). Unfortunately, tryptophan-rich diets

produce a simultaneous increase of peripheral 5-HT,

with important side effects. On the contrary, selective

targeting of TPH2 can selectively boost the synthesis of

5-HT in the brain, increasing the stored amount and

evoked release of the neurotransmitter; this

pharmacological strategy may be highly promising for

the development of novel antidepressants (Torrente

et al., 2012). The product of TPH-mediated reaction, 5-

HTP, is decarboxylated into 5-HT by L-aromatic amino

acid decarboxylase (AADC) (EC 4.1.1.28). Interestingly,

AADC catalyses the decarboxylation of both 5-HTP and

DOPA in catecholaminergic neurons. The gene

encoding the enzyme is referred to as dopa
decarboxylase (DDC), and is located on chromosome 7

in humans (Scherer et al., 1992). Almost 30 genetic

mutations of DDC have been characterized in patients

with AADC deficiency (Haavik et al., 2008).

Both clinical and preclinical evidence indicate that

IABs and other aggressive phenotypes are modulated

by both TPH isoenzymes. In laboratory animals, acute

pharmacological inhibition of TPH typically enhances

inter-male aggression by reducing 5-HT levels (Vergnes

et al., 1986). Because of its role as the rate-limiting

enzyme of 5-HT biosynthesis, TPH expression and

activity are normally affected by chronic exposure to

environmental conditions that facilitate or reduce

aggression, such as repeated victory or defeat

(Amstislavskaya and Kudryavtseva, 1997), or by genetic

selection for aggressiveness or docility (Popova et al.,

1991). In line with the general variability observed

across most 5-HT targets, the heterogeneity of these

variations documented by different studies is likely to

signify that changes in TPH may reflect compensatory

adaptive mechanisms probably aimed at restoring 5-HT

homoeostasis. Notably, mice hypomorphic or deficient in

TPH2 were recently reported to exhibit high aggression,

as well as other emotional alterations (Beaulieu et al.,

2008; Mosienko et al., 2012). In contrast, the G allele of

the murine C1473G polymorphism was found to be

associated to lower TPH2 activity in the midbrain

(Kulikov et al., 2005), as well as lower aggression and

reduced depression-like behaviour in the forced swim

test (Kulikov et al., 2005; Osipova et al., 2009).

Most clinical studies have been focused on genetic

associations between SNP variants of the TPH1 gene

and several indices of aggressive personality or

prevalence of suicidal behaviour. For example, the L

allele of the A218C polymorphism located in intron 7 of

TPH1 was associated with higher Buss-Durkee Hostility

Inventory (BDHI) scores (New et al., 1998), and

occurred with higher frequency in violent males (Nolan

et al., 2000). Subsequent analyses, however, found that

carriers of the U allele had a greater tendency to

express their anger outwardly, and experience

Table 3.

Tryptophan hydroxylase isoform

TPH1 TPH2

Location

Enterochromaffin cells, pineal body Brain

Physiological functions of serotonin

Melatonin synthesis Food intake and body weight

Vasoconstriction Sleep

Haemostasis Behaviour

Immune system Mood

Intestinal motility Thermoregulation

Serotonin in pathology of diseases

Migraine Migraine

Carcinoid Neuropsychiatric disorders

Obesity

The two tryptophan hydroxylase isoforms, their location and corresponding physiological and patho-

logical function of central or peripheral serotonin systems.
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unprovoked anger (Manuck et al., 1999). The same

genotype was found to be associated with impulsive

behavioural tendencies (IBTs) (Staner et al., 2002) and

anger-related traits (Rujescu et al., 2002).

The A779C polymorphism was found to be

significantly related to aggressive hostility, with the

highest aggression levels for the genotype AA and the

lowest aggression levels for the genotype CC in

volunteers (Hennig et al., 2005). Conversely, another

study on Korean individuals found that CC homozygotes

in the major depression disorder group scored

significantly higher in terms of verbal aggression and

total aggression than A carrier genotypes, regardless of

sex and age (Koh et al., 2012).

Several post-mortem studies have found an increased

expression of TPH2 mRNA (Bach-Mizrachi et al., 2006,

2008; Perroud et al., 2010) and higher levels of the

TPH2 protein (Underwood et al., 1999; Boldrini et al.,

2005; Bonkale et al., 2006) in the brain of depressed

suicide victims. Bach-Mizrachi et al. (2008) proposed

that a higher TPH2 expression could be a response to

deficient 5-HT levels in the brains of depressed suicides.

The human TPH2 gene covers about 93.5 kb, consists

of 11 exons, and exhibits hundreds of SNPs and multiple

post-translational modifications (Zhang et al., 2006). Most

of the detected sequence variants in the TPH2 gene are

SNPs, mainly located in noncoding regions of the gene.

In the association and linkage disequilibrium study on

suicide victims, evaluating 10 SNPs in the TPH2, a

significant association between SNP rs1386494 in intron

5 and suicide was found (Zill et al., 2004). A haplotype

analysis showed a significant association with suicide

for three haplotypes (Zill et al., 2004). This result could

not be replicated by Lopez de Lara et al. (Lopez de

Lara et al., 2007). These last authors (Lopez de Lara

et al., 2007) investigated 14 SNPs (nine intronic, two

exonic and three SNPs in the 50 upstream region of the

gene). They found a significant overrepresentation of

alleles T, G, G and C of the SNPs rs4448731 (TPH2
upstream region), rs6582071 (TPH2 upstream region),

rs4641527 (intron 1), and rs1386497 (intron 8),

respectively, in depressed suicide completers. No

association was found regarding functional SNP

G1463A (rs120074175) in exon 11 (Lopez de Lara

et al., 2007), similarly to the findings of other studies

(Garriock et al., 2005; Delorme et al., 2006). Results

obtained for rs6582071 were not confirmed by other

studies (Mouri et al., 2009; Must et al., 2009). Most of

the studies that have focused on the SNPs placed in the

TPH2 upstream region, that have an impact on protein

expression, relate to rs4570625 (located in the promoter

region of the gene). Yoon et al. (Yoon and Kim, 2009)

showed a positive association of rs4570625 with suicide

attempt and concluded that the observed increased

frequency of the G allele may be associated with

elevated suicidal behaviour. Several other studies,

however, did not confirm this association (Zhou et al.,

2005; Zill et al., 2007; Mouri et al., 2009; Stefulj et al.,

2011). The human TPH2 promoter polymorphism

rs11178997 is another SNP in the promotor region that

has an impact on TPH2 expression (Chen et al., 2008),

but according to results obtained by several different

groups (De Luca et al., 2005b; Zhou et al., 2005; Lopez

et al., 2007; Must et al., 2009), it has no impact on

suicide attempt and completion. SNP rs7305115, which

is located at approximately 1077 bp from the 7 exon,

could be involved in the control of TPH2 mRNA

expression (Lim et al., 2007) and it could also influence

suicidal behaviour (Ke et al., 2006; Zhang et al., 2010).

Grohmann et al. (2010) reported a higher frequency of

rs4290270 AA genotype in suicide completers and

found evidence that rs4290270 affects TPH2 alternative

splicing and editing. TPH2 SNP variants have also been

recently associated with the association of affective

lability, aggression and suicidal behaviour (Perez-

Rodriguez et al., 2010).

Taken together, emerging evidence suggests that

TPH2 may have a direct implication on the

pathophysiology of IABs and other aspects of

aggression and suicidality. However, evidence in this

respect is still preliminary and awaits more thorough

characterization by means of selective inhibitors and

brain-regional infusion studies in animal models, as well

as studies on potential associations between its as-yet

poorly examined SNPs, and specific endophenotypes of

aggression (also in association to environmental triggers

and gender-specific factors).

The role of 5-HTT in aggression and suicide

The extracellular levels of 5-HT are regulated by 5-HTT,

both in central and peripheral 5-HT-ergic subsystems

(Lesch et al., 1993b). The human gene for 5-HTT,

termed SLC6A4, is located in the chromosome 17, and

codes a protein comprised of 630 amino acids with 12

transmembrane domains (Mayser et al., 1991; Lesch

et al., 1993a). 5-HTT is localized on the terminals of 5-

HT neurons, where it ensures the recapture of 5-HT. It

is the pharmacological target of selective reuptake

inhibitors (SSRIs) mainly used as antidepressants

(Geddes et al., 2000).

The implication of 5-HTT in the regulation of

aggressive behaviour is cogently indicated by the well-

documented anti-aggressive effects of SSRIs, both in

psychiatric patients and healthy volunteers (Coccaro

et al., 1997; Walsh and Dinan, 2001; Reist et al., 2003;

Bond, 2005; Barkan et al., 2006; Blader, 2006; Carrillo

et al., 2009). Similarly to the time-frame of the

antidepressant effects of these agents, their anti-

aggressive potential is generally observed only following

prolonged treatment (2-3 weeks), likely as a result of

neuroplastic adaptive mechanisms resulting in receptor

desensitization or synaptic remodelling. Chronic SSRI

administration has been shown to restore the metabolic

activity of the PFC (New et al., 2004), suggesting that

the reduction in aggression induced by these

compounds may depend on the integrity of the

prefrontal function, which is essential for impulse control

as well as emotional appraisal of social contexts. In

support of this possibility, Troisi and colleagues (Troisi

et al., 1995) documented that, in a subset of patients

affected by mental retardation and epilepsy, chronic
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treatment with fluoxetine led to enhanced, rather than

reduced aggressiveness.

The evidence on the effects of SSRIs on aggression is

generally paralleled by findings in rodents (Olivier et al.,

1989; Delville et al., 1996; Pinna et al., 2003; Carrillo

et al., 2009). However, a critical difference between the

effects of SSRIs in humans and most rodent models of

aggression is that, in the latter, the ameliorative effects

of these compounds is already significant after acute

administration, and sometimes even reversed after

chronic treatment (Mitchell et al., 1991; Mitchell and

Redfern, 1992; Mitchell, 2005). While the neurochemical

underpinnings of these phenomena remain poorly

understood, these divergent findings may reflect the

intrinsic limitations of the experimental manipulations

used to elicit aggressive reactions in rodents, such as

social isolation (which may lead to enhanced territorial

behaviour and instrumental aggression).

Notably, genetic deficiency of 5-HTT in mice results in

lower levels of aggression in the resident-intruder

paradigm, with longer latency to the first attack and

fewer fighting encounters, but no changes in social

investigations (Holmes et al., 2002). 5-HTT KO mice

display lower 5-HT reuptake and higher 5-HT forebrain

concentrations compared to wild-type (WT) conspecifics

(Mathews et al., 2004). In addition, these mutants

exhibit improved inhibitory control (Homberg et al.,

2007) and are less likely to obtain a dominant status in

comparison with WT mice. In this respect, it is worth

noting that the levels of aggression shown by 5-HTT KO

mice are greatly influenced by the opponent’s

behaviour, as well as the venue of the aggressive

encounter (Jansen et al., 2011).

While few authors have investigated platelet 5-HTT

binding as a potential biomarker of aggression with

variable results (Barkan et al., 2006; Coccaro et al.,

2010), recent studies have shown higher 5-HTT binding

in the brainstem in impulsive and aggressive humans

(Rylands et al., 2012) and rats (Kerman et al., 2011),

suggesting that this index may be a valuable cross-

species parameter for translational studies.

The role of 5-HTT in the modulation of aggression is

also strongly supported by several genetic studies on

SLC6A4 polymorphic variants. SLC6A4 is among the

most frequently studied candidate genes for psychiatric

disorders and suicidal behaviour (Lesch and Gutknecht,

2005). The best-characterized polymorphism of 5-HTT

is 5-HTTLPR (5-HTT-linked promoter region), a 43-bp

INS/DEL variation within the promoter region, which is

thought to regulate variations in transcriptional activity:

the long variant (L allele, with 16 repeats) has higher

basal activity and expression than the short variant (S

allele, with 14 repeats) (Heils et al., 1996; Lesch et al.,

1996). Another recently detected SNP (rs25531)

consisting in an A? G substitution in the 6th motif

upstream the 5-HTTLPR locus, has been shown to

influence the binding for Activator Protein-2 (AP2), a

transcriptional suppressor of the 5-HTT (Kraft et al.,

2005). The G allele of the rs25531 is associated with

low level of 5-HTT mRNA expression, which makes it

similar to allele S of the 5-HTTLPR, while the A allele is

associated with high level of mRNA expression (Hu

et al., 2006), which is similar to allele L of the 5-

HTTLPR. Therefore, more recent studies analyse 5-

HTTLPR and rs25531 as a triallelic system (De Luca

et al., 2008a; Bozina et al., 2012), in which the LA allele

(allele L with rs25531 A variant) is associated with high

5-HTT functionality, while the S and LG (L allele with

rs25531 G variant) alleles are linked to lower 5-HTT

expression (Hu et al., 2006; Zalsman et al., 2006;

Bozina et al., 2012).

Most genetic studies have pointed to an association

between the S haplotype of 5-HTTLPR and the

prevalence or severity of several emotional

disturbances, encompassing anxiety, depression,

impulsivity, hostility, anger, novelty-seeking behaviour

and worse therapeutic responsiveness to SSRIs (Evans

et al., 1997; Hallikainen et al., 1999; Lesch and

Merschdorf, 2000; Courtet et al., 2001; Gerra et al.,

2005; Silva et al., 2010). The same variant has been

linked to aggressive reactivity in children and conduct

disorder in adolescents (Beitchman et al., 2006;

Haberstick et al., 2006; Sakai et al., 2006). In addition,

the presence of one or two S alleles of 5-HTTLPR has

been associated with most suicidal behaviours, including

violent suicide (Bellivier et al., 2000; Campi-Azevedo

et al., 2003; Bondy et al., 2006; Li and He, 2007),

violent or impulsive suicide attempts (Baca-Garcia et al.,

2005; Neves et al., 2008; Neves et al., 2010) re-

attempted suicidal attempts (Courtet et al., 2004),

suicide attempts in abused children (Gibb et al., 2006),

suicide attempts with high medical damage (Wasserman

et al., 2007), and a life-time risk of suicide attempts in

male subjects (Limosin et al., 2005).

Nevertheless, other studies found no significant

association between 5-HTTLPR and suicidal attempts

(Gerra et al., 2004; Shen et al., 2004; De Luca et al.,

2005b; De Luca et al., 2006; Zalsman et al., 2006;

Chen et al., 2007; Roy et al., 2007; Bah et al., 2008;

De Luca et al., 2008a; Akar et al., 2010), suicide history

(Yen et al., 2003; Malloy-Diniz et al., 2011), family

history of suicidal behaviour (Correa et al., 2004),

severity of suicidal attempt (De Luca et al., 2005b) or

completed suicide in suicidal victims (Mann et al., 2000;

Pungercic et al., 2006). The lack of a significant

association between suicide attempt or ideation and 5-

HTTLPR was confirmed in the large European

multicenter case-control (Mendlewicz et al., 2004), or

twin sample (Coventry et al., 2010), evaluating both

bilalleic (5-HTTLPR) and triallelic (5-

HTTLPR+ rs25531) classification (De Luca et al.,

2006; Coventry et al., 2010).

These discrepancies might be partially explained by

the numerous methodological issues such as lack of

statistical power, differences in the diagnostic criteria

and inclusion of patients with different psychiatric

diagnoses and healthy control subjects and different

severity of suicidal behaviour (ranging from suicidal

ideation to completed suicide). In addition, studies

evaluating biallelic 5-HTTLPR classifications may yield

different results from those using triallelic models

(Bozina et al., 2012).
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An alternative explanation for the numerous

discrepancies in association studies may lie in the

possibility that multiple biological and environmental

factors may moderate the relation between 5-HTTLPR

and suicide or aggression. For example, Cadoret et al.

(2003) have suggested that, in contrast with males,

female carriers of short variants display lower levels of

conduct disorder and aggressiveness. On the other

hand, the LL genotype was also significantly associated

with suicide attempts in women, but not in men

(Gaysina et al., 2006).

Ethnic (Noskova et al., 2008) and/or socio-cultural

components may also differentially influence the

association of 5-HTLLPR polymorphic variations and

aggression; for example, no significant correlation was

identified in groups of African-Americans (Patkar et al.,

2002) or Spanish suicide attempters (Baca-Garcia et al.,

2004), and only a marginal association between the s

variant and aggressiveness was found in Korean

schizophrenia patients (Kim et al., 2009).

Additional lines of research suggest that the

relevance of 5-HTLLPR with respect to aggression

may be related to specific gene � environment

interactions; for example, carriers of the short-allele

variant were found to exhibit greater proclivity to

aggression and suicidal ideation in response to

stressful events (Caspi et al., 2003; Verona et al.,

2006; Conway et al., 2012). These data may suggest

that 5-HTT genotype may exert a direct influence on

cognitive and emotional modalities of stress-coping,

which may result in increased aggression, poor

impulse control and suicidal tendencies in the

presence of unfavourable psychosocial contingencies.

Thus, the association between the S variant and

aggression may depend on the function of the

prefrontal cortex, in a fashion similar to what could

be postulated for the therapeutic effects of SSRIs.

Accordingly, several studies have shown that, in

Alzheimer’s disease patients or individuals with

intellectual disabilities, aggression is associated with

the long allelic variant, rather than the short one

(Sukonick et al., 2001; Sweet et al., 2001; May

et al., 2010).

A variable number tandem repeat (VNTR)

polymorphism has been found in intron 2 of the 5-HTT,

containing 9, 10 or 12 copies of a 17-bp repeat element.

It is assumed that the transcriptional regulatory activity

depends on the number of repeat copies; thus, the 12-

repeat allele has higher activity than the 10- and the 9-

alleles (Fiskerstrand et al., 1999; MacKenzie and Quinn,

1999). The association between 5-HTT VNTR intron 2

and suicide has been investigated (Bellivier et al., 2000;

Ho et al., 2001; Hranilovic et al., 2003; Yen et al., 2003;

Jernej et al., 2004; Shen et al., 2004; De Luca et al.,

2005a; De Luca et al., 2006; Gaysina et al., 2006;

Pungercic et al., 2006; De Luca et al., 2007; Lopez de

Lara et al., 2007; Bah et al., 2008), yielding mixed

results. Whereas one study found a protective effect of

the 10-repeat allele against suicidal behaviour and an

association of this variant with lower suicidal scores in

schizophrenic patients (De Luca et al., 2006), another

report documented that the same allele was more

common among depressed suicide attempters (Lopez

de Lara et al., 2007).

The role of MAO-A in aggression and suicide

Monoamine oxidases (MAOs; E.C. 1.4.3.4) are flavin–

adenosine–dinucleotide (FAD)-containing enzymes that

catalyse the degradation of biogenic amines. The two

MAO isoforms, termed MAO-A and MAO-B, differ in

molecular weight (527 and 520 amino acid,

respectively), inhibitor sensitivities and substrate

affinities: while MAO-A prefers 5-HT, norepinephrine

and epinephrine, MAO-B has a high affinity for b-
phenylethylamine. In most vertebrate species, dopamine

metabolism is served by both forms. Both MAOs are

coded by genes located in the X chromosome, but are

transferred to the outer mitochondrial membrane. The

distribution patterns of MAOs in the organism are also

strikingly divergent. Within the CNS, MAO-B is

expressed at highest levels in the cell bodies of 5-HT-

ergic neurons, histaminergic neurons and glial cells,

while MAO-A is primarily expressed in

catecholaminergic neurons (Westlund et al., 1988;

Saura et al., 1994; Luque et al., 1995; Jahng et al.,

1997). In the peripheral tissues, MAO-A is particularly

abundant in the placenta (Egashira and Yamanaka,

1981), liver, and gastro-intestinal tract, while MAO-B is

the only isoform expressed in platelets and lymphocytes

(Bond and Cundall, 1977). Human MAO-A and MAO-B

show 70% homology in amino acid sequence (Chen and

Shih, 1998).

Multiple lines of evidence have indicated that MAO-A

deficiency leads to impulsive aggression in animals and

humans. The nonsense mutation of MAOA gene results

in Brunner syndrome, a X-linked condition characterized

by marked proclivity to engage in violent and antisocial

behaviours (including attempted rape, murder and

arson) in response to relatively minor stressors, as well

as borderline mental retardation, stereotyped hand

movements and sleep disturbances. These behavioural

abnormalities are accompanied by high 5-HT and low

urinary 5-HIAA concentrations (Brunner et al., 1993a;

Brunner et al., 1993b). The symptoms of Brunner

syndrome are strikingly similar to the aberrant

phenotypes of MAO-A KO mice (Cases et al., 1995;

Scott et al., 2008). In these animals, MAO-A deficiency

leads to high levels of brain 5-HT and norepinephrine

(NE), as well as a spectrum of abnormal behavioural

responses, including high levels of inter-male

aggression (Cases et al., 1995; Scott et al., 2008;

Bortolato and Shih, 2011), social and communication

deficits (Bortolato et al., 2012a), poor exploratory

behaviour towards novel contexts and objects (Godar

et al., 2011), reduced depression-like responses (Cases

et al., 1995), greater retention of aversive memories

(Kim et al., 1997; Dubrovina et al., 2006), reduced risk

assessment and maladaptive stress reactivity (Popova

et al., 2001; Godar et al., 2011), repeated and

perseverative responses as well as low learning reversal

(Bortolato et al., 2012a). While the neurobiological
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bases of the behavioural changes observed in MAO-A KO

mice are still incompletely understood, several findings

suggest that they may be underpinned by early

developmental mechanisms. In fact, chronic

pharmacological MAO-A inhibition in adult rodents does

not result in aggressiveness, but rather in decreased

defensive behaviour (Griebel et al., 1998), enhanced

exploratory activity (Steckler et al., 2001) and reduced

aggression (Isel et al., 1988). Conversely, treatment

with the MAO-A selective inhibitor clorgyline and other

MAO inhibitors induces behavioural alterations similar to

those documented in MAO-A KO mice (Whitaker-

Azmitia et al., 1994; Mejia et al., 2002). Recent studies

have also shown that the overt aggression exhibited by

MAO-A KO mice reflects alterations in the composition

and biophysical properties of NMDA glutamate

receptors of the prefrontal cortex (Bortolato et al.,

2012b). This finding is particularly interesting in

consideration of the key role of this region in the

emotional appraisal of social and environmental

contexts, as well as the well-documented function of

NMDA receptors in information processing.

In addition to the characterization of Brunner

syndrome, abundant clinical evidence on the role of

MAO-A in aggression has come from genetic studies of

the functional polymorphisms of MAOA gene and its

promoters. In particular, the MAOA-uVNTR, a 30-bp

VNTR polymorphism located 1.2 kb upstream of the

MAO-A coding sequence (Sabol et al., 1998), has been

associated with different levels of transcriptional activity

of the MAOA gene. Of the six MAOA-uVNTR variants

characterized to date (with 2, 3, 3.5, 4 and 5 repeats)

(Huang et al., 2004a), the 3-repeat and 4-repeat (4R)

alleles have been respectively associated to lower and

higher transcriptional efficiency and catalytic activity

(Sabol et al., 1998; Deckert et al., 1999; Denney et al.,

1999).

In several studies, the 3R variant has been repeatedly

associated with antisocial personality, maladaptive

responsiveness to stress, deficits in affective processing

and lower cognitive functioning (Samochowiec et al.,

1999; Cohen et al., 2003; Contini et al., 2006; Oreland

et al., 2007; Brummett et al., 2008; Buckholtz and

Meyer-Lindenberg, 2008; Williams et al., 2009; but see

Koller et al., 2003 for contrasting results).

Notably, the link between genotypes and aggression

has been recently found to be dependent on a

gene � environment interaction, with male 3R-carriers

developing aggressive behaviour only when they had a

history of abuse and neglect during childhood (Caspi

et al., 2002; Foley et al., 2004; Huang et al., 2004b;

Kim-Cohen et al., 2006; Frazzetto et al., 2007; Weder

et al., 2009; Edwards et al., 2010).

Functional brain imaging studies have shown that, in

males, the 3R variant is associated with changes in the

volume of OFC, as well as hyperreactivity of the

amygdala and hippocampus during aversive recall

(Meyer-Lindenberg et al., 2006). These findings have

led Buckholtz and Meyer-Lindenberg (Buckholtz and

Meyer-Lindenberg, 2008) to theorize that the 3R

haplotype may interfere with the ontogenesis of the

prefrontal cortex and other regions of the corticolimbic

circuit, facilitating the emergence of negative socio-

cognitive bias. In support of this hypothesis,

Eisenberger et al. (2007) showed that low-activity

variants may enhance the sensitivity of negative social

experiences like social rejection. Thus, it is likely that

early traumatic experiences, in association with low-

activity MAO-A variants, may result in persistent

alterations of socio-emotional appraisal, which could

facilitate the insurgence of aggressive responses,

particularly in the presence of high-provocation

contingencies (McDermott et al., 2009) and threat-

related situations (Williams et al., 2009).

The association between MAOA-uVNTR variants and

MAO-A brain activity has been challenged by post-

mortem (Balciuniene et al., 2002) and PET studies

(Fowler et al., 2007); however, self-reported aggression

in men was found to be inversely correlated to the brain

activity of MAO-A irrespective of the genotype (Alia-

Klein et al., 2008). Collectively, these lines of evidence

suggest that polymorphic variants may confer higher or

lower ‘‘baseline’’ MAO-A activity levels during early life

stages (critical for the development of corticolimbic

circuitry); however, enzymatic function may be

subsequently altered by a broad set of environmental

elements throughout life (Bortolato and Shih, 2011).

The majority of association studies have failed to

detect a significant correlation between MAOA-uVNTR

variants and suicidal behaviour (Kunugi et al., 1999;

Ono et al., 2002; De Luca et al., 2005a; De Luca et al.,

2006; De Luca et al., 2008a; Hung et al., 2012; but see

Lung et al., 2011 for contrasting evidence).

Nevertheless, one study has indicated that the

frequency of 2R and 3R alleles is significantly higher in

men who had attempted suicide by violent means

compared to men who had committed suicide by non-

violent means (Courtet et al., 2005); this finding

suggests that the endophenotype associated with low

MAO-A activity may only affect the modality of

execution, rather than the intention of suicidal actions.

Other functional polymorphisms, Fnu 4HI and Eco RV,

have also been investigated for the association with

aggression and suicide. Ho et al. (Ho et al., 2000)

reported an association of the FnuHI allele 1 – which is

responsible for the lower activity of MAO-A (Hotamisligil

and Breakefield, 1991) – with a history of suicide

attempts in female bipolar patients. Conversely, Du

et al. (2000)) found a significant association between

high-activity related allele (allele 2) and suicide in

depressed male suicide victims. The significance of

these findings awaits further studies to be clarified.

CONCLUSIONS AND RESEARCH DIRECTIONS

The evidence overviewed in the previous sections, albeit

fraught with inconsistent results, is in support of a

pivotal role of 5-HT-ergic system (and its multiple

molecular components) in the pathophysiology of IABs

and other intermediate phenotypes underlying the

association between reactive aggression and suicide

(such as negative bias in the interpretation of
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ambiguous social cues, deficits in social recognition etc.).

In particular, recent studies underscored that, while

alterations in 5-HT-ergic homoeostasis may signal

different degrees of vulnerability to violent

aggressiveness and suicidal behaviours, their translation

into pathological conditions occurs only in the presence

of other critical environmental and gender-related

variables. The convergence of these factors is posited

to lead to enduring abnormalities of the socio-affective

scaffolding (with respect to the connectivity between

prefrontal cortex, limbic areas and raphé nuclei), which

may ultimately result in higher proclivity to exhibit violent

outbursts and engage in self-harmful behaviours in

response to psychosocial stress or other contextual

triggers.

One of the most important limitations in human

studies, particularly in suicide completers, lies in the

intrinsic difficulty in recognizing the distinctive

contribution of diverse psychological characteristics (and

their neurochemical correlates) to multifaceted

behavioural phenomena such as aggression and

suicidality. The pursuit of this critical goal would enable

to distinguish ‘‘neurobiological signatures’’ relevant to

IABs from complex profiles of 5-HT-ergic dysfunctions

that may reflect the influence of comorbid disturbances,

such as depression or anxiety.

On the other hand, the translational value of most

animal studies on the neurobiological relationship

between aggression and suicidal conducts is greatly

limited by the lack of suicidal activity in animal models,

as well as the relatively poor characterization of the

differences between reactive and proactive elements of

aggression in experimental preparations. This premise

underscores the need for refined ethological criteria to

recognize and distinguish diverse subtypes of

aggressive behaviours in animal models.

The acknowledgment of the critical importance of

gene � environment � gender interactions in aggression

promises to lead to the development of new, highly

isomorphic animal models of this disorder. Current

translational perspectives call for a greater interface

between these innovative experimental strategies and

genetic association studies with more refined

assessment criteria. It is expected that the combination

of this perspective with complementary epigenetic,

transcriptomic, proteomic and brain-imaging approaches

will help develop a heuristic translational platform to

identify reliable biomarkers for the early diagnosis and

prevention of reactive aggression and suicidal

behaviours.
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