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Abstract. Operator products occur naturally in a range of regularized boundary integral equa-
tion formulations. However, while a Galerkin discretisation only depends on the domain space and
the test (or dual) space of the operator, products require a notion of the range. In the boundary
element software package Bempp we have implemented a complete operator algebra that depends
on knowledge of the domain, range and test space. The aim was to develop a way of working with
Galerkin operators in boundary element software that is as close to working with the strong form on
paper as possible while hiding the complexities of Galerkin discretisations. In this paper, we demon-
strate the implementation of this operator algebra and show, using various Laplace and Helmholtz
example problems, how it significantly simplifies the definition and solution of a wide range of typical
boundary integral equation problems.
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1. Introduction. A typical abstract operator problem can be formulated as

Aφ = f,

where A is an operator mapping from a Hilbert spaceH1 into another Hilbert spaceH2

with the unknown φ ∈ H1 and known f ∈ H2. Many modern operator preconditioning
strategies depend on the idea of having a regulariser R : H2 → H1 and solving the
equation

(1) RAφ = Rf

instead. This is particularly common in the area of boundary integral equations,
where integral operators can be efficiently preconditioned by operators of opposite
order. Now suppose that we want to discretise (1) using a standard Galerkin method.
The discretised problem is

(2) RM−1Aφ = Rf ,

where R and A are the Galerkin discretisations of R and A, respectively, and f is
the vector of coefficients of the projection of f onto the finite dimensional subspace
of H2. The matrix M is the mass matrix between the basis functions of the finite
dimensional subspaces of H2 and H1.

In order to solve (2), we have to assemble all involved matrices, form the right-
hand side, implement a function that evaluates RM−1Av for a given vector v, and
then solve (2) with GMRES or another iterative solver of choice. Ideally, we would not
have to deal with these implementational details and just directly write the following
code.

∗This work was funded by EPSRC Grants EP/I030042/1 and EP/K03829X/1
†Department of Mathematics, University College London, UK (t.betcke@ucl.ac.uk).
‡Department of Mathematics, University College London, UK (matthew.scroggs.14@ucl.ac.uk).
§Simpleware Ltd., Exeter, UK (w.smigaj@simpleware.com).

1

ar
X

iv
:1

71
1.

10
60

7v
1 

 [
m

at
h.

N
A

] 
 2

8 
N

ov
 2

01
7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/132618327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:t.betcke@ucl.ac.uk
mailto:matthew.scroggs.14@ucl.ac.uk
mailto:w.smigaj@simpleware.com


2 T. BETCKE, M. W. SCROGGS, AND W. ŚMIGAJ

A = operator ( . . . )
R = operator ( . . . )
f = func t i on ( . . . )
phi = gmres (R ∗ A, R ∗ f )

Note that at the end, the solution phi is again a function object. In order for this
code snippet to work and the mass matrix M to be assembled automatically, either
the implementation of the operator product needs to be aware of the test space of A
and domain space of R, or the software definition of these operators need to contain
information about their ranges. In this paper we will follow this second approach by
defining the notion of the strong form of a Galerkin discretisation and demonstrate
its benefits.

An implementation of a product algebra based on this idea is contained in the
Python/C++ based boundary element library Bempp (www.bempp.com) [13], orig-
inally developed by the authors of this paper. Bempp is a comprehensive library
for the solution of boundary integral equations for Laplace, Helmholtz and Maxwell
problems. The leading design principle of Bempp is to allow a description of BEM
problems in Python code that is as close to the mathematical formulation as possi-
ble, while hiding implementational details of the underlying Galerkin discretisations.
This allows us to formulate complex block operator systems such as those arising
in Calderón preconditioned formulations of transmission problems in just a few lines
of code. Initial steps towards a Bempp operator algebra were briefly described in
[13] as part of a general library overview. The examples in this paper are based on
the current version (Bempp 3.3), which has undergone significant development since
then and now contains a complete and mature product algebra for operators and grid
functions.

As examples for the use of an operator algebra in more complex settings, we dis-
cuss: the efficient assembly of the hypersingular operator via a representation using
single layer operators; the assembly of Calderón projectors and the computation of
their spectral properties and the Calderón preconditioned solution of acoustic trans-
mission problems.

A particular challenge is the design of product algebras for Maxwell problems. The
stable discretisation of the electric and magnetic field operators for Maxwell problems
requires the use of a non-standard skew symmetric bilinear form. The Maxwell case
is discussed in much more detail in [12].

The paper is organised as follows. In Section 2 we review basic definitions of
boundary integral operators for Laplace and Helmholtz problems. In Section 3 we
introduce the basic concepts of a Galerkin product algebra and discuss some imple-
mentational details. Section 4 then gives a first application to the fast assembly of
hypersingular operators for Laplace and Helmholtz problems. Then, in Section 5 we
discuss block operator systems at the example of Calderón preconditioned transmis-
sion problems. The paper concludes with a summary in Section 6.

While most of the mathematics presented in this paper is well known among
specialists, the focus of this paper is on hiding mathematical complexity of Galerkin
discretisations. With the wider penetration and acceptance of high-level scripting lan-
guages such us Matlab, Python and Julia in the scientific computing community, we
now have the tools and structures to make complex computational operations accessi-
ble for a wide audience of non-specialist users, making possible the fast dissemination
of new algorithms and techniques beyond traditional mathematical communities.

www.bempp.com
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2. Boundary integral operators for scalar Laplace and Helmholtz prob-
lems, and their Galerkin discretisation. In this section, we give the basic defini-
tions of boundary integral operators for Laplace and Helmholtz problems and some of
their properties needed later. More detailed information can be found in e.g. [14, 11].

We assume that Ω ⊂ R3 is a piecewise smooth bounded Lipschitz domain with
boundary Γ. By Ω+ := R3\Ω we denote the exterior of Ω. We denote by γ±0 the
associated interior (-) and exterior (+) trace operators and by γ±1 the interior and
exterior normal derivative operators. We always assume that the normal direction ν
points outwards into Ω+.

The average of the interior and exterior trace is defined as {{γ0f}} := 1
2

(
γ+

0 f + γ–
0f
)
.

Correspondingly, the average normal derivative is defined as {{γ1f}} := 1
2

(
γ+

1 f + γ–
1f
)
.

2.1. Operator definitions. We consider a function φ– ∈ H1(Ω) satisfying the
Helmholtz equation −∆φ– − k2φ– = 0, where k ∈ R. By Green’s representation
theorem we have

φ–(x) = [Vγ–
1φ

–] (x)− [Kγ–
0φ

–] (x), x ∈ Ω(3)

for the single layer potential operator V : H−1/2(Γ)→ H1
loc(Ω ∪ Ω+) defined by

[Vµ] (x) =

∫
Γ

G(x,y)µ(y) ds(y), µ ∈ H−1/2(Γ)

and the double layer potential operator K : H1/2(Γ)→ H1
loc(Ω ∪ Ω+) defined by

[Kξ] (x) =

∫
Γ

∂G(x,y)

∂ν(y)
ξ(y) ds(y), ξ ∈ H1/2(Γ).

Here, G(x,y) := eik|x−y|

4π|x−y| is the associated Green’s function. If k = 0, we obtain the

special case of the Laplace equation −∆u = 0.
We now define the following boundary operators as the average of the interior

and exterior traces of the single layer and double layer potential operators:
• The single layer boundary operator V : H−1/2(Γ)→ H1/2(Γ) defined by

[Vµ] (x) = {{γ0Vµ}}(x), µ ∈ H−1/2(Γ), x ∈ Γ.

• The double layer boundary operator K : H1/2(Γ)→ H1/2(Γ) defined by

[Kξ] (x) = {{γ0Kξ}}(x), ξ ∈ H1/2(Γ), x ∈ Γ.

• The adjoint double layer boundary operator K′ : H−1/2(Γ) → H−1/2(Γ)
defined by

[K′µ] (x) = {{γ1Vµ}}(x), µ ∈ H−1/2(Γ), x ∈ Γ.

• The hypersingular boundary operator W : H1/2(Γ)→ H−1/2(Γ) defined by

[Wξ] (x) = −{{γ1Kξ}}(x), ξ ∈ H1/2(Γ), x ∈ Γ.

Applying the interior traces γ–
0 and γ–

1 to the Green’s representation formula (3), and
taking into account the jump relations of the double layer and adjoint double layer
boundary operators on the boundary Γ [14, Section 6.3 and 6.4] we arrive at

(4)

[
γ–

0φ
–

γ–
1φ

–

]
=
(

1
2 Id + A

) [γ–
0φ

–

γ–
1φ

–

]
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with

(5) A :=

[
−K V
W K′

]
,

which holds almost everywhere on Γ. The operator C– := 1
2 Id + A is also called the

interior Calderón projector. If φ+ is a solution of the exterior Helmholtz equation
−∆φ+ − k2φ+ = 0 in Ω+ with boundary condition at infinity

lim
|x|→∞

|x|
(

∂

∂|x|
φ+ − ikφ+

)
= 0

for k 6= 0 and

lim
|x|→∞

|φ+(x)| = O
(

1

|x|

)
for k = 0, Green’s representation formula is given as

(6) φ+(x) =
[
Kγ+

0 φ
+
]

(x)−
[
Vγ+

1 φ
+
]

(x), x ∈ Ω+.

Taking the exterior traces γ+
0 and γ+

1 now gives the system of equations

(7)

[
γ+

0 φ
+

γ+
1 φ

+

]
=
(

1
2 Id− A

) [γ+
0 φ

+

γ+
1 φ

+.

]
with associated exterior Calderón projector C+ := 1

2 Id− A.

2.2. Galerkin discretisation of integral operators. Let Th be a triangula-
tion of Γ with N piecewise flat triangular elements τj and M associated vertices pi.
We define the function space S0

h of elementwise constant functions φj such that

φj(x) =

{
1, x ∈ τj
0, otherwise,

and the space S1
h of globally continuous, piecewise linear hat functions ρi such that

ρi(p`) =

{
1, i = `

0, otherwise.

Denote by 〈u, v〉Γ the standard surface dual form
∫

Γ
u(x)v(x) ds(x) of two functions u

and v. By restricting H1/2(Γ) onto S1
h and H−1/2(Γ) onto S0

h, we obtain the Galerkin
discretizations V , K, K ′, W defined as

[V ]ij := 〈Vφj , φi〉Γ, [K]ij := 〈Kρj , φi〉Γ
[K ′]ij := 〈K′φj , ρi〉Γ, [W ]ij := 〈Wρj , ρi〉Γ

From this definition it follows that K ′ = KT . A computable expression of W using
weakly singular integrals is given in Section 4.

A problem with this definition of discretisation spaces is that S0
h and S1

h have a
different number of basis functions, leading to non-square matrices K and K ′. Hence,
it is only suitable for discretisations of integral equations of the first-kind involving
only V or W on the left-hand side. There are two solutions to this.
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1. Discretise both spaces H1/2(Γ) and H−1/2(Γ) with the continuous space S1
h.

This works well if Γ is sufficiently smooth. However, if Γ has corners then
Neumann data in H−1/2(Γ) is not well represented by continuous functions.

2. Instead of the space S0
h use the space of piecewise constant functions φD on

the dual grid which is obtained by associating each element of the dual grid
with one vertex of the original grid. We denote this piecewise constant space
by S0

D,h. With this definition of piecewise constant functions also the matrix

K is square. Moreover, the mass matrix between the basis functions in S0
h

and S0
D,h is inf-sup stable [8, 2].

3. Galerkin product algebras and their implementation. In this section
we discuss the product of Galerkin discretisations of abstract Hilbert space operators
and how a corresponding product algebra can be implemented in software. While the
mathematical basis is well known, most software libraries do not support a product
algebra, making implementations of operator based preconditioners and many other
operations more cumbersome than necessary. This section proposes a framework
to elegantly support operator product algebras in general application settings. The
formalism introduced here is based on Riesz mappings between dual spaces. A nice
introduction in the context of Galerkin discretizations is given in [9].

3.1. Abstract formulation. Let A : Hdom
A → Hran

A and B : Hdom
B → Hran

B be
operators mapping between Hilbert spaces. If Hran

A ⊂ Hdom
B the product

(8) g = BAf

is well defined in Hran
B . We now want to evaluate this product using Galerkin discreti-

sations of the operators A and B.
Let Hdual

A be dual to Hran
A with respect to a given dual pairing 〈·, ·〉A : Hran

A ×
Hdual

A → C. Correspondingly, we define the space Hdual
B as dual space to Hran

B with
respect to a dual pairing 〈·, ·〉B.

Defining the function q = Af , the operator product (8) can equivalently be written
as

q = Af
g = Bq.

Rewriting this system in its variational form leads to the problem of finding (q, g) ∈
Hran

A ×Hran
B such that

(9)
〈q, µ〉A = 〈Af, µ〉A
〈g, τ〉B = 〈Bq, τ〉B

for all (µ, τ) ∈ Hdual
A × Hdual

B . We now introduce the finite dimensional subspaces
Vdom
h,X ⊂ Hdom

X , Vran
h,X ⊂ Hran

X and Vdom
h,X ⊂ Hdual

X with basis functions ζdom
X,j , ζran

X,i , ζdual
X,`

for X = A,B. In what follows we assume that the dimension of Vdual
h,X is identical to

the dimension of Vran
h,X and that the associated dual-pairing is inf-sup stable in the

sense that

sup
ξdual
X ∈V dual

h,X

〈ξran
X , ξdual

X 〉X
‖ξdual
X ‖Hdual

X

≥ cX‖ξran
X ‖Hran

X
, ∀ξran

X ∈ V ran
h,X

for some cX > 0, implying that the associated mass matrix is invertible. The discrete
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version of (9) is now given as

MAq = Af ,

MBg = Bq,

where [MX]`,i = 〈φran
X,i , φ

dual
X,` 〉X, X = A,B. are the mass matrices of the dual pairings.

The vectors f , q and g are the vectors of coefficients of the corresponding functions.
Combining both equations we obtain

q = M−1
B BM−1

A Af .

The matrix A is also called the discrete weak form of the operator A. This motivates
the following definition.

Definition 1. Given the discrete weak form A defined as above. We define the
associated discrete strong form as the matrix

AS := M−1
A A.

Note that M−1
A is the discrete Riesz map from the dual space into the range space of

A [9]. The notation of the discrete strong form allows us to define a Galerkin product
algebra as follows.

Definition 2. Given the operator product C := BA. We define the associated
discrete operator product weak form as

C := B �A := B ·AS = BM−1
A A

and the associated discrete strong form as

CS := M−1
B (B �A) .

We note that the a direct discretisation 〈BAφdom
A,j , φ

dual
B,` 〉 is usually not identical to C as

the latter is computed as the solution of the operator system (9) whose discretisation
error also depends on the space Vran

h,A and the corresponding discrete dual. However,
the discretisation of the operator product BA can rarely be computed directly and
solving (9) is usually the only possibility to evaluate this product.

This discrete operator algebra is associative since

(C �B)�A = CM−1
B BM−1

A A = C � (B �A) .

Moreover, since a Hilbert space is self-dual in its natural inner product (·, ·) the
discretization [

Mdom
A

]
ij

=
(
ζdom
A,i , ζ

dom
A,j

)
of the identity operator Iddom

A is the right unit element with respect to this discrete
operator algebra. Correspondingly, the matrix M ran

A is the left unit element.
We have so far considered the approximation of the weak form 〈BAφdom

A,j , φ
dual
B,` 〉,

where the operator B acts on Aφdom
A,j . However, there are situations where we want

a discrete approximation of the product 〈Aφdom
A,j ,Bφ

dom
B,` 〉 for B : Hdom

B → Hdual
A . An

example for the assembly of hypersingular operators will be given later. Note that if
y is a coefficient vector of a function φ ∈ Hdom

B then ỹ = M−1
B By is the coefficient
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vector to the Galerkin approximation of φ̃ = Bφ. Hence, a discrete approximation of
the weak form 〈Aφdom

A,j ,Bφ
dom
B,` 〉 is given by

BH ·M−HB ·A =
[
BS
]H

A.

This motivates the following definition.

Definition 3. We define the dual discrete product weak form associated with the
operators A and B as

(10) B �D A := BH ·M−HB ·A

and the associated discrete strong form as

C := M−1
B,A (B �D A) .

where MB,A is the mass matrix between the domain space of B and the range space of
A.

3.2. Example: Operator preconditioned Dirichlet problems. As a first
example, we describe the formulation of an operator preconditioned interior Dirichlet
problem using the above operator algebra. We want to solve

−∆φ– − k2φ– = 0 in Ω

γ0φ
– = g on Γ

for a given function g ∈ H1/2(Γ). From the first line of (4) we obtain that

γ–
0φ

– =
(

1
2 Id− K

)
γ–

0φ
– + Vγ–

1φ
–.

Substituting the boundary condition, we obtain the integral equation of the first kind

(11) Vγ–
1φ

– =
(

1
2 Id + K

)
g.

The operator V : H−1/2(Γ)→ H1/2(Γ) is a pseudodifferential operator of order−1 and
can be preconditioned by the hypersingular operator W : H1/2(Γ)→ H−1/2(Γ), which
is a pseudodifferential operator of order 1 [15, 8]. We arrive at the preconditioned
problem

(12) WVγ–
1φ

– = W
(

1
2 Id + K

)
g.

Note that the operator W is singular if k = 0. In that case a rank-one modification of
the hypersingular operator can be used [15]. For the Galerkin discretisation of (12)
we use the standard L2 based dual pairing 〈·, ·〉 defined by

〈u, v〉 =

∫
Γ

u(x)v(x)dx, u, v ∈ L2(Γ)

and note that the spaces H1/2(Γ) and H−1/2(Γ) are dual with respect to this dual
pairing.

For the discretisation of the operators we use the spaces S0
D,h and S1

h as described
in Section 2.2. Using the notation introduced in Section 3.1 we obtain the discrete
system

(13) W � V x = W �
(

1
2M +K

)
g,
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where x is the vector of coefficients of the unknown function φh in the basis S0
D,h. The

matrix M is the discretisation of the identity operator on H1/2(Γ). If in addition we
want to use Riesz (or mass matrix) preconditioning we can simply take the discrete
strong forms of the product operators on the left and right hand side of (13).

In terms of mathematics the definition of the discrete strong form is simply a
notational convenience. We could equally write (13) by directly inserting the mass
matrix inverses. The main advantage of an operator product algebra first becomes
visible in a software implementation that directly supports the notions of discrete
strong forms and operator products. This is described below.

3.3. Basic software implementation of an operator algebra. Based on
the definition of a discrete product algebra for Galerkin discretisations, we can now
discuss the software implementation. Two concepts are crucial: namely that of a grid
function, which represents functions defined on a grid; and that of an operator, which
maps grid functions from a discrete domain space into a discrete range space.

3.3.1. Grid functions. We start with the description of a grid function. A basic
grid function object is defined by a discrete function space and a vector of coefficients
on the space. However, for practical purposes this is not always sufficient. Consider
the following situation of multiplying the discrete single layer operator V , discretised
with the space of piecewise constant functions S0

h and a vector of coefficients f . The
result y = V f is defined as yi =

∑n
j=1 fj〈V φj , φi〉. Since the single layer operator

maps onto H1/2(Γ) we would like to obtain a suitable vector of coefficients ỹ of
piecewise linear functions in S1

h such that

y = M ỹ,

where M is the rectangular mass-matrix between the spaces S0
h and S1

h. Solving for ỹ
is only possible in a least-squares sense. Moreover, for these two spaces the matrix M
may even be ill-conditioined or singular in the least-squares sense, making it difficult
to obtain a good approximation in the range space. Hence, we also allow the definition
of a grid function purely through the vector of coefficients into the dual space.

The constructors to define a grid function either through coefficients in a given
space or through projections into a dual space are defined as follows.

fun = GridFunction ( space , c o e f f i c i e n t s = . . . )
fun = GridFunction ( space , dua l space = . . . , p r o j e c t i o n s = . . . )

Associated with these two constructors are two methods that extract the vectors of
coefficients or projections.

c o e f f s = fun . c o e f f i c i e n t s ( )
pro j = fun . p r o j e c t i o n s ( dua l space )

If the grid function is initialised with a coefficient vector, then the first operation just
returns this vector. The second operation sets up the corresponding mass matrix M

and returns the vector M * coeffs . If the grid function is initialised with a vector
of projections and a corresponding dual space then access to the coefficients results
in a solution of a linear system if the space and dual space have the same number of
degrees of freedom. Otherwise, an exception is thrown. If the projections method is
called and the given dual space is identical to the original dual space on initialisation
the vector projections is returned. Otherwise, first a conversion to coefficient form
via a call to coefficients() is attempted.
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This dual representation of a grid function via either a vector of coefficients or
a vector of projections makes it possible to represent functions in many standard
situations, where a conversion between coefficients and projections is mathematically
not possible and not necessary for the formulation of a problem.

3.3.2. Operators. Typically, in finite element discretisation libraries the defi-
nition of an operator requires an underlying weak form, a domain space and a test
space. However, to support the operator algebra introduced in Section 3.1 the range
space is also required. Hence, we represent a constructor for a boundary operator in
the following form.

op = operator ( domain , range , dua l to range , . . . )

Here, the objects domain, range_ and dual_to_range describe the finite dimensional
domain, range and dual spaces. Each operator provides the following two methods.

d i s c r e t e weak fo rm = op . weak form ( )
d i s c r e t e s t r o n g f o r m = op . s t rong form ( )

The first one returns the standard discrete weak form while the second one returns
the discrete strong form. The discrete_weak_form and discrete_strong_form are
objects that implement at least a matrix-vector routine to multiply a vector with
the corresponding discrete operator. The multiplication with the inverse of the mass
matrix in the strong form is implemented via computing an LU decomposition and
solving the associated linear system.

Important for the performance is caching. The weak form is computed in the
first call to the weak_form() method and then cached. Correspondingly, the LU
decomposition necessary for the strong form is computed only once and then cached.

3.3.3. Operations on operators and grid functions. With this framework
the multiplication res_fun = op * fun of a boundary operator op with a grid func-
tion fun can be elegantly described in the following way:

r e s u l t f u n = GridFunction (
space=op . range ,
dua l space=op . dua l to range ,
p r o j e c t i o n s=op . weak form ( ) ∗ fun . c o e f f i c i e n t s )

Alternatively, we could have more simply presented the result as

r e s u l t f u n = GridFunction (
space=op . range ,
c o e f f i c i e n t s=op . s t rong form ( ) ∗ fun . c o e f f i c i e n t s )

However, the latter ignores that there may be no mass matrix transformation available
that could map from the discrete dual space to the discrete range space.

As an example, we present a small code snippet from Bempp that maps the
constant function f(x) = 1 on the boundary of the cube to the function g = Vf , where
V is the Laplace single layer boundary operator. f is represented in a space of piecewise
constant functions on the dual grid and g is represented in a space of continuous,
piecewise linear functions, reflecting the smoothing properties of the Laplace single
layer boundary operator. The following lines define the cube grid with an element
size of h = 0.1 and the spaces of piecewise constant functions on the dual grid, and
continuous, piecewise linear continuous functions on the primal grid.
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Fig. 1. Left: The Laplace single layer operator applied to a constant function on the boundary
of a cube. Right: The Laplace hypersingular operator applied to the function on the left.

g r id = bempp . api . shapes . cube (h=0.1)
cons t space = bempp . api . f u n c t i o n s p a c e ( gr id , ”DUAL” , 0)
l i n s p a c e = bempp . api . f u n c t i o n s p a c e ( gr id , ”B−P” , 1)

We would like to remark on the parameter B-P (barycentric-polynomial) in the code
given above for the function space definitions. Since the piecewise constant functions
are defined on the dual grid, we are working with the barycentric refinement of the
original grid [2]. Hence, the piecewise linear functions on the primal grid also need
to be defined over the barycentric refinement (denoted by the parameter B-P) as
the discretisation routines require the same refinement level for the domain and dual
to range space. Mathematically, the standard space of continuous, piecewise linear
functions over the primal grid and the space B-P over the barycentric refinement are
identical.

We now define the operator and the constant grid function. For the grid function
the coefficient vector is created via the NumPy routine ones, taking as input the
number of degrees of freedom in the space.

op = bempp . api . ope ra to r s . boundary . l a p l a c e . s i n g l e l a y e r (
const space , l i n s p a c e , con s t space )

fun = bempp . api . GridFunction (
const space ,
c o e f f i c i e n t s=np . ones ( cons t space . g l o b a l d o f c o u n t ) )

We can now multiply the operator with the function and plot the result.

r e s u l t = op ∗ fun
r e s u l t . p l o t ( )

The output is the left cube shown in Figure 1. It is a continuous function in H1/2(Γ).
The right cube in Figure 1 shows the result of multiplying the Laplace hypersingular
operator defined by

op = bempp . api . ope ra to r s . boundary . l a p l a c e . hype r s ingu la r (
l i n s p a c e , const space , l i n s p a c e )

with the function on the left. Since the hypersingular operator maps into H−1/2(Γ),
the appropriate range space consists of piecewise constant functions, and the result of
the discrete operation correspondingly uses a space of piecewise constant functions.
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Under the condition that the operations mathematically make sense and operators
and functions are correctly defined this mechanism always maps grid function objects
into the right spaces under the action of a boundary operator while hiding all the
technicalities of Galerkin discretisations.

The internal implementation of the product of two operators is equally simple
in this framework. Given two operators op1 and op2. Internally, the weak_form()

method of the product op1 * op2 is defined as follows.

def weak form ( ) :
return op1 . weak form ( ) ∗ op2 . s t rong form ( )

Correspondingly, the strong form of the product is implemented as:

def s t rong form ( ) :
return op1 . s t rong form ( ) ∗ op2 . s t rong form ( )

Internally, the product of two discrete operators provides a matrix-vector routine that
successively applies the two operators to a given vector. If op1 and op2 implement
caching then an actual discretisation of a weak form is only performed once, and the
product of the two operators is performed with almost no overhead.

It is very easy to wrap standard iterative solvers to support this operator algebra.
Suppose we want to solve the product system (13). Using an operator algebra wrapper
to any standard GMRES (such as the one in SciPy [1]) the solution to the system
(13) now takes the form

so lu t i on , i n f o = gmres (W ∗ V, W ∗ ( . 5 ∗ i dent + K) ∗ g )

with solution being a grid function that lives in the correct space of piecewise con-
stant functions. The definition of such a GMRES routine is as follows:

def gmres (A, b , . . . ) :
from s c ipy . spar s e import l i n a l g
x , i n f o = l i n a l g . gmres (

A. weak form ( ) ,
b . p r o j e c t i o n s (A. dua l t o range ) ,
. . . )

return GridFunction (A. domain , c o e f f i c i e n t s=x ) , i n f o

The product algebra automatically converts W * V into a new object that provides
the correct space attributes and a weak_form method as defined above. Similarly,
the right-hand side b is evaluated into a vector with the projections method. The
full Bempp implementation provides among other options also a keyword attribute
use_strong_form. If this is set to true then inside the GMRES routine the solution
is computed as

x , i n f o = l i n a l g . gmres (A. s t rong form ( ) , b . c o e f f i c i e n t s )

This corresponds to standard Riesz (or mass matrix) preconditioning and comes nat-
urally as part of this algebra. Note that we have left out of the description checks
that the spaces of the left and right hand side are compatible. In practice, this should
be done by the code as sanity check.

Finally, the weak form of the dual product B �D A can be be implemented as

def weak form ( ) :
return B. st rong form ( ) . a d j o i n t ( ) ∗ A. st rong form ( )

The range space and domain space of the dual product are the same as that of A
while the dual space is the same as the domain space of B.



12 T. BETCKE, M. W. SCROGGS, AND W. ŚMIGAJ

3.4. A note on the performance of the operator algebra. The operator
algebra described above relies on being able to perform fast mass matrix LU decompo-
sitions and solves. In finite element methods LU decompositions with a mass matrix
can be as expensive as solves with a stiffness matrix. In BEM the situation is quite
different. Even with the utilisation of fast methods such as FMM (fast multipole
method [5]) or hierarchical matrices [6], the assembly and matrix-vector product of a
boundary operator is typically much more expensive than assembling a mass matrix
and performing an LU decomposition of it. Therefore, mass matrix operations can
be essentially treated as on-the-fly operations compared to the rest. One potential
problem is the complexity of the LU decomposition of a mass matrix over a surface
function space on Γ. For banded systems the complexity of Gaussian elimination
scales like O(n). However, a closed surface has a higher element connectivity than a
standard plane in 2d and we cannot expect a simple O(n) scaling even with reorder-
ing. In practice though, this has made so far little difference and we have used the
SuperLU code provided by SciPy for the LU decomposition and surface linear system
solves on medium size BEM problems with hundreds of thousands of surface elements
without any noticeable performance issues, and we expect little performance overhead
even for very large problems with millions of unknowns as the FMM or hierarchical
matrix operations on the operators have much larger effective costs and significantly
more complex data structures to operate on.

4. The fast assembly of hypersingular boundary operators. The weak
form of the hypersingular boundary operator can, after integration by parts, be rep-
resented as [7, 10]

(14)

Wij =
1

4π

∫
Γ

∫
Γ

eik|x−y|

|x− y|
〈curlΓρi(x), curlΓρj(y)〉2 ds(y) ds(x)

− k2

4π

∫
Γ

∫
Γ

eik|x−y|

|x− y|
ρi(x)ρj(y)〈ν(x),ν(y)〉2 ds(y) ds(x),

where the basis and test function ρj and ρi are basis functions in S1
h. Both terms in

(14) are now weakly singular and can be numerically evaluated.
However, (14) motivates another way of assembling the hypersingular operator,

which turns out to be significantly more efficient in many cases. In both terms of
(14), a single layer kernel is appearing. We can use this and represent W in the form

(15) W =

3∑
j=1

PTj · V · Pj − k2
3∑
j=1

QTj · V ·Qj ,

where we now only need to assemble a single layer boundary operator V with smooth
kernel in a space of discontinuous elementwise linear functions, and the Pj and Qj are
sparse matrices. Pj maps a continuous piecewise linear function to the jth component
of its surface curl and Qj scales the basis functions with the contributions of ν in the
jth component in each element. If k = 0 (Laplace case) the second term in (15)
becomes zero and it would even be sufficient to use a space of piecewise constant
functions to represent V .

This evaluation trick is well known and is suitable for discretising the hypersin-
gular operator with continuous, piecewise linear basis functions on flat triangles. The
disadvantage is that an explicit representation of the sparse matrices Pj and Qj is
necessary. This representation depends on the polynomial order and dof numbering
of the space implementation.
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In the following we use the product algebra concepts to write the representation
(14) in a form that generalises to function spaces of arbitrary order on curved trian-
gular elements without requiring details of the dof ordering in the implementation.
Given a finite dimensional trial space V trial

h with basis θ1, . . . , θL and a corresponding
test space V test

h with basis ξ1, . . . , ξL′ we define the discrete sparse surface operators[
C`
]
ij

= 〈[curlΓθj ]` , ξi〉Γ,[
N `
]
ij

= 〈θj [ν]` , ξi〉Γ.

The operator C` weakly maps a function f to its elementwise `th surface curl com-
ponent, and the operator N ` weakly multiplies a function f with the `th component
of the surface normal direction.

We can now represent the hypersingular operator as

(16) W =

3∑
j=1

Cj �D V � Cj − k2
3∑
j=1

N j �D V �N j .

The dual multiplication �D in (16) acts on the test functions and the right multiplica-
tion � acts on the trial functions. Let V m,cont

h be a globally continuous, elementwise

polynomial function space of order m and denote by V m,disc
h the corresponding space

of discontinuous elementwise polynomial functions of order m. Then the operators in
(14) have the following domain, range and dual spaces.

Operator domain range dual

W V m,cont
h V m,disc

h V m,cont
h

V V m,disc
h V m,disc

h V m,disc
h

N j V m,cont
h V m,disc

h V m,disc
h

Cj V m,cont
h V m,disc

h V m,disc
h

We note that (14) only requires inverses of dual parings on V m,disc
h with itself as dual

space and not dual pairings between V m,disc
h and V m,cont

h which are not invertible. If
k = 0 we can use spaces of order m − 1 for V and the dual and range space of C
since then the second sum in (15) vanishes and the first sum only contains products
of derivatives of the basis and trial functions. Also, we have chosen the discontinuous
function space V m,disc

h as range space of V . This guarantees that the result in (16)
has the correct range space.

In terms of standard matrix products (16) has the form

W =

3∑
j=1

[
Cj
]T ·M−T · V ·M−1 · Cj − k2

3∑
j=1

[
N j
]T ·M−T · V ·M−1 ·N j ,

where M is the mass matrix associated with the space V m,disch of discontinuous basis
functions. Hence, M is elementwise block-diagonal and therefore M−1 is too, and we
can efficiently directly compute M−1 as a sparse matrix. We can then accumulate
the sparse matrix products in the sum above to obtain (15) with Pj = M−1 ·Cj and
Qj = M−1 ·N j . In Bempp the whole implementation of the hypersingular operator
can be written as follows.

D = ZeroBoundaryOperator ( . . . )
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N (cont/discont)
Standard projection via single layer

time mem time mem time mem
258 / 1536 0.7 s 1.0 MiB 1.0 s 31 MiB 0.4 s 15.5 MiB
1026 / 6144 3.9 s 9.0 MiB 3.5 s 177 MiB 1.6 s 88 MiB
4098 / 24576 19.6 s 60.1 MiB 15.2 s 907 MiB 7.7 s 467 MiB
16386 / 98304 1.6 m 345 MiB 1.4 m 4.4 GiB 39.4 s 2.2 GiB
65538 / 393216 7.6 m 1.79 GiB 8.6 m 21.5 GiB 3.9 m 11.0 GiB

Fig. 2. Time and memory for the assembly of the hypersingular operator using the standard
weak form on the continuous space, discontinuous assembly with projection spaces or a single layer
formulation. In the latter two cases only the assembly time and memory of the boundary operator
is given. Assembly time and memory requirements for the sparse operators are negligble.

for i in range ( 3 ) :
D += C[ i ] . dua l product (V) ∗ C[ i ]
D += −k∗∗2 ∗ N[ i ] . dua l product (V) ∗ N[ i ]

Due to efficient caching strategies, all operators, including the mass matrices and
their inverses, are computed only once. Hence, there is minimal overhead from using
a high-level expressive formulation.

In Figure 2, we compare times and memory requirements for the hierarchical
matrix assembly of the hypersingular boundary operator on the unit sphere with
wavenumber k = 1 using basis functions in S1

h. The left column shows the standard
assembly based on (14) and S1

h basis functions. The middle column shows results for
assembling the operator directly on a larger space of piecewise linear discontinuous
functions using the weak form (14) and then projecting down to basis functions in
S1
h, that is W = PTWdiscP for a sparse matrix P that maps from S1

h to a space of
piecewise linear discontinuous functions. This assembly allows matrix compression
directly on the elementwise basis functions instead of only compressing on nodal basis
functions after summing up the elementwise contributions. However, in the case of
the hypersingular operator, this leads to larger memory consumption through the
larger matrix size on the discontinuous space, but not faster assembly times. The
interesting case is the single layer formulation in (16). Even though the single layer
operator is assembled on the larger discontinuous space it compresses better since it
is a smoothing operator and therefore leads to around twice as fast assembly times.
The price is a larger memory size compared to the standard assembly. If this is not of
concern then the single layer based assembly is preferrable. Note that the evaluation
of the matrix-vector product using (16) requires six multiplications with the single
layer operator. So if a large number of matrix-vector products is needed this can
become a bottleneck.

5. Block operator systems. Block operator systems occur naturally in bound-
ary element computations since we are typically dealing with pairs of corresponding
Dirichlet and Neumann data whose relationship is given by the Calderón projector
shown in (4) for the interior problem and (7) for the exterior problem. In this section
we want to demonstrate some interesting computations with the Calderón projector
which can be very intuitively performed in the framework of block operator extensions
of the product algebra.

Within the Bempp framework, a blocked operator of given block dimension (m,n)
is defined as

b locked ope ra to r = bempp . api . BlockedOperator (m, n)
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We can now assign individual operators to the blocked operator by e.g.

b l o cked ope ra to r [ 0 , 1 ] = l a p l a c e . s i n g l e l a y e r ( . . . )

Not every entry of a blocked operator needs to be assigned a boundary operator.
Empty positions are automatically treated as zero operators. However, we require the
following conditions before computations with blocked operators can be performed:

• There can be no empty rows or columns of the blocked operator.
• All operators in a given row must have the same range and dual_to_range

space.
• All operators in a given column must have the same domain space.

These conditions are easily checked while assigning components to a blocked op-
erator. The weak form of a blocked operator is obtained as

d i s c r e t e b l o c k e d o p e r a t o r = b locked ope ra to r . weak form ( )

This returns an operator which performs a matrix-vector product by splitting
up the input vector into its components with respect to the columns of the blocked
operator, performs multiplications with the weak forms of the individual components,
and then assembles the result vector back together again.

The interesting case is the definition of a strong form. Naively, we could just take
the strong forms of the individual component operators. However, since each strong
form involves the solution of a linear system with a mass matrix we want to avoid
this. Instead, we multiply the discrete weak form of the operator from the left with
a block diagonal matrix whose block diagonal components contain the inverse mass
matrices that map from the dual space in the corresponding row to the range space.
This works due to the compatibility condition that all test and range spaces within a
row must be identical.

5.1. Stable discretisations of Calderón projectors. With the concept of a
block operator we now have a simple framework to work with Calderón projectors
C± =

(
1
2 Id∓ A

)
with A defined as in (5). For the sake of simplicity in the following

we use the Calderón projector C+ for the exterior problem. The interior Calderón
projector C– is treated in the same way. Remember that both operators are defined
on the product space H1/2(Γ)×H−1/2(Γ)

Two properties are fundamental to Calderón projectors. First, (C+)
2

= C+; and

second, if U =
[
γ+

0 u, γ
+
1 u
]T

is the Cauchy data of an exterior Helmholtz solution u
satisfying the Sommerfeld radiation condition, it holds that U = C+U , or equivalently
C–U = 0.

Based on the product algebra framework introduced in this paper we can easily
represent these properties on a discrete level to obtain a numerical Calderón projector
up to the discretisation error.

As an example, we consider the Calderón projector on the unit cube with wavenum-
ber k = 2. Assembling the projector within the Bempp product operator framework
is simple, and corresponding functions are already provided.

k = 2
from bempp . api . ope ra to r s . boundary . spa r s e \

import m u l t i t r a c e i d e n t i t y
from bempp . api . ope ra to r s . boundary . he lmholtz \

import m u l t i t r a c e o p e r a t o r
ca lderon = . 5 ∗ m u l t i t r a c e i d e n t i t y ( gr id , spaces=’ dual ’ ) \

− m u l t i t r a c e o p e r a t o r ( gr id , k , spaces=’ dual ’ )
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In this code snippet, the option spaces=’dual’ automatically discretises the Calderón
projector using stable dual pairings of continuous, piecewise linear spaces on the
primal grid, and piecewise constant functions on the dual grid.

To demonstrate the action of the Calderón projector to a pair of non-compatible
Cauchy data we define two grid functions, both of which are constant one on the
boundary.

f 1 = bempp . api . GridFunction . f rom ones (
ca lderon . domain spaces [ 0 ] )

f 2 = bempp . api . GridFunction . f rom ones (
ca lderon . domain spaces [ 1 ] )

The two functions are defined on the pair of domain spaces discretising the product
space H1/2(Γ)×H−1/2(Γ). We can now apply the Calderón projector to this pair of
spaces to compute new grid functions which form a numerically compatible pair of
Cauchy data for an exterior Helmholtz solution. The code snippet for this operation
is given by

[ u1 , v1 ] = ca lderon ∗ [ f1 , f 2 ]

The grid functions u1 and v1 again live in the spaces of piecewise continuous and
piecewise constant functions, respectively. We now apply the Calderón projector
again to obtain

[ u2 , v2 ] = ca lderon ∗ [ u1 , v1 ]

The grid functions u1 and u2, respectively v1 and v2 should only differ in the order
of the discretisation error. We can easily check this.

e r r o r d i r i c h l e t = ( u2−u1 ) . l2 norm ( ) / u2 . l2 norm ( )
error neumann = ( v2−v1 ) . l2 norm ( ) / v2 . l2 norm ( )

For the corresponding values we obtain 1.2 × 10−4 and 8.0 × 10−4. It is interesting
to consider the singular values and eigenvalues of the discrete strong form of the
Calderón projector. We can compute them easily as follows.

from s c ipy . l i n a l g import svdvals , e i g v a l s
ca lde ron dense = bempp . api . a s matr ix ( ca lderon . s t rong form ( ) )
s i n g v a l s = svdva l s ( ca lde ron dense )
e i g v a l s = e i g v a l s ( ca lde ron dense )

The grid has 736 nodes. This means that the discrete basis for the possible Dirichlet
data has dimension 736. For each Dirichlet basis function there is a unique associated
Neumann function via the Dirichlet-to-Neumann map. Hence, we expect the range
of the Calderón projector to be of dimension 736 with all other singular values being
close to the discretisation error. Correspondingly, for the eigenvalues we expect 736
eigenvalues close to 1 with all other eigenvalues being close to 0. This is indeed
what happens as shown in Figure 3. In the top plot we show the singular values
of the discrete Calderón projector and in the right plot the eigenvalues. While the
eigenvalues cluster around 1 and 0 the singular values show a significant drop-off
between σ736 ≈ 1.04 and σ737 ≈ 4.9× 10−3, which corresponds to the approximation
error as the accuracy of the hierarchical matrix approximation was chosen to be 10−3.

Finally, we would like to stress that while the eigenvalues of the discrete strong
form are approximations to the eigenvalues of the continuous operator, the singular
values of the discrete strong form are generally not. Given any operator A acting on
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a Hilbert space H the Galerkin approximation of the continuous eigenvalue problem
Aφ = λφ is given as Ax = λMAx, where MA is the mass matrix between the dual
space andH with respect to the chosen dual form. If MA is invertible this is equivalent
to M−1

A Ax = λx or ASx = λx. The situation is more complicated for the singular
values. For simplicity consider a compact operator (e.g. the single layer boundary
operator) acting on L2(Γ). We have that

‖A‖L2(Γ) = sup
φ∈L2(Γ)

‖Aφ‖L2(Γ)

‖φ‖L2(Γ)
.

Let M = CTC be the Cholesky decomposition of the L2(Γ) mass matrix M in a
given discrete basis and A the Galerkin approximation in the same basis. Since
‖φ‖L2(Γ) = ‖Cx‖2 for a function φ living in the discrete subspace of L2(Γ) with given
coefficient vector x it follows that

‖A‖L2(Γ) ≈ max
x6=0

‖CM−1Ax‖2
‖Cx‖2

= ‖C−TAC−1‖2,

which is generally not the same as ‖M−1A‖2. So while the strong form correctly
represents spectral information it does not recover norm or similar singular value
based approximations.

5.2. Calderón preconditioning for acoustic transmission problems. As a
final application we consider the Calderón preconditioned formulation of the following
acoustic transmssion problem.

−∆u+ − k2u+ = 0, in Ω+,

−∆u– − n2k2u– = 0, in Ω,

γ–
0u

– = γ+
0 u

+ + γ+
0 u

inc, on Γ,

γ–
1u

– = γ+
1 u

+ + γ+
1 u

inc, on Γ,

lim
|x|→∞

|x|
(

∂

∂|x|
u+(x)− iku+(x)

)
= 0.(17)

Here, n = c+/c− is the ratio of the speed of sound c+ in the surrounding medium to the
speed of sound c− in the interior medium. The incident field is denoted by uinc. The
formulation that we present is based on [4]. A generalized framework for scattering

through composites is discussed in [3]. We denote by V − :=
[
γ−0 u

− γ−1 u
−]T , V + :=[

γ+
0 u

+ γ+
1 u

+
]T

, and V inc :=
[
γ+

0 u
inc γ+

1 u
inc
]T

the Cauchy data of u−, u+ and
uinc. Let A+ be the multitrace operator associated with the wavenumber k+ := k
and A− the multitrace operator associated with k− := nk as defined in (5). From the
Calderón projector it now follows that(

1

2
I +A−

)
V − = V −(

1

2
I −A+

)
V + = V +(18)

Together with the interface condition V − = V + + V inc we can derive from these
relationships the formulation

(19)
(
A− +A+

)
V + =

(
1

2
I −A−

)
V inc.
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Fig. 3. Top: Singular values of the discrete strong form of the Calderón projector on the unit
cube. Bottom: Eigenvalues of the discrete strong form.

This formulation is well defined for all wavenumbers k > 0 [4]. Moreover, it admits a
simple preconditioning strategy [3] based on properties of the Calderón projector as
follows. We note that A+ is a compact perturbation of A− [11]. We hence obtain(

A− +A+
)2

=
(
A− + compact

)2
=

1

4
I + compact.

We can therefore precondition (19) by squaring the left-hand side to arrive at

(20)
(
A− +A+

)2
V + =

(
A− +A+

)(1

2
I −A−

)
V inc.

With the block operator algebra in place in Bempp the main code snippet becomes

A minus = m u l t i t r a c e o p e r a t o r ( gr id , n ∗ k , spaces=’ dual ’ )
A plus = m u l t i t r a c e o p e r a t o r ( gr id , k , spaces=’ dual ’ )
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Fig. 4. Squared acoustic pressure distribution of a wave travelling through a piecewise homo-
geneous medium.

i dent = m u l t i t r a c e i d e n t i t y ( gr id , spaces=’ dual ’ )
op = A minus + A plus
rhs op = op ∗ ( . 5 ∗ i dent − A minus )
so l , i n f o = bempp . l i n a l g . gmres ( op ∗ op , rhs op ∗ v inc ,

u s e s t rong fo rm=True )

As in the single-operator case we can intuitively write the underlying equations and
solve them. All mass matrix transformations are being taken care off automatically.
An example is shown in Figure 4. It demonstrates a two-dimensional slice at height
0.5 of a plane wave travelling through the unit cube. In this example k = 10 and
n = 0.8. The system was solved in 7 GMRES iterations to a tolerance of 10−5.

6. Conclusions. In this paper we have demonstrated how a Galerkin based
product algebra can be defined and implemented. The underlying idea is very simple.
Instead of an operator being defined just trough a domain and a test space we define
it by a triplet of a domain space, range space, and dual to range (test) space. This
is more natural in terms of the underlying mathematical description and allows the
software implementation of an automatic Galerkin operator product algebra.

We have demonstrated the power of this algebra using three examples, the effi-
cient evaluation of hypersingular boundary operators by single-layer operators, the
computation of the singular values and eigenvalues of Calderón projectors, and the
Calderón preconditioned solution of an acoustic transmission problem.

As long as an efficient LU decomposition of the involved mass matrices is possible
the product algebra can be implemented with little overhead. Multiple LU decompo-
sitions of the same mass matrix can be easily avoided through caching.

In this paper we focused on Galerkin discretizations of boundary integral equa-
tions. Naturally, operator algebras are equally applicable to Galerkin discretizations
of partial differential equations. The main difference here is that for large-scale three
dimensional problems an efficient LU decomposition of mass matrices may not always
be possible.

Finally, we would like to stress that the underlying principle of this paper and
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its implementation in Bempp is to allow the user of software libraries to work as
closely to the mathematical formulation as possible. Ideally, a user treats operators
as continuous objects and lets the software do the rest while the library ensures
mathematical correctness. The framework proposed in this paper and implemented
in Bempp provides a step towards this goal.

While in this paper we have focused on acoustic problems the extension to
Maxwell problems is straight forward and has been used in [12].
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